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Abstract. We offer a probabilistic treatment of the classical problem of existence, uniqueness and asymptotics of monotone solu-
tions to the travelling wave equation associated to the parabolic semi-group equation of a super-Brownian motion with a general
branching mechanism. Whilst we are strongly guided by the reasoning in Kyprianou (Ann. Inst. Henri Poincaré Probab. Stat. 40
(2004) 53–72) for branching Brownian motion, the current paper offers a number of new insights. Our analysis incorporates the
role of Seneta–Heyde norming which, in the current setting, draws on classical work of Grey (J. Appl. Probab. 11 (1974) 669–677).
We give a pathwise explanation of Evans’ immortal particle picture (the spine decomposition) which uses the Dynkin–Kuznetsov
N-measure as a key ingredient. Moreover, in the spirit of Neveu’s stopping lines we make repeated use of Dynkin’s exit measures.
Additional complications arise from the general nature of the branching mechanism. As a consequence of the analysis we also
offer an exact X(logX)2 moment dichotomy for the almost sure convergence of the so-called derivative martingale at its critical
parameter to a non-trivial limit. This differs to the case of branching Brownian motion (Ann. Inst. Henri Poincaré Probab. Stat.
40 (2004) 53–72), and branching random walk (Adv. in Appl. Probab. 36 (2004) 544–581), where a moment ‘gap’ appears in the
necessary and sufficient conditions. Our probabilistic treatment allows us to replicate known existence, uniqueness and asymptotic
results for the travelling wave equation, which is related to a super-Brownian motion.

Résumé. Nous proposons une approche probabiliste au problème classique de l’existence, de l’unicité et du comportement asymp-
totique des solutions monotones de l’équation de propagation de front associée à l’équation parabolique du super-mouvement
brownien de mécanisme de branchement général. Bien que largement inspiré par l’approche de Kyprianou (Ann. Inst. Henri Poin-
caré Probab. Stat. 40 (2004) 53–72) pour le mouvement brownien branchant, cet article ouvre plusieurs perspectives nouvelles.
Notre analyse inclut le rôle de la normalisation de Seneta–Heyde qui, dans cette situation, s’inspire du travail classique de Grey
(J. Appl. Probab. 11 (1974) 669–677). Nous donnons une explication trajectorielle de la décomposition en épine (la particule im-
mortelle d’Evans), en utilisant la N-mesure de Dynkin–Kuznetsov comme ingrédient clef. En outre, dans l’esprit des lignes d’arrêt
de Neveu nous utilisons à plusieurs reprises les mesures de sortie de Dynkin. La nature générale du mécanisme de branchement
rend l’analyse du problème plus délicate et nous proposons une dichotomie exacte basée sur un moment X(logX)2 pour la conver-
gence presque-sûre de la martingale dérivée (pour la valeur critique de son paramètre) vers une limite non-triviale. Ceci diffère
du cas du mouvement brownien branchant (Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 53–72) et de la marche aléatoire
branchante (Adv. in Appl. Probab. 36 (2004) 544–581), où un écart dans les hypothèses sur les moments apparaît entre les condi-
tions nécessaires et suffisantes. Notre approche probabiliste permet de retrouver des résultats connus d’existence, d’unicité et de
comportement asymptotique pour l’équation de propagation de front reliée au super-mouvement brownien.
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1. Introduction

Suppose that X = {Xt : t ≥ 0} is a (one-dimensional) ψ -super-Brownian motion with general branching mechanism
ψ taking the form

ψ(λ) = −αλ + βλ2 +
∫

(0,∞)

(
e−λx − 1 + λx

)
ν(dx) (1)

for λ ≥ 0 where α = −ψ ′(0+) ∈ (0,∞), β ≥ 0 and ν is a measure concentrated on (0,∞) which satisfies
∫
(0,∞)

(x ∧
x2)ν(dx) < ∞. Let MF (R) be the space of finite measures on R and note that X is a MF (R)-valued Markov process
under Pμ for each μ ∈ MF (R), where Pμ is law of X with initial configuration μ. We shall use standard inner product
notation, for f ∈ C+

b (R) and μ ∈ MF (R),

〈f,μ〉 =
∫

R

f (x)μ(dx).

Accordingly we shall write ‖μ‖ = 〈1,μ〉.
The existence of our class of superprocesses is guaranteed by [8,9,11]. The following standard result from the

theory of superprocesses describes the evolution of X as a Markov process. For all f ∈ C+
b (R), the space of positive,

uniformly bounded, continuous functions on R, and μ ∈ MF (R),

− logEμ

(
e−〈f,Xt 〉) =

∫
R

uf (x, t)μ(dx), μ ∈ MF (R), t ≥ 0, (2)

where uf (x, t) is the unique positive solution to the evolution equation for x ∈ R and t > 0

∂

∂t
uf (x, t) = 1

2

∂2

∂x2
uf (x, t) − ψ

(
uf (x, t)

)
, (3)

with initial condition uf (x,0) = f (x). The reader is referred to Theorem 1.1 of Dynkin [7], Proposition 2.3 of
Fitzsimmons [17] and Proposition 2.2 of Watanabe [43] for further details; see also Dynkin [9,11] for a general
overview. The analogous object to (3) for branching Brownian motion is called the Fisher–Kolmogorov–Petrovski–
Piscounov (FKPP) equation and hence in the current setting we name (3) the FKPP equation for ψ -super-Brownian
motion.

Recall that the total mass of the process X is a continuous-state branching process with branching mechanism ψ .
Since there is no interaction between spatial motion and branching we can characterise the ψ -super-Brownian motions
into the categories of supercritical, critical and subcritical accordingly with the same categories for continuous-state
branching processes. Respectively, these cases correspond to ψ ′(0+) < 0, ψ ′(0+) = 0 and ψ ′(0+) > 0. The class
of ψ -super-Brownian motions described above are necessarily supercritical. Such processes may exhibit explosive
behaviour, however, under the conditions assumed above, X remains finite at all positive times. We insist moreover
that ψ(∞) = ∞ which means that with positive probability the event limt↑∞ ‖Xt‖ = 0 will occur. Equivalently
this means that the total mass process does not have monotone increasing paths; see for example the summary in
Chapter 10 of Kyprianou [27]. The probability of the event

E :=
{

lim
t↑∞‖Xt‖ = 0

}
is described in terms of the largest root, say λ∗, of the equation ψ(λ) = 0. Note that it is known (cf. Chapter 8 of [27])
that ψ is strictly convex with ψ(0) = 0 and hence since ψ(∞) = ∞ and ψ ′(0+) < 0 it follows that there are exactly
two roots in [0,∞), one of which is always 0. For μ ∈ MF (R) we have

Pμ

(
lim
t↑∞‖Xt‖ = 0

)
= e−λ∗‖μ‖. (4)
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In this article we shall also assume on occasion that∫ ∞ 1√∫ ξ

λ∗ ψ(u)du

dξ < ∞. (5)

This condition is equivalent to requiring that
∫ ∞

(
∫ ξ

0 (ψ(u) + αu)du)−1/2 dξ < ∞. In combination with additional
assumptions on ψ given above, (5) has a number of implications for the underlying superprocess. Firstly, if we denote
by R the smallest closed set in R such that suppXt ⊆ R for all t ≥ 0, then Sheu [40] shows that for all μ ∈ MF (R)

with compact support,

Pμ(R is compact) = e−λ∗‖μ‖.

Secondly (5) implies that
∫ ∞ 1/ψ(ξ)dξ < ∞ (cf. [40]) which in turn guarantees that the event E agrees with the

event of extinction, namely {ζ < ∞} where

ζ = inf
{
t > 0: ‖Xt‖ = 0

}
.

Note that (5) cannot be satisfied for branching mechanisms which belong to bounded variation spectrally positive
Lévy processes.

Our primary concern in this paper will be to look at monotone travelling wave solutions to the FKPP equation
(3) through entirely probabilistic means. Specifically, we are interested in non-increasing solutions to (3) of the form
Φc(x − ct), where Φc ≥ 0 and c ≥ 0 is the wave speed. That is to say Φc solves

1

2
Φ ′′

c + cΦ ′
c − ψ(Φc) = 0. (6)

Moreover, for technical reasons which will become clear later, we shall be interested in the case that

Φc(−∞) = λ∗ and Φc(+∞) = 0.

Henceforth we shall say that any solution to (6) which respects the aforementioned conditions of non-negativity,
monotonicity and connecting the points λ∗ at −∞ to 0 at +∞ is a travelling wave with wave speed c.

Starting with Kolmogorov et al. [24] and Fisher [16] there exists a variety of analytical treatments of travelling
wave equations similar to (6). We name but a few, for example Aronson and Weinberger [1], Bramson [3], Fife and
McLeod [15], Kametaka [23], Lau [29], Pinsky [37], Uchiyama [41], Volpert et al. [42]. Among these papers, the
problem discussed in Uchiyama [41], and later in Bramson [3], is closely related to the problem we are going to
investigate in this paper. The last two references consider travelling waves to the following semi-linear equation:

∂

∂t
uf (x, t) = 1

2

∂2

∂x2
uf (x, t) + F

(
uf (x, t)

)
, (7)

where the function F is assumed to satisfy

F ∈ C1[0,1], F (0) = F(1) = 0 and F(u) < 0, 0 < u < 1. (8)

It turns out that it is possible to transform (3) into the setting (7). Indeed, it is a straighforward exercise to show
that, thanks to the smoothness and convexity properties of ψ our assumption that ψ ′(0+) < 0 as well as the fact that
ψ(λ∗) = 0,

F(u) := ψ
(
λ∗(1 − u)

)
/λ∗ (9)

respects the requirements in (8). It thus follows that uf is a solution to (7) with F given by (9) if and only if λ∗(1−uf )

is a solution to (3). This transformation applies equally well to convert solutions to (6) into travelling wave solutions
associated to (7).
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Restricting ourselves to the particular form (1) allows us to approach our analysis entirely through a probabilistic
treatment of super-Brownian motion. In this respect, our main results, Theorems 2.1 and 2.6 below, are not new from
the point of PDEs. (We shall elaborate further on the overlap of some of our conclusions with the PDE literature later
on.) Indeed this article is concerned with the probabilistic structures embedded within super-Brownian motion that
can be seen to explain the known travelling wave results, albeit for a smaller class of forcing terms ψ than existing
literature would allow.

There exists a suite of literature which gives a probabilistic handling of (7) and its travelling waves; see [3,4,6,
21,25,35,36]. Key to all of these papers is the relationship between the travelling wave equation and two types of
martingales found in branching Brownian motion commonly referred to as additive and multiplicative martingales.
Our objective in this paper is to show that many of the known probabilistic ideas can be adapted, subject to the use of
appropriate alternative technologies, to handle (6). In particular we shall largely work with Dynkin exit measures as
well a new pathwise version of Evans’ immortal particle decomposition of our ψ -super-Brownian motion.

