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Abstract. In the context of high frequency data, one often has to deal with observations occurring at irregularly spaced times, at
transaction times for example in finance. Here we examine how the estimation of the squared or other powers of the volatility is
affected by irregularly spaced data. The emphasis is on the kind of assumptions on the sampling scheme which allow to provide
consistent estimators, together with an associated central limit theorem, and especially when the sampling scheme depends on the
observed process itself.

Résumé. Dans le contexte de données à haute fréquences, il est fréquent de recueillir les informations le long d’une grille irrégi-
lière, par exemple aux instants de transaction pour les données financières. Dans cet article, nous étudions comment l’estimation de
l’intégrale du carré, ou d’autres puissances, de la volatilité est affectée par l’irrégularité des données. L’accent est mis sur le type
d’hypothèses qu’il est nécessaire de faire sur la répartition des observations, en particulier lorsque celles-ci dépendent du processus
observé lui-même, de façon à obtenir un théorème limite central pour nos estimateurs.
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1. Introduction

The approximation of the quadratic variation by the “realized” quadratic variation plays a very important role in
practice, especially for financial data, since such data are necessarily reported at discrete times. Other quantities of
interest, based on discrete observations as well, have been considered in many recent papers: these quantities are sums
of functions of the successive increments of the process, usually some powers or absolute powers of those increments.
They are used to estimate some characteristics of the jumps of the observed process, or the volatility of the continuous
part, or for various testing problems about jumps for example.

However, if the behavior of the realized quadratic variation and other similar functionals is well known when the
observations come in regularly, this is no longer the case when the observation times are irregularly spaced and,
even worse, when they are random. Relatively few papers are so far available in that case: see [1,14] and [15] for
deterministic observation times, and [4] for some special random times like hitting times, and [16] for a situation which
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is relatively close to the present paper, and [6–9] and [2] when the process is multidimensional and the observation
times exhibit some sort of relatively restricted randomness, or are random but independent of the observed process.
In the five last papers, the situation is quite complex because the various components are observed at different times.
All those papers are concerned with a continuous underlying process. One may also quote related works dealing with
estimation of various parameters with random sampling, like [5] for diffusions and [3] for Markov processes.

Here, our aim is relatively modest: we consider only a continuous underlying process, which is 1-dimensional, quite
a restrictive setting indeed which in particular lets aside the problem of non-synchronous observations for multivariate
processes. The observation times are possibly random, and we try to find conditions on those times, allowing for limit
theorems when the number of observations increases (the “high frequency” setting), which are as general as possible,
and in particular accommodate some dependency between the sampling times and the process itself: this is the main
novelty of this paper. We also consider the problem of the estimation of integrated powers of the volatility other
than 2, for example the estimation of the quarticity, a quantity which turns out to be more and more frequently used
in practice. In a sense, we are in the line of [1] and [16], and we try to weaken the assumptions on the observation
scheme and the underlying observed process X as much as we can, together with providing an estimation method for
other powers than the integrated volatility.

Of course, the assumptions about the observation times, as discussed below, are arbitrary to some extent. What
we have in mind is to account for high frequency financial data, and especially those recording transaction times and
prices, which are notoriously irregularly spaced. Note that in this paper we only consider a semi-realistic situation,
where the process is supposed to be observed exactly at each observation time: we do not consider the problem of
microstructure noise. For real applications to finance, this problem should be taken into account.

Let us be more specific. The process of interest is a 1-dimensional continuous semimartingale X on a filtered
probability space (Ω, F , (Ft )t≥0,P), which is of Itô type, that is of the form

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs, (1.1)

where W is a Wiener process and b and σ are progressively measurable processes. In this paper our aim is to give
estimators for the following “integrated” quantities:

V (p)t = mp

∫ t

0
|σs |p ds (1.2)

(here mp is the pth absolute moment of the standard normal law N (0,1), and it appears here for later convenience),
when p ≥ 2, together with “feasible” estimators for the variance or conditional variance of these estimators, so as
to be able to construct confidence intervals for example. The restriction p ≥ 2 is not essential, similar results hold
when 1 < p < 2, and also when 0 < p ≤ 1 under some additional assumptions, but p ≥ 2 covers the most interesting
situations and is simpler technically speaking.

At stage n the process X is observed along a strictly increasing sequence of – possibly random – finite times
T (n, i), i ≥ 0, starting at T (n,0) = 0, and we use the notation

�(n, i) = T (n, i) − T (n, i − 1), I (n, i) = (
T (n, i − 1), T (n, i)

]
,

Nn
t = inf

(
i: T (n, i) > t

) − 1, πn
t = supi=1,...,Nn

t +1 �(n, i)

}
(1.3)

(πn
t is the “mesh” up to time t , by convention inf(∅) = ∞ and sup(∅) = 0, and Nn

t is the number of observation
times within (0, t]). Also, for any process Y we write

�n
i Y = YT (n,i) − YT (n,i−1). (1.4)

Among (many) other technical requirements, we will always assume the following minimal ones:

n ≥ 1 ⇒ T (n, i) → ∞ P-a.s., as i → ∞,

t ≥ 0 ⇒ πn
t

P−→ 0 as n → ∞.

}
(1.5)
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With the convention
∑0

i=1 = 0, we take as our estimator for V (p)t of (1.2), at stage n, the variable

V n(p)t =
Nn

t∑
i=1

�(n, i)1−p/2
∣∣�n

i X
∣∣p. (1.6)

The upper limit of the sum is such that V n(p)t involves the observations occurring up to time t only. As is well known,

under regular sampling (that is, T (n, i) = i�n for some time lag �n going to 0), then V n(p)
u.c.p.−→ V (p) (this denotes

“convergence in probability, locally uniform in time”), as soon as σ is càdlàg and b satisfies a suitable integrability
condition and even under no condition at all when p = 2. Furthermore under some more regularity conditions, we
have an associated CLT (Central Limit Theorem), and standardized versions are also available: see e.g. [12] and [11].

Our aim is to prove the same results for irregular sampling, and in particular to prove standardized versions of the
CLT for the estimators. We already know, of course, that V n(2) converges to V (2) as soon as the T (n, i)’s are stopping
times subject to (1.5), but for the other values of p and for the CLT, we need appropriate additional assumptions on
the sampling scheme. Note that for a regular scheme the factor �(n, i)1−p/2 = �

1−p/2
n goes out of the sum, and this

is of course how the “standard” result is stated. The idea to place this factor inside the sum is due to [1].
In Section 2 we state the precise assumptions on the underlying process X and the sampling schemes. Section 3

contains the basic results, and a discussion of their applicability. The proofs are gathered in Sections 4, 5 and 6.

2. Setting and assumptions

2.1. Assumptions on X

The assumptions on X will vary according to the power p in which we are interested. We always suppose that X has
the form (1.1), and we use two different assumptions, with (B) stronger than (A) below:

Assumption (A). We have (1.1), and the process b is locally bounded, and the process σ is càdlàg (= right continuous
with left limits).

Assumption (B). We have (1.1), and the process σ is also a (possibly discontinuous) Itô semimartingale, which can
be written as

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs + Mt +

∑
s≤t

�σs 1{|�σs |>1}, where

• M is a local martingale with |�Mt | ≤ 1, orthogonal to W , and its
predictable quadratic covariation process is 〈M,M〉t = ∫ t

0 a′
s ds.

• The predictable compensator of
∑

s≤t 1{|�σs |>1} is
∫ t

0 as ds.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.1)

Moreover, the processes b̃, a and a′ are locally bounded, and the processes σ̃ and b are left continuous with right
limits.

In (B), M may have jumps, and also a non-vanishing continuous martingale part, which must then be a stochastic
integral with respect to another Brownian motion independent of W .

The above assumptions are exactly those under which the theorems given below hold, for regular sampling
schemes, except for the case of V n(2) which requires a bit less.

2.2. The sampling scheme

The sampling scheme, that is the collection ((T (n, i))i≥0: n ≥ 1), is subject to a number of conditions. There is first
a structural assumption:

Assumption (C). There is a sub-filtration (F 0
t )t≥0 of (Ft )t≥0 with the following properties:
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• W and b and σ are adapted to (F 0
t );

• any (F 0
t ) martingale is also an (Ft )-martingale;

• each variable T (n, i) is an (Ft )-stopping time which, conditionally on FT (n,i−1), is independent of the σ -field
F 0 = ∨

t>0 F 0
t .

This assumption is satisfied when the T (n, i)’s are non-random (deterministic schemes), and when the T (n, i)’s are
independent of the processes (W,X,b,σ ) (independent schemes), but it includes many other cases as well. However
it excludes some a priori interesting situations: when F 0

t = Ft , then (C) amounts to saying that those stopping times
are “strongly predictable” in the sense that T (n, i) is FT (n,i−1)-measurable, and this is quite restrictive; for example
it excludes the case where the T (n, i)’s are the successive hitting times of a spatial grid by X, a case considered in [4]
under some restrictive assumptions on X.

Apart from (C) and (1.5), the sampling scheme should also be not too wildly scattered, and its meshes πn
t should

converge to 0 at some deterministic rate. This rate is expressed through a sequence rn → ∞ of positive – non random –
numbers. The assumptions below all involve this sequence rn, in an implicit way.

