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Abstract. We study the performance of empirical risk minimization (ERM), with respect to the quadratic risk, in the context of
convex aggregation, in which one wants to construct a procedure whose risk is as close as possible to the best function in the convex
hull of an arbitrary finite class F . We show that ERM performed in the convex hull of F is an optimal aggregation procedure for
the convex aggregation problem. We also show that if this procedure is used for the problem of model selection aggregation, in
which one wants to mimic the performance of the best function in F itself, then its rate is the same as the one achieved for the
convex aggregation problem, and thus is far from optimal. These results are obtained in deviation and are sharp up to logarithmic
factors.

Résumé. Nous étudions les performances de la procédure de minimisation du risque empirique, par rapport au risque quadratique,
pour le problème d’agrégation convexe. Dans ce problème, on souhaite construire des procédures dont le risque est aussi proche
que possible du risque du meilleur élément dans l’enveloppe convexe d’une classe finie F de fonctions. Nous prouvons que la
procédure obtenue par minimisation du risque empirique sur la coque convexe de F est une procédure optimale pour le problème
d’aggrégation convexe. Nous prouvons aussi que si cette procédure est utilisée pour le problème d’agrégation en sélection de
modèle, pour lequel on souhaite imiter le meilleur dans F , alors le résidu d’agrégation est le même que celui obtenue pour le
problème d’agrégation convexe. Cette procédure est donc loin d’être optimale pour le problème d’agrégation en sélection de
modèle. Ces résultats sont obtenus en déviation et sont optimaux à des facteurs logarithmiques prés.
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1. Introduction and main results

In this note, we study the optimality of the empirical risk minimization procedure in the aggregation framework.
Let X be a probability space and let (X,Y ) and (X1, Y1), . . . , (Xn,Yn) be n+ 1 i.i.d. random variables with values

in X × R. From the statistical point of view, D = ((X1, Y1), . . . , (Xn,Yn)) is the family of given data.
The quadratic risk of a real-valued function f defined on X is given by

R(f ) = E
(
Y − f (X)

)2
.
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If f̂ is a function constructed using the data D, the quadratic risk of f̂ is the random variable

R(f̂ ) = E
[(

Y − f̂ (X)
)2|D

]
.

For the sake of simplicity, throughout this article we will restrict ourselves to functions f and random variables (X,Y )

for which |Y |, |f (X)| ≤ b almost surely, for some fixed b ≥ 1. One should note, though, that it is possible to extend
the results beyond this case, to functions with well behaved tail – though at a high technical price (cf. the chaining
arguments in [20] and [21]).

In the aggregation framework, one is given a finite set F of real-valued functions defined on X (usually called a
dictionary) of cardinality M . There are three main types of aggregation problems:

1. In the Model Selection (MS) aggregation problem, one has to construct a procedure that produces a function whose
risk is as close as possible to the risk of the best element in the given class F (cf. [2,3,9–12,16,24,25,27]).

2. In the Convex (C) aggregation problem (cf. [1,7–9,12,24,28]) one wants to construct a procedure whose risk is as
close as possible to the risk of the best function in the convex hull of F (later denoted by conv(F )).

3. In the Linear (L) aggregation problem (cf. [9,11,15,24]), one wants to construct a procedure whose risk is as close
as possible to the risk of the best function in the linear span of F (later denoted by span(F )).

The aim in the aggregation framework is to construct a procedure f̃ for which, with high probability

R(f̃ ) ≤ C min
f ∈Δ(F)

R(f ) + ψΔ(F)
n (M) (1.1)

with C = 1 and Δ(F) is either F , or conv(F ) or span(F ). It is worth mentioning that it is desirable for the constant
C in (1.1) to be one in the aggregation setup for at least two reasons. First, there are some obvious mathematical
differences in the analysis leading to exact oracle inequalities (C = 1) and non-exact oracle inequalities (C > 1). In
particular, the geometry of the set Δ(F) has a key role in an attempt to obtain exact oracle inequalities, whereas
non-exact oracle inequalities are mainly based on complexity and concentration argument (cf. [17]). Second, an exact
oracle inequality for the prediction risk R(·) leads to an exact oracle inequality for the estimation risk; namely, with
high probability

E
[(

f̃ (X) − f ∗(X)
)2|D

] ≤ min
f ∈Δ(F)

E
[(

f (X) − f ∗(X)
)2] + ψΔ(F)

n (M),

where f ∗ denotes the regression function of Y given X. Such an estimate on the regression function cannot follow
from a non-exact oracle inequality, and thus, exact oracle inequalities can provide prediction and estimation results
whereas non-exact oracle inequalities only lead to prediction results.

One can define the optimal rates of the (MS), (C) and (L) aggregation problems, respectively denoted by ψ
(MS)
n (M),

ψ
(C)
n (M) and ψ

(L)
n (M) (see, for example, [24]). The optimal rates are the smallest prices in the minimax sense that

one has to pay to solve the (MS), (C) or (L) aggregation problems in expectation, as a function of the cardinality M

of the dictionary and of the sample size n. It has been proved in [24] (see also [12] and [28] for the (C) aggregation
problem) that

ψ(MS)
n (M) ∼ logM

n
, ψ(C)

n (M) ∼
{

M
n

if M ≤ √
n,√

1
n

log
( eM√

n

)
if M >

√
n

and ψ(L)
n (M) ∼ M

n
,

where we denote a ∼ b if there are absolute positive constants c and C such that cb ≤ a ≤ Cb. Note that the rates
obtained in [24] hold in expectation and in particular, the rate ψ

(C)
n (M) was achieved in the Gaussian regression model

with a known variance and a known marginal distribution of the design. In [8], the authors were able to remove these
assumptions at a price of an extra logn factor for 1 ≤ M ≤ √

n (results are still in expectation). We also refer the
reader to [6,28] for non-exact oracle inequalities in the (C) aggregation context.

Lower bounds in deviation follow from the arguments of [24] for the three aggregation problems with the same
rates ψ

(MS)
n (M), ψ

(C)
n (M) and ψ

(L)
n (M). In other words, there exist two absolute constants c0, c1 > 0 such that for
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any sample cardinality n ≥ 1, any cardinality of a dictionary M ≥ 1 and any aggregation procedure f̄n, there exists a
dictionary F of size M such that with probability larger than c0,

R(f̄n) ≥ min
f ∈Δ(F)

R(f ) + c1ψ
Δ(F)
n (M), (1.2)

where the residual term ψ
Δ(F)
n (M) is ψ

(MS)
n (M) (resp. ψ

(C)
n (M) or ψ

(L)
n (M)) when Δ(F) = F (resp. Δ(F) =

conv(F ) or Δ(F) = span(F )). Procedures achieving these rates in deviation have been constructed for the (MS)
aggregation problem ([2] and [16]) and the (L) aggregation problem ([15]). So far, there was no example of a pro-
cedure that achieves the rate of aggregation ψ

(C)
n (M) with high probability for the (C) aggregation problem and the

aim of this note is to prove that the most natural procedure, empirical risk minimization over the convex hull of F ,
achieves the rate of ψ

(C)
n (M) in deviation (up to a logn factor for values of M close to

√
n).