The remainder of the paper is structured as follows. In the next section we state our main results. These pertain to a
complete existence, uniqueness and asymptotic result for the travelling wave equation. In special cases, it is possible
to give more explicit details concerning the form of the solutions to the travelling wave equation in terms of martingale
limits. For this reason, part of our main results includes some martingale convergence theorems. One of our martingale
results, concerning the question of convergence to a non-trivial limit of the so-called derivative martingale, offers a
moment dichotomy which has not been previously achieved for the analogous martingales in the case of branching
Brownian motion and branching random walks. In Section 3 we examine certain Dynkin exit measures which will
be key to later analysis. The remaining sections are dedicated to the proofs of the main results with the exception of
Section 5 which provides the new pathwise spine (or immortal particle) decomposition that features heavily in the
proofs.

On a final note, we mention that the condition (5) appears to be a natural sufficient condition under which to
perform all of our analysis. This will become clear later on through several of the preparatory results. We refrain
from imposing this condition throughout the paper however (in favour of stating it when required) as a number of the
mathematical tools we appeal to, which are of intrinsic interest on their own, still have meaning without it.

2. Main results

Our first result gives us a very general characterisation of the existence, uniqueness and asymptotics of non-negative
travelling waves solving (6). Subsequently we give moment conditions under which some of the quantities involved
can be explicitly identified. For convenience we write λ = √−2ψ ′(0+) and for each λ ∈ R define

cλ = −ψ ′(0+)
/λ + λ/2. (10)

Note that for λ ∈ (0, λ], cλ has range [λ,∞). In particular cλ = λ. We shall also write P as shorthand for Pδ0 with
corresponding expectation operator given by E.

Theorem 2.1.

(i) If (5) holds then no travelling waves exist with wave speed c if c ∈ [0, cλ).
(ii) A travelling wave exists with wave speed c if c ≥ cλ. In particular for λ ∈ (0, λ] there exists a travelling wave

with wave speed cλ which may be written in the form

Φcλ(x) = − logE
[
e−e−λxΔ(λ)

]
, (11)

where Δ(λ) is a non-negative random variable such that {Δ(λ) = 0} agrees with E , P-almost surely.
(iii) Suppose that λ ∈ (0, λ]. Then, up to an additive shift in its argument, there is a unique travelling wave at speed

cλ.
(iv) Moreover, when λ ∈ (0, λ], there exists some constant kλ ∈ (0,∞) and a slowly varying function Lλ : (0,∞) 
→

(0,∞) such that

lim
x→∞

Φcλ(x)

e−λxLλ(e−λx)
= kλ. (12)
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The conclusions given in the above theorem conform to what is already understood about the existence, uniqueness
and asymptotic decay of travelling wave solutions to the classical FKPP equation (7) and hence by the transformation
described in the Introduction, the non-linear equation (3). Indeed Theorem 1.1 in [41], for which the non-linear
function F in (7) belongs to a more general class than the one that the ψ we consider here corresponds to, covers the
content of Theorem 2.1, perhaps with the exception of the representation (11). Under further assumptions the function
Lλ(z) is known to behave as − log z as z ↓ 0. This conclusion will also appear shortly in the forthcoming Theorem 2.6
with a comparison to existing literature.

As alluded to above, the next two main theorems make a clearer statement about the quantities Δ(λ) and Lλ when
we impose additional assumptions. To do this, we need to introduce two families of P-martingales with respect to the
natural filtration Ft := σ(Xu;u ≤ t). The first such family of martingales is identified in the following lemma.

Lemma 2.2. The process W(λ) = {Wt(λ): t ≥ 0} where λ ∈ R and

Wt(λ) := e−λcλt
〈
e−λ·,Xt

〉
, t ≥ 0, (13)

is a martingale.

Proof. The proof appeals to a classical technique which we briefly outline. Define for each x ∈ R, g ∈ C+
b (R)

and θ, t ≥ 0, uθ
g(x, t) = − logEδx (e

−θ〈g,Xt 〉) and note that, with limits understood as θ ↓ 0, ug(x, t)|θ=0 = 0 and
vg(x, t) := Eδx (〈g,Xt 〉) = ∂uθ

g(x, t)/∂θ |θ=0. Differentiating in θ in (3) shows that vg solves the equation

∂

∂t
vg(x, t) = 1

2

∂2

∂x2
vg(x, t) − ψ ′(0+)

vg(x, t), (14)

with vg(x,0) = g(x). Note that classical Feynman–Kac theory tells us that (14) has a unique solution and it is nec-
essarily equal to Πx(e−ψ ′(0+)t g(ξt )) where {ξt : t ≥ 0} is a Brownian motion issued from x ∈ R under the measure
Πx . The above procedure also works for g(x) = e−λx in which case we easily conclude that for all x ∈ R and t ≥ 0,
e−λcλtEδx (〈e−λ·,Xt 〉) = e−λx . Finally, the martingale property follows using the previous equality together with the
Markov branching property associated with X. �

Note that W(λ) is a non-negative martingale and therefore converges almost surely. As a corollary to the above
lemma, we may describe the second family of martingales we are interested in by taking the negative derivative in λ

of W(λ). Note that this produces a signed martingale which does not necessarily converge almost surely.

Corollary 2.3. The process ∂W(λ) := {∂Wt(λ), t ≥ 0}, where λ ∈ R and

∂Wt(λ) := − ∂

∂λ
Wt(λ) = 〈

(λt + ·)e−λ(cλt+·),Xt

〉
, t ≥ 0, (15)

is also a martingale.

It turns out that the convergence of both these martingales in the appropriate sense is important to give a more
precise characterization of the limit Δ(λ) and the normalizing sequence Lλ in Theorem 2.1. The following theorem
contains the necessary information.

Theorem 2.4.

(i) The almost sure limit of W(λ), denoted by W∞(λ), is also an L1(P)-limit if and only if |λ| < λ and∫
[1,∞)

r(log r)ν(dr) < ∞.

When W∞(λ) is an L1(P)-limit the event {W∞(λ) > 0} agrees with E c, P-almost surely. Otherwise, when it is not
an L1(P)-limit, its limit is identically zero.
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(ii) Assume that (5) holds. The martingale ∂W(λ) has an almost sure non-negative limit when |λ| ≥ λ which is
identically zero when |λ| > λ and when |λ| = λ its limit is almost surely strictly positive on E c if and only if∫

[1,∞)

r(log r)2ν(dr) < ∞.

Remark 2.5. Note that other similar theorems exist for derivative martingales in the branching random walk, [2], and
branching Brownian motion, [25]. In those cases however, an exact dichotomy for convergence to a non-zero limit in
the critical regime was not achieved unlike the case here.

We may now turn to our final main theorem which is a refinement of Theorem 2.1 under additional assumptions.
For convenience we write W∞(λ) and ∂W∞(λ) for the martingale limits (when it exists in the latter case).

Theorem 2.6. Assume (5).

(i) Suppose that
∫
[1,∞)

r(log r)ν(dr) < ∞ and λ ∈ (0, λ). Then, up to an additive constant in its argument, the
travelling wave solution Φcλ to (6) is given by

Φcλ(x) = − logE
[
e−e−λxW∞(λ)

]
,

and there is a constant kλ ∈ (0,∞) such that

lim
x→∞

Φcλ(x)

e−λx
= kλ.

(ii) Suppose that
∫
[1,∞)

r(log r)2ν(dr) < ∞ and λ = λ. Then, the critical travelling wave solution Φλ to (6) is given
by

Φλ(x) = − logE
[
e−e−λx∂W∞(λ)

]
.

Moreover, there is a constant kλ ∈ (0,∞) such that

lim
x→∞

Φcλ(x)

xe−λx
= kλ. (16)

Remark 2.7. Note that∫ 1

0
r−2ψ(r)dr < ∞ ⇐⇒

∫
[1,∞)

r(log r)ν(dr) < ∞,

∫ 1

0
r−2| log r|ψ(r)dr < ∞ ⇐⇒

∫
[1,∞)

r(log r)2ν(dr) < ∞.

Using these equivalences we see that our Theorem 2.6 agrees precisely with Theorems 2.1, 2.2 and 2.3 in Uchiyama
[41], where again, through the transformation described in the Introduction, we alert the reader to the fact that
Uchiyama allows for a more general setting. Such asymptotics are similarly prescribed in equations (1.13) and (1.14)
in Bramson [3] under slightly different assumptions. We can also use these equivalences to provide some examples in
which the moment conditions appearing in Theorem 2.6 hold or fail.

Firstly, we provide an example where (5) holds true but
∫
[1,∞)

r(log r)ν(dr) = ∞. According to [38], ψ1(λ) =
λ2 log−1(1 + λ),λ ≥ 0 is a branching mechanism. By some elementary calculations, we can check that ψ1 satisfies
(5) but

∫ 1
0 r−2ψ1(r)dr = ∞. Let ν1 be the measure ν in (1) corresponding to ψ1. Then

∫
[1,∞)

r log rν1(dr) = ∞.

Secondly, we give an example where
∫
[1,∞)

r(log r)ν(dr) < ∞ and
∫
[1,∞)

r(log r)2ν(dr) = ∞. According to [38],

ψ2(λ) = λ(λ logλ − λ + 1)/(logλ)2, λ > 0, is a branching mechanism. We can check that ψ2 satisfies (5) and∫ 1
0 r−2ψ2(r)dr < ∞, but

∫ 1
0 r−2| log r|ψ2(r)dr = ∞. Let ν2 be the measure ν in (1) corresponding to ψ2. Than∫

[1,∞)
r log rν2(dr) < ∞ but

∫
[1,∞)

r(log r)2ν2(dr) = ∞.
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3. Branching exit Markov systems and embedded continuous state branching processes

For each y, t ≥ 0, define the space–time domain Dt
y = {(x,u): x < y,u < t} and for each c ∈ R let Xc = {Xc

t : t ≥ 0}
be the sequence of measures which satisfies 〈f,Xc

t 〉 = 〈f (ct + ·),Xt 〉 for all t ≥ 0 and f ∈ C+
b (R). It is straight-

forward to deduce that for each μ ∈ MF (R), (Xc,Pμ) is a superprocess with general branching mechanism
ψ whose movement component corresponding to a Brownian motion with drift c. According to Dynkin’s the-
ory of exit measures [10] it is possible to describe the mass in the superprocess Xc as it first exits the grow-
ing family of domains {Dt

y : t ≥ 0, y ≥ 0} as a sequence of random measures on R × [0,∞), known as branch-
ing Markov exit measures, which we denote by {Xc

Dt
y
: t ≥ 0, y ≥ 0}. In particular, according to the characterisa-

tion for branching Markov exit measures given in Section 1.1 of [12], each of the random measures Xc
Dt

y
is sup-

ported on ∂Dt
y = ({y} × [0, t)) ∪ ((−∞, y] × {t}) and has the following defining Markov branching property. Let

F c
Dt

y
= σ(Xc

Du
x
: u ≤ t, x ≤ y). For all t ≥ r , y ≥ z, μ ∈ MF (R) with suppμ ⊂ (−∞, z] and f ∈ C+

b (Dt
y) such that

f (x, t) = f (x,0) =: f (x) for all t ≥ 0,

Eμ

(
e
−〈f,Xc

Dt
y
〉|F c

Dr
z

) = e
−〈uy

f (·,t−·),Xc
Dr

z
〉
, (17)

where, for all (x, s) in Dt
y , u

y
f is the unique positive solution of the partial differential equation

∂

∂s
u

y
f (x, s) = 1

2

∂2

∂x2
u

y
f (x, s) + c

∂

∂x
u

y
f (x, s) − ψ

(
u

y
f (x, s)

)
, (18)

with boundary conditions u
y
f (y, s) = f (y) for 0 ≤ s ≤ t and u

y
f (x,0) = f (x) for x ≤ y. We may similarly consider

the branching Markov property of the exit measures Xc
Dt−z

where Dt−z = {(x, r): r < t,−z < x} with z ≥ 0. Moreover,

define for convenience Dy = D∞
y and by monotonicity one may also define Xc

Dy
= limt↑∞ Xc

Dt
y
|{y}×[0,t).