Before stating the assumptions, and for any q ≥ 0, we introduce the processes

A(q)nt = r
q−1
n

Nn
t∑

i=1

�(n, i)q . (2.2)

The normalization r
q−1
n is motivated by the regular schemes T (n, i) = i�n, for which A(q)nt = �n[t/�n] (with the

choice rn = 1/�n) converges towards t for any q ≥ 0. Note also that A(0)nt = Nn
t /rn, and since t − πn

t ≤ A(1)nt ≤ t

we deduce that

A(1)nt
P−→ t (2.3)

as soon as (1.5) holds. Then, with q ≥ 0, we set:

Assumption (D(q)). We have (C) and (1.5), and there is a (necessarily nonnegative) (F 0
t )-optional process a(q), such

that for all t we have

A(q)nt
P−→

∫ t

0
a(q)s ds. (2.4)

Note that (D(q)) for some sequence rn implies (D(q)) for any other sequence r ′
n such that r ′

n/rn → α ∈ [0,∞),
and the new limit in (2.4) and when q > 1 is then αq−1a(q), and in particular vanishes when r ′

n/rn → 0: the forth-
coming theorems which explicitly involve rn are true but “empty” when the limit in (2.4) vanishes identically. Regular
sampling schemes with lag �n satisfy (D(q)) for all q ≥ 0, with rn = 1/�n and a(q)t = 1.

Some important connections between these assumptions are stated in the next lemma, to be proved in Section 4.

Lemma 2.1. Let 0 ≤ q < p < q ′. Then for all 0 ≤ s < t we have

A(p)nt − A(p)ns ≤ (
A(q)nt − A(q)ns

)(q ′−p)/(q ′−q)(
A

(
q ′)n

t
− A

(
q ′)n

s

)(p−q)/(q ′−q)
. (2.5)

Moreover, if (D(q)) holds for some q �= 1 and if p is strictly between 1 and q , from any subsequence one may extract a
further subsequence which satisfies (D(p)), and we have versions of a(q) and a(p) satisfying a(p)t ≤ a(q)

(p−1)/(q−1)
t .

Note that (2.4) for all t implies that r
q−1
n

∑Nn
t

i=1 HT (n,i)�(n, i)q
u.c.p.−→ ∫ t

0 Hsa(q)s ds as soon as H is càdlàg. In some
cases we need this convergence to hold at a rate faster than 1/

√
rn, and we express this in the following assumption.

It is indeed a very strong assumption, usually not satisfied by random schemes, and in particular not satisfied by the
independent schemes for which the �(n, i)’s are i.i.d. when i varies, but not deterministic.
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Assumption (D′(q)). We have (D(q)), and further for all t ≥ 0 and all càdlàg (F 0
t )-adapted processes H we have

√
rn

(
r
q−1
n

Nn
t∑

i=1

HT (n,i)�(n, i)q −
∫ t

0
Hsa(q)s ds

)
u.c.p.−→ 0. (2.6)

For a deterministic scheme, (D(q)) may or may not be satisfied, but there is no simple criterion to ensure that it
holds. For a random scheme, it may be useful to describe conditions on the laws or on the conditional laws of the lags
�(n, i), which ensure (D(q)). For each n and each q ≥ 0 we choose an (Ft )-optional (0,∞]-valued process G(q)n

such that

G(q)nT (n,i−1) = r
q
n E

(
�(n, i)q |FT (n,i−1)

)
. (2.7)

This specifies G(q)nt only at the times t = T (n, i), so there are many such processes G(q)n. A simple choice consists
in taking G(q)nt to be equal to the right side of (2.7) when T (n, i−1) ≤ t < T (n, i) (a piecewise constant process). But
other choices are possible, and perhaps more appropriate in view of the forthcoming assumption. We can obviously
take G(0)nt = 1, and by Hölder’s inequality, we can and will choose processes G(q)n which satisfy

0 ≤ p ≤ q ⇒ G(p)n ≤ (
G(q)n

)p/q
. (2.8)

Then we set, with q ≥ 1:

Assumption (E(q)). We have (C) and (1.5), and for each p ∈ [0, q] there is a càdlàg process G(p), adapted to (F 0
t ),

and further G(1) and G(1)− do not vanish, such that for an appropriate choice of G(p)n we have

G(p)n
u.c.p.−→ G(p). (2.9)

Lemma 2.2. Assume (E(q)) for some q > 1. Then (D(p)) holds for all p ∈ [0, q), with

a(p)t = G(p)t

G(1)t
, (2.10)

and in particular

1

rn
Nn

t

P−→
∫ t

0

1

G(1)s
ds. (2.11)

For some results below we will also need a rate of convergence in (2.9), which is expressed in the following:

Assumption (E′(q)). We have (E(q)), and for each p ∈ [0, q] we have
√

rn(G(p)n − G(p))
u.c.p.−→ 0.

Finally, we introduce a kind of sampling schemes which are somehow restrictive but should accommodate many
practical applications, and are called mixed renewal schemes. These schemes are constructed as follows: we consider a
filtration (F 0

t ) as in (C), and a double sequence (ε(n, i): i, n ≥ 1) of i.i.d. positive variables on (Ω, F ,P), independent
of F 0, with moments

m′
q = E

(
ε(n, i)q

)
. (2.12)

We may have m′
q = ∞ for q > 1, but we assume that m′

1 < ∞. We consider a sequence vn of positive (Ft )-adapted
processes, and we define T (n, i) by induction on i as follows:

T (n,0) = 0, T (n, i + 1) = T (n, i) + 1

rn
vn
T (n,i)ε(n, i + 1). (2.13)
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Then we take for (Ft ) the smallest filtration containing (F 0
t ) and such that each T (n, i) is a stopping time. In this

situation, a natural choice for the processes G(q)n of (2.7) is G(q)nt = m′
q(vn

t )q . Again, the next lemma is shown in
Section 4.

Lemma 2.3. Let (T (n, i)) be a mixed renewal scheme.

(a) We have (C), and also T (n, i) → ∞ a.s. as i → ∞ if 1/vn is a locally bounded process.

(b) Suppose further that vn u.c.p.−→ v where v is an (F 0
t )-adapted càdlàg process v such that both v and v− do not

vanish, and that m′
q < ∞ for some q ≥ 1 (this is always true for q = 1). Then (E(q)) holds with G(p)t = m′

p(vt )
p for

all p ∈ [0, q], and (D(p)) holds for all p ∈ (0, q] with a(p)t = m′
p

m′
1
(vt )

p−1.

(c) Under the assumptions of (b), and if
√

rn (vn − v)
u.c.p.−→ 0, we have (E′(q)).

Remark 2.4. In many practical situations, see e.g. [10] for concrete examples, one is led to consider simultaneously
the scheme (T (n, i)), and another scheme (T ′(n, i)) which is a “sub-scheme” of the first one; typically one considers
only the even observations, that is we take T ′(n, i) = T (n,2i). Apart from (1.5), none of the previous assumptions is
preserved by such a transformation, and in particular (C) is not satisfied in general by the new scheme, unless the
original scheme is deterministic.

In fact another assumption, which replaces (C), has been introduced in [8], namely that T (n, i) is a stopping
time for the filtration (F(t−un)+)t≥0, where un = 1/r

ξ
n and ξ ∈ (0,1). Such a property is obviously shared (upon

a modification of ξ ) by the sub-scheme T ′(n, i) above. In this setting, the particular case p = 2 and q = 0 of the
forthcoming results has been proved (under stronger assumptions on X, though). We cannot fit this other assumption
within our framework in general, but when (D(q)) holds for some q > 1 then the same “localization procedure” as
in Lemma 4.1 below implies that under this assumption we can modify the scheme so that (C) holds, and without
modifying the asymptotics below, provided ξ < 1 − 1/q .

3. The results

3.1. Limiting results

As we will see, the behavior of V n(p) is not enough for our purposes, and we need to establish the convergence in
probability for more general processes. For p > 0 and q ≥ 0 we set

V n(p,q)t =
Nn

t∑
i=1

�(n, i)q+1−p/2
∣∣�n

i X
∣∣p, (3.1)

so in particular V n(p) = V n(p,0). In the regular sampling case �(n, i) = �n these processes all convey the same
information, since V n(p,q) = �

q
nV n(p), but this is no longer the case in the irregular sampling case.

Our first result is a law of large numbers, which goes as follows:

Theorem 3.1. Let p ≥ 1 and q ≥ 0. Assume (A) and (D(q + 1)). Then

r
q
n V n(p, q)t

u.c.p.−→ V (p,q)t := mp

∫ t

0
|σs |pa(q + 1)s ds. (3.2)

In particular, under (A) and (C) and (1.5), we have

V n(p)t
u.c.p.−→ V (p)t = mp

∫ t

0
|σs |p ds. (3.3)

For applications, we need an associated central limit theorem. For its statement, we need to recall the notion of
F 0-stable convergence in law for a sequence of random variables (or processes) Yn defined on (Ω, F ,P), see [13] for
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more details. We say that Yn converge F 0-stably in law to Y , where Y is a variable defined on an extension (Ω̃, F̃ , P̃)

of (Ω, F ,P), if we have

E
(
Zh(Yn)

) → Ẽ
(
Zh(Y )

)
: Z bounded F 0-measurable, h continuous bounded. (3.4)

There are in fact two versions for the CLT. The first is associated with (3.3), and is thus the most useful in practice,
and it also holds for (3.2) when q > 0 under a strong additional assumption:

Theorem 3.2. Let p ≥ 2, and assume (A) when p = 2 and (B) when p > 2. Let q ≥ 0 and assume one of the following
two sets of hypotheses:

(i) q = 0 and (D(2));
(ii) q > 0 and (D(q + 1)) and (D(2q + 2)) and (D′(q + 1)).

Then the processes
√

rn(r
q
n V n(p, q) − V (p,q)) converge F 0-stably in law to

V (p,q)t =
√

m2p − m2
p

∫ t

0
|σs |p

√
a(2q + 2)s dW ′

s , (3.5)

where W ′ is a standard Brownian motion, defined on an extension of (Ω, F , (Ft )t≥0,P) and independent of F .
Moreover, conditionally on F , the process V (p,q) is a continuous centered Gaussian martingale with (conditional)
variance at time t :(

m2p − m2
p

)∫ t

0
|σs |2pa(2q + 2)s ds. (3.6)

As mentioned before, (D′(q + 1)) is a very strong assumption, which for example is never satisfied by mixed
renewal schemes unless the variables ε(n, i) are constant. So when q > 0 the previous CLT hardly applies.