Indeed, we will show that the procedure f̃ ERM-C minimizing the empirical risk functional

f �−→ Rn(f ) = 1

n

n∑
i=1

(
Yi − f (Xi)

)2
, (1.3)

in conv(F ) achieves, with high probability, the rate min(M
n

,

√
logM

n
) for the (C) aggregation problem (see the exact

formulation in Theorem A.1 in the Appendix). Moreover, we will show that the rate ψ
(C)
n (M) can be achieved by

f̃ ERM-C for any orthogonal dictionary (formulated in Theorem B). On the other hand, it turns out that the same
algorithm is far from the conjectured optimal rate ψ

(MS)
n (M) for the (MS) aggregation problem (see Theorem A and

[16] for the conjecture).
Our first main result is to prove a lower bound on the performance of f̃ ERM-C (ERM in the convex hull) in the

context of the (MS) aggregation problem. In [16], it was proved that this procedure is suboptimal for the problem of
(MS) aggregation when the size of the dictionary is of the order of

√
n. Here we complement the result by providing

a lower bound for almost all values of M and n.

Theorem A. There exist two absolute positive constants c0 and c1 for which the following holds. For any integer n

and M such that logM ≤ c0n
1/3, there exists a dictionary F of cardinality M such that, with probability greater than

9/12

R
(
f̃ ERM-C) ≥ min

f ∈F
R(f ) + c2ψn(M),

where ψn(M) = M/n when M ≤ √
n and (n log(eM/

√
n))−1/2 when M >

√
n. Moreover, for the same class F , if

M ≥ √
n, then with probability larger than 7/12,

R
(
f̃ ERM-C) ≤ min

f ∈F
R(f ) + c3ψn(M).

Note that the residual term ψn(M) of Theorem A is much larger than the optimal rate ψ
(MS)
n (M) = (logM)/n

for the (MS) aggregation problem. It shows that ERM in the convex hull satisfies a much stronger lower bound
than the one mentioned in (1.2) that holds for any algorithm. This result is of particular importance since optimal
aggregation procedures for the (MS) aggregation problem take their values in conv(F ), and it was thus conjectured
that f̃ ERM-C could be an optimal aggregation procedure for the (MS) aggregation problem (cf. [16] for more details
on this problem). In [16] it was proved that this not the case for M = √

n; Theorem A shows that this is not the case
for all the values of M and n in the significant range (when M is sub-exponential in n).

The proof of Theorem A requires two separate arguments (as in the proofs of the lower bounds in [24] and [28]).
The case M ≤ √

n is easier, and follows an identical path to the one used in [16] for M = √
n. Its proof is presented

for the sake of completeness, and to allow the reader a comparison with the situation in the other case, when M >
√

n.
In the “large M” range things are very different and we present a more intuitive description of the idea behind the
construction in Section 2.



ERM for (C) aggregation 291

The performance of ERM in the convex hull has been studied for an infinite dictionary in [7], in which estimates on
its performance have been obtained in terms of the metric entropy of F . The resulting upper bounds were conjectured
to be suboptimal in the case of a finite dictionary, since they provide an upper bound of M/n for every n and M

whereas it is possible to achieve the rate
√

(logM)/n when M ≥ √
n. Although this result is probably known to

experts and relies on standard machinery (see for instance [15,14]), we present its proof in the Appendix.

The residual term min(M
n

,

√
logM

n
) of Theorem A.1 behaves like ψ

(C)
n (M) except for values of M for which

n1/2 < M ≤ c(ε)n1/2+ε for ε > 0. And, although there is a gap in this range in the general case, under the additional
assumption that the dictionary is orthogonal, this gap can be removed.

Theorem B. For every b > 0 there is a constant c1(b) and an absolute constant c2 for which the following holds. Let
n and M be integers which satisfy that logM ≤ c1(b)

√
n. Let F be a finite dictionary F of cardinality M and (X,Y )

such that |Y |, supf ∈F |f (X)| ≤ b. If F = {f1, . . . , fM} satisfies that Efi(X)fj (X) = 0 for any i 
= j ∈ {1, . . . ,M},
then f̃ ERM-C achieves the rate ψ

(C)
n (M): for any u > 0, with probability greater than 1 − exp(−u)

R
(
f̃ ERM-C) ≤ min

f ∈conv(F )
R(f ) + c2b

2 max

[
ψ(C)

n (M),
u

n

]
.

Removing the gap in the general case is likely to be a much harder problem, although we believe that the orthogonal
case should be the “worst” one.

Finally, a word about notation. Throughout, we denote absolute constants or constants that depend on other param-
eters by c, C, c1, c2, etc. (and, of course, we will specify when a constant is absolute and when it depends on other
parameters). The values of constants may change from line to line. The notation x ∼ y (resp. x � y) means that there
exist absolute constants 0 < c < C such that cy ≤ x ≤ Cy (resp. x ≤ Cy). If b > 0 is a parameter then x �b y means
that x ≤ C(b)y for some constant C(b) depending only on b. We denote by �M

p the space R
M endowed with the �p

norm. The unit ball there is denoted by BM
p . We also denote the unit Euclidean sphere in R

M by S M−1.
If F is a class of functions, let f ∗ be a minimizer in F of the true risk; in our case, f ∗ is the minimizer of

E(f (X) − Y)2. For every f ∈ F set Lf = (Y − f (X))2 − (Y − f ∗(X))2, and let LF = {Lf : f ∈ F } be the excess
loss class associated with F , the target Y and the quadratic risk.

2. On the complexity of BM
1 with respect to �M

2

The aim of this section is to give some of the ideas needed in the proof of Theorem A in the case M ≥ √
n. It is also

presented to explain why the seemingly unlikely fact that the rate

1√
n log(eM/

√
n)

(2.1)

actually improves as the size of the dictionary M increases in our construction is true.
The example used for this result is a class FM = {0,±φ1, . . . ,±φM } where (φi)

M
i=1 is a bounded orthonormal

family of L2(P
X) and Y = φM+1(X) is orthogonal to this family. We also assume that Φ(X) = (φ1(X), . . . , φM(X))

is isotropic, that is, for every λ ∈ R
n, E〈Φ(X),λ〉2 = ‖λ‖2

2.
An element in conv(FM) is of the form fλ = 〈Φ,λ〉 for some λ ∈ BM

1 , its excess loss is Lfλ = 〈Φ,λ〉2 −
2〈Φ,λ〉φM+1 and the process one has to minimize is indexed by BM

1 and given by

PnLfλ = 1

n

n∑
i=1

〈
Φ(Xi), λ

〉2 − 2

n

n∑
i=1

〈
Φ(Xi), λ

〉
φM+1(Xi). (2.2)

It follows from [21] that the oscillations of the quadratic term λ ∈ BM
1 → |(Pn − P)(〈Φ,λ〉2)| are of

lower order, and that the empirical process (2.2) behaves like λ ∈ BM
1 → ‖λ‖2

2 − 2n−1/2〈V,λ〉 where V =
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n−1/2 ∑n
i=1 φM+1Φ(Xi), while a Gaussian approximation shows that V essentially behaves like a standard Gaus-

sian vector G in R
M . Hence, the excess risk P Lf̂ = ‖̂λ‖2

2 of the empirical risk minimization procedure f̂ = f̂λ will
be located around

arg min
0≤r≤1

min
λ∈BM

1 ∩√
rS M−1

(
r − 2

〈G,λ〉√
n

)
= arg min

0≤r≤1

(
r − 2n−1/2 sup

λ∈BM
1 ∩√

rS M−1

〈G,λ〉
)
.