An important consequence of the Markov branching property above is the following theorem which will feature
crucially in our proof of Theorem 2.1.

Theorem 3.1. Define for each y ≥ 0 and c ≥ 0, Zc
y := 〈1,Xc

Dy
〉 = ‖Xc

Dy
‖ and Zc−y := 〈1,Xc

D−y
〉 = ‖Xc

D−y
‖. For all

x ∈ R and λ ∈ (0, λ] the following statements hold Pδx -almost surely.

(i) The process {Zcλ
y : y ≥ x} is a conservative supercritical continuous state branching process with growth rate λ.

Moreover, the process Zcλ becomes extinct with positive probability if and only if (5) holds.
(ii) The process {Zcλ

y : y ≤ −x} is a subcritical continuous state branching process with growth rate −λ. Moreover,
there is almost sure extinction if and only if (5) holds.

Proof. First part of (i). For x ≤ y and f ∈ C+
b (R × [0,∞)) such that f (x, t) = f (x,0) =: f (x) for all t ≥ 0, let

v
y
f (x, t) := Eδx (〈f,Xc

Dt
y
〉). By performing a similar linearisation to the linearisation (14) of (3), we have that

∂

∂t
v

y
f (x, t) = 1

2

∂2

∂x2
v

y
f (x, t) + c

∂

∂x
v

y
f (x, t) − ψ ′(0+)

v
y
f (x, t), (19)

with v
y
f (y, t) = f (y) for t ≥ 0 and v

y
f (x,0) = f (x) for x ≤ y. The classical Feynman–Kac formula allows us to write

the unique solution to (19) as

v
y
f (x, t) = Πc

x

[
e−ψ ′(0+)(t∧τ+

y )f (ξt∧τ+
y
)
]
, (20)

where τ+
y = inf{t > 0: ξt > y} and under Πc

x , {ξt : t ≥ 0} is a Brownian motion with drift c issued from x. By means of
an increasing sequence of continuous functions which are valued 0 at y and which converge pointwise to 1(−∞,y](·),
it is now possible to deduce by monotone convergence that

Eδx

(
Xc

Dt
y

(
(−∞, y] × {t})) = e−ψ ′(0+)tΠc

x

(
τ+
y > t

)
. (21)
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For x ≤ y it is known that the density of τ+
y is given by

y − x√
2πt3

exp

(
− (y − ct)2

2t

)
, t > 0. (22)

Now let c = cλ for λ ∈ (0, λ]. From (21) and (22), an application of L’Hôpital’s rule shows that

lim
t↑∞ Eδx

(
X

cλ

Dt
y

(
(−∞, y] × {t})) = 0. (23)

It now follows from (20) with f = 1, (21) and (23) that for all x ∈ (−∞, y],

Eδx

(∥∥X
cλ

Dy

∥∥) = lim
t↑∞Eδx

(∥∥X
cλ

Dt
y

∥∥) = Πcλ
x

[
e−ψ ′(0+)τ+

y ; τ+
y < ∞] = eλ(y−x).

Note also from (17) we have that for all a, b, θ ≥ 0 and x ∈ R,

E(a+b)δx

(
e
−θ〈1,X

cλ
Dy

〉) = Eaδx

(
e
−θ〈1,X

cλ
Dy

〉)
Ebδx

(
e
−θ〈1,X

cλ
Dy

〉)
, (24)

showing that Zcλ is a conservative continuous state branching process.
First part of (ii). By symmetry, it suffices to prove that for λ ∈ (0, λ], the process {Z−cλ

x : x ≥ 0} is a subcritical
continuous state branching process with growth rate −λ. This conclusion follows from a similar analysis to the proof
of part (i), noting in particular that

Eδx

(∥∥X
−cλ

Dy

∥∥) = Π−cλ
x

[
e−ψ ′(0+)τ+

y ; τ+
y < ∞] = e−λ(y−x).

The details are left to the reader.
Second part of (ii). For any y ≥ z, μ ∈ M(R) with suppμ ⊂ (−∞, z] and θ > 0,

Eμ

(
e
−〈θ,X

−cλ
Dy

〉|F −cλ

Dz

) = e−〈uy
θ ,X

−cλ
Dz

〉
, (25)

where, by taking limits as t and then r tend to infinity in (18), we have that u
y
θ is the unique positive solution to the

equation

0 = 1

2

∂2

∂x2
u

y
θ (x) − cλ

∂

∂x
u

y
θ (x) − ψ

(
u

y
θ (x)

)
, (26)

on (−∞, y] with boundary value u
y
θ (y) = θ .

This tells us that for each fixed θ ≥ 0,

E
(
e−〈θ,X

−cλ
Dx

〉) = e−ux
θ (0) = e−u0

θ (−x),

where u0
θ solves

0 = 1

2

∂2

∂x2
u0

θ (x) − cλ

∂

∂x
u0

θ (x) − ψ
(
u0

θ (x)
)
,

on (−∞,0) with boundary value u0
θ (0) = θ . Written yet another way, this tells us that ux

θ := ux
θ (0) satisfies

0 = 1

2

∂2

∂x2
ux

θ + cλ

∂

∂x
ux

θ − ψ
(
ux

θ

)
,

on (0,∞) with boundary value u0
θ = θ .
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On the other hand, if ψ−cλ is the branching mechanism of {Z−cλ
x : x ≥ 0}, then we also know that

∂

∂x
ux

θ + ψ−cλ

(
ux

θ

) = 0

for x ≥ 0. Combining the previous two differential equations, we easily deduce that

1

2
ψ ′−cλ

(
ux

θ

)
ψ−cλ

(
ux

θ

) − cλψ−cλ

(
ux

θ

) = ψ
(
ux

θ

)
.

As {Z−cλ
x : x ≥ 0} is subcritical, we know that u∞

θ = 0. Thus by continuity, for each fixed θ > 0, the range of {ux
θ : x ≥

0} contains [0, θ ]. As θ may be made arbitrarily large, it follows that

1

4

d

du
ψ2−cλ

(u) − cλψ−cλ(u) = ψ(u), u ≥ 0.

Subcriticality also implies that ψ−cλ(0) = 0.
Next note that

1

4

(
ψ2−cλ

(u) − ψ2−cλ

(
λ∗)) − cλ

∫ u

λ∗
ψ−cλ(s)ds =

∫ u

λ∗
ψ(s)ds. (27)

As ψ−cλ tends to infinity at infinity, we may apply L’Hôpital’s rule to deduce that

lim
u↑∞

∫ u

λ∗ ψ−cλ(s)ds

ψ2−cλ
(u)

= 1

2
lim
u↑∞

1

ψ ′−cλ
(u)

. (28)

Note it follows in a straightforward manner form the Lévy–Khintchine formula that the limit on the right-hand side
above exists (and may possibly equal zero). The limit (28) when combined with (27) now allows us to conclude that∫ ∞ 1

ψ−cλ(ξ)
dξ < ∞ ⇐⇒

∫ ∞ 1√∫ ξ

λ∗ ψ(u)du

dξ < ∞. (29)

As {Z−cλ
x : x ≥ 0} is subcritical, this is equivalent to saying that there is almost sure extinction if and only if (5) holds.

Second part of (i). Using exactly the same proof we can show that (29) holds with ψ−cλ replaced by ψcλ . The
desired result follows by recalling that

∫ ∞ 1/ψcλ(ξ)dξ < ∞ is the necessary and sufficient condition in the current
context for the event of extinction to agree with the event of becoming extinguished. �

Corollary 3.2. Suppose that (5) holds. Fix x ∈ R. For each c ≥ 0, let R−c be the smallest closed set containing
suppX−c

t for all t ≥ 0. Then for all c ≥ cλ = λ we have that Pδx (sup R−c < ∞) = 1 and for all c < cλ we have
Pδx (sup R−c = ∞|E c) = 1. In particular if Rt = sup{y ∈ R: Xt(y,∞) > 0} then

lim
t↑∞

Rt

t
= λ, (30)

Pδx -almost surely on E c.

Proof. From Theorem 3.1(ii), under the assumption of (5), the process {Z−cλ
x : x ≥ 0} is subcritical and becomes

extinct with probability 1. This implies that for all c ≥ cλ = λ, Pδx (sup R−c < ∞) = 1 and hence

lim sup
t↑∞

Rt

t
≤ λ,

where Rt = sup{y ∈ R: Xt(y,∞) > 0}.
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Next we want to show

lim inf
t↑∞

Rt

t
≥ λ, (31)

on E c .
We shall use the conclusion of Theorem 2.4 to prove (31). The reader should note that the proof of Theorem 2.4,

which appears later in this paper, does not depend on the result we are currently proving. We also make use of an
argument which is essentially taken from Git et al. [18]. For 0 < ε < λ/2 and γ = λ − ε note that eγ x1(x≤(γ−ε)t) ≤
e(γ−ε)xeε(γ−ε)t , and hence

lim sup
t↑∞

e−(γ 2/2−ψ ′(0+))t
〈
eγ ·1(·≤(γ−ε)t),Xt

〉 ≤ lim sup
t↑∞

e−ε2t/2Wt(−γ + ε) = 0, (32)

Pδx -almost surely. It follows that

lim
t↑∞ e−(γ 2/2−ψ ′(0+))t

〈
eγ ·1(·>(γ−ε)t),Xt

〉 = W∞(−γ + ε), (33)

Pδx -almost surely. Note that by Theorem 2.4(i) the event {W∞(−γ + ε) > 0} agrees with E c. Hence as ε can be made
arbitrarily small, (31) follows on E c .

Together with (31) this implies the strong law of large numbers, (30), on E c and all other claims in the corollary
follow immediately. �

Theorem 3.3. Suppose that λ ∈ (0, λ] and Zcλ = {Zcλ
y : y ≥ 0}. Then P-almost surely, {Zcλ extinguishes} agrees with

the event E .