In practice we usually want to estimate V (p)t , so the above seems enough because we can use the set (i) of
assumptions for this. However, as we will see in Section 3.2 below, we need also an estimate for the conditional

variance (3.6) when q = 0, that is for
m2p−m2

p

m2p
V (2p,1): for this, we may use (1− m2

p

m2p
)rnV

n(2p,1)t by virtue of (3.2).

This is why we have introduced the processes V n(p,q) for q > 0. But now, for asserting the quality of the latter
estimator, we need a CLT for the processes V n(p,q) under reasonable assumptions, weaker than (ii) above. This is
achieved in the following result:

Theorem 3.3. Let p ≥ 2 and q ≥ 0. Assume (B) and that the sampling scheme satisfies (E′(2q + 2)) and (D(2q + 2)),
and that the (F 0

t )-adapted processes G(p) for p ∈ [1, q + 1] are Itô semimartingales with the same properties as the
process σ in Assumption (B). Then the processes

√
rn(r

q
n V n(p, q) − V (p,q)) converge F 0-stably in law to

V (p,q)t =
∫ t

0
|σs |p

√
a(2q + 2)sw(p,q)s dW ′

s , (3.7)

where W ′ is as in Theorem 3.2 and

w(p,q)t = m2p − m2
p

2G(q + 2)tG(q + 1)tG(1)t − (G(q + 1)t )
2G(2)t

G(2q + 2)t (G(1)t )2
. (3.8)

One may check that 2G(q +2)G(q +1)G(1)− (G(q +1))2G(2) ≤ G(2q +2)(G(1))2 always, because q 
→ G(q)t
has the same structure as the moments of a random variable. Thus w(p,q)t ≥ m2p −m2

p , and this inequality is strict in
general, unless q = 0 of course. When q = 0 this theorem is a special case of Theorem 3.2, with stronger assumptions
on the sampling scheme.

Remark 3.4. By Lemma 2.2, (E′(2q + 2)) implies (D(p)) for all p < 2q + 2, but not necessarily for p = 2q + 2, and
this is why we add the assumption (D(2q + 2)).
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Remark 3.5. When q > 0 we apparently have two different limits for the same sequence of processes, in the two
previous theorems. However if both (E(2q + 2 + ε)) and (D′(q + 1)) hold for some q > 0, one may check that

G(p)nt − (G(1)nt )
p u.c.p.−→ 0 for all p ≤ 2q + 2, and this implies G(p)t = (G(1)t )

p , which in turn yields w(p,q)t =
m2p − m2

p . When the scheme is a mixed renewal scheme, this also implies that the variables ε(n, i) are in fact all
equal to a constant, and the scheme is strongly predictable.

Remark 3.6. We have considered p > 1 and p ≥ 2 respectively in the theorems above: this considerably simplifies
the proofs, but the same results are also available when p ∈ (0,1] for Theorem 3.1 and p ∈ (1,2) for Theorems
3.2 and 3.3. The last two theorems also hold for p ∈ (0,1] when the processes σ and σ− do not vanish. Note also that
when p = 2, Theorem 3.10 holds under (A) instead of (B), but here again the proof is complicated.

Remark 3.7. Both CLTs above have a multidimensional extension, in the sense that we can consider a finite family
(pj , qj )1≤j≤d of indices with pj ≥ 2 and qj ≥ 0. We then have the F 0-stable convergence in law of the d-dimensional
processes with components

√
rn(V

n(pj , qj ) − V (pj , qj )). In the setting of Theorem 3.2 for example, the limit is,
conditionally on F , a continuous centered d-dimensional Gaussian martingale on an extension of the space, with
covariance at time t between the j th and kth components given by

(mpj +pk
− mpj

mpk
)

∫ t

0
|σs |pj +pka(qj + qk + 2)s ds,

to be compared with (3.6).

Remark 3.8. There is another easy extension to more general test functions. Namely, instead of (3.1) we can consider
the process

V n(f, q)t =
Nn

t∑
i=1

�(n, i)q+1f
(
�n

i X/
√

�(n, i)
)
, (3.9)

where f is a function on R with at most polynomial growth and some smoothness properties: it should be C1 for the
law of large numbers, and C2 for the CLT. Let ρa denote the normal law N (0, a2) and ρa(f ) the integral of f with
respect to ρa . The law of large numbers reads as Theorem 3.1, with the limit

∫ t

0 ρσs (f )a(q + 1)s ds, and the CLTs
are as Theorems 3.2 or 3.3: for example, for the former theorem, for the limiting conditional variance one should
replace (3.6) by∫ t

0

(
ρσs

(
f 2) − ρσs (f )2)a(2q + 2)s ds.

Remark 3.9. We can even extend all the results to a d-dimensional underlying process X of the form (1.1), with now W

a d-dimensional Brownian motion. Taking test functions f on R
d , we can consider the processes V n(f, q) of (3.9),

and derive the same results as in the previous remark (now, if a is a d × d matrix, ρa denotes the d-dimensional law
N (0, aa
)). The proofs are exactly the same, with slightly more cumbersome notation.

However, this trivial extension requires the observation times T (n, i) to be the same for all components of X: this is
a fundamental restriction, since when the observations are irregularly spaced they also are typically non-synchronous:
this is why we have not treated explicitly this case here.

3.2. Estimation of the integrated volatility and other powers

In practice, one wants to estimates the variable V (p)t at some time t > 0, mostly when p = 2, but the case p = 4
is also of interest. An estimator is V n(p)t , and Theorem 3.2 gives a central limit theorem for this estimator: it says
that the normalized estimation error

√
rn(V

n(p)t − V (p)t ) is centered normal, conditionally on F 0. Even for regular
sampling schemes, for which a(2)s = 1, this result is not directly usable in practice for deriving confidence intervals
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for example, because
∫ t

0 |σs |2p ds is a priori unknown. But here things are worse because the process a(2) is also
unknown, and in fact we also ignore rn. However, we can “standardize” by considering the variable

T n
t =

√
m2p

(m2p − m2
p)V n(2p,1)t

(
V n(p)t − V (p)t

)
. (3.10)

Then the following holds:

Theorem 3.10. Let p ≥ 2. Assume (D(2)). Assume also (A) when p = 2 and (B) otherwise. Then for any t > 0 such
that

∫ t

0 |σs |2pa(2)s ds > 0 a.s., the sequence T n
t converges in law (and even F 0-stably in law) to N (0,1).

All ingredients in the definition of T n
t are known to the statistician, except of course the quantity V (p)t to be

estimated. Therefore we can derive (asymptotic) confidence intervals for V (p)t in a straightforward way.
If one wants to estimate V (p,q)t one can also use Theorems 3.2 or 3.3, depending on the assumptions on the

scheme. However, so far we have no estimators for the conditional variance
∫ t

0 |σs |2pa(2q + 2)sw(p,q)s ds in the
second theorem, hence we have no feasible statistics for deriving confidence intervals for V (p,q)t when q > 0,
except under the strong assumption (D′(q + 1)).

This theorem should be compared with Theorem 4.1 of [1], which states exactly the same result, when the process X

has no drift and the volatility σt is possibly random but independent of W : in this paper the authors consider only
deterministic sampling schemes but, if their assumptions are not formally comparable to ours, they are in some sense
significantly weaker: namely, they suppose that mini:i≤Nn

t
�(n, i)2/3/πn

t → ∞ as n → ∞. In [16], Theorem 3.1,
is also the same result as above, for p = 2 and again when there is no drift: in that paper the sampling scheme is
somewhat similar to a mixed renewal scheme, and the precise assumptions are not directly comparable to ours, since
basically the authors assume the existence of a CLT for the conditionally centered variables �(n, i). Note also that
this theorem is proved when p = 2 in [15] for deterministic schemes which satisfy an assumption slightly stronger
than (D(2)) plus (D′(1)).

An interesting – and crucial – feature of our result, as well as in the results of [1], is that the properties of the
observation scheme are not showing explicitly in the result itself, and in particular the knowledge of the process
a(2) and even of the rates rn is not necessary to apply it. This is a good thing because those are generally unknown,
whereas it is also dangerous because one might be tempted to use the property that T n

t is (approximately) N (0,1)

without checking that the assumptions on the sampling scheme are satisfied, here as well as in [1]. When they are
satisfied, and although the rates rn do not explicitly show up, these rates still govern the “true” speed of convergence.

Once more, rn is unknown, but Nn
t is of course known. Then as soon as we have also (D(0)) (for example when

(E(2)) holds), then Nn
t /rn

P−→ ∫ t

0 a(0)s ds, and so the actual rate of convergence for the estimators is also 1/
√

Nn
t , as

it should be.

3.3. Some remarks about optimality

In this part we consider only the question of estimating the integrated volatility V (2)t . The problem of asymptotic
efficiency for estimators of V (2)1 is unsolved yet, as far as we know, and even the definition of asymptotic efficiency
is not quite clear, when the volatility is genuinely random, and even for regular sampling.

However, one can examine the asymptotic behavior of our estimators in the very special situation where Xt = σWt

and σ is a constant, so V (2)t = σ 2t . In this case we have a parametric model, and a very simple one indeed, and the
MLE for estimating σ 2t is asymptotically efficient. For regular sampling the MLE is t/�n

[t/�n]V
n(2)t , so obviously the

realized quadratic variation V n(2)t is also asymptotically efficient.
When the sampling is non-random but not regular, the MLE for estimating σ 2 is

V ′
n = t

Nn
t

Nn
t∑

i=1

1

�(n, i)

∣∣�n
i X

∣∣2
.

