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Abstract. The cactus of a pointed graph is a discrete tree associated with this graph. Similarly, with every pointed geodesic metric
space E, one can associate an R-tree called the continuous cactus of E. We prove under general assumptions that the cactus of
random planar maps distributed according to Boltzmann weights and conditioned to have a fixed large number of vertices converges
in distribution to a limiting space called the Brownian cactus, in the Gromov–Hausdorff sense. Moreover, the Brownian cactus can
be interpreted as the continuous cactus of the so-called Brownian map.

Résumé. Le cactus d’un graphe pointé est un certain arbre discret associé à ce graphe. De façon similaire, à tout espace métrique
géodésique pointé E, on peut associer un R-arbre appelé cactus continu de E. Sous des hypothèses générales, nous montrons que
le cactus de cartes planaires aléatoires – dont la loi est déterminée par des poids de Boltzmann, et qui sont conditionnées à avoir
un grand nombre fixé de sommets – converge en loi vers un espace limite appelé cactus brownien, au sens de la topologie de
Gromov–Hausdorff. De plus, le cactus brownien peut être interprété comme le cactus continu de la carte brownienne.
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1. Introduction

In this work, we associate with every pointed graph a discrete tree called the cactus of the graph. Assuming that the
pointed graph is chosen at random in a certain class of planar maps with a given number of vertices, and letting this
number tend to infinity, we show that, modulo a suitable rescaling, the associated cactus converges to a universal
object, which we call the Brownian cactus.

In order to motivate our results, let us recall some basic facts about planar maps. A planar map is a proper embed-
ding of a finite connected graph in the two-dimensional sphere, viewed up to orientation-preserving homeomorphisms
of the sphere. The faces of the map are the connected components of the complement of edges, and the degree of a
face counts the number of edges that are incident to it, with the convention that if both sides of an edge are incident
to the same face, this edge is counted twice in the degree of the face. Special cases of planar maps are triangulations,
where each face has degree 3, quadrangulations, where each face has degree 4 and more generally p-angulations
where each face has degree p. Since the pioneering work of Tutte [25], planar maps have been thoroughly studied in
combinatorics, and they also arise in other areas of mathematics: See in particular the book of Lando and Zvonkin
[11] for algebraic and geometric motivations. Large random planar graphs are of interest in theoretical physics, where
they serve as models of random geometry [2].
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A lot of recent work has been devoted to the study of scaling limits of large random planar maps viewed as compact
metric spaces. The vertex set of the (random) planar map is equipped with the graph distance, and one is interested in
the convergence in distribution of the (suitably rescaled) resulting metric space when the number of vertices tends to
infinity, in the sense of the Gromov–Hausdorff distance. This convergence has been proved very recently [15,21] both
for uniformly distributed random 2p-angulations and for uniformly distributed random triangulations (the problem in
the case of triangulations had been stated by Schramm [24]). In the present work, we treat a similar problem, but we
replace the metric space associated with a planar map by a simpler metric space called the cactus of the map. We are
then able to prove, in a very general setting, the existence of a universal scaling limit, which we call the Brownian
cactus. This result gives another strong indication of the universality of scaling limits of random planar maps, in the
spirit of the papers [17,19,22] which were concerned with the profile of distances from a particular point.

Let us briefly explain the definition of the discrete cactus (see Section 2.1 for more details). We start from a graph
G with a distinguished vertex ρ. If a and b are two vertices of G, and if a0 = a, a1, . . . , ap = b is a path from a to b

in the graph G, we consider the quantity

dgr(ρ, a) + dgr(ρ, b) − 2 min
0≤i≤p

dgr(ρ, ai),

where dgr stands for the graph distance in G. The cactus distance dG
Cac(a, b) is then the minimum of the preceding

quantities over all choices of a path from a to b. The cactus distance is in fact only a pseudo-distance: We have
dG

Cac(a, b) = 0 if and only if dgr(ρ, a) = dgr(ρ, b) and if there is a path from a to b that stays at distance at least
dgr(ρ, a) from the point ρ. The cactus Cac(G) associated with G is the quotient space of the vertex set of G for
the equivalence relation � defined by setting a � b if and only if dG

Cac(a, b) = 0. The set Cac(G) is equipped by
the distance induced by dG

Cac. It is easy to verify that Cac(G) is a discrete tree (Proposition 2.2). Although much
information is lost when going from G to its cactus, Cac(G) still has a rich structure, as we will see in the case of
planar maps.

A continuous analogue of the cactus can be defined for a (compact) geodesic metric space E having a distinguished
point ρ. As in the discrete setting, the cactus distance between two points x and y is the infimum over all continuous
paths γ from x to y of the difference between the sum of the distances from x and y to the distinguished point ρ and
twice the minimal distance from a point of γ to ρ. Again this is only a pseudo-distance, and the continuous cactus
Kac(E) is defined as the corresponding quotient space of E. One can then check that the mapping E −→ Kac(E)

is continuous, and even Lipschitz, with respect to the Gromov–Hausdorff distance between pointed metric spaces
(Proposition 2.7). It follows that if a sequence of (rescaled) pointed graphs Gn converges towards a pointed space E
in the Gromov–Hausdorff sense, the (rescaled) cactuses Cac(Gn) also converge to Kac(E). In particular, this implies
that Kac(E) is an R-tree (we refer to [6] for the definition and basic properties of R-trees).

The preceding observations yield a first approach to the convergence of rescaled cactuses associated with random
planar maps. Let p ≥ 2 be an integer, and for every n ≥ 2, let mn be a random planar map that is uniformly distributed
over the set of all rooted 2p-angulations with n faces (recall that a planar map is rooted if there is a distinguished
edge, which is oriented and whose origin is called the root vertex). We view the vertex set V (mn) of mn as a metric
space for the graph distance dgr, with a distinguished point which is the root vertex of the map. According to [15,21],
the rescaled pointed metric spaces (V (mn),n

−1/4dgr) converge in distribution in the Gromov–Hausdorff sense to a
limiting (random) pointed metric space called the Brownian map. From the continuity of the mapping E −→ Kac(E),
one then gets that the suitably rescaled discrete cactus of mn converges in distribution to the cactus of the Brownian
map, which we call the Brownian cactus.

Let us give a brief description of the Brownian cactus. The random R-tree known as the CRT, which has been intro-
duced and studied by Aldous [1] is denoted by (Te,de). The notation Te refers to the fact that the CRT is conveniently
viewed as the R-tree coded by a normalized Brownian excursion e = (et )0≤t≤1 (see Section 3 for more details). Let
(Za)a∈Te be Brownian labels on the CRT. Informally, we may say that, conditionally on Te, (Za)a∈Te is a centered
Gaussian process which vanishes at the root of the CRT and satisfies E[(Za −Zb)

2] = de(a, b) for every a, b ∈ Te. Let
a∗ be the (almost surely unique) vertex of Te with minimal label. For every a, b ∈ Te, let [[a, b]] stand for the geodesic
segment between a and b in the tree Te, and set

dKAC(a, b) = Za + Zb − 2 min
c∈[[a,b]]Zc.
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Then dKAC is a pseudo-distance on Te, and the Brownian cactus KAC is the quotient space of the CRT for this
pseudo-distance.

The main result of the present work (Theorem 4.5) states that the Brownian cactus is the limit in distribution of
the discrete cactuses associated with random planar maps that are much more general than the uniformly distributed
2p-angulations discussed above. To explain this more precisely, we need to introduce Boltzmann distributions on
planar maps. For technical reasons, we consider rooted and pointed planar maps, meaning that in addition to the root
edge there is a distinguished vertex. Let q = (q1, q2, . . .) be a sequence of non-negative weights satisfying general
assumptions (we require that q has finite support, that qk > 0 for some k ≥ 3, and that q is critical in the sense of
[17,19] – the latter property can always be achieved by multiplying q by a suitable positive constant). For every rooted
and pointed planar map m, set

Wq(m) =
∏

f ∈F(m)

qdeg(f ),

where F(m) stands for the set of all faces of m and deg(f ) is the degree of the face f . For every n, choose a random
rooted and pointed planar map Mn with n vertices, in such a way that P(Mn = m) is proportional to Wq(m) (to be
precise, we need to restrict our attention to those integers n such that there exists at least one planar map m with n

vertices such that Wq(m) > 0). View Mn as a graph pointed at the distinguished vertex of Mn. Then Theorem 4.5
gives the existence of a positive constant Bq such that

Bqn−1/4 · Cac(Mn)
(d)−→

n→∞ KAC

in the Gromov–Hausdorff sense. Here the notation λ · E means that distances in the metric space E are multiplied by
the factor λ.

As in much of the previous work on asymptotics for large random planar maps, the proof of Theorem 4.5 relies
on the existence [3] of “nice” bijections between planar maps and certain multitype labeled trees. It was observed
in [17] (for the bipartite case) and in [19] that the tree associated with a random planar map following a Boltzmann
distribution is a (multitype) Galton–Watson tree, whose offspring distributions are determined explicitly in terms of
the Boltzmann weights, and which is equipped with labels that are uniformly distributed over admissible choices. This
labeled tree can be conveniently coded by the two random functions called the contour process and the label process
(see the end of Section 4.3). In the bipartite case, where qk = 0 if k is odd, one can prove [17] that the contour process
and the label process associated with the random planar map Mn converge as n → ∞, modulo a suitable rescaling,
towards the pair consisting of a normalized Brownian excursion and the (tip of the) Brownian snake driven by this
excursion. This convergence is a key tool for studying the convergence of rescaled (bipartite) random planar maps
towards the Brownian map. In our general non-bipartite setting, it is not known whether the preceding convergence
still holds, but Miermont [19] observed that it does hold if the tree is replaced by a “shuffled” version. Fortunately for
our purposes, although the convergence of the coding functions of the shuffled tree would not be effective to study the
asymptotics of rescaled planar maps, it gives enough information to deal with the associated cactuses. This is one of
the key points of the proof of Theorem 4.5 in Section 4.

The last two sections of the present work are devoted to some properties of the Brownian cactus. We first show
that the Hausdorff dimension of the Brownian cactus is equal to 4 almost surely, and is therefore the same as that
of the Brownian map computed in [13]. As a tool for the calculation of the Hausdorff dimension, we derive precise
information on the volume of balls centered at a typical point of the Brownian cactus (Proposition 5.1). Finally, we
apply ideas of the theory of the Brownian cactus to a problem about the geometry of the Brownian map. Precisely,
given three “typical” points in the Brownian map, we study the existence and uniqueness of a cycle with minimal
length that separates the first point from the second one and visits the third one. This is indeed a continuous version
of a problem discussed by Bouttier and Guitter [4] in the discrete setting of large quadrangulations. In particular, we
recover the explicit distribution of the volume of the connected components bounded by the minimizing cycle, which
had been derived in [4] via completely different methods. The results of this section strongly rely on the study of
geodesics in the Brownian map developed in [14].

The paper is organized as follows. In Section 2, we give the definitions and main properties of discrete and contin-
uous cactuses, and establish connections between the discrete and the continuous case. In Section 3, after recalling the
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construction and main properties of the Brownian map, we introduce the Brownian cactus and show that it coincides
with the continuous cactus of the Brownian map. Section 4.5 contains the statement and the proof of our main result
Theorem 4.5. As a preparation for the proof, we recall in Section 4.1 the construction and main properties of the
bijections between planar maps and multitype labeled trees. Section 5 is devoted to the Hausdorff dimension of the
Brownian cactus, and Section 6 deals with minimizing cycles in the Brownian map. An Appendix gathers some facts
about planar maps with Boltzmann distributions, that are needed in Section 4.

2. Discrete and continuous cactuses

2.1. The discrete cactus

Throughout this section, we consider a graph G = (V , E ), meaning that V is a finite set called the vertex set and E is
a subset of the set of all (unordered) pairs {v, v′} of distinct elements of V .

If v, v′ ∈ V , a path from v to v′ in G is a finite sequence γ = (v0, . . . , vn) in V , such that v0 = v, vn = v′ and
{vi−1, vi} ∈ E , for every 1 ≤ i ≤ n. The integer n ≥ 0 is called the length of γ . We assume that G is connected, so that
a path from v to v′ exists for every choice of v and v′. The graph distance dG

gr(v, v′) is the minimal length of a path
from v to v′ in G. A path with minimal length is called a geodesic from v to v′ in G.

In order to define the cactus distance (see Fig. 1 for an illustration) we consider also a distinguished point ρ

in V . The triplet G = (V , E , ρ) is then called a pointed graph. With this pointed graph we associate the cactus
(pseudo-)distance defined by setting for every v, v′ ∈ V ,

dG
Cac

(
v, v′) := dG

gr(ρ, v) + dG
gr

(
ρ,v′) − 2 max

γ :v→v′ min
a∈γ

dG
gr(ρ, a),

where the maximum is over all paths γ from v to v′ in G.

Proposition 2.1. The mapping (v, v′) → dG
Cac(v, v′) is a pseudo-distance on V taking integer values. Moreover, for

every v, v′ ∈ V ,

dG
gr

(
v, v′) ≥ dG

Cac

(
v, v′) (1)

and

dG
Cac(ρ, v) = dG

gr(ρ, v). (2)

Proof. It is obvious that dG
Cac(v, v) = 0 and dG

Cac(v, v′) = dG
Cac(v

′, v). Let us verify the triangle inequality. Let
v, v′, v′′ ∈ V and choose two paths γ1 :v → v′ and γ2 :v′ → v′′ such that mina∈γ1 dG

gr(ρ, a) is maximal among all

Fig. 1. A planar map and on the right side the same planar map represented so that the height of every vertex coincides with its distance from the
distinguished vertex ρ. We see a tree structure emerging from this picture, which corresponds to the associated cactus.
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paths γ :v → v′ in G and a similar property holds for γ2. The concatenation of γ1 and γ2 gives a path γ3 :v → v′′ and
we easily get

dG
Cac

(
v, v′′) ≤ dG

gr(ρ, v) + dG
gr

(
ρ,v′′) − 2 min

a∈γ3
dG

gr(ρ, a) ≤ dG
Cac

(
v, v′) + dG

Cac

(
v′, v′′).

In order to get the bound (1), let v, v′ ∈ V , and choose a geodesic path γ from v to v′. Let w be a point on the path γ

whose distance to ρ is minimal. Then,

dG
gr

(
v, v′) = dG

gr(v,w) + dG
gr

(
w,v′) ≥ dG

gr(ρ, v) + dG
gr

(
ρ,v′) − 2dG

gr(ρ,w)

= dG
gr(ρ, v) + dG

gr

(
ρ,v′) − 2 min

a∈γ
dG

gr(ρ, a)

≥ dG
Cac

(
v, v′).