Proof. First we establish that Ẽ := {Zcλ extinguishes} ⊆ E . Begin by noting that, thanks to monotonicity,

lim
y↑∞X

cλ

Dt
y

(
(−∞, y] × {t}) = ‖Xt‖. (34)

Next note that since Zcλ is a supercritical conservative branching process, it follows that there is a λ0 > 0 such that
P(Ẽ ) = e−λ0 . Using the Markov branching property for exit measures we have,

E
(
1Ẽ |F cλ

Dt
y

) = e
−λ0‖Xcλ

Dt
y
‖ ≤ e

−λ0X
cλ

Dt
y
((−∞,y]×{t})

.

Hence

E

[
lim
t↑∞ lim

y↑∞ E
(
1Ẽ |F cλ

Dt
y

)
1E c

]
≤ E

[
lim
t↑∞ lim

y↑∞ e
−λ0X

cλ

Dt
y
((−∞,y]×{t})

1E c

]
= E

[
lim
t↑∞ e−λ0‖Xt‖1E c

]
= 0. (35)

Note that in the first equality we have used the fact that ‖Xcλ
t ‖ = ‖Xt‖. Our objective is to show that

E(1E c∩Ẽ ) = 0,

and hence Ẽ ⊆ E , P-almost surely. To this end, in light of (35), it suffices to prove that E c ∈ σ(
⋃

t>0
⋃

y>0 F cλ

Dt
y
). Note

however that, by (34), ‖Xt‖ ∈ σ(
⋃

y>0 F cλ

Dt
y
), which implies that E ∈ σ(

⋃
t>0

⋃
y>0 F cλ

Dt
y
).

Now fix t > 0. Note that the Markov branching property applied to the exit measure X
cλ

Dt
y

implies that

P(E ) = E
(
P
(

E |F cλ

Dt
y

)) = E
[
e
−λ∗‖Xcλ

Dt
y
‖] ≤ E

[
e
−λ∗Xcλ

Dt
y
({y}×[0,t))]

.
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Now taking limits as t ↑ ∞ we have with the help of both monotone and dominated convergence that

P(E ) ≤ E
[
e
−λ∗‖Xcλ

Dy
‖] = E

(
e−λ∗Zcλ

y
)
.

Taking limits again as y ↑ ∞ we find that P(E ) ≤ P(Zcλ extinguishes). Together with the conclusion of the previous
paragraph, we are forced to conclude that E = {Zcλ extinguishes}, P-almost surely, as required. �

4. Proof of Theorem 2.1

Proof of Theorem 2.1(i). Suppose that there exists a travelling wave at speed c ∈ [0, cλ) which we shall denote by Φ .
For all x ∈ R and t ≥ 0, we have Eδx (e

−〈Φ,Xc
t 〉) = e−uc

Φ(x,t), where uc
Φ solves

∂

∂t
uc

Φ(x, t) = 1

2

∂2

∂x2
uc

Φ(x, t) + c
∂

∂x
uc

Φ(x, t) − ψ
(
uc

Φ(x, t)
)
, (36)

with initial condition u(x,0) = Φ(x). This partial differential equation has a unique positive solution for the same
reasons that (3) has a unique solution. Since Φ(x) also solves (36), it follows that

Eδx

(
e−〈Φ,Xc

t 〉) = e−Φ(x).

Together with the branching property, this in turn implies that {e−〈Φ,Xc
t 〉: t ≥ 0} is a uniformly integrable martingale.

Its almost sure and L1(Pδx ) limit is denoted by M∞. The Markov branching property applied to the exit measure Xc
Dt

y

implies that for all x ≤ y,

Eδx

(
e
−〈Φ,Xc

Dt
y
〉) = Eδx

[
E

(
M∞|F c

Dt
y

)] = e−Φ(x).

Note however that for all z ∈ suppXc
Dt

y
we have by monotonicity, Φ(z) ≥ Φ(y). Moreover, as a measure, we also have

Xc
Dt

y
≥ Xc

Dt
y
|(−∞,y)×{t}. It follows that

e−Φ(x) ≤ Eδx

(
e
−Φ(y)Xc

Dt
y
((−∞,y)×{t}))

. (37)

Our next objective is to show that for any y > x,

Pδx

(
lim inf
n↑∞ Xc

Dn
y

(
(−∞, y) × {n}) > 0

)
> 0. (38)

Suppose now that the probability in (38) is equal to zero for a given y > x. Let X(n) := Xc
Dn

y
((−∞, y) × {n}) for

n ≥ 0. Then

lim inf
n→∞ X(n) = 0, Pδx -a.s. (39)

Note that, under (5), 0 is an absorbing state for the sequence {X(n): n ≥ 0} in the sense that X(m) = 0 implies that
X(m + k) = 0 for all k ≥ 0. Note that since {Xc

Dt
y
|(−∞,y)×{t}: t ≥ 0} is a superprocess with branching mechanism ψ

and underlying motion which is that of a Brownian motion with drift c killed on hitting y, and therefore Markovian,
then we have the estimate

Pδx

(∃m s.t. X(m) = 0|X(0), . . . ,X(n)
)

≥ inf
μ:‖μ‖=X(n)

Pμ

(∃m s.t. X(m) = 0
)

≥ inf
μ:‖μ‖=X(n)

Pμ(E )

= e−λ∗X(n).
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Letting n → ∞ in the above inequality, by (39), we obtain that Pδx (∃m s.t. X(m) = 0) = 1. It follows that
lim inft↑∞ Lc

t ≥ y Pδx -almost surely where Lc
t = inf{z: Xc

t (−∞, z] > 0}. However, from Corollary 3.2, we also de-
duce that under (5),

lim
t↑∞

Lc
t

t
= c − λ < 0,

which constitutes a contradiction. Therefore (38) holds for any y > x.
It follows by (38) and the Reverse Fatou Lemma, that

e−Φ(x) ≤ lim sup
n↑∞

Eδx

(
e
−Φ(y)Xc

Dn
y
((−∞,y]×{n}))

< 1

for all sufficiently large y > x. As x may be chosen arbitrarily in this argument, it follows that there exists a constant
C > 0 such that Φ(x) > C for all x ∈ R. This leads to a contradiction of the assumption that Φ is a travelling wave. �

Proof of Theorem 2.1(ii). Grey [19] solves the classical Seneta–Heyde norming problem for continuous state branch-
ing processes. In particular he shows that for all λ ∈ (0, λ], taking account of the fact that Zcλ is a continuous state
branching process with growth rate λ, there exists a slowly varying function at 0, Lλ such that

lim
x↑∞ e−λxLλ

(
e−λx

)
Zcλ

x = Δ(λ), (40)

where Δ(λ) ≥ 0 is non-degenerate and the event {Δ(λ) = 0} agrees with the event that Zcλ becomes extinguished
which in turn, by Theorem 3.3 agrees with the event E . Note from (40) and the fact that Lλ is slowly varying, it is
straightforward to show that for all μ ∈ MF (R)

Eμ

[
exp

{−Δ(λ)
}] = exp

{−〈Φ,μ〉},
where for all x ∈ R,

e−Φ(x) = Eδx

[
exp

{−Δ(λ)
}] = E

[
exp

{−e−λxΔ(λ)
}]

. (41)

Note in particular that Φ is a monotone decreasing function which is twice continuously differentiable on (0,∞)

and moreover satisfies Φ(∞) = 0 and Φ(−∞) = λ∗.
The Markov branching property for Zcλ implies that by conditioning on F cλ

Dx
, where x, z ∈ R, we get

e−Φ(z) = E
[
exp

{−e−λzΔ(λ)
}] = E

[
exp

{−Φ(x + z)Zcλ
x

}]
. (42)

Setting z = 0, μ = δ0, f = Φ , c = cλ in (25) and (26) we see that Φ necessarily solves

1

2
Φ ′′ + cλΦ

′ − ψ(Φ) = 0, on R, (43)

as required. �

Proof of Theorem 2.1(iii) and (iv). Let λ ∈ (0, λ] and assume that Φcλ is a travelling wave solution to the equation
(6) with speed cλ. From (2) and (3) it follows that for all z ∈ R

e−Φcλ
(z) = Eδz

[
exp

{−〈
Φcλ(· + cλt),Xt

〉}] = Eδz

[
exp

{−〈
Φcλ,X

cλ
t

〉}] = E
[
exp

{−〈
Φcλ(z + ·),Xcλ

t

〉}]
and hence, together with the branching Markov property, we have that for all z ∈ R

M
λ,z
t := exp

{−〈
Φcλ(z + ·),Xcλ

t

〉}
, t ≥ 0, (44)
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is a positive uniformly integrable P-martingale. From (23) we may deduce that there exists a deterministic subsequence
{tn: n ≥ 0} which increases to infinity (and may depend on x) such that

lim
n↑∞X

cλ

D
tn
x

(
(−∞, x] × {tn}

) = 0. (45)

Now fix z ∈ R and x ≥ 0. Let M
λ,z∞ := limt↑∞ M

λ,z
t then the branching Markov property applied to the exit measure

X
cλ

D
tn
z

gives us

E
[
Mλ,z∞ |F cλ

Dx

] = lim
n↑∞ E

[
Mλ,z∞ |F cλ

D
tn
x

] = lim
n↑∞ exp

{−〈
Φcλ,X

cλ

D
tn
x

〉} = exp
{−Φcλ(x + z)Zcλ

x

}
.

From (44) we see that the event {Mλ,z∞ = 1} contains in the event that X becomes extinguished which in turn, from the
proof of the previous part of the theorem, agrees with the event that {Δ(λ) = 0}. Recalling (40), it follows that there
exist a set of positive P-probability on which Zcλ has a strictly positive normalised limit, such that the normalising
sequence may be taken to be either e−λxLλ(e−λx) or Φλ(x + z) as x ↑ ∞. It must therefore follow that there exists a
constant kλ,z ∈ (0,∞) such that

lim
x↑∞

Φλ(x + z)

e−λxLλ(e−λx)
= kλ,z.

As Lλ is slowly varying it is easy to see that kλ,z = e−λzkλ where kλ := kλ,0.
This also tells us that

Mλ,z∞ = exp
{−kλe−λzΔ(λ)

}
,

and hence taking expectations with respect to P we see that

e−Φcλ
(z) = E

[
exp

{−kλe−λzΔ(λ)
}]

,

thus establishing uniqueness up to an additive constant. �

Reviewing the proof of Theorem 2.1 we obtain the following corollary, a simpler version of which has appeared in
Neveu [36] and in parallel to writing of this paper, a similar result for branching Brownian motion has been described
in [34].

Corollary 4.1. For λ ∈ (0, λ], the continuous state branching process Zcλ has branching mechanism

ψcλ(θ) = Φ ′
cλ

(
Φ−1

cλ
(θ)

)
for θ ∈ [0, λ∗] where Φcλ is any version of the unique travelling wave at speed cλ. Alternatively ψcλ solves the
differential equation

1

4

d

du
f 2(u) + cλf (u) = ψ(u), u ∈ (

0, λ∗),
with boundary conditions f (0) = 0 and f (λ∗) = 0.