This is again asymptotically efficient, and for each n the variance of
√

Nn
t (V ′

n − σ 2t) is 2σ 4t2. Now, if further (D(2))
holds, the asymptotic variance of

√
rn(V

n(2,0)t −σ 2t) is 2σ 4
∫ t

0 a(2)s ds, and if (D(0)) also holds we have Nn
t /rn →



1206 T. Hayashi, J. Jacod and N. Yoshida∫ t

0 a(0)s ds. Therefore, under both (D(0)) and (D(2)), the two (normalized) asymptotic variances Σt and Σ ′
t of V n(2)t

and V ′
n satisfy:

Σt = αtΣ
′
t , where αt = 1

t2

(∫ t

0
a(2)s ds

)(∫ t

0
a(0)s ds

)
.

If we use (2.5) with q = 0 and p = 1 and q ′ = 2 and go the limit, we see that αt ≥ 1, as it should be be-
cause V ′

n is asymptotically efficient. It may happen that αt = 1, of course, but this is equivalent to saying that
A(0)nt A(2)nt − (A(1)nt )

2 → 0, and the equality A(0)nt A(2)nt = (A(1)nt )
2 implies that the �(n, i)’s for i ≤ Nn

t are
all equal (by Cauchy–Schwarz inequality): therefore the realized volatility V n(2)t is asymptotically efficient only
when the sampling scheme is “asymptotically” a regular sampling.

At this stage, one might wonder why we do not use V ′
n instead of V n(2)t in general. This is because, if we assume

for example (D(0)), the sequence V ′
n converges in probability to the variable

t

∫ t

0 σ 2
s a(0)s ds∫ t

0 a(0)s ds
,

which is different from
∫ t

0 σ 2
s ds unless either σs or a(0)s do not depend on time.

4. More about sampling schemes

The aim of this section is to prove Lemmas 2.1, 2.2 and 2.3, and it also contains a few complementary results, useful
for the proofs of the main theorems. Below, and in all the paper, K denotes a constant varying from line to line and
may depend on the characteristics of the process or of the sampling scheme (we write Kp if it depends on an additional
parameter p).

Proof of Lemma 2.1. Since (D(1)) always holds under (C) and (1.5), the final claim follows from the estimate (2.5)
and from classical results on the tightness and convergence of increasing processes.

As for (2.5), this follows from Hölder’s inequality as such:

A(p)nt − A(p)ns = r
p−1
n

Nn
t∑

i=Nn
s +1

�(n, i)p

≤
(

r
q−1
n

Nn
t∑

i=Nn
s +1

�(n, i)q

)(q ′−p)/(q ′−q)(
r
q ′−1
n

Nn
t∑

i=Nn
s +1

�(n, i)q
′
)(p−q)/(q ′−q)

.

�

Before proving Lemma 2.2, we introduce strengthened versions of Assumptions (D(q)) and (E(q)), which we will
also use later on:

Assumption (SD(q)). We have (D(q)), and
∫ t

0 a(q)s ds is bounded for each t , and the convergence in (2.4) takes place
in L

1.

Assumption (SE(q)). We have (E(q)), and for some constant L ≥ 1 we have G(q)n ≤ L and 1/G(1)n ≤ L (hence
G(q) ≤ L and 1/G(1) ≤ L as well).

Lemma 4.1. (a) Let 1 ≤ q1 < · · · < qr and assume (D(qj )) for j = 1, . . . , r . For all t > 0, k ≥ 1, one can find a
scheme (Tk,t (n, i)) satisfying (SD(qj )) for j = 1, . . . , r (with the processes ak,t (qj )), and subsets Ωk,t and Ωk,n,t

of Ω , such that

P(Ωk,t ) ≥ 1 − 1/k, lim inf
n

P(Ωk,n,t ) ≥ 1 − 1/k,

ω ∈ Ωk,n,t ⇒ [0, t] ∩ {
T (n, i)(ω): i ≥ 1

} = [0, t] ∩ {
Tk,t (n, i)(ω): i ≥ 1

}}
(4.1)
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and, for j = 1, . . . , r ,

s ≤ t,ω ∈ Ωk,t ⇒ a(qj )(ω)s = ak,t (qj )(ω)s. (4.2)

(b) Assume (E(q)) for some q > 1. For all t > 0, k ≥ 1, one can find a scheme (Tk,t (n, i)) satisfying (SE(q)) (with
the processes Gk,t (p)), and subsets Ωk,t and Ωk,n,t of Ω , such that we have (4.1) and, for p ∈ [0, q],

s ≤ t,ω ∈ Ωk,t ⇒ G(p)(ω)s = Gk,t (p)(ω)s. (4.3)

Proof. (a) We may of course assume that rn ≥ 1 for all n, and also that qr > 1 because (1.5) is enough to im-
ply (SD(1)). Fix t and k. We can find a > 1 such that the set Ωk,t = ⋂

1≤j≤r {
∫ t+1

0 a(qj )s ds ≤ a − 1} satisfies
P(Ωk,t ) ≥ 1−1/k, and thus by (D(qj )) the sets Ωk,n,t = ⋂

1≤j≤r{A(qj )
n
t+1 ≤ a} satisfy lim infn P(Ωk,n,t ) ≥ 1−1/k.

Then we define the sampling scheme (Tk,t (n, i)) in the following way: we set αn = (arn)
1/qr /rn, which goes to 0;

when αn ≥ 1 we simply take �k,t (n, i) = �(n, i) (so the observation times are unchanged), and when αn < 1, that is
for all n large enough, we put

�k,t (n, i) =
{

�(n, i), if �(n, j) ≤ αn for all j = 1, . . . , i,
1/rn, otherwise.

We associate the processes Ak,t (q)n by (2.2). It is obvious that the scheme (Tk,t (n, i)) satisfies (C) and (1.5). On
the set Ωk,n,t we have �(n, i) ≤ αn for all i with T (n, i) ≤ t + 1, hence �k,t (n, i) = �(n, i) for those i’s, and we
conclude the last part of (4.1). Moreover Ak,t (qj )

n
s = A(qj )

n
s as long as �(n, i) ≤ αn for all i with T (n, i) ≤ s,

and afterwards Ak,t (qj )
n
s increases in s like [srn]/rn, so obviously the new scheme satisfies (D(qj )) with a function

ak,t (qj ) which coincides with a(qj ) on [0, t] on the set Ωk,t , giving (4.2). Finally, by construction Ak,t (qj )
n
t ≤ a + t

as soon as αn < 1, so in fact this new scheme satisfies (SD(qj )) for j = 1, . . . , r .
(b) Again, we fix t > 0 and k ≥ 1. Since G(q) is càdlàg (F 0

t )-adapted, there is ak > 1 such that Rk = (t + 1) ∧
inf(s: G(q)s + 1/G(1)s ≥ ak) is an (F 0

t )-stopping time and Ωk,t = {Rk > t} satisfies P(Ωk,t ) ≥ 1 − 1/k. Next,

Rn
k = Rk ∧ inf

(
s:

∣∣G(q)ns − G(q)s
∣∣ + ∣∣G(1)ns − G(1)s

∣∣ ≥ 1

2ak

)
is an (Ft )-stopping time and Ωk,n,t = {Rn

k > t} satisfies the condition in (4.1) by (E(q)). Then the new scheme
(Tk,t (n, i)) is defined by

�k,t (n, i) =
{

�(n, i), if T (n, i − 1) < Rn
k ,

1/rn, otherwise.

(Note that it depends on t , because Rn
k implicitly depends on t .) It is obvious that the scheme (Tk,t (n, i)) satisfies (1.5),

and (C) because all Rn
k are (Ft )-stopping time, and the last part of (4.1) is also obvious.

Now, r
p
n E(�k,t (n, i)p | FTk,t (n,i−1)) is equal to r

p
n E(�(n, i)p | FT (n,i−1)) on the set {T (n, i − 1) < Rn

k }, and to 1
otherwise. Therefore we can take, as the (Ft )-optional process Gk,t (p)n satisfying (2.7) relative to the new scheme,
the process which equals G(p)n on [0,Rn

k ) and 1 on [Rn
k ,∞). Then clearly Gk,t (q)n ≤ ak + 1 and 1/Gk,t (1)n ≤ 2ak .

Moreover P(Rn
k = Rk) → 1, so the new scheme satisfies (2.9) for all p ∈ [1, q], with the limit Gk,t (p) equal to G(p)

on the interval [0,Rk) and to 1 on [Rk,∞). Therefore the new scheme satisfies (SE(q)), and (b) is proved. �

Proof of Lemma 2.2. A standard localization argument, based upon the previous lemma, yields that it is enough to
prove the result when (SE(q)) holds instead of (E(q)). So, in view of (2.8), we assume G(p)n ≤ L for all p ∈ [0, q]
and 1/G(1)n ≤ L for some constant L ≥ 1. We can also assume rn ≥ 1.