Property (2) is immediate from the definition. �

As usual, we introduce the equivalence relation
G� defined on V by setting v

G� v′ if and only dG
Cac(v, v′) = 0. Note

that v
G� v′ if and only if dG

gr(ρ, v) = dG
gr(ρ, v′) and there exists a path from v to v′ that stays at distance at least

dG
gr(ρ, v) from ρ.

The corresponding quotient space is denoted by Cac(G) = V/
G�. The pseudo-distance dG

Cac induces a distance on
Cac(G), and we keep the notation dG

Cac for this distance.

Proposition 2.2. Consider the graph G◦ whose vertex set is V ◦ = Cac(G) and whose edges are all pairs {a, b} such
that dG

Cac(a, b) = 1. Then this graph is a tree, and the graph distance dG◦
gr on V ◦ coincides with the cactus distance

dG
Cac on Cac(G).

Proof. Let us first verify that the graph G◦ is a tree. If u ∈ V we use the notation u for the equivalence class of u in
the quotient Cac(G). We argue by contradiction and assume that there exists a (non-trivial) cycle in Cac(G). We can
then find an integer n ≥ 3 and vertices x0, x1, x2, . . . , xn ∈ V such that{

x0 = xn and x0, x1, . . . , xn−1 are distinct,

dG
Cac(xi, xi+1) = 1 for every 0 ≤ i ≤ n − 1.

Without loss of generality, we may assume that dG
gr(ρ, x0) = max{dG

gr(ρ, xi),0 ≤ i ≤ n}. By (2), we have

|dG
gr(ρ, x0) − dG

gr(ρ, x1)| ≤ dG
Cac(x0, x1) = 1. If dG

gr(ρ, x0) = dG
gr(ρ, x1) then it follows from the definition of dG

Cac

that dG
Cac(x0, x1) is even and thus different from 1. So we must have

dG
gr(ρ, x1) = dG

gr(ρ, x0) − 1.

Combining this equality with the property dG
Cac(x0, x1) = 1, we obtain that there exists a path from x0 to x1 that stays

at distance at least dG
gr(ρ, x1) from ρ.

Using the same arguments and the equality dG
Cac(x0, xn−1) = 1, we obtain similarly that dG

gr(ρ, xn−1) = dG
gr(ρ, x0)−

1 = dG
gr(ρ, x1) and that there exists a path from xn−1 to x0 that stays at distance at least dG

gr(ρ, x1) from ρ.

Considering the concatenation of the two paths we have constructed, we get dG
Cac(x1, xn−1) = 0 or equivalently

x1 = xn−1. This gives the desired contradiction, and we have proved that G◦ is a tree.
We still have to verify the equality of the distances dG◦

gr and dG
Cac on Cac(G). The bound dG

Cac ≤ dG◦
gr is immediate

from the triangle inequality for dG
Cac and the existence of a geodesic between any pair of vertices of G◦. Conversely,

let a, b ∈ Cac(G). We can find a path (y0, y1, . . . , yn) in G such that y0 = a, yn = b and

dG
Cac(a, b) = dG

gr(ρ, y0) + dG
gr(ρ, yn) − 2 min

0≤j≤n
dG

gr(ρ, yj ).
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Set m = min0≤j≤n dG
gr(ρ, yj ), p = dG

gr(ρ, y0) and q = dG
gr(ρ, yn) to simplify notation. Then set, for every 0 ≤ i ≤

p − m,

ki = min
{
j ∈ {0,1, . . . , n}: dG

gr(ρ, yj ) = p − i
}

and, for every 0 ≤ i ≤ q − m,

�i = max
{
j ∈ {0,1, . . . , n}: dG

gr(ρ, yj ) = q − i
}
.

Then yk0
, yk1

, . . . , ykp−m
= y�q−m

, y�q−m−1
, . . . , y�1

, y�0
is a path from a to b in G◦. It follows that

dG◦
gr (a, b) ≤ p + q − 2m = dG

Cac(a, b),

which completes the proof. �

Remark 2.3. The notion of the cactus associated with a pointed graph strongly depends on the choice of the distin-
guished point ρ.

In the next sections, we will be interested in rooted planar maps, which will even be pointed in Section 4. With
such a planar map, we can associate a pointed graph in the preceding sense: just say that V is the vertex set of the
map, E is the set of all pairs {v, v′} of distinct points of V such that there exists (at least) one edge of the map between
v and v′, and the vertex ρ is either the root vertex, for a map that is only rooted, or the distinguished point for a map
that is rooted and pointed. Note that the graph distance corresponding to this pointed graph (obviously) coincides with
the usual graph distance on the vertex set of the map. Later, when we speak about the cactus of a planar map, we will
always refer to the cactus of the associated pointed graph. In agreement with the notation of this section, we will use
bold letters m,M to denote the pointed graphs associated with the planar maps m,M .

2.2. The continuous cactus

Let us recall some basic notions from metric geometry. If (E,d) is a metric space and γ : [0, T ] −→ E is a continuous
curve in E, the length of γ is defined by:

L(γ ) = sup
0=t0<···<tk=T

k−1∑
i=0

d
(
γ (ti), γ (ti+1)

)
,

where the supremum is over all choices of the subdivision 0 = t0 < t1 < · · · < tk = T of [0, T ]. Obviously L(γ ) ≥
d(γ (0), γ (T )).

We say that (E,d) is a geodesic space if for every a, b ∈ E there exists a continuous curve γ : [0, d(a, b)] −→ E

such that γ (0) = a, γ (d(a, b)) = b and d(γ (s), γ (t)) = t − s for every 0 ≤ s ≤ t ≤ d(a, b). Such a curve γ is then
called a geodesic from a to b in E. Obviously, L(γ ) = d(a, b). A pointed geodesic metric space is a geodesic space
with a distinguished point ρ.

Let E = (E,d,ρ) be a pointed geodesic compact metric space. We define the (continuous) cactus associated with
(E,d,ρ) in a way very similar to what we did in the discrete setting. We first define for every a, b ∈ E,

dE
Kac(a, b) = d(ρ, a) + d(ρ, b) − 2 sup

γ :a→b

(
min

0≤t≤1
d
(
ρ,γ (t)

))
,

where the supremum is over all continuous curves γ : [0,1] −→ E such that γ (0) = a and γ (1) = b.
The next proposition is then analogous to Proposition 2.1.

Proposition 2.4. The mapping (a, b) −→ dE
Kac(a, b) is a pseudo-distance on E. Furthermore, for every a, b ∈ E,

dE
Kac(a, b) ≤ d(a, b)
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and

dE
Kac(ρ, a) = d(ρ, a).

The proof is exactly similar to that of Proposition 2.1, and we leave the details to the reader. Note that in the proof
of the bound dE

Kac(a, b) ≤ d(a, b) we use the existence of a geodesic from a to b.

If a, b ∈ E, we set a
E� b if dE

Kac(a, b) = 0. We define the cactus of (E,d,ρ) as the quotient space Kac(E) := E/
E�,

which is equipped with the quotient distance dE
Kac. Then Kac(E) is a compact metric space, which is pointed at the

equivalence class of ρ.

Remark 2.5. It is natural to ask whether the supremum in the definition of dE
Kac(a, b) is achieved, or equivalently

whether there is a continuous path γ from a to b such that

dE
Kac(a, b) = d(ρ, a) + d(ρ, b) − min

0≤t≤1
d
(
ρ,γ (t)

)
.

We will return to this question later.

2.3. Continuity properties of the cactus

Let us start by recalling the definition of the Gromov–Hausdorff distance between two pointed compact metric spaces
(see [5], Section 7.4, and [9] for more details).

Recall that if A and B are two compact subsets of a metric space (E,d), the Hausdorff distance between A and B

is

dE
H(A,B) := inf

{
ε > 0: A ⊂ Bε and B ⊂ Aε

}
,

where Xε := {x ∈ E: d(x,X) ≤ ε} denotes the ε-neighborhood of a subset X of E.

Definition 2.6. If E = (E,d,ρ) and E′ = (E′, d ′, ρ′) are two pointed compact metric spaces, the Gromov–Hausdorff
distance between E and E′ is

dGH
(
E,E′) = inf

{
dF

H

(
φ(E),φ′(E′)) ∨ δ

(
φ(ρ),φ′(ρ′))},

where the infimum is taken over all choices of the metric space (F, δ) and the isometric embeddings φ :E → F and
φ′ :E′ → F of E and E′ into F .

The Gromov–Hausdorff distance is indeed a metric on the space of isometry classes of pointed compact metric
spaces. An alternative definition of this distance uses correspondences. A correspondence between two pointed metric
spaces (E,d,ρ) and (E′, d ′, ρ′) is a subset R of E ×E′ containing (ρ,ρ′), such that, for every x1 ∈ E, there exists at
least one point x2 ∈ E′ such that (x1, x2) ∈ R and conversely, for every y2 ∈ E′, there exists at least one point y1 ∈ E

such that (y1, y2) ∈ R. The distortion of the correspondence R is defined by

dis(R) := sup
{∣∣d(x1, y1) − d ′(x2, y2)

∣∣: (x1, x2), (y1, y2) ∈ R
}
.

The Gromov–Hausdorff distance can be expressed in terms of correspondences by the formula

dGH
(
E,E′) = 1

2
inf

{
dis(R)

}
, (3)

where the infimum is over all correspondences R between E and E′. See [5], Theorem 7.3.25, for a proof in the
non-pointed case, which is easily adapted.

Proposition 2.7. Let E and E′ be two pointed geodesic compact metric spaces. Then,

dGH
(
Kac(E),Kac

(
E′)) ≤ 6dGH

(
E,E′).
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Proof. It is enough to verify that, for any correspondence R between E and E′ with distortion D, we can find a
correspondence R between Kac(E) and Kac(E′) whose distortion is bounded above by 6D. We define R as the set
of all pairs (a, a′) such that there exists (at least) one representative x of a in E and one representative x′ of a′ in E′,
such that (x, x′) ∈ R.

Let (x, x′) ∈ R and (y, y′) ∈ R. We need to verify that∣∣dE
Kac(x, y) − dE′

Kac

(
x′, y′)∣∣ ≤ 6D.

Fix ε > 0. We can find a continuous curve γ : [0,1] −→ E such that γ (0) = x, γ (1) = y and

d(ρ, x) + d(ρ, y) − 2 min
0≤t≤1

d
(
ρ,γ (t)

) ≤ dE
Kac(x, y) + ε.

By continuity, we may find a subdivision 0 = t0 < t1 < · · · < tp = 1 of [0,1] such that d(γ (ti), γ (ti+1)) ≤ D for every
0 ≤ i ≤ p − 1. For every 0 ≤ i ≤ p, set xi = γ (ti), and choose x′

i ∈ E′ such that (xi, x
′
i ) ∈ R. We may and will take

x′
0 = x′ and y′

0 = y′. Now note that, for 0 ≤ i ≤ p − 1,

d ′(x′
i , x

′
i+1

) ≤ d(xi, xi+1) + D ≤ 2D.

Since E′ is a geodesic space, we can find a curve γ ′ : [0,1] −→ E′ such that γ ′(ti) = x′
i , for every 0 ≤ i ≤ p, and any

point γ ′(t), 0 ≤ t ≤ 1, lies within distance at most D from one of the points γ ′(ti). It follows that

min
0≤t≤1

d ′(ρ′, γ ′(t)
) ≥ min

0≤i≤p
d ′(ρ′, γ ′(ti)

) − D ≥ min
0≤i≤p

d
(
ρ,γ (ti)

) − 2D.

Hence,

dE′
Kac

(
x′, y′) ≤ d ′(ρ′, x′) + d ′(ρ′, y′) − 2 min

0≤t≤1
d ′(ρ′, γ ′(t)

)
≤ d(ρ, x) + d(ρ, y) − 2 min

0≤t≤1
d
(
ρ,γ (t)

) + 6D

≤ dE
Kac(x, y) + 6D + ε.

The desired result follows since ε was arbitrary and we can interchange the roles of E and E′. �

2.4. Convergence of discrete cactuses

Let G = (V , E , ρ) be a pointed graph (and write G = (V , E ) for the non-pointed graph as previously). We can iden-
tify G with the pointed (finite) metric space (V ,dG

gr, ρ). For any real r > 0, we then denote the “rescaled graph”

(V , rdG
gr, ρ) by r · G.

Similarly, we defined Cac(G) as a pointed finite metric space. The space r ·Cac(G) is then obtained by multiplying
the distance on Cac(G) by the factor r .

Proposition 2.8. Let (Gn)n≥0 be a sequence of pointed graphs, and let (rn)n≥0 be a sequence of positive real numbers
converging to 0. Suppose that rn · Gn converges to a pointed compact metric space E, in the sense of the Gromov–
Hausdorff distance. Then, rn · Cac(Gn) also converges to Kac(E), in the sense of the Gromov–Hausdorff distance.

Remark 2.9. The cactus Kac(E) is well defined because E must be a geodesic space. The latter property can be
derived from [5], Theorem 7.5.1, using the fact that the graphs rn · Gn can be approximated by geodesic spaces as
explained in the forthcoming proof.

Proof of Proposition 2.8. This is essentially a consequence of Proposition 2.7. We start with some simple observa-
tions. Let G = (V , E , ρ) be a pointed graph. By considering the union of a collection (I{u,v}){u,v}∈E of unit segments
indexed by E (such that this union is a metric graph in the sense of [5], Section 3.2.2), we can construct a pointed
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geodesic compact metric space (Λ(G), dΛ(G), ρ̃), such that the graph G (viewed as a pointed metric space) is embed-
ded isometrically in Λ(G), and the Gromov–Hausdorff distance between G and Λ(G) is bounded above by 1.

A moment’s thought shows that Cac(G) is also embedded isometrically in Kac(Λ(G)), and the Gromov–Hausdorff
distance between Cac(G) and Kac(Λ(G)) is still bounded above by 1.

We apply these observations to the graphs Gn. By scaling, we get that the Gromov–Hausdorff distance between
the metric spaces rn · Gn and rn · Λ(Gn) is bounded above by rn, so that the sequence rn · Λ(Gn) also converges to
E in the sense of the Gromov–Hausdorff distance. From Proposition 2.7, we now get that Kac(rn · Λ(Gn)) converges
to Kac(E). On the other hand, the Gromov–Hausdorff distance between Kac(rn · Λ(Gn)) = rn · Kac(Λ(Gn)) and
rn · Cac(Gn) is bounded above by rn, so that the convergence of the proposition follows. �

Corollary 2.10. Let E be a pointed geodesic compact metric space. Then Kac(E) is a compact R-tree.