Observe that for every radius 0 < r ≤ 1, supλ∈BM
1 ∩√

rS M−1〈·, λ〉, is an interpolation norm, which will be denoted by

‖ · ‖A◦
r
. The problem arises because in the range 1/M ≤ r ≤ 1 (which is the range we are interested in), a proportional

change in the radius r only results in a logarithmic change in the value of E‖G‖A◦
r
, which is why one has to obtain a

sharp estimate on E‖G‖A◦
r

for every r .
It turns out that a rather accurate estimate on the complexity of BM

1 ∩ √
rS M−1 comes from vectors of “short”

support. Namely, for every I ⊂ {1, . . . ,M}, let S I be the set of vectors in S M−1 supported in I . Set

Ck =
⋃

|I |=k

1√
k

S I ⊂ BM
1 ∩ 1√

k
S M−1.

If one replaces BM
1 ∩ 1√

k
S M−1 by Ck , it is much easier to analyze ERM over that set. Indeed, it is straightforward to

verify that ERM is likely to choose a vector in Ck , where k minimizes the functional

k → 1√
k

− 2√
n

· E sup
v∈Ck

〈G,v〉 = 1√
k

− 2√
n

E

(
k∑

i=1

(
g2

i

)∗
)1/2

, (2.3)

where (x∗
i ) is a non-increasing ordering of the vector (|xi |).

A sharp estimate on the Gaussian quantity reveals that the gap between the “level” k and the “level” � decrease
with the dimension M . Thus, the minimum of (2.3) – which is proportional to (2.1) – decreases as M increases.

The proof of Theorem A will be a combination of two approximation arguments – first, of the measure
n−1/2 ∑n

i=1 Xi by a Gaussian, and second, an approximation of BM
1 by the sets Ck , reducing the problem to the

one described above.
One should comment that it is possible to approximate BM

1 ∩ 1√
k

S M−1 using a completely combinatorial set⋃
|I |=k k−1{−1,1}I , and the way the complexities change between the levels k and � as M increases gives a more

geometric explanation to why the minimizer moves closer to 0.

3. Proof of the lower bound for the (MS) aggregation problem (Theorem A)

The proof of Theorem A consists of two parts. The first, simpler part, is when M ≤ √
n. This is due to the fact that

if 0 < θ < 1 and ρ = θr ∼ M/n, the set BM
1 ∩ √

rSM−1 is much “larger” than the set BM
1 ∩ √

ρBM
2 . This results

in much larger “oscillations” of the appropriate empirical process on the former set than on the latter one, leading to
very negative values of the empirical excess risk functional for functions whose excess risk larger than ρ. The case
M ≥ √

n is much harder because when considering the required values of r and ρ, the complexity of the two sets is
very close, and comparing the two oscillations accurately involves a far more delicate analysis.

3.1. The case M ≤ √
n

We will follow the method used in [16]. Let (φi)i∈N be a sequence of functions defined on [0,1] and set μ to
be a probability measure on [0,1] such that (φi : i ∈ N) is a sequence of independent Rademacher variables in
L2([0,1],μ).

Let M ≤ √
n be fixed and put (X,Y ) to be a couple of random variables; X is distributed according to μ and

Y = φM+1(X). Let F = {0,±φ1, . . . ,±φM } be the dictionary, and note that any function in the convex hull of F
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can be written as fλ = ∑M
j=1 λjφj for λ ∈ BM

1 . Since relative to conv(F ), f ∗ = 0, the excess quadratic loss function
is

Lλ(X,Y ) = −2φM+1(X)
〈
λ,Φ(X)

〉 + 〈
λ,Φ(X)

〉2
,

where we set Φ(·) = (φ1(·), . . . , φM(·)).
The following is a reformulation of Lemma 5.4 in [16].

Lemma 3.1. There exist absolute constants c0, c1 and c2 for which the following holds. Let (Xi, Yi)i=1,...,n be n

independent copies of (X,Y ). Then, for every r > 0, with probability greater than 1 − 8 exp(−c0M), for any λ ∈ R
M ,∣∣∣∣∣‖λ‖2

2 − 1

n

n∑
i=1

〈
λ,Φ(Xi)

〉2∣∣∣∣∣ ≤ 1

2
‖λ‖2

2 (3.1)

and

c1

√
rM

n
≤ sup

λ∈√
rBM

2

1

n

n∑
i=1

〈
λ,Φ(Xi)

〉
φM+1(Xi) ≤ c2

√
rM

n
. (3.2)

Set r = βM/n for some 0 < β ≤ 1 to be named later, and observe that BM
1 ∩ √

rSM−1 = √
rSM−1 because

r ≤ 1/M . For any λ ∈ √
rS M−1,P Lλ = ‖λ‖2

2 = r , and thus applying (3.1) and (3.2), it is evident that with probability
greater than 1 − 8 exp(−c0M),

inf
λ∈BM

1 ∩√
rSM−1

PnLλ = r − sup
λ∈√

rSM−1
(P − Pn)Lλ

≤ r + sup
λ∈√

rSM−1

∣∣∣∣∣‖λ‖2
2 − 1

n

n∑
i=1

〈
λ,Φ(Xi)

〉2∣∣∣∣∣ − sup
λ∈√

rSM−1

2

n

n∑
i=1

〈
λ,Φ(Xi)

〉
φM+1(Xi)

≤ 3r

2
− 2c1

√
rM

n
=

(
3β

2
− 2c1

√
β

)
M

n
≤ −c1

√
β

M

n
,

provided that β ≤ (2c1/3)2.
On the other hand, let ρ = αM/n for some α to be chosen later. Using (3.1) and (3.2) again, it follows that with

probability at least 1 − 8 exp(−c0M), for any λ ∈ BM
1 ∩ √

ρBM
2

|PnLλ| ≤ P Lλ +
∣∣∣∣∣‖λ‖2

2 − 1

n

n∑
i=1

〈
λ,Φ(Xi)

〉2∣∣∣∣∣ +
∣∣∣∣∣2

n

n∑
i=1

〈
λ,Φ(Xi)

〉
φM+1(Xi)

∣∣∣∣∣
≤ 3ρ

2
+ 2c2

√
ρM

n
=

(
3α

2
+ 2c2

√
α

)
M

n
.

Therefore, if 0 < α < β satisfies that 3α/2+2c2
√

α < c1
√

β for some 0 < β ≤ (2c1/3)2 then with probability greater
than 1 − 16 exp(−c0M), the empirical risk function λ �−→ Rn(fλ) achieves smaller values on BM

1 ∩√
rSM−1 than on

BM
1 ∩ √

ρBM
2 . Hence, with the same probability, R(f̃ ERM-C) ≥ ρ = αM/n.

3.2. The case M ≥ √
n

Let us reformulate the second part of Theorem A.

Theorem 3.2. There exist absolute constants c0, c1, c2 and n0 for which the following holds. For every integers n ≥ n0
and M , if

√
n ≤ M ≤ exp(c0n

1/3), there is a function class FM of cardinality M consisting of functions that are
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bounded by 1, and a couple (X,Y ) distributed according to a probability measure μ, such that with μ⊗n-probability
at least 9/12,

R(f̂ ) ≥ min
f ∈FM

R(f ) + c1√
n log(eM/

√
n)

,

where f̂ is the empirical minimizer in conv(FM). Moreover, with μ⊗n-probability greater than 7/12,

R(f̂ ) ≤ min
f ∈FM

R(f ) + c2√
n log(eM/

√
n)

.

The proof will require accurate information on a monotone rearrangement of almost Gaussian random variables.

Lemma 3.3. There exists an absolute constant C for which the following holds. Let g be a standard Gaussian random
variable, set H(x) = P(|g| > x) and put W(p) = H−1(p) (the inverse function of H ). Then for every 0 < p < 1,

∣∣W 2(p) − log
(
2/

(
πp2)) + log log

(
2/

(
πp2))∣∣ ≤ C

log log(2/(πp2))

log(2/(πp2))
.