Proof. Since Zcλ is a continuous time continuous state branching process with branching mechanism, say ψcλ , equa-
tion (42) implies that Φ(z) = ux(Φ(x + z)), where for θ ≥ 0, ux(θ) satisfies the semi-group equation

∂ux(θ)

∂x
+ ψcλ

(
ux(θ)

) = 0, (46)

with initial condition u0(θ) = θ . Differentiating the equality Φ(z) = ux(Φ(x + z)) with respect to x we get

0 = ∂ux(Φ(z + x))

∂x
+ ∂ux(θ)

∂θ

∣∣∣∣
θ=Φ(z+x)

Φ ′(z + x).
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By setting x = 0 in the previous equality, making use of (46) and the fact that ∂u0(θ)/∂θ = 1, we obtain that

Φ ′(z) = ψcλ

(
Φ(z)

)
. (47)

The first part follows directly from (47). For the second part, one may differentiate (47) and obtain

Φ ′′(z) = ψ ′
cλ

(
Φ(z)

)
ψcλ

(
Φ(z)

)
. (48)

Combining (47) and (48) with (43) and noting the domain of u := Φ(x), x ∈ R is (0, λ∗), we get

1

2
ψ ′

cλ
(u)ψcλ(u) + cλψcλ(u) − ψ(u) = 0,

which is the claimed differential equation.
To show the boundary conditions, first note that in all cases, since, by Theorem 3.1, Zcλ is conservative, we

necessarily have ψcλ(0) = 0. For the other boundary condition recall from the beginning and the end of the proof
of Theorem 2.1(ii) that the event {Δ(λ) = 0} agrees both with the event E as well as the event that Zcλ becomes
extinguished. Hence we have P(Zcλ becomes extinguished) = e−λ∗

and then necessarily λ∗ must be the largest root
in [0,∞) of the equation ψcλ(θ) = 0. This justifies the boundary condition ψcλ(λ

∗) = 0. �

5. Pathwise spine decomposition

The convergence of the martingales W(λ) and ∂W(λ) to non-trivial limits will ultimately allow us to identify the
limiting variable Δ(λ) as either W∞(λ) or ∂W∞(λ). There is a well understood technique for branching particle pro-
cesses, due to Lyons et al. [33] and Lyons [32], which can be used to establish in a straightforward way conditions
under which the latter limits are non-trivial. This involves looking at how the given martingales (or variants of them)
perform as changes of measure. In the case of superprocesses, this technique can be seen under the pretext of Evans’
immortal particle decomposition; see for example Evans [14] and Engländer and Kyprianou [13]. In the latter refer-
ences, the decomposition has only been explored through the semi-group of the underlying superprocess which has its
limitations when using it to analyse the martingales W(λ) and ∂W(λ) in the spirit of pathwise spine decompositions
for branching particle processes. In the analysis below, we give a new immortal particle decomposition for our class of
superprocesses which is defined in a pathwise sense and therefore lends itself to the aforementioned classical martin-
gale analysis. The feature which is in particular new to our spine decomposition is the use of the Dynkin–Kuznetsov
N-measure to describe a Poisson point process of immigration along the immortal particle. For branching mechanism
without quadratic term (i.e., β = 0 in the definition of ψ given by (1)), a similar pathwise spine decomposition was
given by Liu et al. [31] when dealing with another martingale which, like W(λ), was constructed from a positive
eigen-function to the linear semi-group of the underlying superprocess.

Let us move to our new spine decomposition and hencewith we start by defining some martingale changes of
measure. For each λ ∈ R and μ ∈ MF (R), let P−λ

μ be defined by

dP−λ
μ

dPμ

∣∣∣∣
Ft

= Wt(λ)

W0(λ)
, t ≥ 0,

where Ft = σ(Xs : s ≤ t). Note in particular that W0(λ) = 〈e−λ·,μ〉. Next recall that for each x ∈ R we defined the
process ξ := {ξt : t ≥ 0} under Πx to be a Brownian motion issued from x. If Π−λ

x is the law under which ξ is a
Brownian motion with drift −λ ∈ R issued from x ∈ R, then for each t ≥ 0,

dΠ−λ
x

dΠx

∣∣∣∣
Gt

= e−λ(ξt−x)−λ2t/2, (49)

where Gt = σ(ξs, s ≤ t). For convenience we shall also write

Π−λ
μ (·) = 1

〈e−λ·,μ〉
∫

R

e−λxμ(dx)Π−λ
x (·). (50)
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Theorem 5.1. Suppose that λ ∈ R, μ ∈ MF (R) and g ∈ C+
b (R). Then

E−λ
μ

[
e−〈g,Xt 〉] = Eμ

[
e−〈g,Xt 〉]Π−λ

μ

[
exp

{
−

∫ t

0
φ
(
ug(ξt−s , s)

)
ds

}]
, (51)

where

φ(λ) = ψ ′(λ) − ψ ′(0+) = 2βλ +
∫ ∞

0

(
1 − e−λx

)
xν(dx), (52)

and ug is the unique solution of (3).

Proof. By the definition of E−λ
μ , we get

E−λ
μ

(
e−〈g,Xt 〉) = 1

〈e−λ·,μ〉Eμ

(
e−λcλt

〈
e−λ·,Xt

〉
e−〈g,Xt 〉)

= − 1

〈e−λ·,μ〉e−λcλtEμ

(
∂

∂θ
e−〈gθ ,Xt 〉

∣∣∣∣
θ=0+

)
,

with gθ (x) := g(x) + θe−λx . Interchanging the expectation and differentiation, we get

E−λ
μ

(
e−〈g,Xt 〉) = − 1

〈e−λ·,μ〉e−λcλt ∂

∂θ
e−〈ugθ

(·,t),μ〉
∣∣∣∣
θ=0+

,

where ugθ satisfies (3) with g replaced by gθ . Note that, ug0 = ug . Hence,

E−λ
μ

(
e−〈g,Xt 〉) = 1

〈e−λ·,μ〉e−λcλte−〈ugθ
(·,t),μ〉 ∂

∂θ

〈
ugθ (·, t),μ

〉∣∣∣∣
θ=0+

. (53)

Now let mg(x, t) := ∂
∂θ

ugθ (x, t)|θ=0+ for all x ∈ R. Taking derivatives in (3) with g replaced by gθ and then taking
the limit as θ goes to zero, we obtain the differential equation{

∂
∂t

mg(x, t) = 1
2

∂2

∂x2 mg(x, t) − ψ ′(ug(x, t)
)
mg(x, t),

mg(x,0) = e−λx.

The classical Feynman–Kac formula gives

mg(x, t) = Πx

[
e−λξt exp

{
−

∫ t

0
ψ ′(ug(ξt−s , s)

)
ds

}]
.

Plugging back into (53) yields the following equality,

E−λ
μ

(
e−〈g,Xt 〉)

= 1

〈e−λ·,μ〉Eμ

[
e−〈g,Xt 〉] ∫

R

e−λxμ(dx)Πx

[
e−λ(ξt−x)−λcλt exp

{
−

∫ t

0
ψ ′(ug(ξt−s , s)

)
ds

}]
= Eδx

[
e−〈g,Xt 〉]Π−λ

μ

[
exp

{
−

∫ t

0
φ
(
ug(ξt−s , s)

)
ds

}]
,

where in the final equality we have used (49) and the fact that λcλ = −ψ ′(0+) + λ2/2.
To complete the proof, note that the expression given for φ(λ) on the right-hand side of (52) is obtained by straight-

forward differentiation of (1). �
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Equation (51) suggests that, under the measure P−λ
μ , the superprocess X can be decomposed into two parts. The first

one is a copy of the original superprocess and the second one can be related to an independent process of immigration.
As we shall demonstrate next, the process of immigration is governed by a spine or immortal particle along which
two independent Poisson point processes of immigration occur. We need first to introduce some more notation.

Associated to the laws {Pδx : x ∈ R} are the measures {Nx : x ∈ R}, defined on the same measurable space, which
satisfy

Nx

(
1 − e−〈f,Xt 〉) = − logEδx

(
e−〈f,Xt 〉) (54)

for all f ∈ C+
b (R) and t ≥ 0. Such measures are formally defined and explored in detail in [12]. See also [30]. Note

that from the definition (54) it follows that

Nx

(〈f,Xt 〉
) = Eδx

(〈f,Xt 〉
)
,

whenever f ∈ C+
b (R).

The measures {Nx : x ∈ R} will play a crucial role in the forthcoming analysis. Intuitively speaking, the branching
property implies that Pδx is an infinitely divisible measure on the path space of X and (54) is a ‘Lévy–Khinchine’
formula in which Nx plays the role of its ‘Lévy measure.’ In this sense, Nx can be considered as the ‘rate’ at which
superprocesses ‘with zero initial mass’ contribute to a unit mass at position x. It is important to note that Nx is not a
probability measure as such.

With this measure in hand, let us now proceed to the definition of a measure-valued process of immigration, which
we denote by Λ = {Λt : t ≥ 0}. Fix x ∈ R and μ ∈ MF (R).

(i) Spine: We take a copy of the process ξ = {ξt : t ≥ 0} under Π−λ
x and henceforth refer to it as the spine.

(ii) Continuum immigration: Suppose that n is a Poisson point process such that, for t ≥ 0, given the spine ξ , n issues
a superprocess Xn,t at space–time position (ξt , t) with rate dt × 2β dNξt .

(iii) Jump immigration: Suppose that m is a Poisson point process such that, independently of n, given the spine ξ ,
m issues a superprocess Xm,t at space–time point (ξt , t) with initial mass r at rate dt × rν(dr) × dPrδξt

.

We now define for t ≥ 0,

Λt = X′
t + X

(n)
t + X

(m)
t , (55)

where {X′
t : t ≥ 0} is an independent copy of (X,Pμ),

X
(n)
t =

∑
s≤t :n

X
n,s
t−s , t ≥ 0 and X

(m)
t =

∑
s≤t :m

X
m,s
t−s , t ≥ 0.

In the last two equalities we understand the first sum to be over times at which the process n has a point and the second
sum is understood similarly. Note that since the processes X(n) and X(m) are initially zero valued it is clear that since
X′

0 = μ then Λ0 = μ. In that case, we use the notation P̃−λ
μ,x to denote the law of the pair (Λ, ξ). Note also that the

pair (Λ, ξ) are a time-homogenous Markov process. We are interested in the case that the initial position of the spine
ξ is randomised using the measure μ via (50). In that case we shall write

P̃−λ
μ (·) = 1

〈e−λ·,μ〉
∫

R

e−λxμ(dx)̃P−λ
μ,x(·)

for short. The next theorem identifies the process Λ as the pathwise spine decomposition of (X,P−λ
μ ) and in particular

it shows that as a process on its own Λ is Markovian.

Theorem 5.2. For all λ ∈ R and μ ∈ MF (R), (X,P−λ
μ ) and (Λ, P̃−λ

μ ) are equal in law.

Proof. Fix λ ∈ R. Firstly we must prove that for any t ≥ 0 and μ ∈ MF (R), we have

E−λ
μ

(
e−〈g,Xt 〉) = Ẽ−λ

μ

(
e−〈g,Λt 〉), (56)
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where g ∈ C+
b (R), and for this it suffices to show that

Ẽ−λ
μ

[
e−〈g,X

(n)
t +X

(m)
t 〉] = Π−λ

μ

[
exp

{
−

∫ t

0
φ
(
ug(ξt−s , s)

)
ds

}]
. (57)

Secondly we must show that (Λ, P̃−λ
μ ) is a Markov process.