Proof. As a simple consequence of Proposition 7.5.5 in [5], we can find a sequence (rn)n≥0 of positive real numbers
converging to 0 and a sequence (Gn)n≥0 of pointed graphs, such that the rescaled graphs rn · Gn converge to E in
the Gromov–Hausdorff sense. By Proposition 2.8, rn · Cac(Gn) converges to Kac(E) in the Gromov–Hausdorff sense.
Using the notation of the preceding proof, it also holds that rn · Λ(Cac(Gn)) converges to Kac(E). Proposition 2.2
then implies that rn ·Λ(Cac(Gn)) is a (compact) R-tree. The desired result follows since the set of all compact R-trees
is known to be closed for the Gromov–Hausdorff topology (see e.g. [7], Lemma 2.1). �

2.5. Another approach to the continuous cactus

In this section, we present an alternative definition of the continuous cactus, which gives a different perspective on the
previous results, and in particular on Corollary 2.10. Let E = (E,d,ρ) be a pointed geodesic compact metric space,
and for r ≥ 0, let

B(r) = {
x ∈ E: d(ρ, x) < r

}
, B(r) = {

x ∈ E: d(ρ, x) ≤ r
}
,

be respectively the open and the closed ball of radius r centered at ρ. We let Kac′(E) be the set of all subsets of E that
are (non-empty) connected components of the closed set B(r)c , for some r ≥ 0 (here, Ac denotes the complement of
the set A). Note that all elements of Kac′(E) are themselves closed subsets of E.

For every C ∈ Kac′(E), we let

h(C) = d(ρ,C) = inf
{
d(ρ, x): x ∈ C

}
.

Since E is path-connected, h(C) is also the unique real r ≥ 0 such that C is a connected component of B(r)c .
Note that Kac′(E) is partially ordered by the relation

C 
 C′ ⇐⇒ C′ ⊆ C

and has a unique minimal element E. Every totally ordered subset of Kac′(E) has a supremum, given by the inter-
section of all its elements. To see this, observe that if (Ci)i∈I is a totally ordered subset of Kac′(E) then we can
choose a sequence (in)n≥1 taking values in I such that the sequence (h(Cin))n≥1 is non-decreasing and converges to
rmax := sup{h(Ci): i ∈ I }. Then the intersection

∞⋂
n=1

Cin

is non-empty, closed and connected as the intersection of a decreasing sequence of non-empty closed connected sets
in a compact space, and it easily follows that this intersection is a connected component of B(rmax)

c and coincides
with the intersection of all Ci , i ∈ I . At this point, it is crucial that elements of Kac′(E) are closed, and this is one of
the reasons why one considers complements of open balls in the definition of Kac′(E).

In particular, for every C,C′ ∈ Kac′(E), the infimum C ∧ C′ makes sense as the supremum of all C′′ ∈ Kac′(E)

such that C′′ 
 C and C′′ 
 C′, and h(C ∧C′) is the maximal value of r such that C and C′ are contained in the same
connected component of B(r)c .
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Moreover, if C ∈ Kac′(E), the set {C′ ∈ Kac′(E): C′ 
 C} is isomorphic as an ordered set to the segment [0, h(C)],
because for every t ∈ [0, h(C)] there is a unique C ′ ∈ Kac′(E) with h(C′) = t and C ⊂ C′.

Finally, h : Kac′(E) → R+ is an increasing function, inducing a bijection from every segment of the partially
ordered set Kac′(E) to a real segment. It follows from general results (see Proposition 3.10 in [8]) that the set Kac′(E)

equipped with the distance

dE
Kac′

(
C,C′) = h(C) + h

(
C′) − 2h

(
C ∧ C′)

is an R-tree rooted at E = B(0)c . Note that dE
Kac′(E,C) = h(C) for every C ∈ Kac′(E).

Proposition 2.11. The spaces Kac′(E) and Kac(E) are isometric pointed metric spaces.

Proof. We consider the mapping from E to Kac′(E), which maps x to the connected component Cx of B(d(ρ, x))c

containing x. This mapping is clearly onto: if C ∈ Kac′(E), we have C = Cx for any x ∈ C such that d(ρ, x) =
d(ρ,C). Let us show that this mapping is an isometry from the pseudo-metric space (E,dE

Kac) onto (Kac′(E),dE
Kac′).

Let x, y ∈ E be given, and γ : [0,1] → E be a path from x to y. Let t0 be such that d(ρ, γ (t0)) ≤ d(ρ, γ (t)) for
every t ∈ [0,1]. Then the path γ lies in a single path-connected component of B(d(ρ, γ (t0)))

c , entailing that x and
y are in the same connected component of this set. Consequently, h(Cx ∧ Cy) ≥ d(ρ, γ (t0)), and since obviously
h(Cx) = d(x,ρ),

dE
Kac′(Cx,Cy) ≤ d(ρ, x) + d(ρ, y) − 2 inf

t∈[0,1]d
(
ρ,γ (t)

)
.

Taking the infimum over all γ gives

dE
Kac′(Cx,Cy) ≤ dE

Kac(x, y). (4)

Let us verify that the reverse inequality also holds. If h(Cx ∧ Cy) > 0 and ε ∈ (0, h(Cx ∧ Cy)), the infimum Cx ∧ Cy

is contained in some connected component of B(h(Cx ∧ Cy) − ε)c . Since the latter set is open, and E is a geodesic
space, hence locally path-connected, we deduce that this connected component is in fact path-connected, and since it
contains x and y, we can find a path γ from x to y that remains in B(h(Cx ∧ Cy) − ε)c . This entails that

dE
Kac(x, y) ≤ dE

Kac′(Cx,Cy) + ε,

and letting ε → 0 yields the bound dE
Kac′(Cx,Cy) ≥ dE

Kac(x, y). The latter bound remains true when h(Cx ∧ Cy) = 0,

since in that case Cx ∧ Cy = E and dE
Kac′(Cx,Cy) = h(Cx) + h(Cy) = d(ρ, x) + d(ρ, y).

From the preceding observations, we directly obtain that x �→ Cx induces a quotient mapping from Kac(E) onto
Kac′(E), which is an isometry and maps (the class of) ρ to E. �

Remark 2.12. The discrete cactus of a graph can be defined in an analogous way as above, using the notion of graph
connectedness instead of connectedness in metric spaces.

Let us return to Remark 2.5 about the existence, for given x, y ∈ E, of a minimizing path γ : [0,1] → E going
from x to y, such that

dE
Kac(x, y) = d(ρ, x) + d(ρ, y) − 2 min

0≤t≤1
d
(
ρ,γ (t)

)
.

With the notation of the previous proof, it may happen that the closed set Cx ∧ Cy is connected without being path-
connected: Fig. 2 suggests an example of this phenomenon. In that event, if x and y cannot be connected by a
continuous path that stays in Cx ∧ Cy , there exists no minimizing path.
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Fig. 2. An example of a geodesic compact metric space E, such that the complement of the open ball of radius 1 centered at the distinguished
point ρ is connected but not path-connected. Here E is a compact subset of R

3 and is equipped with the intrinsic distance associated with the
L∞-metric δ((x1, x2, x3), (y1, y2, y3)) = sup{|xi − yi |, i = 1,2,3}. For this distance, the sphere of radius 1 centered at ρ, which coincides with
the complement of the open ball of radius 1, consists of the closure of the union of the bold lines at the top of the figure. It is not path-connected,
by the same argument as the one showing that the closure of the graph of the function x �→ sin(1/x) on (0,∞) is a subset of the plane which is not
path-connected.

3. The Brownian cactus

In this section, we define the Brownian cactus and we show that it is the continuous cactus associated with the (random)
compact metric space called the Brownian map. We first recall some basic facts about the Brownian map.

We let e = (et )0≤t≤1 be a Brownian excursion with duration 1. For our purposes it is crucial to view e as the coding
function for the random continuous tree known as the CRT. Precisely, we define a pseudo-distance de on [0,1] by
setting for every s, t ∈ [0,1],

de(s, t) = es + et − 2 min
s∧t≤r≤s∨t

er

and we set s ∼e t iff de(s, t) = 0. The CRT is defined as the quotient metric space Te := [0,1]/∼e, and is equipped
with the induced metric de. Then (Te,de) is a random (compact) R-tree. We write pe : [0,1] −→ Te for the canonical
projection, and we define the mass measure (or volume measure) Vol on the CRT as the image of Lebesgue measure
on [0,1] under pe. For every a, b ∈ Te, we let [[a, b]] be the range of the geodesic path from a to b in Te: This is the
line segment between a and b in the tree Te. We will need the following simple fact, which is easily checked from the
definition of de. Let a, b ∈ Te, and let s, t ∈ [0,1] be such that pe(s) = a and pe(t) = b. Assume for definiteness that
s ≤ t . Then [[a, b]] exactly consists of the points c that can be written as c = pe(r), with r ∈ [s, t] satisfying

er = max
(

min
u∈[s,r] eu, min

u∈[r,t] eu

)
.

Conditionally given e, we introduce the centered Gaussian process (Zt )0≤t≤1 with continuous sample paths such
that

cov(Zs,Zt ) = min
s∧t≤r≤s∨t

er .

It is easy to verify that a.s. for every s, t ∈ [0,1] the condition s ∼e t implies that Zs = Zt . Therefore we may and will
view Z as indexed by the CRT Te. In fact, it is natural to interpret Z as Brownian motion indexed by the CRT. We will
write indifferently Za = Zt when a ∈ Te and t ∈ [0,1] are such that a = pe(t).



The Brownian cactus I 351

We set Z := mint∈[0,1] Zt . One can then prove [18] that a.s. there exists a unique s∗ ∈ [0,1] such that Zs∗ = Z. We
let a∗ = pe(s∗).

For every s, t ∈ [0,1], we set

D◦(s, t) = Zs + Zt − 2 max
(

min
r∈[s,t]Zr, min

r∈[t,s]Zr

)
,

where we make the convention that when s > t , the notation r ∈ [s, t] means r ∈ [s,1] ∪ [0, t]. We then define D◦ on
Te × Te by setting for a, b ∈ Te,

D◦(a, b) = min
{
D◦(s, t): s, t ∈ [0,1],pe(s) = a,pe(t) = b

}
.

Finally, we set, for every a, b ∈ Te,

D(a,b) = inf
a0=a,a1,...,ap=b

p∑
i=1

D◦(ai−1, ai),

where the infimum is over all choices of the integer p ≥ 1 and of the finite sequence a0, a1, . . . , ap in Te such that
a0 = a and ap = b. It is not hard to verify that D is a pseudo-distance on Te, and we introduce the associated
equivalence relation

a ≈ b if and only if D(a,b) = 0.

The Brownian map is now defined as the quotient space

m∞ := Te/≈
which is equipped with the distance induced by D. We will view the Brownian map as a (random) pointed metric
space with distinguished point ρ∗ = Π(a∗), where Π : Te −→ m∞ is the canonical projection. We also let λ be the
image of Vol under Π , and we interpret λ as the volume measure on m∞. For every x ∈ m∞, we set Zx = Za , where
a ∈ Te is such that Π(a) = x (this definition does not depend on the choice of a). It then easily follows from the
definition of D that, for every x ∈ m∞,

D(ρ∗, x) = Zx − Z. (5)

It is proved in [15,21] that the Brownian map is the limit in distribution, in the Gromov–Hausdorff sense, of
rescaled uniformly distributed rooted 2p-angulations with n faces, for any integer p ≥ 2 (the result in fact also holds
for triangulations). By the argument in Remark 2.9, it follows that the metric space (m∞,D) is a geodesic space a.s.

We now turn to the definition of the Brownian cactus.

Definition 3.1. The Brownian cactus KAC is the random metric space defined as the quotient space of Te for the
equivalence relation

a � b iff Za = Zb = min
c∈[[a,b]]Zc

and equipped with the distance induced by

dKAC(a, b) = Za + Zb − 2 min
c∈[[a,b]]Zc for every a, b ∈ Te.

We view KAC as a pointed metric space whose root is the equivalence class of a∗.

It is an easy matter to verify that dKAC is a pseudo-distance on Te, and that � is the associated equivalence relation.
We write m∞ for the pointed metric space (m∞,D,ρ∗).
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Proposition 3.2. Almost surely, Kac(m∞) is isometric to KAC.

Proof. We first need to identify the pseudo-distance dm∞
Kac (see Section 2.2). Let x, y ∈ m∞ and choose a, b ∈ Te

such that x = pe(a) and y = pe(b). If γ : [0,1] −→ m∞ is a continuous path such that γ (0) = x and γ (1) = y,
Proposition 3.1 in [14] ensures that

min
0≤t≤1

Zγ(t) ≤ min
c∈[[a,b]]Zc.

Using (5), it follows that

min
0≤t≤1

D
(
ρ∗, γ (t)

) ≤ min
c∈[[a,b]](Zc − Z).

Since this holds for any continuous curve γ from x to y in m∞, we get from the definition of dm∞
Kac that

dm∞
Kac (x, y) ≥ (Za − Z) + (Zb − Z) − 2 min

c∈[[a,b]](Zc − Z) = dKAC(a, b).

The corresponding upper bound is immediately obtained by letting γ be the image under Π of the (rescaled) geodesic
path from a to b in the tree Te. Note that the resulting path from x to y in m∞ is continuous because the projection Π

is so. Summarizing, we have obtained that, for every a, b ∈ Te,

dm∞
Kac

(
Π(a),Π(b)

) = dKAC(a, b). (6)

In particular, the property a � b holds if and only if Π(a)
m∞� Π(b). Hence, the composition of the canonical pro-

jections from Te onto m∞ and from m∞ onto Kac(m∞) induces a one-to-one mapping from KAC = Te/� onto
Kac(m∞). By (6) this mapping is an isometry, which completes the proof. �

Remark 3.3. From (6) and Proposition 2.4, we have

D
(
Π(a),Π(b)

) ≥ dKAC(a, b)

for every a, b ∈ Te (cf. Corollary 3.2 in [14]).

As a corollary of the preceding proposition, the results of [15,21] and Proposition 2.8, we immediately get that the
(suitably rescaled) discrete cactus associated with uniformly distributed rooted 2p-angulations, or triangulations, with
n faces converges in distribution as n → ∞ towards the Brownian cactus. We refrain from stating this corollary in a
precise form, since we will get the same result for much more general random planar maps in the next section.