(a) In a first step, we show that

E
(
Nn

t + 1
) ≤ Ktrn, (4.4)

where Kt is a constant depending on t . We put Ct = (t + 1) ∨ (2L2)1/(q−1). We also define a new sam-
pling scheme by �′(n, i) = �(n, i) ∧ Ct , with the associated variables N ′n

t and T ′(n, i) and G′(p)n
T (n,i−1)

=
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E(r
p
n �′(n, i)p|FT ′(n,i−1)). This new scheme does not necessarily satisfies (E(q)). However, it does satisfies T (n, i) =

T ′(n, i) and �′(n, i) = �(n, i) for all i such that T (n, i) ≤ t , and also T ′(n, i) > t if T (n, i) > t , because Ct > t . In
particular, we have N ′n

t = Nn
t . Moreover, on the set {T (n, i − 1) ≤ t} we have

G(1)nT (n,i−1) − G′(1)nT (n,i−1) = rnE
((

�(n, i) − Ct

)+|FT (n,i−1)

)
≤ rn

C
q−1
t

E
(
�(n, i)q |FT (n,i−1)

) ≤ L

C
q−1
t

≤ 1

2L
,

where the first inequality comes from Markov’s inequality, the second one from rn ≥ 1, and the last one from C
q−1
t ≥

2L2. Thus G′n(1)T (n,i−1) ≥ 1/2L if i ≤ Nn
t + 1, hence

An
t =

Nn
t +1∑
i=1

�′(n, i)

G′(1)n
T (n,i−1)

≤ 2L

Nn
t +1∑
i=1

�′(n, i) ≤ 2L(t + Ct).

We have

E
(
An

t

) =
∑
i≥1

E

(
�′(n, i)

G′(1)nT (n,i−1)

1{T (n,i−1)≤t}
)

=
∑
i≥1

E

(
1{T (n,i−1)≤t}E

(
�′(n, i)

G′(1)nT (n,i−1)

∣∣FT (n,i−1)

))

= 1

rn

∑
i≥1

E(1{T (n,i−1)≤t}) = 1

rn
E

(
Nn

t + 1
)
.

Thus we deduce (4.4) with Kt = 2L(t + Ct).
(b) Next we set, for p ∈ [0, q) fixed:

Bn
t =

Nn
t +1∑
i=1

r
p−1
n �(n, i)p, Cn

t =
Nn

t +1∑
i=1

�(n, i)
G(p)nT (n,i−1)

G(1)nT (n,i−1)

,

ζ n
i = r

p−1
n �(n, i)p − �(n, i)

G(p)nT (n,i−1)

G(1)nT (n,i−1)

.

We have Bn
(t−πn

t )+ ≤ A(p)nt ≤ Bn
t and Bn

t −Cn
t = ∑Nn

t +1
i=1 ζ n

i . Hence, in order to prove (2.4) with a(p) given by (2.10),
it is enough to prove the following two properties:

Cn
t

u.c.p.−→
∫ t

0

G(p)s

G(1)s
ds, Dn

t = sup
s≤t

∣∣∣∣∣
Nn

s +1∑
i=1

ζ n
i

∣∣∣∣∣ P−→ 0. (4.5)

(c) For the first property above we observe that (2.3) implies that for any càdlàg process H and any integer k ≥ 0

and any sequence Hn of processes having Hn u.c.p.−→ H , we have

Nn
t +k∑
i=1

�(n, i)Hn
T (n,i−1)

u.c.p.−→
∫ t

0
Hs ds. (4.6)

This applied Hn = G(p)n/G(1)n and H = G(p)/G(1) and k = 1 yields the first part of (4.5).
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(d) The variables ζ n
i are martingale differences, relative to the discrete time filtration (FT (n,i))i≥0, with respect to

which the variable Nn
t + 1 is a stopping time. Then, letting r = 2 ∧ q

p
∧ q , so r ∈ (1,2], the Burkholder–Davis–Gundy

inequality and the inequality (
∑

un)
r/2 ≤ ∑

u
r/2
n when un ≥ 0 yield

E
((

Dn
t

)r) ≤ KE

((Nn
t +1∑
i=1

(
ζ n
i

)2

)r/2)
≤ KE

(Nn
t +1∑
i=1

∣∣ζ n
i

∣∣r).

Moreover, by (2.7) and (2.8), we have (with K below depending on r,p,L):

E
(∣∣ζ n

i

∣∣r |FT (n,i−1)

) ≤ 2r−1
E

(
r
r(p−1)
n �(n, i)pr + L2r�(n, i)r |FT (n,i−1)

)
≤ KE

(
1

rr
n

G(pr)nT (n,i−1) + 1

rr
n

G(r)nT (n,i−1)

)
≤ K

rr
n

,

the last inequality coming from pr ≤ q and r ≤ q . Then in view of (4.4),

E
((

Dn
t

)r) ≤ K

rr
n

E
(
Nn

t + 1
) ≤ K

rr−1
n

,

Then, recalling r > 1, the second part of (4.5) holds, and the proof is complete. �

Proof of Lemma 2.3. (a) Property (C) comes from the fact that T (n, i) depends only on vn
T (n,i−1) and T (n, i − 1),

which are FT (n,i−1)-measurable, and on ε(n, i), which is independent of F 0. The second claim is obvious because∑
i≥1 ε(n, i) = ∞ a.s.
(b) By a standard localization argument and the subsequence principle, we may assume that in fact that Y =

supt,n(v
n
t + 1/vn

t ) is a finite positive variable, and supt |vn
t − vt | → 0 for each ω. Then we have ε(n, i)/Y rn ≤

�(n, i) ≤ Yε(n, i)/rn and, since the ε(n, i) are i.i.d. positive, it is obvious that (1.5) holds.
In the present situation (2.7) reads as G(p)nT (n,i−1) = m′

p(vn
T (n,i−1))

p , so we can choose G(p)n = m′
p(vn)p

and (2.9) holds for all p ∈ [0, q] if m′
q < ∞, with G(p) = m′

pvp , and (E(q)) holds. By Lemma 2.2 we have (D(p))
for any p < q , with a(p) = G(p)/G(1).

It remains to prove (D(q)) for q > 1 when m′
q < ∞, that is (2.4) with a(q) as above. (1.5) implies Nn

t

P−→ ∞.
Then the LLN yields

r
q
n

Nn
t

Nn
t∑

i=1

(
�(n, i)/vn

T (n,i−1)

)q P−→ m′
q . (4.7)

In view of (2.11) and G(1) = m′
1v, we deduce that

r
q−1
n

Nn
t∑

i=1

(
�(n, i)/vn

T (n,i−1)

)q P−→ m′
q

m′
1

∫ t

0

1

vs

ds.

This, being true for all t , implies that for an arbitrary càdlàg process H we have

r
q−1
n

Nn
t∑

i=1

�(n, i)q
HT (n,i−1)

(vn
T (n,i−1)

)q
P−→ m′

q

m′
1

∫ t

0

Hs

vs

ds. (4.8)

Then, plugging H = vq above and using the convergence vt/v
n
t → 1 (uniform in t for each ω) gives (2.4) with

a(q) = m′
q

m′
1
vq−1.

(c) Since G(p)nt = m′
p(vn

t )p and G(p) = m′
p(vt )

p , the result is obvious. �
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5. Two auxiliary stable convergence results

This section is devoted to proving two closely related key results on stable convergence in law. They are standard,
except that here we have the F 0-stable convergence in law only (the F -stable convergence does not hold in general),
and we need to be careful.

The setting is as before: we have the process X and the sampling scheme satisfying (1.5) and (C), relative to the
filtration (F 0

t ). We consider the σ -fields Gn
i = FT (n,i) and G′n

i = FT (n,i) ∨ σ(�(n, i + 1)), and we denote by E
n
i and

E
′n
i , respectively, the conditional expectation with respect to Gn

i and G′n
i . Set

βn
i = σT (n,i−1)�

n
i W√

�(n, i)
, (5.1)

Un(p,q)t = r
q+1/2
n

Nn
t∑

i=1

�(n, i)q+1(∣∣βn
i

∣∣p − mp|σT (n,i−1)|p
)
. (5.2)

Proposition 5.1. Suppose that σ is càdlàg and bounded, and that (SD(2q + 2)) holds for some q ≥ 0. Then if p ≥ 0
the processes Un(p,q) converge F 0-stably in law to the process

U(p,q)t =
√

m2p − m2
p

∫ t

0
|σs |p

√
a(2q + 2)s dW ′

s , (5.3)

where W ′ is a Brownian motion defined on an extension of (Ω, F , (Ft )t≥0,P) and independent of F .

Proof. (a) Set

ζ n
i = r

q+1/2
n �(n, i)q+1(∣∣βn

i

∣∣p − mp|σT (n,i−1)|p
)
. (5.4)

Assumption (C) and the definition of G′n
i yield, for any r > 0:

E
′n
i−1

(∣∣βn
i

∣∣r) = mr |σT (n,i−1)|r , (5.5)

so the G′n
i -measurable variable ζ n

i satisfies E
′n
i−1(ζ

n
i ) = 0. Moreover, {Nn

t = i} = {T (n, i) ≤ t < T (n, i + 1)}, hence
Nn

t is an (G′n
i )-stopping time. Then, should we want to prove the usual stable (i.e. the F -stable) convergence in law

we would apply Theorem IX.7.13 of [13], in its version for triangular arrays and associated with the basic martingale
Z = W .