To this end note that for g ∈ C+
b (R),

Ẽ−λ
μ

[
e−〈g,X

(n)
t +X

(m)
t 〉]

= Ẽ−λ
μ

{
Ẽ−λ

μ

[
e−〈g,X

(n)
t 〉e−〈g,X

(m)
t 〉|ξ]}

= Π−λ
μ

{
Ẽ−λ

μ

[
exp

{
−

∑
s≤t :n

〈
g,X

n,s
t−s

〉}∣∣∣ξ]
Ẽ−λ

μ

[
exp

{
−

∑
s≤t :m

〈
g,X

m,s
t−s

〉}∣∣∣ξ]}
, (58)

where we have used the independence of X(m) and X(n). Applying Campbell’s formula to the first inner expectation
and using (54), we get

Ẽ−λ
μ

[
exp

{
−

∑
s≤t :n

〈
g,X

n,s
t−s

〉}∣∣∣ξ]
= exp

{
−2β

∫ t

0

∫ (
1 − e−〈g,Xt−s 〉)dNξs ds

}

= exp

{
−2β

∫ t

0
− logEδξs

(
e−〈g,Xt−s 〉)ds

}
= exp

{
−2β

∫ t

0
ug(ξs, t − s)ds

}
= exp

{
−2β

∫ t

0
ug(ξt−s , s)ds

}
. (59)

To deal with the second expectation in (58) first note that,

Ẽ−λ
μ

[
exp

{
−

∑
s≤t :m

〈
g,X

m,s
t−s

〉}∣∣∣ξ]
= Ẽ−λ

μ

[
exp

{
−

∑
s≤t :m

msug(ξs, t − s)

}∣∣∣ξ]
, (60)

where for s ≥ 0, ms = ‖Xm,s
0 ‖. In particular note that the process {mt : t ≥ 0} is a Poisson point process on (0,∞)2,

independent of ξ , with intensity dt × rν(dr). Hence, putting (59) and (60) into (58) and again appealing to Campbell’s
formula yields

Ẽ−λ
μ

[
exp

{−〈
g,X

(n)
t + X

(m)
t

〉}]
= Π−λ

μ

{
exp

{
−2β

∫ t

0
ug(ξt−s , s)ds

}
Ẽ−λ

μ

[
exp

{
−

∑
s≤t :m

msug(ξs, t − s)

}∣∣∣ξ]}

= Π−λ
μ

{
exp

{
−2β

∫ t

0
ug(ξt−s , s)ds

}
exp

{
−

∫ t

0

∫
(0,∞)

(
1 − e−rug(ξt−s ,s)

)
rν(dr)ds

}}
.

Taking note of (52) we have in conclusion that (57) follows.
Next we turn our attention to showing that (Λ, P̃−λ

μ ) is a Markov process. To this end, it suffices to show that for
all x ∈ R,

P̃−λ
μ (ξt ∈ dx|Λt) = 1

〈e−λ·,Λt 〉e−λxΛt (dx). (61)
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Indeed, in that case it follows that for all g ∈ C+
b (R)

Ẽ−λ
μ

[
e−〈g,Λt 〉|Λr : r ≤ s

] = Ẽ−λ
μ

[
Ẽ−λ

μ

[
e−〈g,Λt 〉|(ξr ,Λr): r ≤ s

]∣∣Λr : r ≤ s
]

= Ẽ−λ
μ

[
Ẽ−λ

(μ′,x′)
[
e−〈g,Λt 〉]∣∣

μ′=Λs,x′=ξs

∣∣Λr : r ≤ s
]

= Ẽ−λ
μ

[
Ẽ−λ

(μ′,x′)
[
e−〈g,Λt 〉]∣∣

μ′=Λs,x′=ξs

∣∣Λs

]
= 1

〈e−λ·,Λs〉
∫

R

e−λxΛs(dx)Ẽ−λ
μ′,x

[
e−〈g,Λt−s 〉]∣∣∣∣

μ′=Λs

= Ẽ−λ
μ′

[
e−〈g,Λt−s 〉]∣∣

μ′=Λs
,

where in the third equality we have used that (ξ,Λ) is Markovian.
To show (61) it suffices to show that for all θ ∈ R

Ẽ−λ
μ

[
e−〈g,Λt 〉Ẽ−λ

μ

[
e−θξt |Λt

]] = Ẽ−λ
μ

[
e−〈g,Λt 〉 〈e−(λ+θ)·,Λt 〉

〈e−λ·,Λt 〉
]
. (62)

Note however that the left-hand side of (62) is equal to

Ẽ−λ
μ

[
e−〈g,Λt 〉e−θξt

] = eγ t 1

〈e−λ·,μ〉
∫

R

μ(dx)e−(λ+θ)xΠ−λ
x

[
e−θ(ξt−x)−γ t Ẽ−λ

μ

[
e−〈g,Λt 〉|ξt

]]
= eγ t 1

〈e−λ·,μ〉
∫

R

μ(dx)e−(λ+θ)xΠ−(λ+θ)
x

[
Ẽ−(λ+θ)

μ

[
e−〈g,Λt 〉|ξt

]]
= eγ t 〈e−(λ+θ)·,μ〉

〈e−λ·,μ〉 Ẽ−(λ+θ)
μ

[
e−〈g,Λt 〉], (63)

where γ = (λ + θ)2/2 − λ2/2.
On the other hand, by (56), the right-hand side of (62) is equal to

Eμ

[
e−λcλt 〈e−λ·,Xt 〉

〈e−λ·,μ〉 e−〈g,Xt 〉 〈e−(λ+θ)·,Xt 〉
〈e−λ·,Xt 〉

]
= eγ tEμ

[
e−(λ+θ)cλ+θ t 〈e−(λ+θ)·,Xt 〉

〈e−λ·,μ〉 e−〈g,Xt 〉
]

= eγ t 〈e−(λ+θ)·,μ〉
〈e−λ·,μ〉 E−(λ+θ)

μ

[
e−〈g,Xt 〉]. (64)

Again appealing to (56) we see that both (63) and (64) agree and the proof is complete. �

6. Proof of Theorem 2.4(i)

For reasons of symmetry, it sufficies to prove the result with λ ≥ 0. Now that we are in possession of a pathwise
spine decomposition, we may pursue a classical approach due to Lyons [32], see also Kyprianou [25], to prove The-
orem 2.4(i). The key element to the reasoning is the following measure theoretic result (see for example p. 242 of
Durrett [5]).

Let W∞(λ) := lim supt↑∞ Wt(λ). Then

W∞(λ) = ∞, P−λ-a.s. ⇐⇒ W∞(λ) = 0, P-a.s., (65)

W∞(λ) < ∞, P−λ-a.s. ⇐⇒ E
(
W∞(λ)

) = 1. (66)

Write for convenience P̃−λ instead of P̃−λ
δ0

. Thanks to the spine decomposition (Theorem 5.2) we may replace on

the left-hand sides of (65) and (66) P−λ by P̃−λ and W∞(λ) by W
Λ

∞(λ) := lim supt↑∞ WΛ
t (λ) where

WΛ
t (λ) := e−λcλt

〈
e−λ·,Λt

〉
.



Supercritical super-Brownian motion with a general branching mechanism 679

We shall study W
Λ

∞(λ) with the help of the martingale decomposition (which follows from the spine decomposition)
under P̃−λ,

WΛ
t (λ) = W ′

t (λ) +
∑
s≤t :n

e−λcλsW
n,s
t−s(λ) +

∑
s≤t :m

e−λcλsW
m,s
t−s (λ), (67)

where W ′(λ) is an independent copy of W(λ) under P, W
n,s
t−s(λ) = e−λcλ(t−s)〈e−λ·,Xn,s

t−s〉 and W
m,s
t−s (λ) =

e−λcλ(t−s)〈e−λ·,Xm,s
t−s 〉.

Suppose that
∫
[1,∞)

r(log r)ν(dr) < ∞ and λ ∈ (0, λ). First note that since W(λ) is a P-martingale, it follows as

a standard result that W(λ)−1 is a P−λ-supermartingale (see for example [22]) and hence limt↑∞ Wt(λ) exists P−λ-
almost surely, and hence limt↑∞ WΛ

t (λ) exists P̃−λ-almost surely and is equal to WΛ∞(λ). Our objective is to show
that

lim sup
t↑∞

Ẽ−λ
[
WΛ

t (λ)|ξ,m
]
< ∞, (68)

in which case Fatou’s lemma and the existence of limt↑∞ WΛ
t (λ) = W

Λ

∞(λ) implies that, P̃−λ-almost surely,

W
Λ

∞(λ) < ∞. This in turn implies that P−λ-almost surely, W∞(λ) < ∞ and hence, by (66), W∞(λ) is an L1(P)

limit.
To this end note that, since Ẽ−λ[W ′

t (λ)] = 1, it suffices to prove that

lim sup
t↑∞

Ẽ−λ

[ ∑
s≤t :n

e−λcλsW
n,s
t−s(λ) +

∑
s≤t :m

e−λcλsW
m,s
t−s (λ)

∣∣∣ξ,m
]

< ∞.

First note that, P̃−λ-almost surely,

lim sup
t↑∞

Ẽ−λ

[ ∑
s≤t :n

e−λcλsW
n,s
t−s(λ)

∣∣∣ξ,m
]

= lim sup
t↑∞

2β

∫ t

0
e−λcλsNξs

[
Wt−s(λ)

]
ds

= lim sup
t↑∞

2β

∫ t

0
e−λcλsEδξs

[
Wt−s(λ)

]
ds

= 2β

∫ ∞

0
e−λ(ξs+cλs) ds

< ∞, (69)

where the second identity holds by (54) and the final inequality is a result of the strong law of large numbers for linear
Brownian motion together with the fact that ξt + cλt has drift cλ − λ which is strictly positive when λ ∈ (0, λ).