4. Convergence of cactuses associated with random planar maps

4.1. Planar maps and bijections with trees

We denote the set of all rooted and pointed planar maps by Mr,p . As in [19], it is convenient for technical reasons
to make the convention that Mr,p contains the “vertex map,” denoted by †, which has no edge and only one vertex
“bounding” a face of degree 0. With the exception of †, a planar map in Mr,p has at least one edge. An element of
Mr,p other than † consists of a planar map m together with an oriented edge e (the root edge) and a distinguished
vertex ρ. We write e− and e+ for the origin and the target of the root edge e. Note that we may have e− = e+ if e is a
loop.

As previously, we denote the graph distance on the vertex set V (m) of m by dm
gr. We say that the rooted and

pointed planar map (m, e,ρ) is positive, respectively negative, respectively null if dm
gr(ρ, e+) = dm

gr(ρ, e−) + 1, resp.
dm

gr(ρ, e+) = dm
gr(ρ, e−) − 1, resp. dm

gr(ρ, e+) = dm
gr(ρ, e−). We make the convention that the vertex map † is positive.

We write M+
r,p , resp. M−

r,p , resp. M0
r,p for the set of all positive, resp. negative, resp. null, rooted and pointed planar
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maps. Reversing the orientation of the root edge yields an obvious bijection between the sets M+
r,p and M−

r,p , and for

this reason we will mainly discuss M+
r,p and M0

r,p in what follows.

We will make use of the Bouttier–Di Francesco–Guitter bijection [3] between M+
r,p ∪ M0

r,p and a certain set of
multitype labeled trees called mobiles. In order to describe this bijection, we use the standard formalism for plane
trees, as found in Section 1.1 of [12] for instance. In this formalism, vertices are elements of the set

U =
∞⋃

n=0

N
n

of all finite sequences of positive integers, including the empty sequence ∅ that serves as the root vertex of the tree.
A plane tree τ is a finite subset of U that satisfies the following three conditions:

1. ∅ ∈ τ .
2. For every u = (i1, . . . , ik) ∈ τ \ {∅}, the sequence (i1, . . . , ik−1) (the “parent” of u) also belongs to τ .
3. For every u = (i1, . . . , ik) ∈ τ , there exists an integer ku(τ ) ≥ 0 (the “number of children” of u) such that the vertex

(i1, . . . , ik, j) belongs to τ if and only if 1 ≤ j ≤ ku(τ ).

The generation of u = (i1, . . . , ik) is denoted by |u| = k. The notions of an ancestor and a descendant in the tree τ are
defined in an obvious way.

We will be interested in four-type plane trees, meaning that each vertex is assigned a type which can be 1,2,3 or 4.
We next introduce mobiles following the presentation in [19], with a few minor modifications. We consider a

four-type plane tree τ satisfying the following properties:

(i) The root vertex ∅ is of type 1 or of type 2.
(ii) The children of any vertex of type 1 are of type 3.

(iii) Each individual of type 2 and which is not the root vertex of the tree has exactly one child of type 4 and no other
child. If the root vertex is of type 2, it has exactly two children, both of type 4.

(iv) The children of individuals of type 3 or 4 can only be of type 1 or 2.

Let τ(1,2) be the set of all vertices of τ at even generation (these are exactly the vertices of type 1 or 2). An admissible
labeling of τ is a collection of integer labels (�u)u∈τ(1,2)

assigned to the vertices of type 1 or 2, such that the following
properties hold:

(a) �∅ = 0.
(b) Let u be a vertex of type 3 or 4, let u(1), . . . , u(k) be the children of u (in lexicographical order) and let u(0) be the

parent of u. Then, for every i = 0,1, . . . , k,

�u(i+1)
≥ �u(i)

− 1

with the convention u(k+1) = u(0). Moreover, for every i = 0,1, . . . , k such that u(i+1) is of type 2, we have

�u(i+1)
≥ �u(i)

.

By definition, a mobile is a pair (τ, (�u)u∈τ(1,2)
) consisting of a four-type plane tree satisfying the preceding condi-

tions (i)–(iv), and an admissible labeling of τ . We let T+ be the set of all mobiles such that the root vertex of τ is of
type 1. We also let T0 be the set of all mobiles such that the root vertex is of type 2.

Remark 4.1. Our definition of admissible labelings is slightly different from the ones that are used in [19] or [22]. To
recover the definitions of [19] or [22], just subtract 1 from the label of each vertex of type 2. Because of this difference,
our construction of the bijections between maps and trees will look slightly different from the ones in [19] or [22].

The Bouttier–Di Francesco–Guitter construction provides bijections between the set T+ and the set M+
r,p on one

hand, between the set T0 and the set M0
r,p on the other hand. Let us describe this construction in the first case.

We start from a mobile (τ, (�u)u∈τ(1,2)
) ∈ T+. In the case when τ = {∅}, we decide by convention that the associated

planar map is the vertex map †. Otherwise, let p ≥ 1 be the number of edges of τ (p = #τ − 1). The contour sequence
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of τ is the sequence v0, v1, . . . , v2p of vertices of τ defined inductively as follows. First v0 = ∅. Then, for every
i ∈ {0,1, . . . ,2p − 1}, vi+1 is either the first child of vi that has not yet appeared among v0, v1, . . . , vi , or if there is
no such child, the parent of vi . It is easy to see that this definition makes sense and v2p = ∅. Moreover all vertices
of τ appear in the sequence v0, v1, . . . , v2p , and more precisely the number of occurrences of a vertex u of τ is equal
to the multiplicity of u in τ . In fact, each index i such that vi = u corresponds to one corner of the vertex u in the
tree τ : We will abusively call it the corner vi . We also introduce the modified contour sequence of τ as the sequence
u0, u1, . . . , up defined by

ui = v2i ∀i = 0,1, . . . , p.

By construction, the vertices appearing in the modified contour sequence are exactly the vertices of τ(1,2). We extend
the modified contour sequence periodically by setting up+i = ui for i = 1, . . . , p. Note that the properties of labels
entail �ui+1 ≥ �ui

− 1 for i = 0,1, . . . ,2p − 1.
To construct the edges of the rooted and pointed planar map (m, e,ρ) associated with the mobile (τ, (�u)u∈τ(1,2)

) ∈
T+ we proceed as follows. We first embed the tree τ in the plane in a way consistent with the planar order. We then
add an extra vertex of type 1, which we call ρ. Then, for every i = 0,1, . . . , p − 1:

(i) If

�ui
= min

0≤k≤p
�uk

we draw an edge between the corner ui and ρ.
(ii) If

�ui
> min

0≤k≤p
�uk

we draw an edge between the corner ui and the corner uj , where j = min{k ∈ {i + 1, . . . , i + p − 1}: �uk
=

�ui
− 1}. Because of property (b) of the labeling, the vertex uj must be of type 1.

The construction can be made in such a way that edges do not intersect, and do not intersect the edges of the tree τ .
Furthermore each face of the resulting planar map contains exactly one vertex of type 3 or 4, and both the parent and
the children of this vertex are incident to this face. See Fig. 3 for an example.

The resulting planar map is bipartite with vertices either of type 1 or of type 2. Furthermore, the fact that in the
tree τ each vertex of type 2 has exactly one child, and the labeling rules imply that each vertex of type 2 is incident
to exactly two edges of the map, which connect it to two vertices of type 1, which may be the same (these vertices of
type 1 will be said to be associated with the vertex of type 2 we are considering). Each of these edges corresponds
in the preceding construction to one of the two corners of the vertex of type 2 that we consider. To complete the
construction, we just erase all vertices of type 2 and for each of these we merge its two incident edges into a single
edge connecting the two associated vertices of type 1. In this way we get a (non-bipartite in general) planar map m.
Finally we decide that the root edge e of the map is the first edge drawn in the construction, oriented in such a way
that e+ = ∅, and we let the distinguished vertex of the map be the vertex ρ. Note that vertices of the map m that are
different from the distinguished vertex ρ are exactly the vertices of type 1 in the tree τ . In other words, the vertex set
V (m) is identified with the set τ(1) ∪ {ρ}, where τ(1) denotes the set of all vertices of τ of type 1.

The mapping (τ, (�u)u∈τ(1,2)
) −→ (m, e,ρ) that we have just described is indeed a bijection from T+ onto M+

r,p .
We can construct a similar bijection from T+ onto M−

r,p by the same construction, with the minor modification that
we orient the root edge in such a way that e− = ∅.

Furthermore we can also adapt the preceding construction in order to get a bijection from T0 onto M0
r,p . The

construction of edges of the map proceeds in the same way, but the root edge is now obtained as the edge resulting of
the merging of the two edges incident to ∅ (recall that for a tree in T0 the root ∅ is a vertex of type 2 that has exactly
two children, hence also two corners). The orientation of the root edge is chosen according to some convention: For
instance, one may decide that the “half-edge” coming from the first corner of ∅ corresponds to the origin of the root
edge.
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Fig. 3. A mobile (τ, (�u)u∈τ(1,2)
) in T+ and its image m under the BDG bijection. Vertices of type 1 are represented by big circles, vertices of

type 2 by lozanges, vertices of type 3 by small circles and vertices of type 4 by small black disks. The edges of the tree τ are represented by thin
lines, and the edges of the planar map m by thick curves. In order to get the planar map m one needs to erase the vertices of type 2 and, for each of
these vertices, to merge its two incident edges into a single one. The root edge is at the bottom left.

In all three cases, distances in the planar map m satisfy the following key property: For every vertex u ∈ τ(1), we
have

dm
gr(ρ,u) = �u − min� + 1, (7)

where min� denotes the minimal label on the tree τ . In the left-hand side u is viewed as a vertex of the map m, in
agreement with the preceding construction.

The three bijections we have described are called the BDG bijections. In the remaining part of this section, we fix
a mobile (τ, (�u)u∈τ(1,2)

) belonging to T+ (or to T0) and its image (m, e,ρ) under the relevant BDG bijection.

Remark 4.2. We could have defined the BDG bijections without distinguishing between types 3 and 4. However, this
distinction will be important in the next section when we consider random planar maps and the associated (random)
trees. We will see that these random trees are Galton–Watson trees with a different offspring distribution for vertices
of type 3 than for vertices of type 4.

If u,v ∈ τ(1,2), we denote by [[u,v]] the set of all vertices of type 1 or 2 that lie on the geodesic path from u to v in
the tree τ .

Proposition 4.3. For every u,v ∈ V (m) \ {ρ} = τ(1), and every path γ = (γ (0), γ (1), . . . , γ (k)) in m such that
γ (0) = u and γ (k) = v, we have

min
0≤i≤k

dm
gr

(
ρ,γ (i)

) ≤ min
w∈[[u,v]]�w − min� + 1.

Proof. We may assume that the path γ does not visit ρ, since otherwise the result is trivial. Using (7), the statement
reduces to

min
0≤i≤k

�γ (i) ≤ min
w∈[[u,v]]�w.
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So we fix w ∈ [[u,v]] and we verify that �γ (i) ≤ �w for some i ∈ {0,1, . . . , k}. We may assume that w �= u and w �= v.
The removal of the vertex w (and of the edges incident to w) disconnects the tree τ in several connected components.
Write C for the connected component containing v, and note that this component does not contain u. Then let j ≥ 1
be the first integer such that γ (j) belongs to C. Thus γ (j − 1) /∈ C, γ (j) ∈ C and the vertices γ (j − 1) and γ (j)

are linked by an edge of the map m. From (7), we have |�γ (j) − �γ (j−1)| ≤ 1. Now we use the fact that the edge
between γ (j − 1) and γ (j) is produced by the BDG bijection. Suppose first that γ (j − 1) and γ (j) have a different
label. In that case, noting that the modified contour sequence must visit w between any visit of γ (j − 1) and any
visit of γ (j), we easily get that min{�γ (j), �γ (j−1)} ≤ �w (otherwise our construction could not produce an edge from
γ (j − 1) to γ (j)). A similar argument applies to the case when γ (j − 1) and γ (j) have the same label. In that case,
the edge between γ (j − 1) and γ (j) must come from the merging of two edges originating from a vertex of τ of
type 2. This vertex of type 2 has to belong to the set [[γ (j − 1), γ (j)]] (which contains w), because otherwise the two
associated vertices of type 1 could not be γ (j −1) and γ (j). It again follows from our construction that we must have
min{�γ (j), �γ (j−1)} ≤ �w . This completes the proof. �

In the next corollary, we write m for the graph associated with the map m (in the sense of Section 2.1), which is
pointed at the distinguished vertex ρ. The notation dm

Cac then refers to the cactus distance for this pointed graph.

Corollary 4.4. Suppose that the degree of all faces of m is bounded above by D ≥ 1. Then, for every u,v ∈ V (m)\{ρ},
we have∣∣∣dm

Cac(u, v) −
(
�u + �v − 2 min

w∈[[u,v]]�w

)∣∣∣ ≤ 2D + 2.

Proof. From the definition of the cactus distance dm
Cac and the preceding proposition, we immediately get the lower

bound

dm
Cac(u, v) ≥ dm

gr(ρ,u) + dm
gr(ρ, v) − 2

(
min

w∈[[u,v]]�w − min� + 1
)

= �u + �v − 2 min
w∈[[u,v]]�w,

by (7). In order to get a corresponding upper bound, let η(0) = u,η(1), . . . , η(k) = v be the vertices of type 1 or 2
belonging to the geodesic path from u to v in the tree τ , enumerated in their order of appearance on this path. Set
η̃(i) = η(i) if η(i) is of type 1, and if η(i) is of type 2, let η̃(i) be one of the two (possibly equal) vertices of type 1
that are associated with η(i) in the BDG bijection. Then the properties of the BDG bijection ensure that, for every
i = 0,1, . . . , k − 1, the two vertices η(i) and η(i + 1) lie on the boundary of the same face of m (the point is that, in
the BDG construction, edges of the map m are drawn in such a way that they do not cross edges of the tree τ ). From
our assumption we have thus dm

gr(η̃(i), η̃(i + 1)) ≤ D for every i = 0,1, . . . , k − 1. Hence, we can find a path γ in m

starting from u and ending at v, such that

min
j

dm
gr

(
ρ,γ (j)

) ≥ min
0≤i≤k

dm
gr

(
ρ, η̃(i)

) − D = min
0≤i≤k

�η̃(i) − min� + 1 − D ≥ min
0≤i≤k

�η(i) − min� − D.