Since we only want to prove the F 0-stable convergence, and since (C) holds, a close look at the proof of that
theorem shows that it is enough to prove the following properties:

Nn
t∑

i=1

E
′n
i−1

((
ζ n
i

)2) P−→ (
m2p − m2

p

)∫ t

0
|σs |2pa(2q + 2)s ds, (5.6)

Nn
t∑

i=1

E
′n
i−1

((
ζ n
i

)21{|ζ n
i |>ε}

) P−→ 0, (5.7)

Nn
t∑

i=1

E
′n
i−1

(
ζ n
i �n

i M
) P−→ 0 (5.8)

for all t and ε > 0 and M ∈ M, where M is the union of the set M1 of all bounded (F 0
t )-martingales which are

orthogonal to W , and of the singleton {W }.
(b) We have E

′n
i−1(ζ

n
i �n

i M) = 0 when M = W , because x 
→ |x|p is an even function. The same equality holds
when M ∈ M1: see Lemma 6.8 of [10], the proof works for the conditional expectation E

′n
i−1 here because of (C). So

(5.8) is proved.
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(c) Next, we prove (5.7). Under (SD(r)) the convergence in (2.4) holds in L
1, locally uniformly in time. It follows

that the supremum of the jump sizes of A(r)n over [0, t], which is rr−1
n (πn

t )r , goes to 0 in L
1 because the limit is

continuous. In other words,

(SD(r)), t ≥ 0 ⇒ E
(
rr−1
n

(
πn

t

)r) → 0. (5.9)

We have mp|σs |p ≤ C for some constant C. Take any θ ∈ (0, ε/2C]. Then if |ζ n
i | > ε and r

q+1/2
n (πn

t )q+1 ≤ θ , we must

have |βn
i |p > ε/2θ and also |ζ n

i | ≤ 2r
q+1/2
n �(n, i)q+1|βn

i |p . Therefore, with the notation an(θ) = P(r
q+1/2
n (πn

t )q+1 >

θ), we have for any η > 0:

P

( Nn
t∑

i=1

E
′n
i−1

((
ζ n
i

)21{|ζ n
i |>ε}

)
> η

)

≤ an(θ) + 4r
2q+1
n

η

∑
i≥1

E
(
�(n, i)2q+2

∣∣βn
i

∣∣2p1{|βn
i |2p>(ε/2θ)2}1{T (n,i)≤t}

)
≤ an(θ) + Kθ2r

2q+1
n

ηε2

∑
i≥1

E
(
�(n, i)2q+2

∣∣βn
i

∣∣4p1{T (n,i)≤t}
)

≤ an(θ) + Kθ2

ηε2
E

(
A(2q + 2)nt

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)

(recall that K varies from line to line; for the last inequality we use E
′n
i−1(|βn

i |4p) ≤ K and (C)). Observe that an(θ) =
P(r

2q+1
n (πn

t )2q+2 > θ2) goes to 0 by (5.9) applied with r = 2q + 2. Then using the boundedness of E(A(2q + 2)nt ),
and by choosing first θ small, then letting n → ∞, we deduce (5.7).

(d) Finally E
′n
i−1((ζ

n
i )2) = r

2q+1
n �(n, i)2q+2(m2p − m2

p)|σT (n,i−1)|2p , whereas by (2.4)

(D(r)) ⇒ rr−1
n

Nn
t∑

i=1

HT (n,i)�(n, i)r
u.c.p.−→

∫ t

0
Hsa(r)s ds (5.11)

for any càdlàg process H . Since σt is càdlàg, we deduce (5.6) by taking r = 2q + 2. �

Recalling (2.7), our second result will be about the processes

U ′n(p, q)t = √
rn

Nn
t∑

i=1

(
r
q
n �(n, i)q+1

∣∣βn
i

∣∣p − mp|σT (n,i−1)|p
G(q + 1)nT (n,i−1)

G(1)nT (n,i−1)

�(n, i)

)
. (5.12)

Proposition 5.2. Let p ≥ 2 and q ≥ 0. Suppose that σ is càdlàg and bounded, and that (SE(2q +2)) and (SD(2q +2))
hold. Then the processes U ′n(p, q) converge F 0-stably in law to the process

U
′
(p, q)t =

∫ t

0
|σs |p

√
a(2q + 2)sw(p,q)s dW ′

s , (5.13)

where w(p,q) is defined by (3.8) and W ′ is as in Proposition 5.1.

Proof. Instead of (5.4), we set

ζ n
i = r

q+1/2
n �(n, i)q+1

∣∣βn
i

∣∣p − r
1/2
n mp|σT (n,i−1)|p

G(q + 1)nT (n,i−1)

G(1)nT (n,i−1)

�(n, i). (5.14)
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Recall that G(p)n ≤ L for all p ∈ [0,2q + 2] and 1/G(1)n ≤ L. Then by taking first the conditional expectation with
respect to G′n

i−1, and second with respect to Gn
i−1 and by using (C) and the fact that σ is adapted to (F 0

t ), we get

E
n
i−1

(
ζ n
i

) = 0,

E
n
i−1

((
ζ n
i

)2) = |σT (n,i−1)|2p

rn

(
m2pG(2q + 2)nT (n,i−1) + m2

pG(q + 1)nT (n,i−1)

(G(1)nT (n,i−1))
2

× (
G(q + 1)nT (n,i−1)G(2)nT (n,i−1) − 2G(q + 2)nT (n,i−1)G(1)nT (n,i−1)

))
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5.15)

At this stage we can reproduce the argument of the previous proof (with the σ -fields Gn
i instead of G′n

i ), to the effect
that it is enough to prove

Nn
t∑

i=1

E
n
i−1

((
ζ n
i

)2) P−→
∫ t

0
|σs |2pa(2q + 2)sw(p,q)s ds,

Nn
t∑

i=1

E
n
i−1

((
ζ n
i

)21{|ζ n
i |>ε}

) P−→ 0,

Nn
t∑

i=1

E
n
i−1

(
ζ n
i �n

i M
) P−→ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.16)

for all t , and ε > 0, and all (F 0
t )-martingales M ∈ M (notation of the previous proof).

The third property above is proved like in (b) of the previous proof, the left side being indeed identically 0.
For the second property we also follow the previous proof: namely, mp|σs |pG(q + 1)ns /G(1)ns ≤ C for some con-

stant C, and we take θ ∈ (0, (ε/2C)q+1]. We may assume that rn ≥ 1. Then if r
q+1/2
n (πn

t )q+1 ≤ θ , we have

r
1/2
n πn

t ≤ r
(q+1/2)/(q+1)
n πn

t ≤ θ1/(q+1) ≤ ε/2C; hence if further |ζ n
i | > ε we must have |βn

i |p > ε/2θ , and also

|ζ n
i | ≤ 2r

q+1/2
n �(n, i)q+1|βn

i |p . Therefore we have the same string of inequalities as in (5.10), and we conclude
the second property (5.16) in the same way.

Finally, exactly as for (4.6), and under the same conditions on Hn and H , (2.11) yields

1

rn

Nn
t∑

i=1

Hn
T (n,i−1)

u.c.p.−→
∫ t

0

Hs

G(1)s
ds.

Recalling that a(2q + 2) = G(2q + 2)/G(1) and that G(p)n
u.c.p.−→ G(p) for p ∈ [0,2q + 2], we then readily deduce

the first property in (5.16) from the second one in (5.15). �

6. Proof of the main theorems

6.1. Preliminaries

Before starting the proofs, we strengthen the assumptions (A), and (B) as follows:

Assumption (SA). (A) holds, and for some constant C we have:∣∣σt (ω)
∣∣ + ∣∣bt (ω)

∣∣ ≤ C. (6.1)

Assumption (SB). (B) holds, and for some constant C we have∣∣σt (ω)
∣∣ + ∣∣bt (ω)

∣∣ + ∣∣̃σt (ω)
∣∣ + ∣∣̃bt (ω)

∣∣ + ∣∣a′
t (ω)

∣∣ + at (ω) ≤ C. (6.2)
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Under (SB) we can replace (2.1) by

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs + Mt, (6.3)

the only difference with (2.1) being that M has still bounded jumps, but not necessarily bounded by 1 (of course, M is
not the same in (2.1) and in (6.3)).

It is then standard, by a suitable localization procedure (see Section 6.3 in [10] for example), and upon using also
Lemma 4.1, that it is enough to prove the theorems when (A), (B), (D(q)) and (E(q)), according to the case, are
replaced by (SA), (SB), (SD(q)) and (SE(q)), and for Theorem 3.3 we may even assume that the Itô semimartingales
G(p) for p ∈ [1,2q + 2] have coefficients satisfying the same boundedness assumptions than those of σt in (SB).

We end these preliminaries with some estimates. Recall (5.1) for βn
i , and set

Zn
i = 1 + ∣∣βn

i

∣∣ + ∣∣�n
i X

∣∣/√�(n, i), ξn
i = �n

i X − √
�(n, i)βn

i . (6.4)

For any càdlàg process H , possibly multi-dimensional, we set

α(H)ni = sup
s∈I (n,i)

‖Hs − HT (n,i−1)‖2. (6.5)

Then classical estimates, see e.g. [10], and in view of (C), give for all r ≥ 2 and on the set {i ≤ Nn
t }:

(SA) ⇒ E
′n
i−1

((
Zn

i

)r) ≤ Kr,

(SA) ⇒ E
′n
i−1

(∣∣ξn
i

∣∣r) ≤ �(n, i)r/2
(
KrE

′n
i−1

(
α(σ)ni

) + �(n, i)r/2
)

≤ Kr,t�(n, i)r/2 on
{
i ≤ Nn

t

}
,

(SB) ⇒ E
′n
i−1

(∣∣ξn
i

∣∣r) ≤ Kr�(n, i)1+r/2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (6.6)

(note that {i ≤ Nn
t } ∈ G′n

i−1; the second inequality in the second display above comes from the boundedness of σ and
�(n, i) ≤ t if i ≤ Nn

t ).

Lemma 6.1. For H a bounded càdlàg process and r > 0 and p ≥ 0, we set

v(H,p, r)ni = r
p−1
n �(n, i)p

(
�(n, i)r +

√
E

′n
i−1

(
αn

i (H)
))

. (6.7)

Then
∑Nn

t

i=1 v(H,p, r)ni
P−→ 0 as soon as (SD(p)) holds, or (SD(q)) holds for some q ≥ p when p > 1, or (SD(q))

holds for some q ∈ [0,p) when p < 1.