Moreover, for every 0 < ε < 1/2 and 0 < p < 1/(1 + ε),∣∣W 2(p) − W 2((1 + ε)p
)∣∣ ≤ Cε,

∣∣W 2(p) − W 2((1 − ε)p
)∣∣ ≤ Cε.

Proof. The proof of the first part follows from the observation that for every x > 0,

√
2

x
√

π
exp

(−x2/2
)(

1 − 1

x2

)
≤ P

(|g| > x
) ≤

√
2

x
√

π
exp

(−x2/2
)
, (3.3)

where c is a suitable absolute constant (see, e.g. [22]), combined with a straightforward (yet tedious) computation.
The second part of the claim follows from the first one, and is omitted. �

The next step is a Gaussian approximation of a variable Y = n−1/2 ∑n
i=1 Xi , where X1, . . . ,Xn are i.i.d. random

variables, with mean zero, variance 1, under the additional assumption that X has well behaved tails.

Definition 3.4 ([18,26]). Let 1 ≤ α ≤ 2. We say that a random variable X belongs to Lψα if there exists a constant C

such that

E exp
(|X|α/Cα

) ≤ 2. (3.4)

The infimum over all constants C for which (3.4) holds defines a norm called the ψα norm of X, and we denote it by
‖X‖ψα .

Proposition 3.5 ([22], p. 183). For every L there exist constants c1 and c2 that depend only on L and for which the
following holds. Let (Xn)n∈N be a sequence of i.i.d., mean zero random variables with variance 1, and ‖X‖ψ1 ≤ L. If
Y = 1√

n

∑n
i=1 Xi then for any 0 < x ≤ c1n

1/6,

P[Y ≥ x] = P[g ≥ x] exp

(
EX3

1x
3

6
√

n

)[
1 + c2

x + 1√
n

]
and

P[Y ≤ −x] = P[g ≤ −x] exp

(−EX3
1x

3

6
√

n

)[
1 + c2

x + 1√
n

]
.
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In particular, if 0 < x ≤ c1n
1/6 and EX3

1 = 0 then

∣∣P[|Y | ≥ x
] − P

[|g| ≥ x
]∣∣ = c2P

[|g| ≥ x
]x + 1√

n
.

Since Proposition 3.5 implies a better Gaussian approximation than the standard Berry–Esséen bounds, one may
consider the following family of random variables that will be used in the construction.

Definition 3.6. We say that a random variable Y is (L,n)-almost Gaussian for L > 0 and n ∈ N, if Y =
n−1/2 ∑n

i=1 Xi , where X1, . . . ,Xn are independent copies of X, which is a non-atomic random variable with mean 0,
variance 1, and satisfies that EX3 = 0 and ‖X‖ψ1 ≤ L.

Let X1, . . . ,Xn and Y be such that Y = n−1/2 ∑n
i=1 Xi is (L,n)-almost Gaussian. For 0 < p < 1 set

U(p) = {
x > 0: P

(|Y | > x
) = p

}
.

Since X is non-atomic then U(p) is non-empty and let

u+(p) = supU(p) and u−(p) = infU(p).

We shall apply Lemma 3.3 and Proposition 3.5 in the following case to bound u+(i/M) and u−(i/M) for every i,
as long as M is not too large (i.e. logM ≤ c1n

1/3). To that end, set εM,n = [(logM)/n]1/2, and for fixed values of M

and n, and 1 ≤ i ≤ M let

u+
i = u+(i/M) and u−

i = u−(i/M).

Corollary 3.7. For every L > 0 there exist a constant C0 that depends on L and an absolute constant C1 for which
the following holds. Assume that Y is (L,n)-almost Gaussian and that logM ≤ C0n

1/3. Then, for every 1 ≤ i ≤ M/2,

(u+
i )2 ≤ log

(
2M2

πi2

)
− log

(
log

(
2M2

πi2

))
+ C1 max

{
log(log(2M2/(πi2)))

log(2M2/(πi2))
, εM,n

}
and

(u−
i )2 ≥ log

(
2M2

πi2

)
− log

(
log

(
2M2

πi2

))
− C1 max

{
log(log(2M2/(πi2)))

log(2M2/(πi2))
, εM,n

}
.

Proof. Since
√

logM ≤ C0n
1/6, one may use the Gaussian approximation from Proposition 3.5 to obtain

P
[|Y | ≥ √

4 logM
] ≤ P

[|g| ≥ √
4 logM

](
1 + c1

(√
4 logM + 1√

n

))

≤
√

2

4π logM
exp(−2 logM)

(
1 + c1

(√
4 logM + 1√

n

))
≤ 1

M2
.

Thus, for every 1 ≤ i ≤ M , if x ∈ U(i/M) then x ≤ √
4 logM .

Let 1 ≤ i ≤ M/2 and x ∈ U(i/M). Since x ≤ 2C0n
1/6 (because x ≤ √

4 logM ≤ 2C0n
1/6), it follows from Propo-

sition 3.5 that∣∣i/M − H(x)
∣∣ ≤ c3H(x)

x + 1√
n

≤ c4H(x)εM,n, (3.5)

where H(x) = P[|g| ≥ x]. Observe that if W(p) = H−1(p), then∣∣W 2(i/M) − x2
∣∣ ≤ c5εM,n.
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Indeed, since H(x)(1 − c4εM,n) ≤ i/M ≤ H(x)(1 + c4εM,n), then by the monotonicity of W and the second part of
Lemma 3.3, setting p = H(x),

W 2(i/M) ≤ W 2((1 + c4εM,n)H(x)
) ≤ W 2(H(x)

) + c6εM,n = x2 + c6εM,n.

One obtains the lower bound in a similar way. The claim follows by using the approximate value of W 2(i/M) provided
in the first part of Lemma 3.3. �

The parameters u+
i and u−

i can be used to estimate the distribution of a non-increasing rearrangement (Y ∗
i )Mi=1 of

the absolute values of M independent copies of Y .

Lemma 3.8. There exists constants c > 0 and j0 ∈ N for which the following holds. Let Y1, . . . , YM be i.i.d. non-
atomic random variables. For every 1 ≤ s ≤ M , with probability at least 1 − 2 exp(−cs),∣∣{i: |Yi | ≥ u−

s

}∣∣ ≥ s/2 and
∣∣{i: |Yi | ≥ u+

s

}∣∣ ≤ 3s/2.

In particular, with probability at least 11/12, for every j0 ≤ j ≤ M/2,

u−
2j ≤ Y ∗

j ≤ u+
�2(j−1)/3�,

where �x� = min{n ∈ N: x ≤ n}.

Proof. Fix 0 < p < 1 to be named later and let (δi)
M
i=1 be independent {0,1}-valued random variables with Eδi = p.

A straightforward application of Bernstein’s inequality [26] shows that

P

(∣∣∣∣∣ 1

M

M∑
i=1

δi − p

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(−cM min
{
t2/p, t

})
.

In particular, with probability at least 1 − 2 exp(−c1Mp),

(1/2)Mp ≤
M∑
i=1

δi ≤ (3/2)Mp.

We will apply this observation to the independent random variables δi = 1{|Yi |>a},1 ≤ i ≤ M , for an appropriate
choice of a. Indeed, if we take a for which P(|Y1| > a) = s/M (such an a exists because Y1 is non-atomic), then
with probability at least 1 − 2 exp(−c1s), at least s/2 of the |Yi | will be larger than a, and at most 3s/2 will be larger
than a. Since this result holds for any a ∈ U(s/M) the first part of the claim follows.