It follows that

dm
Cac(u, v) ≤ dm

gr(ρ,u) + dm
gr(ρ, v) − 2

(
min

w∈[[u,v]]�w − min� − D
)

= �u + �v − 2 min
w∈[[u,v]]�w + 2D + 2.

This completes the proof. �

4.2. Random planar maps

Following [18] and [19], we now discuss Boltzmann distributions on the space Mr,p . We consider a sequence
q = (q1, q2, . . .) of non-negative real numbers. We assume that the sequence q has finite support (qk = 0 for all
sufficiently large k), and is such that qk > 0 for some k ≥ 3. We will then split our study according to the following
two possibilities:

(A1) There exists an odd integer k such that qk > 0.
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(A2) The sequence q is supported on even integers.

If m ∈ Mr,p , we define

Wq(m) =
∏

f ∈F(m)

qdeg(f ),

where F(m) stands for the set of all faces of m and deg(f ) is the degree of the face f . In the case when m = †, we
make the convention that q0 = 1 and thus Wq(†) = 1.

By multiplying the sequence q by a suitable positive constant, we may assume that this sequence is regular critical
in the sense of [19], Definition 1, under Assumption (A1) or of [17], Definition 1, under Assumption (A2). We refer the
reader to the Appendix below for details. In particular, the measure Wq is then finite, and we can define a probability
measure Pq on Mr,p by setting

Pq = Z−1
q Wq,

where Zq = Wq(Mr,p).
For every integer n such that Wq(#V (m) = n) > 0, we consider a random planar map Mn distributed according to

the conditional measure

Pq(· ∩ {#V (m) = n})
Pq(#V (m) = n)

.

Throughout the remaining part of Section 4, we restrict our attention to values of n such that Wq(#V (m) = n) > 0, so
that Mn is well defined. We write ρn for the distinguished vertex of Mn.

We now state the main result of this section. In this result, Mn stands for the graph (pointed at ρn) associated with
Mn, as explained at the end of Section 2.1.

Theorem 4.5. There exists a positive constant Bq such that

Bqn−1/4 · Cac(Mn)
(d)−→

n→∞ KAC

in the Gromov–Hausdorff sense.

The proof of Theorem 4.5 relies on the asymptotic study of the random trees associated with planar maps distributed
under Boltzmann distributions via the BDG bijection. The distribution of these random trees was identified in [17] (in
the bipartite case) and in [19]. We set

Z+
q = Wq

(
M+

r,p

) ≥ 1, Z0
q = Wq

(
M0

r,p

)
.

Note that, under Assumption (A2), Wq is supported on bipartite maps and thus Z0
q = 0. We also set

P +
q = Pq

(·|M+
r,p

)
, P −

q = Pq
(·|M−

r,p

)
, P 0

q = Pq
(·|M0

r,p

)
.

Note that the definition of P 0
q only makes sense under Assumption (A1).

The next proposition gives the distribution of the tree associated with a random planar map distributed according
to P +

q . Before stating this proposition, let us recall that the notion of a four-type Galton–Watson tree is defined
analogously to the case of a single type. The distribution of such a random tree is determined by the type of the
ancestor, and four offspring distributions νi , i = 1,2,3,4, which are probability distributions on Z

4+; for every i =
1,2,3,4, νi corresponds to the law of the number of children (having each of the four possible types) of an individual
of type i; furthermore, given the numbers of children of each type of an individual, these children are ordered in the
tree with the same probability for each possible ordering. See [19], Section 2.2.1, for more details, noting that we
consider only the case of “uniform ordering” in the terminology of [19].
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Proposition 4.6. Suppose that M+ is a random planar map distributed according to P +
q , and let (θ, (Lu)u∈θ(1,2)

) be
the four-type labeled tree associated with M+ via the BDG bijection between T+ and M+

r,p . Then the distribution of
(θ, (Lu)u∈θ(1,2)

) is characterized by the following properties:

(i) The random tree θ is a four-type Galton–Watson tree, such that the root ∅ has type 1 and the offspring distribu-
tions ν1, . . . , ν4 are determined as follows:

• ν1 is supported on {0} × {0} × Z+ × {0}, and for every k ≥ 0,

ν1(0,0, k,0) = 1

Z+
q

(
1 − 1

Z+
q

)k

.

• ν2(0,0,0,1) = 1.
• ν3 and ν4 are supported on Z+ × Z+ × {0} × {0}, and for every integers k, k′ ≥ 0,

ν3
(
k, k′,0,0

) = cq
(
Z+

q
)k(

Z0
q
)k′/2

(
2k + k′ + 1

k + 1

)(
k + k′

k

)
q2+2k+k′ ,

ν4
(
k, k′,0,0

) = c′
q
(
Z+

q
)k(

Z0
q
)k′/2

(
2k + k′

k

)(
k + k′

k

)
q1+2k+k′ ,

where cq and c′
q are the appropriate normalizing constants.

(ii) Conditionally given θ , (Lu)u∈θ(1,2)
is uniformly distributed over all admissible labelings.

Remark 4.7. The definition of ν4 does not make sense under Assumption (A2) (because Z0
q = 0 in that case,

ν4(k, k′,0,0) can be non-zero only if k′ = 0, but then q1+2k+k′ = 0). This is however irrelevant since under As-
sumption (A2) the property Z0

q = 0 entails that ν3 is supported on Z+ × {0} × {0} × {0}, and thus the Galton–Watson
tree will have no vertices of type 2 or 4.

We refer to [19], Proposition 3, for the proof of Proposition 4.6 under Assumption (A1) and to [17], Proposition 7,
for the case of Assumption (A2). In fact, [19] assumes that qk > 0 for some odd integer k ≥ 3, but the results in that
paper do cover the situation considered in the present work.

In the next two subsections, we prove Theorem 4.5 under Assumption (A1). The case when Assumption (A2) holds
is much easier and will be treated briefly in Section 4.5.

4.3. The shuffling operation

As already mentioned, we suppose in this section that Assumption (A1) holds. We consider the random four-type
labeled tree (θ, (Lv)v∈θ(1,2)

) associated with the planar map M+ via the BDG bijection, as in Proposition 4.6.
Our goal is to investigate the asymptotic behavior, when n tends to ∞, of the labeled tree (θ, (Lv)v∈θ(1,2)

) condi-
tioned to have n− 1 vertices of type 1 (this corresponds to conditioning M+ on the event {#V (M+) = n}). As already
observed in [19], a difficulty arises from the fact that the label displacements along the tree are not centered, and so the
results of [20] cannot be applied immediately. To overcome this difficulty, we will use an idea of [19], which consists
in introducing a “shuffled” version of the tree θ . In order to explain this, we need to introduce some notation.

Let τ be a plane tree and u = (i1, . . . , ip) ∈ τ . The tree τ shifted at u is defined by

Tuτ := {
v = (j1, . . . , j�): (i1, . . . , ip, j1, . . . , j�) ∈ τ

}
.

Let k = ku(τ ) be the number of children of u in τ , and, for every 1 ≤ i ≤ k, write u(i) for the ith child of u. The tree
τ reversed at vertex u is the new tree τ ∗ characterized by the properties:

• Vertices of τ ∗ which are not descendants of u are the same as vertices of τ which are not descendants of u.
• u ∈ τ ∗ and ku(τ

∗) = ku(τ ) = k.
• For every 1 ≤ i ≤ k, Tu(i)

τ ∗ = Tu(k+1−i)
τ .
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Our (random) shuffling operation will consist in reversing the tree τ at every vertex of τ at an odd generation,
with probability 1/2 for every such vertex. We now give a more formal description, which will be needed in our
applications. We keep on considering a (deterministic) plane tree τ . Let U o stand for the set of all u ∈ U such that |u|
is odd. We consider a collection (εu)u∈U o of independent Bernoulli variables with parameter 1/2. We then define a
(random) mapping σ : τ −→ U by setting, if u = (i1, i2, . . . , ip),

σ(u) = (j1, j2, . . . , jp),

where, for every 1 ≤ � ≤ p,

• if � is odd, j� = i�,
• if � is even,

j� =
{

i� if ε(i1,...,i�−1) = 0,

k(i1,...,i�−1)(τ ) + 1 − i� if ε(i1,...,i�−1) = 1.

Then τ̃ = {σ(u): u ∈ τ } is a (random) plane tree, called the tree derived from τ by the shuffling operation. If τ is a
four-type tree, we also view τ̃ as a four-type tree by assigning to the vertex σ(u) of τ̃ the type of the vertex u in τ .

For our purposes it is very important to note that the bijection σ : τ −→ τ̃ preserves the genealogical structure, in
the sense that u is an ancestor of v in τ if and only if σ(u) is an ancestor of σ(v) in τ̃ . Consequently, if u and v are
any two vertices of τ(1,2), [[σ(u), σ (v)]] is the image under σ of the set [[u,v]].

We can apply this shuffling operation to the random tree θ (of course we assume that the collection (εu)u∈U o is
independent of (θ, (Lv)v∈θ(1,2)

)). We write θ̃ for the four-type tree derived from θ by the shuffling operation and we

use the same notation σ as above for the “shuffling bijection” from θ onto θ̃ . We assign labels to the vertices of θ̃(1,2)

by setting for every u ∈ θ(1,2),

L̃σ(u) = Lu.

Note that the random tree θ̃ has the same distribution as θ , and is therefore a four-type Galton–Watson tree as described
in Proposition 4.6. On the other hand, the labeled trees (θ, (Lv)v∈θ(1,2)

) and (θ̃, (L̃v)v∈θ̃(1,2)
) have a different distribution

because the admissibility property of labels is not preserved under the shuffling operation. We can still describe the
distribution of the labels in the shuffled tree in a simple way. To this end, write tp(u) for the type of a vertex u. Then
conditionally on θ̃ , for every vertex u of θ̃ such that |u| is odd, if u(1), . . . , u(k) are the children of u in lexicographical
order, and if u(0) is the parent of u, the vector of label increments

(L̃u(1)
− L̃u(0)

, . . . , L̃u(k)
− L̃u(0)

)

is with probability 1/2 uniformly distributed over the set

A := {
(i1, . . . , ik) ∈ Z

k: ij+1 ≥ ij − 1{tp(u(j+1))=1} for all 0 ≤ j ≤ k
}
,

and with probability 1/2 uniformly distributed over the set

A
′ := {

(i1, . . . , ik) ∈ Z
k: ij ≥ ij+1 − 1{tp(u(j))=1} for all 0 ≤ j ≤ k

}
.

In the definition of both A and A
′ we make the convention that i0 = ik+1 = 0 and u(k+1) = u(0). Furthermore the vec-

tors of label increments are independent (still conditionally on θ̃ ) when u varies over vertices of θ̃ at odd generations.
The preceding description of the distribution of labels in the shuffled tree is easy to establish. Note that the set A

corresponds to the admissibility property of labels, whereas A′ corresponds to a “reversed” version of this property.
For every u ∈ θ̃(1,2), set

L̃′
u = L̃u − 1

2
1{tp(u)=2}.
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If we replace L̃u by L̃′
u, then the vectors of label increments in θ̃ become centered. This follows from elementary

arguments: See [19], Lemma 2, for a detailed proof. As in [19] or in [22], the fact that the label increments are
centered allows us to use the asymptotic results of [20], noting that these results will apply to L̃u as well as to L̃′

u

since the additional term 1
2 1{tp(u)=2} obviously plays no role in the scaling limit. Before we state the relevant result,

we need to introduce some notation.
For n ≥ 2, let (θ̃n, (L̃n

v)v∈θ̃ n
(1,2)

) be distributed as the labeled tree (θ̃, (L̃v)v∈θ̃(1,2)
) conditioned on the event {#θ̃(1) =

n − 1} (recall that we restrict our attention to values of n such that the latter event has positive probability). Let
pn = #θ̃ n − 1 and let un

0 = ∅, un
1, . . . , un

pn
= ∅ be the modified contour sequence of θ̃n. The contour process Cn =

(Cn
i )0≤i≤pn is defined by

Cn
i = ∣∣un

i

∣∣
and the label process V n = (V n

i )0≤i≤pn by

V n
i = L̃n

un
i
.

We extend the definition of both processes Cn and V n to the real interval [0,pn] by linear interpolation.
Recall the notation (e,Z) from Section 3.

Proposition 4.8. There exist two positive constants Aq and Bq such that(
Aq

Cn(pns)

n1/2
,Bq

V n(pns)

n1/4

)
0≤s≤1

(d)−→
n→∞(es ,Zs)0≤s≤1 (8)

in the sense of weak convergence of the distributions on the space C([0,1],R
2).

This follows from the more general results proved in [20] for spatial multitype Galton–Watson trees. One should
note that the results of [20] are given for variants of the contour process and the label process (in particular the contour
process is replaced by the so-called height process of the tree). However simple arguments show that the convergence
in the proposition can be deduced from the ones in [20]: See in particular Section 1.6 of [12] for a detailed explanation
of why convergence results for the height process imply similar results for the contour process. Proposition 4.8 is also
equivalent to Theorem 3.1 in [22], where the contour and label processes are defined in a slightly different way.

4.4. Proof of Theorem 4.5 under Assumption (A1)

We keep assuming that Assumption (A1) holds. Let M+
n be distributed according to the probability measure

P +
q (·|#V (m) = n), or equivalently as M+ conditionally on the event {#V (M+) = n}. As above, ρn stands for the dis-

tinguished point of M+
n , and we will write M+

n for the pointed graph associated with M+
n . Let (θn, (Ln

v)v∈θn
(1,2)

) be the

random labeled tree associated with M+
n via the BDG bijection between T+ and M+

r,p . Notice that (θn, (Ln
v)v∈θn

(1,2)
)

has the same distribution as (θ, (Lv)v∈θ(1,2)
) conditional on {#θ(1) = n − 1}.

We write (θ̃n, (L̃n
v)v∈θ̃ n

(1,2)
) for the tree derived from (θn, (Ln

v)v∈θn
(1,2)

) by the shuffling operation, and σn for the shuf-

fling bijection from θn onto θ̃ n. The notation (θ̃n, (L̃n
v)v∈θ̃ n

(1,2)
) is consistent with the end of the preceding subsection,

since conditioning the tree on having n − 1 vertices of type 1 clearly commutes with the shuffling operation.
As previously, un

0 = ∅, un
1, . . . , un

pn
denotes the modified contour sequence of θ̃ n. For every j ∈ {0,1, . . . , pn}, we

set vn
j = σ−1

n (un
j ). Recall that by construction the type of un

j (in θ̃ n) coincides with the type of vn
j (in θn).