Proof. We first observe that the sequence A(p)nt is uniformly integrable: this is obvious under (SD(p)). If 1 <

p < q and (SD(q)) holds, the sequence A(q)nt is uniformly integrable and (2.5) implies A(p)nt ≤ t (q−p)/(q−1) ×
(A(q)nt )

(p−1)/(q−1), and p−1
q−1 < 1, so we obtain the uniform integrability of the sequence A(p)nt . When 0 ≤ q < p < 1

the same argument, upon using A(p)nt ≤ t (p−q)/(1−q)(A(q)nt )
(1−p)/(1−q), gives the uniform integrability of the se-

quence A(p)nt again.

Letting V
n

t = ∑Nn
t

i=1 vn
i and Ṽ n

t = ∑Nn
t

i=1 ṽn
i , where

vn
i = r

p−1
n �(n, i)p+r , ṽn

i = r
p−1
n �(n, i)p

√
E

′n
i−1

(
αn

i (H)
)
,

it suffices to prove V
n

t

P−→ 0 and Ṽ n
t

P−→ 0.

First, the inequality V
n

t ≤ A(p)nt (π
n
t )r is obvious. Since πn

t ≤ t and πn
t

P−→ 0 and the sequence A(p)nt is uniformly
integrable, we deduce that V

n

t → 0 in L
1. Second, we set

wn
i = r

p−1
n �(n, i)pE

′n
i−1

(
αn

i (H)
)
, w′n

i = r
p−1
n �(n, i)pαn

i (H)
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and Yn = ∑Nn
t

i=1 wn
i and Y ′

n = ∑Nn
t

i=1 w′n
i . The Cauchy–Schwarz inequality yields (Ṽ n

t )2 ≤ A(p)nt Yn, thus for Ṽ n
t

P−→ 0
it suffices to prove that E(Yn) → 0. Since wn

i = E
′n
i−1(w

′n
i ) we have

E(Yn) =
∑
i≥1

E
(
wn

i 1{i≤Nn
t }

) =
∑
i≥1

E
(
w′n

i 1{i≤Nn
t }

) = E
(
Y ′

n

)
because, as seen before, {i ≤ Nn

t } ∈ G′n
i−1. Therefore we are left to prove E(Y ′

n) → 0.
Since H is càdlàg bounded, α(H)ni ≤ K for all i and, if θ > 0 and Mθ is the number of jumps of H of size bigger

than θ/2 on [0, t], for all n large enough we have α(H)ni ≤ θ2 for all i ≤ Nn
t except at most Mθ values of i (corre-

sponding to the intervals I (n, i) containing such a “large” jump). In other words, Y ′
n ≤ θ2A(p)nt + KMθr

p−1
n (πn

t )p

outside a set Ωn tending to ∅, and thus

P
(
Y ′

n < ρ
) ≤ θ2

ρ
E

(
A(p)nt

) + P
(
KMθr

p−1
n

(
πn

t

)p
> ρ

) + P(Ωn)

for all ρ. In view of (5.9) and of the uniform integrability of the sequence A(p)nt , plus Ωn → ∅, by choosing first θ

small and then n large, we deduce that the above goes to 0 as n → ∞. Finally, we have for all ρ,L > 0, and since
Y ′

n ≤ KA(p)nt :

E
(
Y ′

n

) ≤ ρ + KLP
(
Y ′

n > ρ
) + KE

(
A(p)nt 1{A(p)nt >L}

) ≤ ρ + KLP
(
Y ′

n > ρ
) + Φ(L),

where Φ(L) → 0 as L → ∞ (apply again the uniform integrability of the sequence A(p)nt for the last inequality). We
deduce E(Y ′

n) → 0 by choosing first ρ small, then L large, then n large. �

6.2. Proof of Theorem 3.1

Here we fix p ≥ 1 and q ≥ 0, and from what precedes we may assume (SA) and (SD(q + 1)). With the notation
of (3.2), we have

r
q
n V n(p, q) − V (p,q) = Fn(1) + Fn(2) + Fn(3), where

Fn(1)t =
Nn

t∑
i=1

ζ(1)ni , ζ(1)ni = r
q
n �(n, i)q+1(�(n, i)−p/2

∣∣�n
i X

∣∣p − ∣∣βn
i

∣∣p)
,

F n(2)t =
Nn

t∑
i=1

ζ(2)ni , ζ(2)ni = r
q
n �(n, i)q+1(∣∣βn

i

∣∣p − mp|σT (n,i−1)|p
)
,

F n(3)t = mp

(
r
q
n

Nn
t∑

i=1

�(n, i)q+1|σT (n,i−1)|p −
∫ t

0
a(q + 1)s |σs |p ds

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.8)

Observe that
√

rnF
n(2) = Un(p,q), as given by (5.2). Then it is enough to prove that for j = 1,2,3:

Fn(j)
u.c.p.−→ 0. (6.9)

We have |ζ(1)ni | ≤ Kr
q
n �(n, i)q+1/2(Zn

i )p−1|ξn
i | because p ≥ 1, hence by (6.6) and Hölder’s inequality (with the

exponents a = b = 2 when k = 1, and when k = 2 under (SA), and with the exponents a = 4/3 and b = 4 when k = 2
under (SB)) we get for k = 1,2:

E
′n
i−1

(∣∣ζ(1)ni

∣∣k) ≤
{

Kkr
kq
n �(n, i)k(q+1)

(
�(n, i)k/2 +

√
E

′n
i−1

(
α(σ)ni

))
, under (SA),

Kkr
kq
n �(n, i)kq+1+(k+1)/4, under (SB).

(6.10)
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Now, ζ(1)ni is Gn
i -measurable, whereas Nn

t is a finite (G′n
i )-stopping time. Hence by Lenglart’s inequality (see e.g. [13],

Lemma I.3.30), in order to get (6.9) for j = 1 it is enough to prove that
∑Nn

t

i=1 E
′n
i−1(|ζ(1)ni |)

P−→ 0. By virtue of (6.10),
we have E

′n
i−1(|ζ(1)ni |) ≤ Kv(σ,q + 1,1/2)ni , as given by (6.7), and we deduce (6.9) for j = 1 from Lemma 6.1.

Next, the variables ζ(2)ni are martingale increments, relative to the discrete-time filtration (G′n
i ), and

E
′n
i−1(|ζ(2)ni |2) ≤ Kr

2q
n �(n, i)2q+2. Then a well known result on martingale differences, using again Lenglart’s in-

equality, yields that for proving (6.9) for j = 2 it is enough to show that wn(t) := r
2q
n

∑Nn
t

i=1 �(n, i)2q+2 P−→ 0 for

all t . Observing that wn(t) ≤ r
q
n (πn

t )q+1A(q + 1)nt , we deduce wn(t)
P−→ 0 from the fact that the sequence A(q + 1)nt

is bounded in probability, and from r
q
n (πn

t )q+1 P−→ 0, which in turn follows from (5.9) with r = q + 1.
Finally, (6.9) for j = 3 follows from (5.11).

6.3. Proof of Theorem 3.2

Step 1. By localization again, it is enough to prove the theorem under the assumptions (SA) when p = 2 and (SB)
otherwise, and (SD(2)) when q = 0, and (SD(q +1)), (SD(2q +2)) and (D′(q +1)), when q > 0. In view of (6.8) and

of Proposition 5.1, it is enough to prove that
√

rnF
n(j)

u.c.p.−→ 0 for j = 1 and j = 3, and this amounts to the following
three convergences (for all t ):

√
rn

Nn
t∑

i=1

E
′n
i−1

(
ζ(1)ni

) u.c.p.−→ 0, (6.11)

√
rn

Nn
t∑

i=1

(
ζ(1)ni − E

′n
i−1

(
ζ(1)ni

)) u.c.p.−→ 0, (6.12)

√
rn

( Nn
t∑

i=1

r
q
n �(n, i)q+1|σT (n,i−1)|p −

∫ t

0
|σs |pa(q + 1)s ds

)
u.c.p.−→ 0. (6.13)

Step 2. A martingale argument shows that for (6.12) it is enough to show that

rn

Nn
t∑

i=1

E
′n
i−1

(∣∣ζ(1)ni

∣∣2) P−→ 0.

Since σ is bounded, the first part of (6.10) yields rnE
′n
i−1(|ζ(1)ni |2) ≤ Kv(0,2q + 1,1)ni , so the above convergence

follows from Lemma 6.1.
Step 3. Next, we prove (6.11) under (SB), in essentially the same way as in [10]. Remembering (6.3) and (6.4), we

write ξn
i = �n

i X − √
�(n, i)βn

i as ξn
i = ξ̂ n

i + ξ̃ n
i , where

ξ̂ n
i =

∫
I (n,i)

(bs − bT (n,i−1))ds +
∫

I (n,i)

(∫ s

T (n,i−1)

(
b̃u du + (̃σu − σ̃T (n,i−1))dWu

))
dWs,

ξ̃n
i = ξ̃ (1)ni + ξ̃ (2)ni , ξ̃ (1)ni =

∫
I (n,i)

(Ms − MT (n,i−1))dWs,

ξ̃ (2)ni = bT (n,i−1)�(n, i) +
∫

I (n,i)

σ̃T (n,i−1)(Ws − WT (n,i−1))dWs.

Then, using (SB), we obtain as in [10] that

• r ≥ 2 ⇒ E
′n
i−1(|̂ξn

i |r ) + E
′n
i−1(|̃ξn

i |r ) ≤ Kr�(n, i)1+r/2,

• E
′n
i−1(|̂ξn

i |2) ≤ K�(n, i)2(�(n, i) + E
′n
i−1(α(b)ni + α(̃σ )ni )),

• h an odd function with polynomial growth ⇒ E
′n
i−1(̃ξ

n
i h(βn

i )) = 0

⎫⎪⎬⎪⎭ (6.14)
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(the last property above is nearly obvious if we replace ξ̃ n
i by ξ̃ (2)ni . It also holds when we replace ξ̃ n

i by ξ̃ (1)ni because
ξ̃ (2)ni = (MT (n,i) −MT (n,i−1))(WT (n,i) −WT (n,i−1))−

∫
I (n,i)

(Ws −WT (n,i−1))dMs , hence ξ̃ (1)ni h(βn
i ) can be written

as the sum of products of a stochastic integral w.r.t. W , times a stochastic integral w.r.t. M , and we conclude by the
orthogonality of M and W ).