Now take s0 to be the smallest integer such that 1 − 2
∑M

s=s0
exp(−cs) ≥ 11/12 (in particular c−1 log 24 ≤ s0 ≤

c−1(log 48 + 1)). Applying the union bound and a change of variables, it is evident that with probability at least 5/6,
for every �(3s0)/2� + 1 ≤ j ≤ M/2,∣∣{i: |Yi | ≥ u−

2j

}∣∣ ≥ j and
∣∣{i: |Yi | ≥ u+

�(2(j−1))/3�
}∣∣ ≤ j − 1,

and thus u−
2j ≤ Y ∗

j ≤ u+
�(2(j−1))/3�. �

With Lemma 3.8 and Corollary 3.7 in hand, one can bound the following functional of the random variables
(Y ∗

i )Mi=1.

Lemma 3.9. For every L > 0 there exist constants c1, . . . , c4, j0 and α < 1 that depend only on L for which the fol-
lowing holds. Let Y be (L,n)-almost Gaussian and let Y1, . . . , YM be independent copies of Y . Then, with probability
at least 11/12, for every j0 ≤ � ≤ k ≤ αM ,

c1

(
log(ek/�) − εM,n√

log(eM/�)

)
≤ Y ∗

� − Y ∗
k ≤ c2

(
log(ek/�) + εM,n√

log(eM/�)

)
.
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Moreover, with probability at least 10/12, for every j0 ≤ � ≤ k ≤ αM

Y ∗
� − Y ∗

k −
(

1

k

k∑
i=1

(
Y ∗

i − Y ∗
k

)2

)1/2

≥ c3
log(ek/�)√
log(eM/�)

− c4√
log(eM/k)

,

and if j0 ≤ k ≤ αM , then u−
2k ≤ Y ∗

k ≤ u+
�2(k−1)/3� and(

1

k

k∑
i=1

(
Y ∗

i − Y ∗
k

)2

)1/2

≤ c4√
log(eM/k)

,

provided that log2 M �L k and that εM,n = √
(logM)/n ≤ 1.

Proof. The first part of the claim follows from Lemma 3.8 and Corollary 3.7, combined with a straightforward com-
putation. For the second part, observe that, for some well chosen constant c1(L) depending only on L, with probability
at least 11/12, Y ∗

1 ≤ c1(L)
√

logM . Hence, applying the first part of the claim, with probability at least 10/12,

1

k

k∑
i=1

(
Y ∗

i − Y ∗
k

)2 ≤ c1(L)
j0 logM

k
+ 1

k

k∑
i=j0

(
Y ∗

i − Y ∗
k

)2

≤ c1(L)
j0 logM

k
+ c2

k

k∑
i=j0

(
log2(ek/i)

log(eM/i)
+ ε2

M,n

log(eM/i)

)

≤ c1(L)
j0 logM

k
+ c3

1 + ε2
M,n

log (eM/k)
≤ c4

log(eM/k)
,

provided that log2 M �L k and that εM,n ≤ 1. Note that to estimate the sum we have used that

1

k

k∑
i=j0

log2(ek/i)

log(eM/i)
≤ 1

log(eM/k)

1

k

k∑
i=j0

log2(ek/i) ≤ c3

log(eM/k)
.

Now the second and the third parts follow from the first one. �

The next preliminary step we need is a simple bound on the dual norm to the one whose unit ball is Ar = BM
1 ∩√

rBM
2 . Recall that for a convex body C ⊂ R

M , the polar body of C is C◦ = {x ∈ R
M : supy∈C〈x, y〉 ≤ 1}, and in our

case, A◦
r = conv(BM∞ ∪ r−1/2BM

2 ) (see, for example, [23]). From here on, given v ∈ R
M , set

‖v‖A◦
r
= sup

w∈Ar

〈v,w〉,

and, as always, (v∗
i )Mi=1 is the monotone rearrangement of (|vi |)Mi=1.

Lemma 3.10. For every v ∈ R
M and any 0 < ρ < r ≤ 1 such that 1/r and 1/ρ are integers,

‖v‖A◦
r
− ‖v‖A◦

ρ
≥ v∗

1/r − v∗
1/ρ −

(
ρ

1/ρ∑
i=1

(
v∗
i − v∗

1/ρ

)2

)1/2

and in general for any 0 < r ≤ 1,

v∗�1/r� ≤ ‖v‖A◦
r
≤ v∗�1/r� + √�1/r�

(�1/r�∑
i=1

(
v∗
i − v∗�1/r�

)2

)1/2

.
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Proof. First, observe that for every v ∈ R
M ,

‖v‖A◦
r
= min

1≤j≤M

(√
r

(
j∑

i=1

(
v∗
i − v∗

j

)2

)1/2

+ v∗
j

)
. (3.6)

Indeed, since A◦
r = conv(BM∞ ∪ (1/

√
r)BM

2 ), it is evident that ‖v‖A◦
r
= inf{‖u‖∞ +√

r‖w‖2, v = u+w}. One may
verify that if v = u + w is an optimal decomposition then supp(w) ⊂ {i: |ui | = ‖u‖∞}. Hence, if ‖u‖∞ = K then for
every 1 ≤ i ≤ M , ui = K sgn(vi)1{|vi |≥K} + vi1{|vi |<K}, and thus, wi = 1{|vi |≥K}(vi − sgn(vi)K). Therefore,

‖v‖A◦
r
= inf

K>0

{
K + √

r

( ∑
{i:|vi |≥K}

(|vi | − K
)2

)1/2}
.

Moreover, since it is enough to consider only values of K in {v∗
j : 1 ≤ j ≤ M}, (3.6) is verified. In particular, if 1/r is

an integer then

‖v‖A◦
r
≤ √

r

( 1/r∑
i=1

(
v∗
i − v∗

1/r

)2

)1/2

+ v∗
1/r .

On the other hand, if Tr = {u ∈ R
M : ‖u‖2 ≤ √

r, | supp(u)| ≤ 1/r} then Tr ⊂ BM
1 ∩ √

rBM
2 . Hence,

‖v‖A◦
r
≥ sup

w∈Tr

〈v,w〉 = √
r

( 1/r∑
i=1

(
v∗
i

)2

)1/2

.

Therefore, if 1/r and 1/ρ are integers, it follows that

‖v‖A◦
r
− ‖v‖A◦

ρ
≥ √

r

( 1/r∑
i=1

(
v∗
i

)2

)1/2

−
(

√
ρ

(1/ρ∑
i=1

(
v∗
i − v∗

1/ρ

)2

)1/2

+ v∗
1/ρ

)

≥ v∗
1/r − v∗

1/ρ − √
ρ

(1/ρ∑
i=1

(
v∗
i − v∗

1/ρ

)2

)1/2

,

because (r
∑1/r

i=1(v
∗
i )2)1/2 ≥ v∗

1/r .
The second part follows in a similar fashion and it omitted. �

Proof of the lower bound of Theorem 3.2. Let φ1, . . . , φM , X and a > 0 be such that φ1(X), . . . , φM(X) are
uniformly distributed on [−a, a] and have variance 1 (in particular a = √

3). Set T (X) = φM+1(X) = Y to be a
Rademacher variable. Assume further that (φi)

M+1
i=1 are independent in L2(P

X) and let FM = {0,±φ1, . . . ,±φM}.
Note that the functions in conv(FM) are given by fλ = 〈Φ,λ〉 where Φ = (φ1, . . . , φM) and λ ∈ BM

1 .
It is straightforward to verify that the excess loss function of fλ relative to conv(FM) is

Lfλ = (fλ − φM+1)
2 − (0 − φM+1)

2 = 〈Φ,λ〉2 − 2〈Φ,λ〉φM+1

(since f ∗ = 0), implying that ELfλ = ‖λ‖2
2.