Using the Skorokhod representation theorem, we may assume that the convergence (8) holds almost surely. We
will then prove that the convergence

Bqn−1/4 · Cac
(
M+

n

) −→
n→∞ KAC (9)

also holds almost surely, in the Gromov–Hausdorff sense.
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We first define a correspondence R0
n between Te and V (M+

n ) by declaring that (a∗, ρn) belongs to R0
n, and, for

every s ∈ [0,1]:
• if vn[pns] is of type 1, (pe(s), v

n[pns]) belongs to R0
n;

• if vn[pns] is of type 2, then if w is any of the two (possibly equal) vertices of type 1 associated with vn[pns], (pe(s),w)

belongs to R0
n.

We then write Rn for the induced correspondence between the quotient spaces KAC = Te/� and Cac(M+
n ). A pair

(x,α) ∈ KAC×Cac(M+
n ) belongs to Rn if and only if there exists a representative a of x in Te and a representative

u of α in V (M+
n ) such that (a,u) ∈ R0

n.
Thanks to (3), the convergence (9) will be proved if we can verify that the distortion of Rn, when KAC is equipped

with the distance dKAC and Cac(M+
n ) is equipped with Bqn−1/4d

M+
n

Cac , tends to 0 as n → ∞, almost surely. To this end,
it is enough to verify that

lim
n→∞ sup

0≤s≤1

∣∣dKAC
(
a∗,pe(s)

) − Bqn−1/4d
M+

n

Cac

(
ρn, v̂

n[pns]
)∣∣ = 0 a.s. (10)

and

lim
n→∞ sup

s,t∈[0,1]
∣∣dKAC

(
pe(s),pe(t)

) − Bqn−1/4d
M+

n

Cac

(̂
vn[pns], v̂n[pnt]

)∣∣ = 0 a.s. (11)

In both (10) and (11), v̂n[pns] = vn[pns] if vn[pns] is of type 1, whereas, if vn[pns] is of type 2, v̂n[pns] stands for one of the

vertices of type 1 associated with vn[pns] (obviously the validity of (10) and (11) does not depend on the choice of this
vertex).

The proof of (10) is easy. Note that

dKAC
(
a∗,pe(s)

) = Zpe(s) − Za∗ = Zs − Z

and, by (7),

d
M+

n

Cac

(
ρn, v̂

n[pns]
) = d

M+
n

gr
(
ρn, v̂

n[pns]
) = Ln

v̂n[pns]
− min Ln + 1

so that∣∣dM+
n

Cac

(
ρn, v̂

n[pns]
) − (

Ln
vn[pns]

− min Ln
)∣∣ ≤ 1.

Since Ln
vn[pns]

− min Ln = L̃n
un[pns]

− min L̃n = V n[pns] − minV n, our claim (10) follows from the (almost sure) conver-

gence (8).
It remains to establish (11). It suffices to prove that almost surely, for every choice of the sequences (sn) and (tn)

in [0,1], we have

lim
n→∞

∣∣dKAC
(
pe(sn),pe(tn)

) − Bqn−1/4d
M+

n

Cac

(̂
vn[pnsn], v̂n[pntn]

)∣∣ = 0.

We will prove that the preceding convergence holds for all choices of the sequences (sn) and (tn), on the set of full
probability measure where the convergence (8) holds. From now on we argue on the latter set.

By a compactness argument, we may assume that the sequences (sn) and (tn) converge to s and t respectively as
n → ∞. The proof then reduces to checking that

lim
n→∞Bqn−1/4d

M+
n

Cac

(̂
vn[pnsn], v̂n[pntn]

) = dKAC
(
pe(s),pe(t)

) = Zs + Zt − 2 min
c∈[[pe(s),pe(t)]]

Zc.

From Corollary 4.4 (and the fact that the sequence q is finitely supported), this will follow if we can verify that

lim
n→∞Bqn−1/4

(
Ln

v̂n[pnsn]
+ Ln

v̂n[pntn]
− 2 min

w∈[[̂vn[pnsn] ,̂vn[pntn]]]
Ln

w

)
= Zs + Zt − 2 min

c∈[[pe(s),pe(t)]]
Zc.



362 N. Curien, J.-F. Le Gall and G. Miermont

Observe that∣∣Ln
v̂n[pnsn]

− Ln
vn[pnsn]

∣∣ ≤ 1

and Ln
vn[pnsn]

= L̃n
un[pnsn]

. From the convergence (8), we have

lim
n→∞Bqn−1/4 Ln

v̂n[pnsn]
= lim

n→∞Bqn−1/4 L̃n
un[pnsn]

= lim
n→∞Bqn−1/4V n[pnsn] = Zs

and similarly if the sequence (sn) is replaced by (tn). Finally, we need to verify that

lim
n→∞

(
Bqn−1/4 min

w∈[[̂vn[pnsn] ,̂vn[pntn]]]
Ln

w

)
= min

c∈[[pe(s),pe(t)]]
Zc. (12)

In proving (12), we may replace v̂n[pnsn] and v̂n[pntn] by vn[pnsn], and vn[pntn] respectively. The point is that if u is a vertex
of θn of type 2 and v is an associated vertex of type 1, our definitions imply that minw∈[[u,v]] Ln

w = Ln
v . Without loss

of generality we can also assume that s ≤ t .
Since [[un[pnsn], un[pntn]]] is the image under σn of [[vn[pnsn], vn[pntn]]], (12) will hold if we can prove that

lim
n→∞

(
Bqn−1/4 min

w∈[[un[pnsn],un[pntn]]]
L̃n

w

)
= min

c∈[[pe(s),pe(t)]]
Zc. (13)

Let us first prove the upper bound

lim sup
n→∞

(
Bqn−1/4 min

w∈[[un[pnsn],un[pntn]]]
L̃n

w

)
≤ min

c∈[[pe(s),pe(t)]]
Zc. (14)

Let us pick c ∈ [[pe(s),pe(t)]]. We may assume that c �= pe(s) and c �= pe(t) (otherwise the desired lower bound
immediately follows from the convergence (8)). Then, we can find r ∈ (s, t) such that c = pe(r) and either eu > er ,
for every u ∈ [s, r), or eu > er for every u ∈ (r, t]. Consider only the first case, since the second one can be treated in
a similar manner. The convergence of the rescaled contour processes then guarantees that we can find a sequence (kn)

of positive integers such that kn/pn −→ r as n → ∞, and

Cn
k > Cn

kn
for every k ∈ {[pnsn], [pnsn] + 1, . . . , kn − 1

}
for all sufficiently large n. The latter property, and the construction of the contour sequence of the tree θn, ensure that
un

kn
∈ [[un[pnsn], un[pntn]]], for all sufficiently large n. However, by the convergence of the rescaled label processes, we

have

lim
n→∞Bqn−1/4 L̃n

un
kn

= Zr = Zc.

Consequently,

lim sup
n→∞

(
Bqn−1/4 min

w∈[[un[pnsn],un[pntn]]]
L̃n

w

)
≤ Zc

and since this holds for every choice of c the upper bound (14) follows.
Let us turn to the lower bound

lim inf
n→∞

(
Bqn−1/4 min

w∈[[un[pnsn],un[pntn]]]
L̃n

w

)
≥ min

c∈[[pe(s),pe(t)]]
Zc. (15)

For every n, let wn ∈ [[un[pnsn], un[pntn]]] be such that

min
w∈[[un[pnsn],un[pntn]]]

L̃n
w = L̃n

wn
.
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We can write wn = un
jn

where jn ∈ {[pnsn], [pnsn] + 1, . . . , [pntn]} is such that

Cn
jn

= min[pnsn]≤j≤jn

Cn
j or Cn

jn
= min

jn≤j≤[pntn]C
n
j . (16)

We need to verify that

lim inf
n→∞ Bqn−1/4 L̃n

wn
≥ min

c∈[[pe(s),pe(t)]]
Zc.

We argue by contradiction and suppose that there exist ε > 0 and a subsequence (nk) such that, for every k,

Bqn
−1/4
k L̃nk

wnk
≤ min

c∈[[pe(s),pe(t)]]
Zc − ε.

By extracting another subsequence if necessary, we may assume furthermore that jnk
/pnk

−→ r ∈ [s, t] as k → ∞,
and that the first equality in (16) holds with n = nk for every k (the case when the other equality holds is treated in a
similar manner). Then, from the convergence of rescaled contour processes, we have

er = min
s≤u≤r

er ,

which implies that pe(r) ∈ [[pe(s),pe(t)]]. Furthermore, from the convergence of rescaled label processes,

Zpe(r) = Zr = lim
k→∞Bqn

−1/4
k L̃nk

wnk
≤ min

c∈[[pe(s),pe(t)]]
Zc − ε.

This contradiction completes the proof of (15) and of the convergence (9).
In order to complete the proof of Theorem 4.5 under Assumption (A1), it suffices to verify that the convergence (9)

also holds (in distribution) if M+
n is replaced by a random planar map M−

n distributed according to P −
q (·|#V (m) = n),

or by a random planar map M0
n distributed according to P 0

q (·|#V (m) = n). The first case is trivial since M−
n can be

obtained from M+
n simply by reversing the orientation of the root edge. The case of M0

n is treated by a similar method
as the one we used for M+

n . We first need an analogue of Proposition 4.6, which is provided by the last statement of
Proposition 3 in [19]. In this analogue, the random labeled tree associated with a planar map distributed according to
P 0

q is described as the concatenation (at the root vertex) of two independent labeled Galton–Watson trees whose root
is of type 2, with the same offspring distributions as in Proposition 4.6. The results of [20] can be used to verify that
Proposition 4.8 still holds with the same constants Aq and Bq, and the remaining part of the argument goes through
without change. This completes the proof of Theorem 4.5 under Assumption (A1).

4.5. The bipartite case

In this section, we briefly discuss the proof of Theorem 4.5 under Assumption (A2). In that case, since Wq(M0
r,p) = 0,

it is obviously enough to prove the convergence of Theorem 4.5 with Mn replaced by M+
n . The proof becomes much

simpler because we do not need the shuffling operation. As previously, we introduce the labeled tree (θn, (Ln
v)v∈θn

(1,2)
)

associated with M+
n via the BDG bijection, but we now define un

0 = ∅, un
1, . . . , un

pn
= ∅ as the modified contour

sequence of θn (instead of θ̃n). We then define the contour process Cn
i = |un

i | and the label process V n
i = Ln

un
i
, for

0 ≤ i ≤ pn. Proposition 3.7 then holds in exactly the same form, as a consequence of the results of [17]. The reason
why we do not need the shuffling operation is the fact that the label increments of (θn, (Ln

v)v∈θn
(1,2)

) are centered in the
bipartite case.

Once the convergence (8) is known to hold, it suffices to repeat all steps of the proof in Section 4.4, replacing θ̃ n

by θn and vn
i by un

i wherever this is needed. We leave the details to the reader.

5. The dimension of the Brownian cactus

In this section, we compute the Hausdorff dimension of the Brownian cactus KAC. We write p : Te −→ KAC = Te/�
for the canonical projection. The uniform measure μ on KAC is the image of the mass measure Vol on the CRT (see
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Section 3) under p. For every x in KAC and every δ ≥ 0, we denote the closed ball of center x and radius δ in KAC
by BKAC(x, δ). The following theorem gives information about the μ-measure of these balls around a typical point of
KAC.

Proposition 5.1. (i) We have

E

[∫
μ(dx)μ

(
BKAC(x, δ)

)] = 25/4�(1/4)

3
√

π
δ3 + o

(
δ3),

as δ → 0.
(ii) For every ε > 0,

lim sup
δ→0

μ(BKAC(x, δ))

δ4−ε
= 0, μ(dx) a.e., a.s.

Remark 5.2. Let U be uniformly distributed over [0,1], so that pe(U) is distributed according to Vol and X =
p ◦pe(U) is distributed according to μ. Assertion (i) of the theorem says that the mean volume of the ball BKAC(X, δ)

is of order δ3, whereas assertion (ii) shows that almost surely the volume of this ball will be bounded above by δ4−ε

when δ is small. This difference between the mean and the almost sure behavior is specific to the Brownian cactus. In
the case of the Brownian map, results from Section 6 of [14] show that δ4 is the correct order both for the mean and
the almost sure behavior of the volume of a typical ball of radius δ.

In relation with this, we see that in contrast with the CRT or the Brownian map, the Brownian cactus is not invariant
under re-rooting according to the “uniform” measure μ. This means that KAC re-rooted at X does not have the same
distribution as KAC. Indeed, since dE

Kac(ρ, x) = d(ρ, x) for every pointed geodesic space E = (E,d,ρ), the previous
considerations, and Proposition 3.2, entail that μ(BKAC(ρ, δ)) is of order δ4 both in the mean and in the a.s. sense.

Proof of Proposition 5.1. (i) Fix δ > 0. Let U and U ′ be two independent random variables that are uniformly
distributed over [0,1] and independent of (e,Z). By the very definition of μ, we have

E

[∫
μ(dx)μ

(
BKAC(x, δ)

)] = P
[
dKAC

(
pe(U),pe

(
U ′)) ≤ δ

]
.

The value of dKAC(pe(U),pe(U
′)) is determined by the labels Za for a ∈ [[pe(U),pe(U

′)]]. Write (gU,U ′(t),0 ≤ t ≤
de(U,U ′)) for the geodesic path from pe(U) to pe(U

′) in the tree Te (so that [[pe(U),pe(U
′)]] is the range of gU,U ′ ).

Then, conditionally on the triplet (e,U,U ′) the process

(ZgU,U ′ (t) − Zpe(U))0≤t≤de(U,U ′),

is a standard linear Brownian motion. Hence if (Bt )t≥0 is a linear Brownian motion independent of (e,U,U ′), we
have

P
[
dKAC

(
pe(U),pe

(
U ′)) ≤ δ

] = P

[
BL − 2 min

0≤s≤L
Bs ≤ δ

]
,

where L = de(U,U ′). Pitman’s theorem [23], Theorem VI.3.5, implies that, for every fixed l ≥ 0, Bl − 2 min0≤s≤l Bs

has the same distribution as B
(3)
l , where (B

(3)
t )t≥0 denotes a three-dimensional Bessel process started from 0. From

the invariance under uniform re-rooting of the distribution of the CRT, the variable de(U,U ′) has the same distribution
as de(0,U) = eU , which has density 4le−2l2 . Consequently, we can explicitly compute

P
[
dKAC

(
U,U ′) ≤ δ

] = 4
∫ ∞

0
dlle−2l2

P
[
B

(3)
l ≤ δ

]
= 4

∫ ∞

0
dlle−2l2

∫
R3

dz(2πl)−3/2e−|z|2/2l1{|z|≤δ}
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= 4

√
2

π

∫ ∞

0
dll−1/2e−2l2

∫ δ

0
duu2e−u2/2l

= 4

√
2

π

∫ δ

0
duu2

∫ ∞

0
dll−1/2 exp

(−2l2 − (
u2/2l

))
.