Next, recalling that for all x ∈ R, t ≥ 0, r > 0, Erδx (Wt (λ)) = re−λxE(Wt(λ)) = re−λx , we have that

Ẽ−λ

[ ∑
s≤t :m

e−λcλsW
m,s
t−s (λ)

∣∣∣ξ,m
]

= Ẽ−λ

[ ∑
s≤t :m

mse−λ(ξs+cλs)
∣∣∣ξ,m

]
≤

∑
s≥0;m

mse−λ(ξs+cλs), (70)

where we recall that the process {mt : t ≥ 0} is a Poisson point process, independent of ξ and with intensity dt ×rν(dr)

However, on the one hand we have that P̃−λ-almost surely

Ẽ−λ

[ ∑
s≥0;m

ms1{ms<1}e−λ(ξs+cλs)
∣∣∣ξ]

=
∫

(0,1)

∫ ∞

0
re−λ(ξs+cλs)r dsν(dr)

=
∫

(0,1)

r2 dν(dr)

∫ ∞

0
e−λ(ξs+cλs) ds

< ∞. (71)
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On the other hand, define τ0 = 0 and τi = inf{t ≥ τi−1: mt ≥ 1}, i = 1,2, . . . . Note that, {τi : i ≥ 0} are the times of
arrival in a Poisson process with arrival rate

∫
[1,∞)

rν(dr). Recall that if {Zi : i ≥ 1} is a sequence of i.i.d. random
variables with probability measure Q then it can easily be shown with the help of the Borel–Cantelli Lemma that,
Q-a.s.

lim sup
i→∞

i−1 logZi =
{

0, if Q
(
log+ Z1

)
< ∞,

∞, if Q
(
log+ Z1

) = ∞.
(72)

In this instance we would like to take Zi = mτi
which has common probability measure Q(dr) = rν(dr)/

∫
[1,∞)

rν(dr)

on [1,∞). We have P̃−λ-almost surely that∑
s≥0;m

ms1{ms≥1}e−λ(ξs+cλs) =
∑
i≥1

mτi
e−λ(ξτi

+cλτi ) < ∞, (73)

where the equality follows by virtue of the fact that entries in the first sum arrive at rate
∫
[1,∞)

rν(dr), which is finite,
and the final inequality follows from (72), the assumption

∫
[1,∞)

r log rν(dr) < ∞, the fact that

lim
i↑∞

τi

i
= 1∫

[1,∞)
rν(dr)

, (74)

and the strong law of large numbers for linear Brownian motion. In conclusion, (71) and (73) show that (70) is finite
and hence W∞(λ) is an L1(P)-limit.

Finally we prove that {W∞(λ) = 0} agrees with the event that X becomes extinguished. To this end let q =
Pδx (W∞(λ) = 0) < 1. Note that q does not depend on x as W∞(λ) under Pδx has the same law as e−λxW∞(λ)

under Pδ0 thanks to the definition of W(λ) and the fact that the branching mechanism is not spatially dependent.
Taking conditional expectations and using the Markov branching property we have for all t ≥ 0,

E(1{W∞(λ)=0}|Ft ) = q‖Xt‖.

Therefore, on the one hand, taking expectations across this last equality and then limits as t ↑ ∞, we easily deduce
with the help of the Dominated Convergence Theorem that P(W∞(λ) = 0) = e−λ∗

. On the other hand, noting that
E c ∈ σ(

⋃
t>0 Ft ), we also have that

P
(

E c ∩ {
W∞(λ) = 0

}) = E

[
1E c lim

t↑∞E(1{W∞(λ)=0}|Ft )
]

= E

[
1E c lim

t↑∞q‖Xt‖
]

= 0.

Hence it follows that {W∞(λ) = 0} = E , P-almost surely.
Next we deal with the cases that λ ≥ λ or

∫
[1,∞)

r(log r)ν(dr) = ∞. Recall that, given ξ , the Poisson point process
m initiates a superprocess at time t , Xm,t , with initial mass r at rate dt × rν(dr) × dPrδξt

. For each τi (defined in the
previous part of the proof) we have

WΛ
τi

(λ) ≥ mτi
e−λ(ξτi

+cλτi ), P̃−λ-a.s. (75)

Under P̃, ξ is a Brownian motion with drift −λ and is independent of m. Note also that cλ ≤ λ when λ ≥ λ. Hence,
ξt + cλt is a Brownian motion with non-positive drift. Then, from (74) and (75) we conclude that when λ ≥ λ,

lim sup
t→∞

WΛ
t (λ) ≥ lim sup

i→∞
e−λ(ξτi

+cλτi ) = ∞, P̃-a.s.

It follows from (65) that W∞(λ) = 0, P-almost surely.
Now suppose that

∫
[1,∞)

r(log r)ν(dr) = ∞. Recall that under P̃−λ, ξ is a Brownian motion with drift −λ. Then,

the strong law of large numbers gives P̃−λ-almost surely, limt→∞ t−1(ξt + cλt) = cλ − λ. We thus have from (72),
(74) and (75) that P̃−λ-a.s.,

lim sup
i→∞

i−1logWΛ
τi

(λ) ≥ lim sup
i→∞

i−1logmτi
− λ lim sup

i→∞
(ξτi

+ cλτi)

τi

τi

i
= ∞. (76)
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Therefore, W
Λ

∞(λ) = ∞, P̃−λ-almost surely, and (65) implies that W∞(λ) = W∞(λ) = 0, P-almost surely.

Remark 6.1. One can easily go further with the analysis of W(λ) through the pathwise spine decomposition. Indeed
following arguments in Hardy and Harris [20], sufficient conditions for Lp(P) convergence for p ∈ (1,2] are given in
[28].

7. Proof of Theorem 2.4(ii)

As with the case of W(λ) we only give the proof for the case that λ ≥ 0 noting that reasoning involving symmetry
covers the case that λ ≤ 0. Recall that ∂W(λ) is a signed martingale and therefore does not necessarily converge
almost surely. A technique used by Kyprianou [25] to get round this problem in the case of a branching Brownian
motion is to consider a truncated form of the derivative martingale which is a positive martingale. In order to describe
the aforementioned martingale in the current context we need more notation.

Recall that the superprocess Xc was defined as the superprocess whose movement component is that of a Brownian
motion with drift c but whose branching mechanism is still ψ . Consider the domain Dt−y = {(z, s): z > −y, s ∈ (0, t)}.
Dynkin’s theory of exit measures may still be applied in this context and we denote the exit measure associated with
the domain Dt−y for the process Xλ by Xλ

Dt−y
for λ ≥ 0. Next define for all λ ≥ 0,

bλ = cλ − λ = −ψ ′(0+)
/λ − λ/2,

and note that bλ > 0 for λ ∈ (0, λ) and bλ ≤ 0 for λ ≥ λ.
In the spirit of [25] we introduce a new martingale, for each y > 0,

V
−y
t (λ) = e−λbλt 1

y

〈
(y + ·)e−λ·,Xλ

Dt−y

〉
, t ≥ 0. (77)

To show that V −y(λ) := {V −y
t (λ): t ≥ 0} is a P-unit mean martingale, let Hλ

t = σ(Xλ
Ds−x

: x ≤ y, s ≤ t) ⊆ Kt =
σ(Xλ

Ds−x
: x < ∞, s ≤ t) and note that

E
(
yWt(λ) + ∂Wt(λ)|Hλ

t

) = yV
−y
t (λ),

and that Hλ
t+s ∩ Kt = Hλ

t . Hence

E
(
yV

−y
t+s(λ)|Kt

) = E
(
yWt+s(λ) + ∂Wt+s(λ)|Hλ

t+s |Kt

)
= E

(
yWt+s(λ) + ∂Wt+s(λ)|Hλ

t

)
= E

(
yWt+s(λ) + ∂Wt+s(λ)|Kt |Hλ

t

)
= E

(
yWt(λ) + ∂Wt(λ)|Hλ

t

)
= yV

−y
t (λ).

It is clear that V −y(λ) is positive and hence there always exists an almost sure limit which we denote by V
−y∞ (λ).

From Corollary 3.2 we know that, when λ ≥ λ, P(− inf Rλ < ∞) = 1. It follows that on the event {inf Rλ ≥ −y}, for
this regime of λ,

E
(
yWt(λ) + ∂Wt(λ)|Hλ

t

) = yWt(λ) + ∂Wt(λ),

and hence, letting t ↑ ∞, yV
−y∞ (λ) = yW∞(λ) + ∂W∞(λ), where implicitly we understand the limit of ∂W(λ) to

exist in the last equality because the limit V
−y∞ (λ) exists. Note however from Theorem 2.4(i) that W∞(λ) = 0 when

λ ≥ λ so that in fact

yV
−y∞ (λ) = ∂W∞(λ) on

{
inf Rλ ≥ −y

}
. (78)
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As y may be taken arbitrarily large, it follows that ∂W∞(λ) ≥ 0.
Remaining in the regime λ ≥ λ, the proof that {∂W∞(λ) = 0} = E , P-almost surely goes along almost the same

lines as the earlier proof that {W∞(λ) = 0} = E , P-almost surely.
Taking account of the relationship between ∂W(λ) and V −y(λ) for λ ≥ λ, the proof of Theorem 2.4(ii) would now

follow directly from parts (ii) and (iii) of the following theorem; which itself plays the analogous role of Theorem 13
in Kyprianou [26].

Theorem 7.1. Fix y > 0.

(i) If λ > λ then V
−y∞ (λ) = 0 P-almost surely.

(ii) If λ = λ then V
−y∞ (λ) is an L1(P) limit if and only if

∫
[1,∞)

r(log r)2ν(dr) < ∞ otherwise V
−y∞ (λ) = 0 P-almost

surely.
(iii) If λ ∈ (0, λ) then V

−y∞ (λ) is an L1(P) limit if and only if
∫
[1,∞)

r(log r)ν(dr) < ∞ otherwise V
−y∞ (λ) = 0 P-

almost surely.

Below we only give the proof of part (ii) of Therorem 7.1. Once this has been done, the proof of parts (i) and (iii)
should be apparent given the proof of Theorem 13 in Kyprianou [26] and we leave the details to the reader.

Proof of Theorem 7.1(ii). We shall again appeal to classical techniques based around using a martingale change of
measure. Specifically we are interested in understanding the change of measure

dP̂−y

dP

∣∣∣∣
Ft

:= V
−y
t (λ), t ≥ 0, (79)

where y > 0. Similarly to Theorem 5.2 the change of measure induces a spine decomposition. In order to describe
it, recall that under Πx the process ξ := {ξt : t ≥ 0} is a Brownian motion issued from x ∈ R. If we let τ−y =
inf{t ≥ 0: y + ξt + λt ≤ 0} then another well known change of measure for Brownian motion is the following.
For y ≥ 0,

dΠ̂−y

dΠ

∣∣∣∣
Gt

:= y + ξt + λt

y
e−λξt−λ2t/21{t<τ−y }, t ≥ 0,

where Gt = σ(ξs : s ≤ t) and Π = Π0. Under Π̂−y the process {y + ξt +λt : t ≥ 0} has the law of a standard Brownian
motion issued from y and conditioned never to enter the half line (−∞,0). Otherwise said, the process y + ξt + λt

is a Bessel-3 process issued from y. Bearing this last change of measure in mind, we have the following result which
describes the effect of the change of measure (79).

Theorem 7.2. Fix y ≥ 0. Consider the process Λ as defined in (55) with the exception that the spine ξ is assigned the
measure Π̂−y such that {y + ξt + λt : t ≥ 0} is a Bessel-3 process issued from y and x is chosen specifically equal
to 0. Denote its law by P̃−y . Then (X, P̂−y) = (Λ, P̃−y).

For the sake of brevity we omit the proof mentioning instead that it requires very similar computations, with
obvious differences, to those of Theorems 5.1 and 5.2 combined.