Let us consider the problem of empirical minimization in conv(FM) = {〈λ,Φ〉: λ ∈ BM
1 }. Recall that Ar = BM

1 ∩√
rBM

2 and, for an independent sample (Φ(Xi),φM+1(Xi))
n
i=1, define the functional

ψ(r,ρ) = n
(

inf
λ∈Ar

Rn(fλ) − inf
μ∈Aρ

Rn(fμ)
)
.

If we show that for some r ≥ ρ, ψ(r,ρ) < 0, then for that sample, ELf̂ ≥ ρ.
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Note that, for any r, ρ > 0,

ψ(r,ρ) ≤ sup
λ∈Ar

n∑
i=1

〈
Φ(Xi), λ

〉2 − 2 sup
λ∈Ar

n∑
i=1

〈
Φ(Xi), λ

〉
φM+1(Xi)

+ 2 sup
μ∈Aρ

n∑
i=1

〈
Φ(Xi), λ

〉
φM+1(Xi),

and let us estimate the supremum of the process

λ ∈ Ar →
n∑

i=1

〈
Φ(Xi), λ

〉2 = n
(
(Pn − P)

(〈Φ,λ〉2) + ‖λ‖2
2

)
.

Observe that Φ(X) is isotropic (that is, for every λ ∈ R
M , E〈λ,Φ(X)〉2 = ‖λ‖2

2), and sub-Gaussian – since
‖〈λ,Φ(X)〉‖ψ2 ≤ 4a‖λ‖2. Hence, applying the results from [21], it is evident that with probability at least 11/12,

sup
λ∈Ar

∣∣(Pn − P)
(〈λ,Φ〉2)∣∣ ≤ c(a)max

{
diam

(
Ar,‖ · ‖2

)γ2(Ar,‖ · ‖2)√
n

,
γ 2

2 (Ar,‖ · ‖2)

n

}
. (3.7)

Recall that for r ≥ 1/M , γ2(Ar,‖ · ‖2) ∼ √
log(eMr) (see, for instance, [21]), and thus, if r ≥ max(1/M,1/n), then

with probability at least 11/12,

n sup
λ∈Ar

(
(Pn − P)

(〈Φ,λ〉2) + ‖λ‖2
2

) ≤ nr + c1
√

nr log(eMr),

where c1 is a constant that depends only on a.
Next, to estimate the first two terms, let

Yj = n−1/2
n∑

i=1

φM+1(Xi)
〈
Φ(Xi), ej

〉
and observe that (Yj )

M
j=1 are independent copies of a (2, n)-almost Gaussian variable. If we set V = (Yi)

M
i=1 then

sup
λ∈Ar

n∑
i=1

〈
λ,Φ(Xi)

〉
φM+1(Xi) − sup

θ∈Aρ

n∑
i=1

〈
θ,Φ(Xi)

〉
φM+1(Xi)

= √
n
(

sup
λ∈Ar

〈λ,V 〉 − sup
θ∈Aρ

〈θ,V 〉
)

= √
n
(‖V ‖A◦

r
− ‖V ‖A◦

ρ

) = (∗).

By Lemma 3.10, if 1/r = � and 1/ρ = k are integers, then

(∗) ≥ √
n

[
Y ∗

� − Y ∗
k −

(
1

k

k∑
i=1

(
Y ∗

i − Y ∗
k

)2

)1/2]

and thus, if �, k,M and n are as in Lemma 3.9, then with probability at least 9/12,

(∗) ≥ √
n

(
c2 log(ek/�)√

log(eM/�)
− c3√

log(eM/k)

)
≥ c4

√
n

log(ek/�)√
log(eM/�)

,

provided that k ≥ c5� for c5 large enough.
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Hence, with probability at least 9/12,

ψ(r,ρ) ≤ −2c4
√

n
log(ek/�)√
log(eM/�)

+ nr + c1
√

rn log(eMr).

It follows that if we select r ∼ 1/
√

n log(eM/
√

n) and ρ ∼ r with ρ < r so that the conditions of Lemma 3.9 are
satisfied, then with probability at least 9/12, ψ(r,ρ) < 0. Hence, with the same probability,

R(f̂ ) − min
f ∈FM

R(f ) = ELf̂ ≥ c6√
n log(eM/

√
n)

. �

Proof of the upper bound in Theorem 3.2. We will show that with constant probability,

inf
0≤r≤r0

inf
λ∈BM

1 ∩√
rS M−1

Rn(fλ) < inf
r0≤r≤1

inf
λ∈BM

1 ∩√
rS M−1

Rn(fλ) (3.8)

for r0 ∼ 1/
√

n log(eM/
√

n), and thus, on that event, R(f̂ ) ≤ r0. To that end, one has to show that

inf
0≤r≤r0

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ < inf
r0≤r≤1

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ .

Let

Q(r) = sup
λ∈BM

1 ∩√
rBM

2

∣∣(Pn − P)
(〈Φ,λ〉2)∣∣

and set r∗ = inf{r > 0: EQ(r) ≤ r/2}. Applying (3.7) and since γ2(Ar,‖ · ‖2) ∼ √
log(eMr), then r∗ ≤

c0
√

log(eM/
√

n)/n. Hence, by a standard fixed point argument (see for instance, [4]), it follows that with proba-
bility greater than 11/12, if λ ∈ BM

1 and ‖λ‖2
2 ≥ r∗, then

‖λ‖2
2

2
≤ 1

n

n∑
i=1

〈
Φ(Xi), λ

〉2 ≤ 3‖λ‖2
2

2
.

In particular, by Lemmas 3.9, 3.10 and Corollary 3.7, with probability larger than 9/12, for every r ≥ r∗,

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ = inf
λ∈BM

1 ∩√
rS M−1

(
1

n

n∑
i=1

〈
Φ(Xi), λ

〉2 − 2

n

n∑
i=1

〈
Φ(Xi), λ

〉
φM+1(Xi)

)

≥ r

2
− 2√

n
sup

λ∈BM
1 ∩√

rS M−1

〈λ,V 〉 ≥ r

2
− 2√

n
sup

λ∈BM
1 ∩√

rBM
2

〈λ,V 〉 = r

2
− 2‖V ‖A◦

r√
n

≥ r

2
− 2√

n

(
Y ∗�1/r� + √�1/r�

(�1/r�∑
i=1

(
Y ∗

i − Y ∗�1/r�
)2

)1/2)

≥ r

2
− 2√

n

(
u+

�2(�1/r�−1)/3� + c1√
log(c2Mr)

)

≥ r

2
− 2√

n

(
c3

√
log(c4Mr) + c1√

log(c5Mr)

)
> 0 (3.9)

provided that r ≥ c6
√

log(eM/
√

n)/n for some constant c6 large enough. Therefore, on that event, if ‖λ‖2
2 ≥

c7
√

log(eM/
√

n)/n then PnLfλ > 0. On the other hand, PnLf0 = 0, and thus ‖̂λ‖2
2 ≤ c7

√
log(eM/

√
n)/n (where

f̂ = f̂λ) with probability at most 9/12.
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It remains to show that with sufficiently high constant probability

inf
0≤r≤r0

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ < inf
r0≤r≤r1

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ

for r0 ∼ 1/
√

n log(eM/
√

n) and r1 = c7
√

log(eM/
√

n)/n.
Using the same argument as in (3.9) and applying Lemmas 3.9, 3.10 and Corollary 3.7, it is evident that with

probability at least 10/12,

inf
r0≤r≤r1

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ

≥ inf
r0≤r≤r1

(
r − 2√

n

(
log(C0Mr) − c8 log log(C0Mr0)

)1/2)
− c1√

n log(c5Mr0)
− Q(r1) (3.10)

and for some r2 ≤ r0 to be named later,

inf
0≤r≤r0

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ ≤ inf
0≤r≤r2

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ

≤ inf
0≤r≤r2

(
r − 2√

n

(
log(C1Mr) − c9 log log(C1Mr2)

)1/2
)

+ Q(r2). (3.11)

Moreover, thanks to (3.7), with probability greater than 10/12,

Q(r1) + Q(r2) ≤ c10
√

r1 log(eMr1)/n.