The desired result follows since

lim
u→0

∫ ∞

0
dll−1/2 exp

(−2l2 − (
u2/2l

)) =
∫ ∞

0
dll−1/2 exp

(−2l2) = 2−5/4�(1/4).

(ii) Let us fix r ∈ ]0,1[. For every u ∈ [0, er ], set

Ge(r, u) = max
{
s ∈ [0, r]: es = er − u

}
, De(r, u) = min

{
s ∈ [r,1]: es = er − u

}
.

Then pe(Ge(r, u)) = pe(De(r, u)) is a point of [[pe(0),pe(r)]], and more precisely the path u −→ pe(Ge(r, u)),
0 ≤ u ≤ er , is the geodesic from pe(r) to pe(0) in the tree Te. As a consequence, conditionally on e, the process

M(r)
u := Zr − min

{
Zv: v ∈ [[

pe
(
Ge(r, u)

)
,pe(r)

]]}
, 0 ≤ u ≤ er ,

has the same distribution as

− min
0≤v≤u

Bv, 0 ≤ u ≤ er ,

where B is as above. By classical results (see e.g. Theorem 6.2 in [10]), we have, for every ε ∈ ]0,1/2[,

lim
u→0

u−1/2−εM(r)
u = ∞, a.s. (17)

On the other hand, if t ∈ [0,1]\]Ge(r, u),De(r, u)[, we have mint∧r≤s≤t∨r es ≤ er −u, which implies that the segment
[[pe(t),pe(r)]] contains [[pe(Ge(r, u)),pe(r)]], and therefore

dKAC
(
pe(t),pe(r)

) ≥ M(r)
u .

Using (17), it follows that, for every fixed ε ∈ ]0,1/2[, we have a.s. for all u > 0 small enough

BKAC
(
pe(r), u

1/2+ε
) ⊂ (

KAC \ p ◦ pe
([

0,Ge(r, u)
] ∪ [

De(r, u),1
]))

,

and in particular

μ
(
BKAC

(
pe(r), u

1/2+ε
)) ≤ De(r, u) − Ge(r, u).

However, the same standard results about Brownian motion that we already used to derive (17) imply that

lim
u→0

u−2+ε
(
De(r, u) − Ge(r, u)

) = 0, a.s.

We conclude that, for every ε ∈ ]0,1/2[,

lim
u→0

u−2+εμ
(
BKAC

(
pe(r), u

1/2+ε
)) = 0, a.s.

and property (ii) follows, in fact in a slightly stronger form than stated in the theorem. �

Corollary 5.3. Almost surely, the Hausdorff dimension of KAC is 4.
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Proof. Classical density theorems for Hausdorff measures show that the existence of a non-trivial measure μ satisfy-
ing the property stated in part (ii) of Proposition 5.1 implies the lower bound dim(KAC) ≥ 4. To get the corresponding
upper bound, we first note that the mapping [0,1] � t −→ Zt is a.s. Hölder continuous with exponent 1/4 − ε, for
any ε ∈ ]0,1/4[. Observing that [[pe(t),pe(t

′)]] ⊂ pe([t ∧ t ′, t ∨ t ′]), for every t, t ′ ∈ [0,1], it readily follows that the
composition p◦pe defined on [0,1] and with values in KAC, is a.s. Hölder continuous with exponent 1/4 − ε, for any
ε ∈ ]0,1/4[. Hence, the Hausdorff dimension of KAC, which is the range of p ◦ pe, must be bounded above by 4. �

6. Separating cycles

In this section, we study the existence and properties of a cycle with minimal length separating two points of the
Brownian map, under the condition that this cycle contains a third point. This is really a problem about the Brownian
map, but the cactus distance plays an important role in the statement. Our results in this section are related to the work
of Bouttier and Guitter [4] for large random quadrangulations of the plane.

We consider the Brownian map m∞ = (m∞,D,ρ∗) (see Section 3). We set p = Π ◦ pe, which corresponds to
the canonical projection from [0,1] onto m∞. If U is uniformly distributed over [0,1], the point p(U) is distributed
according to the volume measure λ on m∞.

A loop in m∞ is a continuous path γ : [0, T ] −→ m∞, where T > 0, such that γ (0) = γ (T ). If x and y are
two distinct points of m∞, we say that the loop γ separates the points x and y if x and y lie in distinct connected
components of m∞ \ {γ (t): 0 ≤ t ≤ T }. It is known [16] that (m∞,D) is homeomorphic to the 2-sphere, so that
separating loops do exist. We denote by S(x, y,ρ∗) the set of all loops γ such that γ (0) = ρ∗ and γ separates x and y.
Recall from Section 2.2 the definition of the length of a curve in a metric space.

Theorem 6.1. Let U1 and U2 be independent and uniformly distributed over [0,1]. Then almost surely there exists
a unique loop γ∗ ∈ S(p(U1),p(U2), ρ∗) with minimal length, up to reparametrization and time-reversal. This loop is
obtained as the concatenation of the two distinct geodesic paths from Π(β) to ρ∗, where β is the a.s. unique point of
[[pe(U1),pe(U2)]] such that

Zβ = min
a∈[[pe(U1),pe(U2)]]

Za.

In particular, the length of γ∗ is

L(γ∗) = 2D
(
ρ∗,Π(β)

) = D
(
ρ∗,p(U1)

) + D
(
ρ∗,p(U2)

) − 2dKAC
(
pe(U1),pe(U2)

)
.

The complement in m∞ of the range of γ∗ has exactly two components C1 and C2, such that p(U1) ∈ C1 and p(U2) ∈
C2, and the pair (λ(C1), λ(C2)) is distributed according to the beta distribution with parameters ( 1

4 , 1
4 ):

E
[
f

(
λ(C1), λ(C2)

)] = �(1/2)

�(1/4)2

∫ 1

0
dt

(
t (1 − t)

)−3/4
f (t,1 − t)

for any non-negative Borel function f on R
2+.

Proof. We first explain how the loop γ∗ is constructed. As in the previous section, write (gU1,U2(r))0≤r≤de(U1,U2) for
the geodesic path from pe(U1) to pe(U2) in the tree Te, whose range is the segment [[pe(U1),pe(U2)]]. We already
noticed that, conditionally on the triplet (e,U1,U2) the process

(ZgU1,U2 (r) − Zpe(U1))0≤r≤de(U1,U2),

is a standard linear Brownian motion. Hence this process a.s. attains its minimal value at a unique time r0 ∈
]0, de(U1,U2)[, and we set β = gU1,U2(r0). Since there are only countably many values of r ∈ ]0, de(U1,U2)[ such
that gU1,U2(r) has multiplicity 3 in Te, it is also clear that β has multiplicity 2 in Te, a.s. Write C◦

1 and C◦
2 for the two

connected components of Te \ {β}, ordered in such a way that pe(U1) ∈ C◦
1 and pe(U2) ∈ C◦

2 , and set C1 = C◦
1 ∪ {β},

C2 = C◦
2 ∪ {β}. Then Π(C1) and Π(C2) are closed subsets of m∞ whose union is m∞. Furthermore, the discussion at
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the beginning of Section 3 of [14] shows that the boundary of Π(C1), or equivalently the boundary of Π(C2), coin-
cides with the set Π(C1) ∩ Π(C2) of all points x ∈ m∞ that can be written as x = Π(a1) = Π(a2) for some a1 ∈ C1
and a2 ∈ C2. In particular, the interiors of Π(C1) and of Π(C2) are disjoint. Notice that p(U1) belongs to the interior
of Π(C1), and p(U2) belongs to the interior of Π(C2), almost surely: To see this, observe that for almost every (in the
sense of the volume measure Vol) point a of Te, the equivalence class of a for ≈ is a singleton, and thus Π−1(p(U1))

and Π−1(p(U2)) must be singletons almost surely.
Since β has multiplicity 2 in Te, Theorem 7.6 in [14] implies that there are exactly two distinct geodesic paths from

ρ∗ to Π(β), and that these paths are simple geodesics in the sense of [14], Section 4. We denote these geodesic paths
by φ1 and φ2. From the definition of simple geodesics, one easily gets that φ1(s) = φ2(s) for every 0 ≤ s ≤ s0, where

s0 := max
(

min
a∈C1

Za, min
a∈C2

Za

)
− Z.

Note that {φ1(s): 0 ≤ s < s0} is contained in the interior of Π(Ci ), where i ∈ {1,2} is determined by the condition
a∗ ∈ Ci . Furthermore, the definition of simple geodesics shows that

Π(C1) ∩ Π(C2) = {
φ1(s): s0 ≤ s ≤ D

(
ρ∗,Π(β)

)} ∪ {
φ2(s): s0 ≤ s ≤ D

(
ρ∗,Π(β)

)}
.

We define γ∗ by setting

γ∗(t) =
{

φ1(t) if 0 ≤ t ≤ D
(
ρ∗,Π(β)

)
,

φ2
(
2D

(
ρ∗,Π(β)

) − t
)

if D
(
ρ,Π(β)

) ≤ t ≤ 2D
(
ρ∗,Π(β)

)
.

Then γ∗ is a loop starting and ending at ρ∗. Furthermore γ∗ separates p(U1) and p(U2), since any continuous path in
m∞ starting from p(U1) will have to hit the boundary of Π(C1) before reaching p(U2). Finally the length of γ∗ is

L(γ∗) = 2D
(
ρ∗,Π(β)

) = 2(Zβ − Z) = D
(
ρ∗,p(U1)

) + D
(
ρ∗,p(U2)

) − 2dKAC
(
pe(U1),pe(U2)

)
.

We next verify that γ∗ is the unique loop in S(p(U1),p(U2), ρ∗) with minimal length. Let γ be a path in
S(p(U1),p(U2), ρ∗) indexed by the interval [0, T ]. The image under Π of the path gU1,U2 is a continuous path from
p(U1) to p(U2), which must intersect the range of γ . Hence the range of γ contains at least one point y such that
y = Π(a) for some a ∈ [[pe(U1),pe(U2)]]. Since γ (0) = γ (T ) = ρ∗, we have

L(γ ) ≥ 2D(ρ∗, y) = 2(Za − Z)

using (5). Since Za ≥ Zβ , we thus obtain that L(γ ) ≥ L(γ∗).
Let τ ∈ [0, T ] be such that y = γ (τ). The preceding considerations show that the equality L(γ ) = L(γ∗) can

hold only if a = β and if furthermore the paths (γ (τ − t),0 ≤ t ≤ τ) and (γ (τ + t),0 ≤ t ≤ T − τ) have length
D(ρ∗,Π(β)), so that these paths must coincide (up to reparametrization) with geodesics from Π(β) to ρ∗. We con-
clude that any minimizing path γ coincides with γ∗, up to reparametrization and time-reversal.

In order to complete the proof of the theorem, we first need to identify the connected components of the complement
of the range of γ∗ in m∞. Consider the case when a∗ belongs to C1, and set

R := {
φ1(s): 0 ≤ s < s0

} ⊂ Π(C1).

Write Int(Π(Ci )) for the interior of Π(Ci ), for i = 1,2. Then the connected components of the complement of the
range of γ∗ in m∞ are

C1 = Int
(
Π(C1)

) \ R, C2 = Int
(
Π(C2)

)
.

This easily follows from the preceding considerations: Note for instance that Int(Π(C2)) is the image under Π of a
connected subset of C2, and is therefore connected. From this identification, we get

λ(C1) = Vol(C1), λ(C2) = Vol(C2) = 1 − Vol(C1), (18)
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using the fact that the range of γ∗ has zero λ-measure (this can be seen from the uniform estimates on the measure of
balls found in Section 6 of [14]). Clearly the same identities (18) remain valid in the case when a∗ belongs to C2.

To complete the proof, we need to compute the distribution of Vol(C1). To this end it will be convenient to use the
invariance of the law of Te under uniform re-rooting. Let U be a random variable uniformly distributed over [0,1],
and let α be the (almost surely unique) vertex of [[pe(0),pe(U)]] such that Zα = mina∈[[pe(0),pe(U)]] Za . Then, if C◦ is
the connected component of Te \ {α} containing pe(U), the invariance of the CRT under uniform re-rooting implies
that

Vol(C1)
(d)= Vol

(
C◦).

Now notice that conditionally on the pair (e,U), the random variable H = de(pe(0), α) is distributed according to the
arc-sine law on [0, eU ], with density

1

π
√

s(eU − s)
.

Moreover,

Vol
(

C◦) = De(U, eU − H) − Ge(U, eU − H),

where we use the same notation as in the preceding section, for r ∈ ]0,1[ and u ∈ [0, er ],
Ge(r, u) = max{s ≤ r: es = er − u}, De(r, u) = min{s ≥ r: es = er − u}. (19)

From the previous remarks, we have, for any non-negative measurable function g on [0,1],

E
[
g
(
Vol(C1)

)] = E
[
g
(
Vol

(
C◦))] = E

[∫ 1

0
ds

∫ es

0

dh

π
√

h(es − h)
g
(
De(s, h) − Ge(s, h)

)]
. (20)

In order to compute the right-hand side, it is convenient to argue first under the Itô measure n(de) of positive excursions
of linear Brownian motion (see e.g. Chapter XII of [23], where the notation n+(de) is used). Let σ(e) denote the
duration of excursion e, and define De(r,u) and Ge(r,u), for r ∈ ]0, σ (e)[ and 0 ≤ u ≤ e(r), in a way analogous to
(19). Also write

qh(t) = h√
2πt3

exp−h2

2t

for the density of the hitting time of h > 0 by a standard linear Brownian motion. Then, an application of Bismut’s
decomposition of the Itô measure (see e.g. Theorem XII.4.7 in [23]) gives for every non-negative measurable function
f on R

2+,∫
n(de)

∫ σ(e)

0
ds

∫ e(s)

0

dh

π
√

h(e(s) − h)
f

(
σ(e),De(s, h) − Ge(s,h)

)
=

∫ ∞

0
du

∫ u

0

dh

π
√

h(u − h)

∫ ∞

0
dtq2h(t)

∫ ∞

0
dt ′q2(u−h)

(
t ′
)
f

(
t + t ′, t

)
= 1

π

∫ ∞

0

dh√
h

∫ ∞

0

dh′
√

h′

∫ ∞

0
dtq2h(t)

∫ ∞

0
dt ′q2h′

(
t ′
)
f

(
t + t ′, t

)
= 1

π

∫ ∞

0
dt

∫ ∞

0
dt ′f

(
t + t ′, t

)(∫ ∞

0

dh√
h

q2h(t)

)(∫ ∞

0

dh′
√

h′ q2h′
(
t ′
))

. (21)

We easily compute∫ ∞

0

dh√
h

q2h(t) = 2−3/4(2π)−1/2�(3/4)t−3/4.
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Hence, using also the identity �(1/4)�(3/4) = π
√

2, we see that the right-hand side of (21) is equal to

2−3/2

�(1/4)2

∫ ∞

0
d�

∫ �

0
dtf (�, t)

(
t (� − t)

)−3/4
.