Next, a Taylor expansion and the differentiability of f (x) = |x|p (recall p ≥ 2, we have f ′(λx) = λp−1f ′(x) and
observe that f ′′(λx) = λp−2f ′′(x)) give∣∣ζ(1)ni − r

q
n �(n, i)q+1/2f ′(βn

i

)
ξn
i

∣∣ ≤ Kr
q
n �(n, i)q

(
Zn

i

)p−2∣∣ξn
i

∣∣2
.

The last part of (6.14) and the fact that f is even, hence f ′ is odd, imply that E
′n
i−1(f

′(βn
i )̃ξn

i ) = 0. Moreover we have
|f ′(βn

i+1)| ≤ K(Zn
i+1)

p−1. Therefore∣∣E′n
i−1

(
ζ(1)ni

)∣∣ ≤ Kr
q
n �(n, i)qE

′n
i−1

((
Zn

i

)p−2∣∣ξn
i

∣∣2 + √
�(n, i)

(
Zn

i+1

)p−1∣∣̂ξn
i

∣∣). (6.15)

We deduce from the first part of (6.6), the third part of the same (with Hölder’s inequality with exponents a = 4/3
and b = 4, recall that (SB) holds here) and from the second part of (6.14) with the Cauchy–Schwarz inequality, that∣∣E′n

i−1

(
ζ(1)ni

)∣∣ ≤ Kr
q
n �(n, i)q+3/2(�(n, i)1/4 + �(n, i)1/2 +

√
E

′n
i−1

(
α(b)ni + α(̃σ )ni

))
.

Recall also that �(n, i) ≤ t if i ≤ Nn
t . Then with H being the two-dimensional process with components b and σ̃ , we

see that
√

rn|En
i−1(ζ(1)ni )| ≤ Ktv(H,q +3/2,1/4)ni with the notation (6.7), and if i ≤ Nn

t . Since 1 < q +3/2 < 2q +2
and (SD(2q + 2)) holds, we then deduce (6.11) from Lemma 6.1.

Step 4. When q > 0, the property (6.13) is a trivial consequence of Assumption (D′(q + 1)).
Step 5. In this step, we prove (6.13) under (SB), when q = 0. This follows from the next two properties:

√
rn

∫ t

T (n,Nn
t )

|σs |p ds
u.c.p.−→ 0, (6.16)

Nn
t∑

i=1

μn
i

u.c.p.−→ 0, where μn
i = √

rn

∫
I (n,i)

(|σs |p − |σT (n,i−1)|p
)

ds. (6.17)

Equation (6.16) readily follows from (5.9). The proof of (6.17) is similar to [10]: using the C1 property of f (x) =
|x|p and (6.3), and with g(x, y) = f (x) − f (y) − f ′(y)(x − y), we have μn

i = μ(1)ni + μ(2)ni + μ(3)ni , where

μ(1)ni = √
rn

∫
I (n,i)

f ′(σs)ds

∫ s

T (n,i−1)

b̃u du,

μ(2)ni = √
rn

∫
I (n,i)

f ′(σs)ds

∫ s

T (n,i−1)

(̃σu dWu + dMu),

μ(3)ni = √
rn

∫
I (n,i)

g(σT (n,i), σs)ds.

If |x|, |y| ≤ C we have |f ′(x)| ≤ KC and |g(x, y)| ≤ KC |x − y|2. Therefore by (SB), which also implies that
E

′n
i−1((σs − σT (n,i−1))

2) ≤ K�(n, i) on the set {s ∈ I (n, i)}, we get for j = 1 and j = 3:

E

( Nn
t∑

i=1

∣∣μ(j)ni

∣∣) ≤ K
√

rnE

( Nn
t∑

i=1

�(n, i)2

)
≤ K√

rn
E

(
A(2)nt

)
.

Finally E
′n
i−1(μ(2)ni ) = 0 and E

′n
i−1(|μ(2)ni |2) ≤ Krn�(n, i)3 by (SB) again, hence

E

(( Nn
t∑

i=1

μ(2)ni

)2)
≤ KE

(
A(2)nt π

n
t

)
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which goes to 0 by (SD(2)) and (1.5). This finishes the proof of (6.17).
Step 6. It remains to consider the case p = 2 when we have (SA) instead of (SB): we need to prove (6.11), and

also (6.13) when q = 0. The proof is similar to the proof given in [12], and so we only give a sketch below.
We first assume that σ and b are piecewise constant, that is of the form

σt =
∑
j≥1

σtj−11[tj−1,tj )(t), bt =
∑
j≥1

btj−11[tj−1,tj )(t), (6.18)

where tj is a strictly increasing sequence of reals, starting at t0 = 0 and going to infinity. In this case, (6.12) has
been proved in Step 2, and (6.13) holds from Step 4 when q > 0, and when q = 0 it is an obvious consequence of√

rnπ
n
t

P−→ 0 (apply (5.9) with r = 2). Moreover, by integration by parts the left side of (6.11) is

√
rn

∑
j :tj ≤t

ηn
j + √

rn

Nn
t∑

i=1

η′n
i ,

where |ηn
j | ≤ Kr

q
n (πn

t )q+1 and |η′n
i | ≤ Kr

q
n �(n, i)q+2. Therefore if s ≤ t the left side of (6.11) is smaller than

Ktr
q+1/2
n (πn

t )q+1 + K
∑Nn

t

i=1 vn
i , where vn

i is given by (6.7) with k = 1 and H = 0. Then we deduce (6.11) from
(5.9) for r = 2q + 2 and from Lemma 6.1. Therefore we have proved that under (6.18), Theorem 3.2 holds.

Next, we assume (SA) only, and we approximate σ and b with piecewise constants processes σ(m) and b(m),
which are bounded uniformly in m, and in the sense that∫ t

0

(∣∣b(m)s − bs

∣∣ + ∣∣σ(m)s − σs

∣∣)ds
P−→ 0 (6.19)

for all t , as m → ∞. We introduce the semimartingales

X(m)t = X0 +
∫ t

0
b(m)s ds +

∫ t

0
σ(m)s dWs, (6.20)

and the associated processes V n,m(p, q). From what precedes, for each m the processes V
n,m

t = √
rn(r

q
n V n,m(2, q)t −∫ t

0 σ(m)2
s a(q + 1)s ds) converge F 0-stably in law, as n → ∞, to the process

√
2
∫ t

0 |σ(m)s |2√a(2q + 2)s dW ′
s , and it

remains to prove that∫ t

0

∣∣σ(m)s
∣∣2√

a(2q + 2)s dW ′
s

u.c.p.−→
∫ t

0
|σs |2

√
a(2q + 2)s dW ′

s as m → ∞, (6.21)

lim
m→∞ lim sup

n→∞
E

(
sup
s≤t

∣∣V n,m

s − V
n

s

∣∣) = 0, (6.22)

where V
n

t = √
rn(r

q
n V n(2, q)t − ∫ t

0 σ 2
s a(q + 1)s ds). Equation (6.21) readily follows from (6.19), which also implies

(6.22) by the same argument as in [12]: the (tedious) details are left to the reader here.

6.4. Proof of Theorem 3.3

The proof is basically the same as for Theorem 3.2. We can assume (SB) and (SE(2q + 2)) and (SD(2q + 2)) and
(SD(q + 1)) because (D(q + 1)) holds by Lemma 2.2. Instead of the decomposition (6.8) we write, with the same
Fn(1) as in (6.8) and the notation (5.12):

√
rn

(
r
q
n V n(p, q) − V (p,q)

) = √
rnF

n(1) + U ′n(p, q) + mpF ′n,

where

F ′n
t = √

rn

( Nn
t∑

i=1

|σT (n,i−1)|p
G(q + 1)nT (n,i−1)

G(1)nT (n,i−1)

�(n, i) −
∫ t

0
a(q + 1)s |σs |p ds

)
.
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Note that the previous proof yields that (6.11) and (6.12) hold, that is
√

rnF
n(1)

u.c.p.−→ 0. Then, in view of Proposi-

tion 5.2, it is enough to prove that F ′n u.c.p.−→ 0.
Due to (E′(q + 1)), to the boundedness of G(q + 1)n and of 1/G(1)n (uniform in n), and to the form of a(q + 1)

recalled above, for getting F ′n u.c.p.−→ 0 it is enough to prove the following:

√
rn

( Nn
t∑

i=1

�(n, i)HT (n,i−1) −
∫ t

0
Hs ds

)
u.c.p.−→ 0,

where H is the process H = |σ |pG(q +1)/G(1). Remember that under our assumptions σ , G(q +1) and G(1) are Itô
semimartingale with bounded coefficients (in the sense of (SB)), and they are bounded and 1/G(1) is also bounded.
Then by Itô’s formula the process H is also an Itô semimartingale with bounded coefficients. Then exactly the same

proof than in Step 5 of the previous proof shows that F ′n u.c.p.−→ 0, and the proof is finished.

6.5. Proof of Theorem 3.10

Theorem 3.10 trivially follows from Theorems 3.1 and 3.2, upon recalling the following fact: if Un and An are random
variables defined on (Ω, F ,P), and if Un converges F 0-stably to a limit U (defined on an extension of the space) and

An
P̂−→ A, and if A is F 0-measurable, then (Un,An) converges in law to (U,A).
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