Fix 0 < β2 < β0 to be named later and set

r0 = β0√
n log(eM/

√
n)

and r2 = β2√
n log(eM/

√
n)

.

For β0 large enough (resp. β2 small enough), the infimum in (3.10) (resp. (3.11)) is achieved in r0 (resp. r2). Therefore,
with probability greater than 8/12

inf
0≤r≤r0

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ − inf
r0≤r≤r1

inf
λ∈BM

1 ∩√
rS M−1

PnLfλ

≤ c11 log((C0r0)/(C1r2))√
log(C1Mr2)

+ r2 − r0 + c1√
n log(c5Mr0)

+ c12

√
r1 log

(
eMr1√

n

)

≤ c13 log((C0β0)/(C1β2))√
n log(eM/

√
n)

+ β2 − β0√
n log(eM/

√
n)

+ c14√
n log(eM/

√
n)

+ c14 log(eM/
√

n)

n
.

Therefore, there exists some β0 for which the latter quantity is negative and thus (3.8) holds for r0 = β0/√
n log(C0β0M/

√
n). �

4. Proof of Theorem B

Our starting point is to describe the machinery developed in [4], leading to the desired estimates on the performance of
ERM in a general class of functions. Let G be a class of functions and denote by LG = {(x, y) �−→ (y −g(x))2 − (y −
g∗

G(x))2: g ∈ G} the associated class of quadratic excess loss functions, where g∗
G is the minimizer of the quadratic

risk in G. Let V = star(LG,0) = {θ L: 0 ≤ θ ≤ 1, L ∈ LG} and for every λ > 0 set Vλ = {h ∈ V : Eh ≤ λ}.
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Theorem 4.1 ([4]). For every positive B and b there exists a constant c0 = c0(B,b) for which the following holds.
Let G be a class of functions for which LG consists of functions that are bounded by b almost surely. Assume further
that for any L ∈ LG, EL2 ≤ BEL. If x > 0, λ∗ > 0 satisfies that E‖P − Pn‖Vλ∗ ≤ λ∗/8 and

λ∗(x) = c0 max

(
λ∗, x

n

)
,

then with probability greater than 1 − exp(−x), the empirical risk minimization procedure ĝ in G satisfies

R(ĝ) ≤ inf
g∈G

R(g) + λ∗(x).

Let F be the given dictionary and set G = conv(F ). Using the notation of Theorem 4.1, put Lconv(F ) = {Lf : f ∈
conv(F )}, consider the star-shaped hull V = star(Lconv(F ),0) and its localizations Vλ = {g ∈ V : Eg ≤ λ} for any
λ > 0. Thanks to convexity, the following observation holds in our case (see [19] for the proof).

Proposition 4.2. If f ∈ conv(F ) then ELf ≥ ‖f − f ∗‖2
L2(P

X)
where f ∗ is the minimizer of the quadratic risk in

conv(F ). In particular,

1. EL2 ≤ 4b2
EL for any L ∈ Lconv(F );

2. for μ > 0, if f ∈ conv(F ) satisfies that ELf ≤ μ, then f ∈ f ∗ + Kμ, where

Kμ = 2
[
conv{±f1, . . . ,±fM} ∩ √

μB
(
L2

(
P X

))]
.

The first part of Proposition 4.2 shows that Lconv(F ) satisfies the assumptions of Theorem 4.1 with B = 4b2. To
apply Theorem 4.1 one has to find λ∗ > 0 for which E‖P − Pn‖Vλ∗ ≤ λ∗/8, and to that end we will use the second
part of Proposition 4.2. First, observe that it was shown in [5] that

E‖P − Pn‖Vλ ≤
∑
i≥0

2−i
E‖P − Pn‖L2i+1λ

, (4.1)

where from here on we set Lμ = {L ∈ Lconv(F ): EL ≤ μ}. Applying the second part of Proposition 4.2 it is evident
that {f ∈ conv(F ): ELf ≤ μ} ⊂ f ∗ + Kμ.

Proof of Theorem B. By the Giné–Zinn symmetrization Theorem [26],

E‖P − Pn‖Lμ
≤ 2EEε sup

L∈Lμ

∣∣∣∣∣1

n

n∑
i=1

εi L(Xi, Yi)

∣∣∣∣∣. (4.2)

Note that if L ∈ Lμ and f ∈ conv(F ) satisfies that L = Lf , then for any (x, y),∣∣L(x, y)
∣∣ = ∣∣(y − f (x)

)2 − (
y − f ∗(x)

)2∣∣
= ∣∣(f ∗(x) − f (x)

)(
2y − f (x) − f ∗(x)

)∣∣ ≤ 4b
∣∣f (x) − f ∗(x)

∣∣.
Thus, by the contraction principle (see, e.g. [18]) and Proposition 4.2,

E‖P − Pn‖Lμ
≤ 8b√

n
EEε sup

f ∈Kμ

∣∣∣∣∣ 1√
n

n∑
i=1

εif (Xi)

∣∣∣∣∣.
Observe that since the dictionary consists of an orthogonal family, if (e1, . . . , eM) is the standard basis in �M

2 and
F(·) = (f1(·), . . . , fM(·)), then

Kμ = {
2〈λ,F 〉: λ ∈ BM

1 ∩ √
μE

}
,
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where E is an ellipsoid with principal axes (‖fi‖L2ei)
M
i=1. From here on we will assume that (‖fi‖L2)

M
i=1 is a non-

increasing sequence.
Now, we want to bound

E sup
f ∈Kμ

∣∣∣∣∣1

n

n∑
i=1

εif (Xi)

∣∣∣∣∣ = E sup
λ∈BM

1 ∩√
μE

∣∣∣∣∣2

n

n∑
i=1

εi

〈
λ,F (Xi)

〉∣∣∣∣∣
= 2√

n
E

∥∥∥∥∥
n∑

i=1

1√
n
εiF (Xi)

∥∥∥∥∥
(BM

1 ∩√
μE )◦

,

where ‖ · ‖(BM
1 ∩√

μE )◦ denotes the dual norm to the one whose unit ball is BM
1 ∩ √

μE . We will use two different

strategies to bound this process depending on M ≤ √
n or M >

√
n. First start with the case M ≥ √

n. Since both BM
1

and E are unconditional with respect to the coordinate structure given by (ei)
M
i=1, it follows that

‖v‖(BM
1 ∩√

μE )◦ ∼ inf
I⊂{1,...,M}

[√
μ

(∑
i∈I

(
vi

‖fi‖L2

)2)1/2

+ max
i∈I c

|vi |
]
, (4.3)

and in our case, v = (vj )
M
j=1 = ((1/

√
n) · ∑n

i=1 εifj (Xi))
M
j=1.