We can condition the resulting formula on {σ = 1}, using the fact that the density of σ(e) under n(de) is equal to
1
2 (2π�3)−1/2, and we conclude that

E

[∫ 1

0
ds

∫ es

0

dh

π
√

h(es − h)
g
(
De(s, h) − Ge(s, h)

)]

= n

(∫ σ(e)

0
ds

∫ e(s)

0

dh

π
√

h(e(s) − h)
g
(
De(s,h) − Ge(s,h)

)∣∣∣σ = 1

)

=
√

π
�(1/4)2

∫ 1

0
dt

(
t (1 − t)

)−3/4
g(t).

We now see that the last assertion of the theorem follows from (20). �

Appendix

This section is devoted to the proof of the fact, mentioned in Section 4.5, that if q = (q1, q2, . . .) is a sequence with
finite support, such that qk > 0 for some k ≥ 3, then there exists a constant a > 0 such that aq = (aq1, aq2, . . .) is
regular critical in the sense of [17,19]. We briefly discuss case (A2), which is easier. Following [17], we define

fq(x) =
∑
k≥0

xk

(
2k + 1

k

)
q2k+2, x ≥ 0.

By [17], Proposition 1, the Boltzmann measure Wq defined in Section 4.5 is a finite measure if and only if the equation

fq(x) = 1 − 1

x
, x > 1, (22)

has a solution. Since qk > 0 for some k ≥ 3, the function fq is a strictly convex polynomial, so there can be either one
or two solutions to this equation. In the first situation, the graphs of fq and x �→ 1 − 1/x are tangent at the unique
solution, in which case q is said to be critical in the sense of [17], Definition 1 (it will even be regular critical in our
case since fq(x) is finite for every x > 0). It is then trivial that there exists a unique a = ac > 0 such that the graphs
of faq and x �→ 1 − 1/x intersect at a tangency point, and then acq is regular critical.

Let us turn to case (A1), which is more delicate. For every x, y ≥ 0, we set

f •
q (x, y) =

∑
k,k′≥0

xkyk′
(

2k + k′ + 1
k + 1

)(
k + k′

k

)
q2+2k+k′ ,

f �
q (x, y) =

∑
k,k′≥0

xkyk′
(

2k + k′
k

)(
k + k′

k

)
q1+2k+k′ ,

defining two polynomials, which are convex in each separate variable x, y. Proposition 1 of [19] asserts that the
Boltzmann measure Wq is finite (then q is said to be admissible) if and only if the equations{

f •
q (x, y) = 1 − 1

x
, x > 1,

f �
q (x, y) = y, y > 0

(23)
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have a solution (x, y), such that the spectral radius of the matrix

M(x,y) =
⎛⎝ 0 0 x − 1

x
y
∂xf

�
q (x, y) ∂yf

�
q (x, y) 0

x2

x−1∂xf
•
q (x, y)

xy
x−1∂yf

•
q (x, y) 0

⎞⎠
is at most 1. Moreover, a solution (x, y) with these properties is then unique.

If the spectral radius of M(x,y) (for this unique solution (x, y)) equals 1, then we say that q is critical. It is here
even regular critical in the terminology of [19], since the functions f •

q , f �
q are everywhere finite in our case. Note that

the matrix M(x,y) has non-negative coefficients, and the Perron–Frobenius theorem ensures that the spectral radius
of M(x,y) is also the largest real eigenvalue of M(x,y). Thus, assuming that q is admissible, and letting (x, y) be
the unique solution of (23) such that M(x,y) has spectral radius bounded by 1, we see that q is regular critical if and
only if 1 is an eigenvalue of M(x,y), which holds if and only if the determinant of Id − M(x,y) vanishes.

For every x, y > 0, set

G(x,y) = f •
q (x, y) − 1 + 1/x and H(x,y) = f �

q (x, y) − y.

Then G and H are convex functions in each variable x, y ∈ (0,∞). A pair (x, y) ∈ (0,∞)2 satisfies (23) if and only
if G(x,y) = H(x,y) = 0 (notice that the condition G(x,y) = 0 forces x > 1). The set {G = 0}, resp. {H = 0} is the
boundary of the closed set CG = {G ≤ 0}, resp. of CH = {H ≤ 0}, in (0,∞)2.

Lemma A.1. (i) The set CG is contained in (1,∞) × (0,A), for some A > 0.
(ii) The set CH is bounded.
(iii) If (x, y) ∈ CG then (x, y′) ∈ CG for every y′ ∈ (0, y). If (x, y) ∈ CH then (x′, y) ∈ CH for every x′ ∈ (0, x).

There exists ε > 0 such that CH does not intersect [1,∞) × (0, ε).
(iv) For every a > 0, let Ga , resp. Ha , be the function analogous to G, resp. to H , when q is replaced by aq. Then

CHa ⊂ (0,1] × (0,∞) for every large enough a > 0. Consequently CHa ∩ CGa = ∅ for every large enough a > 0.

Proof. (i) This is obvious since f •
q (x, y) ≥ Cy� for every x, y > 0, for some constant C > 0 and some integer � ≥ 3.

(ii) Suppose first that there exists an odd integer � ≥ 3 such that q� > 0. Then, the definition of f �
q shows that there

is a positive constant c such that

f �
q (x, y) ≥ c

(
x(�−1)/2 + y�−1),

and it readily follows that CH is bounded. Consider then the case when there is an even integer � ≥ 4 such that q� > 0.
Then there is a positive constant c such that

f �
q (x, y) ≥ c

(
x(�−2)/2y + y�−1),

and again this implies that CH is bounded.
(iii) The first property is clear since y �→ G(x,y) is non-decreasing, for every x > 0. Similarly, the second property

in (iii) follows from the fact that x �→ H(x,y) is non-decreasing, for every y > 0. The last property is also clear since
we can find ε > 0 such that f �

q (x, y) > ε for every x ≥ 1 and y > 0 (we use the fact that q is not supported on even
integers).

(iv) Suppose first that there exists an odd integer � ≥ 3 such that q� > 0. Using the same bound as in the proof of
(ii), and noting that f �

aq = af �
q , we see that Ha(x, y) ≤ 0 can only hold if

x(�−1)/2 + y�−1 ≤ y

ca
.

It is elementary to check that this implies x ≤ 1 as soon as a is large enough. The case when there is an even integer
� ≥ 4 such that q� > 0 is treated similarly using the bound stated in the proof of (ii). Finally the last assertion in (iv)
follows by using (i). �
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Recall that f •
q and f �

q are polynomials. It follows that the set {G = 0} is either empty or a smooth curve depending
on whether the set {G ≤ 0} is empty or not (a priori it could happen that {G = 0} = {G ≤ 0} is a singleton, but assertion
(iii) in the previous lemma shows that this case does not occur). Similar properties hold for the set {H = 0}. A simple
calculation also shows that

det
(
Id − M(x,y)

) = x2 det
(∇G(x,y),∇H(x,y)

)
. (24)

Consequently, if we assume that (x, y) satisfies (23), the condition det(Id − M(x,y)) = 0 will hold if and only if the
curves {G = 0} and {H = 0} are tangent at (x, y).

Lemma A.1(iii) implies that whenever non-empty, the curves {G = 0}, {H = 0} are the graphs of two smooth
functions g : I → (0,∞) and h :J → (0,∞) in the sense that

{G = 0} = {(x, g(x)): x ∈ I }, {H = 0} = {(h(y), y): y ∈ J },
and moreover, {G ≤ 0}, {H ≤ 0} are exactly the points below the graphs of these functions g,h. By (i) and (ii) in
Lemma A.1, I is a subset of (1,∞) and J is a bounded subset of (0,∞). Moreover, the fact that x �→ G(x,y) and
y �→ H(x,y) are convex functions implies that I and J are intervals, and that there exists two subintervals I ′ and J ′
of respectively I and J , such that inf I ′ = inf I , infJ ′ = infJ , and the functions g and h are non-decreasing on I ′ and
J ′ respectively, and non-increasing on I \ I ′ and J \ J ′ respectively (we may have J = J ′).

Since ∇G,∇H are orthogonal to level lines of G,H and pointing towards larger values of these functions, we
deduce that for every x ∈ I ′, y ∈ J ′, it holds that

∂xG(x,g(x)) ≤ 0, ∂yG(x,g(x)) ≥ 0, ∂xH(h(y), y) ≥ 0, ∂yH(h(y), y) ≤ 0.

For x ∈ I \ I ′, y ∈ J \ J ′, the first and last inequality should be reversed, the other two remaining as such. We now
claim that the restrictions of g,h to the intervals I ′, J ′ are concave. To check this, we differentiate twice the equation
G(x,g(x)) = 0 to obtain

g′′(x) = − 1

∂yG

(
∂xxG + 2g′(x) ∂xyG + g′(x)2 ∂yyG

)
,

where in the right-hand side all derivatives of G should be evaluated at the point (x, g(x)). Since ∂xxG,∂xyG,∂yyG

are respectively equal to ∂xxf
•
q +2/x3, ∂xyf

•
q , ∂yyf

•
q , which are all non-negative, we obtain that g′′(x) ≤ 0 for x ∈ I ′,

as claimed. The proof of the concavity of h on J ′ is similar.
Let us now consider possible intersections of {G = 0} and {H = 0}. First of all, the monotonicity properties of g,h

imply that if the graphs {(x, g(x)): x ∈ I ′} and {(h(y), y): y ∈ J ′} do not intersect, then {G = 0} ∩ {H = 0} is empty
as well, so that q cannot be admissible. Next, consider a point (x, y) ∈ {G = 0} ∩ {H = 0} and such that y ∈ J \ J ′.
Then we have seen that ∂yH(x, y) ≥ 0. Since ∂yH = ∂yf

�
q − 1, this means that ∂yf

�
q (x, y) ≥ 1. But ∂yf

�
q (x, y) is

a diagonal coefficient of the irreducible matrix M(x,y), so that it is a strict lower bound for its spectral radius. The
last property is easy to show from the well-known fact that a Perron eigenvector (one corresponding to the largest,
real eigenvalue) has only positive entries. We deduce that such an intersection between {G = 0} and {H = 0} cannot
correspond to a “good” solution such that M(x,y) has spectral radius at most 1. Finally, we see that such a good
solution (x, y) can correspond only to a solution with y ∈ J ′, and from the concavity of h on this interval and the
monotonicity properties of g, we see that there are at most two such solutions. Of these, the smallest one will also
have x ∈ I ′, and the largest one, if different from the smallest one, corresponds to a point where g crosses the curve
{(h(y), y): y ∈ J ′} from above. In such a situation, the property det(∇G,∇H) < 0 must hold, so 24 implies that the
characteristic polynomial of M(x,y) has a root strictly larger than 1.

Finally, we see that there can be only one solution (x, y) to the equations G = H = 0 for which M(x,y) has
spectral radius at most 1. If it exists, this solution then satisfies (x, y) ∈ I ′ × J ′, and is the solution to G = H = 0
which has minimal coordinates, in the sense that if (x′, y′) is another solution then x < x′ and y < y′. Moreover,
if M(x,y) has spectral radius equal to 1, then the curves are tangent at this solution, which is then also the unique
solution to G = H = 0. With this at hand, we can finally prove the following result.

Proposition A.2. Under Assumption (A1), there exists a unique positive real ac such that acq is regular critical.
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Fig. A.1. Illustration of the sets CGa and CHa for 0 < a < ac and for a = ac .

Proof. For every a > 0, write Ma(x, y) for the analogue of the matrix M(x,y) when q is replaced by aq. Simple
counting arguments (using for instance the BDG bijections and the fact that the sequence q has finite support, so
that the degrees of faces in maps m such that Wq(m) > 0 are bounded) show that the Boltzmann measure Waq is
finite for a > 0 small enough. Consequently we can fix a0 > 0 small enough so that a0q is admissible. By previous
observations, there exists a pair (xa0 , ya0) belonging to the intersection of the curves {Ga0 = 0} and {Ha0 = 0} and
such that the spectral radius of the matrix Ma0(xa0, ya0) is bounded above by 1. This pair is also the intersection point
with minimal coordinates. If the curves {Ga0 = 0} and {Ha0 = 0} are tangent at (xa0 , ya0), then (24) shows that this
spectral radius is equal to 1, and thus a0q is regular critical.

Suppose that the curves {Ga0 = 0} and {Ha0 = 0} are not tangent at (xa0 , ya0). Note that both sets CGa and CHa

are decreasing functions of a, and vary continuously with a (as long as they are non-empty). Geometric arguments,
together with property (iv) of Lemma A.1, show that there exists a critical value ac > a0 such that for a0 ≤ a < ac

the curves {Ga = 0} and {Ha = 0} intersect in at least two points, the one with minimal coordinates being denoted
by (xa, ya), and furthermore the curves {Gac = 0} and {Hac = 0} are tangent at a point denoted by (xac , yac ). See
Figure A.1 for an illustration. Moreover the mapping a �→ (xa, ya) is continuous on [a0, ac]. It follows that the
spectral radius of Ma(xa, ya) remains bounded above by 1 for a ∈ [a0, ac): If this were not the case, this spectral
radius would take the value 1 at some a1 ∈ (a0, ac) but then by (24) the curves {Ga1 = 0} and {Ha1 = 0} would be
tangent at (xa1 , ya1), which is a contradiction. Finally by letting a ↑ ac we get that the spectral radius of Mac(xac , yac )

is bounded above by 1, hence equal to 1 by (24) and the fact that {Gac = 0} and {Hac = 0} are tangent at (xac , yac ).
We conclude that acq is regular critical.

The uniqueness of ac is clear since we can start the previous argument from an arbitrarily small value of a0 and
since the curves {Ga = 0} and {Ha = 0} will not intersect when a > ac . �
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