Theorem 7.2 allows us to conclude that the process V −y(λ) under P̂−y is equal in law to

V
Λ,−y
t (λ) := V

′−y
t (λ) +

∑
s≤t :n

(y + ξs + λs)

y
e−λ(ξs+λs)V

n,s,−(y+ξs+λs)
t−s (λ)

+
∑

s≤t :m

(y + ξs + λs)

y
e−λ(ξs+λs)V

m,s,−(y+ξs+λs)
t−s (λ), t ≥ 0, (80)

under P̃−y , where V ′,−y(λ) plays the role of V −y(λ) for the process X′ and, given (ξ,m), V m,s,−(y+ξs+λs)(λ) and
V n,s,−(y+ξs+λs)(λ) play the role of V −(y+ξs+λs)(λ) for the processes Xm,s and Xn,s , respectively under the laws Pmsδ0

and N0.
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A similar statement to (66) tells us that if we can show P̃−y(lim supt↑∞ V
Λ,−y
t (λ) < ∞) = 1 then V

−y∞ (λ) is an
L1(P) limit. Similar reasoning to the proof of Theorem 2.4(i) tells us that it now suffices to prove that

lim sup
t↑∞

Ẽ−y
(
V

Λ,−y
t (λ)|ξ,m

)
< ∞, (81)

almost surely. To this end, first recall that, given ξ , the Poisson point process n of immigration has intensity ds ×
2β dNξs . It follows that

lim sup
t↑∞

Ẽ−y

[ ∑
s≤t :n

(y + ξs + λs)e−λ(ξs+λs)V
n,s,−(y+ξs+λs)
t−s (λ)

∣∣∣ξ]

= lim sup
t↑∞

2β

∫ t

0
(y + ξs + λs)e−λ(ξs+λs)N0

(
V

n,s,−(y+ξs+λs)
t−s (λ)|ξ)

ds

= lim sup
t↑∞

2β

∫ t

0
(y + ξs + λs)e−λ(ξs+λs)E

(
V

−(y+ξs+λs)
t−s (λ)|ξ)

ds

=
∫ ∞

0
(y + ξs + λs)e−λ(ξs+λs) ds

< ∞,

P̃−y -almost surely, where the final equality follows by virtue of the fact that {y + ξt + λt : t ≥ 0} is a Bessel-3 process
issued from y and hence eventually grows no slower than t1/2−ε for any 1/2 > ε > 0.

Next we note that

Ẽ−y

[ ∑
s≤t :m

(y + ξs + λs)e−λ(ξs+λs)V
m,s,−(y+ξs+λs)
t−s (λ)

∣∣∣ξ,m
]

(82)

=
∑

s≤t :m
(y + ξs + λs)e−λ(ξs+λs)Emsδ0

(
V

m,s,−(y+ξs+λs)
t−s (λ)|ξ,m

)
=

∑
s≤t :m

ms(y + ξs + λs)e−λ(ξs+λs)

=
∑

{ms<eε(ξs+λs):m}
ms(y + ξs + λs)e−λ(ξs+λs)

+
∑

{ms≥eε(ξs+λs):m}
ms(y + ξs + λs)e−λ(ξs+λs)

=: I + II. (83)

We want to show that I and II are both P̃−y -almost surely finite. For I , choose 0 < ε < λ, we have that

Ẽ−y(I |ξ) ≤
∫

(0,1)

r2ν(dr)

∫ ∞

0
(y + ξt + λt)e−λ(ξt+λt) dt

+
∫

[1,∞)

rν(dr)

∫ ∞

0
(y + ξt + λt)e−(λ−ε)(ξt+λt) dt

< ∞.

Note that we have again used the fact that the assumption ψ ′(0+) ∈ (−∞,0) implies that
∫
[1,∞)

rν(dr) < ∞.
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To show that II is P̃−y -almost surely finite, it suffices to note that

Ẽ−y

[ ∑
{ms≥eε(ξs+λs):m}

1

]

= Π̂
−y

0

∫ ∞

0
dt

∫
[1,∞)

rν(dr)1{r>eε(ξt +λt)}

= Π̂
−y

0

∫
[1,∞)

rν(dr)

∫ ∞

0
dt1{x+ξt+λt≤x+ε−1 log r}

=
∫

[1,∞)

rν(dr)

∫
{|y|≤x+ε−1 log r}

dy
∫ ∞

0
p(t, x̂,y)dt

= C

∫
[1,∞)

rν(dr)

∫
R3

1{|y|≤x+ε−1 log r}
|y − x̂| dy

≤ C

∫
[1,∞)

rν(dr)

∫ 2x+ε−1 log r

0
udu

= C

2

∫
[1,∞)

r
(
2x + ε−1 log r

)2
ν(dr)

< ∞,

where x̂ = (x,0,0), p(t, x̂,y) is the probability density function of a three dimensional Brownian motion starting
from x̂, and C is a positive constant. This tells us that, P̃−y -almost surely, II is a summation over a finite set, and
therefore II is P̃−y -almost surely finite.

A similar statement to (65) tells us that if we can show P̃−y(lim supt↑∞ V
Λ,−y
t (λ) = ∞) = 1 then V

−y∞ (λ) = 0
P-almost surely. Since each term in the identity (80) is non-negative, we just consider the m-immigration. If we prove
the supremum limit of the third term in (80) is infinity, then we are done. Let N be any positive number and define the
stochastic time sequence

τ1 = inf
{
t ≥ 0: mt > 1 ∨ eN(ξt+λt)

}
, τi+1 = inf

{
t > τi : mt > 1 ∨ eN(ξt+λt)

}
, i = 1, . . . .

Under P̃−y(·|ξ), m is a Poisson point process. Thus the process
∑

s≤t 1{ms≥1∨eN(ξs+λs)} is a Poisson process with

instant intensity
∫ ∞

1 rν(dr)1{r>eN(ξt +λt)} dt under P̃−y(·|ξ) and its domain is {τi : i = 1,2, . . .}. Therefore,∑
τi<∞

1{mτi
≥eN(ξτi

+λτi )} < ∞, P̃−y(·|ξ)-a.s.

⇐⇒
∫ ∞

0
dt

∫ ∞

1
rν(dr)1{r>eN(ξt +λt)} < ∞, P̃−y(·|ξ)-a.s.

Let a be some constant and define the set C = {∫ ∞
0 dt

∫ ∞
1 rν(dr)1{r>eN(ξt +λt)} < a}. Recall that y + ξt + λt is a

BES3(y) process under the probability P̃−y . It is well known that BES3(y) is identically distributed to the modulus
process of Bt + ŷ, where (Bt ,Q) is a three dimensional Brownian motion starting at 0 and ŷ is a point in R3 with
norm y. Denote the modulus process by |Bt + ŷ|. We still use C to denote the same set corresponding to (Bt ,Q).

Ẽ−y

[
1C

∫ ∞

0
dt

∫ ∞

1
rν(dr)1{r>eN(ξt +λt)}

]
=

∫ ∞

0
dt

∫ ∞

1
rν(dr)Ẽ−y[1C1{r>eN(ξt +λt)}]

=
∫ ∞

1
rν(dr)

∫ ∞

0
Ẽ−y[1C1{ξt+λt≤N−1 log r}]dt
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=
∫ ∞

1
rν(dr)

∫ ∞

0
Q[1C1{|Bt+ŷ|≤y+N−1 log r}]dt

≥ Q

[
1C

∫ ∞

1
rν(dr)

∫ ∞

0
1{|Bt |≤N−1 log r} dt

]
.

Then under Q, |Bt | is a BES3(0) process. Let la∞ be the local time of |Bt |. Exercise (2.5) in [39] tells us la∞ is a

BESQ2(0). Then la∞
d= al1∞ and Q(l1∞ = 0) = 0. For the given set C,

Q

[
1C

∫ ∞

1
rν(dr)

∫ ∞

0
1{|Bt |≤N−1 log r} dt

]

= Q

[
1C

∫ ∞

1
rν(dr)

∫ N−1 log r

0
la∞ da

]
= Q

[
1C

∫ ∞

0
la∞ da

∫ ∞

eNa

rν(dr)

]

= Q

[
1C

∫ ∞

0
a da

∫ a−1la∞

0
du

∫ ∞

eNa

rν(dr)

]
=

∫ ∞

0
a da

∫ ∞

eNa

rν(dr)

∫ ∞

0
Q[1C1{la∞>au}]du

≥
∫ ∞

0
a da

∫ ∞

eNa

rν(dr)

∫ ∞

0

[
Q(C) − Q

(
a−1la∞ > u

)]+ du

=
∫ ∞

0
a da

∫ ∞

eNa

rν(dr)

∫ ∞

0

[
Q(C) − Q

(
l1∞ < u

)]+ du.

Note that

∫ ∞

0
a da

∫ ∞

eNt

rν(dr) =
∫ ∞

1
rν(dr)

∫ N−1 log r

0
a da = 1

2N2

∫ ∞

1
r(log r)2ν(dr).

Therefore, if P̃−y(C) > 0, then
∫ ∞

1 r(log r)2ν(dr) < ∞, which means
∫ ∞

1 r(log r)2ν(dr) = ∞ implies mτi
>

eN(ξτi
+λτi ) infinitely times P̃−y -a.s. The process BES3(y) is transient, so limt→∞ ξt + λt = ∞ P̃−y -a.s. We reach

the conclusion that for any N > 0, there exist an increasing sequence of stochastic time {τi : i = 1,2, . . .} such that

lim sup
i→∞

mτi
(ξτi

+ λτi)e
−N(ξτi

+λτi ) = ∞. (84)

Consider the process V
Λ,−y
t (λ) in (80). We deduce from (84) that

lim sup
t→∞

V
Λ,−y
t (λ) ≥ lim sup

i→∞
V Λ,−y

τi
(λ)

≥ lim sup
i→∞

∑
s≤τi :m

(y + ξs + λs)

y
e−λ(ξs+λs)V

m,s,−(y+ξs+λs)
τi−s (λ)

≥ lim sup
i→∞

y−1mτi
(y + ξτi

+ λτi)e
−λ(ξτi

+λτi )

= ∞. �
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8. Proof of Theorem 2.6

(i) Under the given conditions, we know that there exists an L1(P)-limit W∞(λ) for the martingale W(λ). In light of
Corollary 3.2 we have through, a now familiar projection, that

E
(
W∞(λ)|F cλ

Dx

) = lim
t↑∞E

(
W∞(λ)|F cλ

Dt
x

) = e−λxZcλ
x .

This has the implication that the normalizing sequence discussed in the proof of Theorem 2.1(ii) must satisfy
Lλ(e−λx) ∼ 1 as x ↑ ∞ and, up to a non-negative constant, Δ(λ) = W∞(λ).

(ii) In a similar fashion, we note that under the given conditions of the theorem, for fixed y > 0, V
−y∞ is an L1(P)-

limit and hence

E
(
yV

−y∞ |F cλ

Dx

) = (y + x)e−λxZ
cλ
x .

It follows that the normalizing sequence discussed in the proof of Theorem 2.1(ii) must instead satisfy Lλ(e−λx) ∼ x

as x ↑ ∞ and, taking account of (78), we have, up to a non-negative constant, Δ(λ) = ∂W∞(λ).
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