Let

J0 = {
j : ‖fj‖L2 ≥ c0b

√
logM/

√
n
}
,

where c0 is a constant to be named later. A straightforward application of Bernstein inequality [26] shows that, for
t ≥ c1,

P
(∃j ∈ J0: Pnf

2
j ≥ (t + 1)‖fj‖2

L2

) ≤
∑
j∈J0

exp
(−c2n

(‖fj‖2
L2

/b2)min
(
t2, t

))
≤ M exp(−c3t logM) ≤ exp(−c4t logM)

and

P
(∃j ∈ J c

0 : Pnf
2
j ≥ (t + 1)b2n−1 logM

) ≤ exp(−c4t logM).

For every integer � ≥ c1, let

A� = {∀j ∈ J0: Pnf
2
j ≤ (� + 1)‖fj‖2

L2

} ∩ {∀j ∈ J c
0 : Pnf

2
j ≤ (� + 1)b2n−1 logM

}
.

Set B� = A�+1 ∩ Ac
� and note that P(B�) ≤ P(Ac

�) ≤ 2 exp(−c4� logM) for any � ≥ c1.
For every � ≥ c1, consider the random variables conditioned on B�,

Uj,� = 1√
n

n∑
i=1

εifj (Xi)/‖fj‖L2

∣∣∣B� ∀j ∈ J0

and

Uj,� = 1√
n

n∑
i=1

εifj (Xi)

∣∣∣B� ∀j ∈ J c
0 .

Hence, by Hoeffding’s inequality (cf. [26]), there exists an absolute constant c5 such that, for any j ∈ J0,

‖Uj,�‖2
ψ2(ε)

≤ c5
n−1 ∑n

i=1 f 2
j (Xi)

‖fj‖2
L2

≤ c5(� + 1),
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and for any j ∈ J c
0 ,

‖Uj,�‖2
ψ2(ε)

≤ c5(� + 1)b2(logM)/n.

By a result due to Klartag [13], it follows that for every such � and any 1 ≤ j ≤ |J0|,

Eε

(
j∑

i=1

(
U2

i,�

)∗
)1/2

≤ c6
√

�

√
j log

(
e|J0|/j

)
,

where (U∗
j,�)

|J0|
j=1 is a decreasing rearrangement of (|Uj,�|)j∈J0 . Moreover, by a standard maximal inequality (see, e.g.

[26])

Eε max
j∈J c

0

Uj,� ≤ c7

√
log

∣∣J c
0

∣∣max
j∈J c

0

‖Uj,�‖ψ2(ε) ≤ c8
√

�b
logM√

n
.

For every 1 ≤ j ≤ |J0|, let I be the set of the j largest coordinates of (|Uj,�|)j∈J0 . Hence, by (4.3) and since
‖fj‖L2 ≤ b,

Eε

(∥∥∥∥∥
n∑

i=1

1√
n
εiF (Xi)

∥∥∥∥∥
(BM

1 ∩√
μE )◦

∣∣∣(Xi)
n
i=1 ∈ B�

)

� Eε
√

μ

(
j∑

i=1

(
U2

i,�

)∗
)1/2

+ Eε max
(
‖fj‖L2U

∗
j,�,max

j∈J c
0

|Uj,�|
)

�
√

�
(√

μ

√
j log

(
e|J0|/j

) + b

√
log

(
e|J0|/j

)) + Eε max
j∈J c

0

|Uj,�|

≤ √
�
(√

μ

√
j log

(
e|J0|/j

) + b

√
log

(
e|J0|/j

)) + √
�b

logM√
n

.

Therefore, if we take j = min{[1/μ], |J0|} it is evident that

Eε

(∥∥∥∥∥
n∑

i=1

1√
n
εiF (Xi)

∥∥∥∥∥
(BM

1 ∩√
μE )◦

∣∣∣(Xi)
n
i=1 ∈ B�

)
� b

√
�

(√
log(eMμ) + logM√

n

)
.

Thus, integration with respect to X1, . . . ,Xn and applying the estimates on the measure of B�,

2√
n

E

∥∥∥∥∥
n∑

i=1

1√
n
εiF (Xi)

∥∥∥∥∥
(BM

1 ∩√
μE )◦

� b

√
log(eMμ)

n
.

Finally, by (4.1), for any λ > 1/M ,

E‖P − Pn‖Vλ ≤
∑
i≥0

2−i
E‖P − Pn‖L2i+1λ

� b2
∑
i≥0

2−i

√
log(eM2i+1λ)

n
� b2

√
log(eMλ)

n
,

and, if

λ∗ ∼ b2

√
1

n
log

(
eMb2
√

n

)
,
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then E‖P − Pn‖Vλ∗ ≤ λ∗/8, as required.
When M ≤ √

n, we use the strategy developed in [15]. Let S be the linear subspace of L2(P X) spanned by F and
take (e1, . . . , eM ′) to be an orthonormal basis of S (where M ′ = dim(S) ≤ M). Since Kμ ⊂ S ∩2

√
μB(L2(P

X)), then

E sup
f ∈Kμ

∣∣∣∣∣1

n

n∑
i=1

εif (Xi)

∣∣∣∣∣ ≤ 2E sup
‖λ‖

�M
′

2
≤2

√
λ

∣∣∣∣∣1

n

n∑
i=1

εi

(
M ′∑
j=1

λj ej (Xi)

)∣∣∣∣∣
� √

μE

(
M ′∑
j=1

(
1

n

n∑
i=1

εiej (Xi)

)2)1/2

�
√

M ′μ
n

.

The rate obtained in the case M ≤ √
n follows now from (4.1). �

Appendix

We establish the following upper bound on the risk of f̃ ERM-C as a (C)-aggregation procedure in the general case. Its
proof follows the same path as in Section 4. But, rather than studying the empirical process indexed by the interpolation
body BM

1 ∩ √
μE , in the case M ≥ √

n, one simply uses the approximation BM
1 ∩ √

μE ⊂ BM
1 to get, conditionally

on X1, . . . ,Xn,

Eε sup
f ∈Kμ

∣∣∣∣∣ 1√
n

n∑
i=1

εif (Xi)

∣∣∣∣∣ ≤ Eε sup
λ∈BM

1

∣∣∣∣∣
〈
λ,

1√
n

n∑
i=1

εiF (Xi)

〉∣∣∣∣∣ = Eε max
1≤j≤M

|γj |,

where, for all j = 1, . . . ,M , γj is the sub-Gaussian random variable n−1/2 ∑n
i=1 εifj (Xi) with ψ2-norm bounded by

n−1 ∑n
i=1 fj (Xi)

2 ≤ c0b
2 and thus by a maximal inequality [18],

Eg max
1≤j≤M

|γj | ≤ c1b
√

logM.

The result below follows from this upper bound and (4.1) for the case M >
√

n, and the case M ≤ √
n follows the

same path as the proof of Theorem B, and thus its proof is omitted.

Theorem A.1. For every b > 0 there is a constant c1(b) and an absolute constant c2 for which the following holds.
Let n and M be integers which satisfy that logM ≤ c1(b)

√
n. For any couple (X,Y ) and any finite dictionary F of

cardinality M such that |Y |, supf ∈F |f (X)| ≤ b, and for any u > 0, with probability greater than 1 − exp(−u),

R
(
f̃ ERM-C) ≤ min

f ∈conv(F )
R(f ) + c2b

2 max

[
min

(
M

n
,

√
logM

n

)
,
u

n

]
.
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