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Abstract. Let H0 denote the class of all real valued i.i.d. processes and H1 all other ergodic real valued stationary processes. In
spite of the fact that these classes are not countably tight we give a strongly consistent sequential test for distinguishing between
them.

Résumé. Soit H0 la classe de tous les processus indépendants et équidistribués à valeurs réelles, et H1 la classe complémentaire
dans l’ensemble des processus ergodiques. Nous donnons un test séquentiel fortement consistant pour les distinguer.
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1. Introduction

In sequential testing for distinguishing between two competing hypotheses, the usual framework consists of two
classes of stochastic processes H0 and H1, and a sequence of n observations X1,X2, . . . ,Xn which represent a sam-
pling from a single process. A test is usually a sequence of functions gn of n arguments that take the values zero and
one and it is said to be weakly consistent if the sequence converges to 0/1 in probability according to whether the
process belongs to H0/H1. It is said to be consistent if the convergence is pointwise with probability one. Much clas-
sical work (see [2,3,5]) was done in the case where the classes Hi consisted of i.i.d. processes with the classes being
distinguished by the type of the underlying distribution. More recently (see [11], [6], [12] and [10]) the more general
problem was considered where the classes Hi are no longer restricted to being i.i.d. but are assumed to contain certain
ergodic stationary processes. In particular in the latter two papers some general sufficient conditions were given on
the classes which ensure the existence of consistent tests.

Perhaps the simplest question of this type that one can put is to distinguish between H0, the class of all i.i.d.
processes and its complement in the class of ergodic stationary processses, namely H1 is taken to be all such processes
that are not independent. If we restrict attention to finite valued processes with a fixed number of states then D. Bailey
in his thesis [1] gave just such a consistent test that was based on his universal scheme for estimating the entropy of an
unknown process. If however we take H0 to be the class of all real valued independent processes then none of these
earlier results apply. For example, the main result in [10] assumes that the union of the two classes is contained in
a countable union of uniformly tight processes whereas the class of all distribution functions on the real line is not
countably tight. Our purpose in this note is to answer just this question by providing a consistent sequential test for
deciding whether an arbitrary stationary ergodic process is independent or not. In fact our result applies to vector-
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valued processes as well, indeed all that one needs to assume is that the values taken by the process lie in a countably
generated measurable space which is known a priori.

In the first section we shall show how an appropriate quantization enables one to adapt any good set of independence
tests for finite valued i.i.d. processes to produce an independence test for general processes. In the second section we
shall give a specific example of such a good test. Similar questions can be asked about classes of Markov processes
and we have answered some of these in earlier work. In [8] we showed that even when we restrict to binary processes
the class of all finite order Markov chains cannot be distinguished from its complement by any weakly consistent test.
On the other hand for any k the order-k Markov chains can be distinguished from their complement by a consistent
test even in the setting of countable alphabets (see [7] and [9]).

2. A general test for independence

Let {X , F } be a countably generated measurable space, such as R or R
d or any Polish space with its Borel σ -algebra.

Our process {Xn}∞n=−∞ will be stationary and ergodic taking values in X . (Note that all stationary time series {Xn}∞n=0
can be thought to be a two sided time series, that is, {Xn}∞n=−∞.) The reader can keep in mind real valued processes
without loss of generality.

For notational convenience, let Xn
m = (Xm, . . . ,Xn), where m ≤ n. Note that if m > n then Xn

m is the empty string.
Let Ak be a refining sequence of finite partitions of X and denote by Âk the corresponding algebras of sets. Assume

that
⋃∞

k=1 Âk generates the whole σ -algebra F . For a countably generated measurable space such sequences always
exist. For example Ak can be the partition of R into intervals of the form [j/2k, (j + 1)/2k) for all integers |j | < k2k

and their complement. We will denote by

Qk(x) = Ai if x ∈ Ai ∈ Ak

the function which assigns to x the set of the partition to which it belongs. For any stationary and ergodic X -valued
process {Xn}, let

Y (k)
n = Qk(Xn)

denote the process obtained by quantizing at level k.

Lemma 1. A stationary and ergodic X -valued process {Xn} is independent if and only if the corresponding Ak-valued
process Y

(k)
n is independent for each k.

Proof. If the {Xn} is independent then as functions of the Xn’s so are all the Y
(k)
n . In the opposite direction assume that

for all k the Y
(k)
n ’s are independent. Denote by A the union of the finite algebras

⋃∞
k=1 Âk and by AZ the product σ -

algebra generated by A. On this σ -algebra the probability measure defined by the {Xn} process is a product measure.
Since the algebra

⋃∞
k=1 Âk generates the full σ -algebra F and since measures that agree on an algebra agree also on

the σ -algebra it generates this implies that the probability measure defined by the {Xn} process is a product measure
on F Z as was to be shown. �

Let Y be a finite set. A sequence of functions gn defined on Y n+1 is a consistent test for independence if for any
Y -valued stationary and ergodic process {Yn}, eventually almost surely

gn(Y0, . . . , Yn) =
{

IND if the process is independent,
DEP otherwise.

Define

En = supP
(
gn(Y0, . . . , Yn) = DEP

)
,

where the sup is over all Y -valued independent and identically distributed processes.
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If in addition

∞∑
n=0

En < ∞

then we will say that gn is a strongly consistent test. In the next section we will show how to construct such tests.
Now let Yk = Ak as above. We will show how to use any family of strongly consistent tests {g(k)

n } to devise a
consistent test for the class of all X -valued processes. For an increasing sequence b = {bn} such that bn → ∞ define

TESTb
n

(
Xn

0

) =
{

IND if g
(k)
n

(
Y

(k)
0 , . . . , Y

(k)
n

) = IND for all 1 ≤ k ≤ bn,
DEP otherwise.

Theorem 1. Let {g(k)
n } be a family of strongly consistent tests and define mk be so large that

∑∞
k=1

∑∞
n=mk

E
(k)
n < ∞

(e.g.
∑∞

n=mk
E

(k)
n < 2−k). For n ≥ m1 let bn = max{1 ≤ k: ml ≤ n for all 1 ≤ l ≤ k}. Then TESTb

n(X
n
0 ) is consistent

for all stationary and ergodic X -valued processes {Xn}.

Proof. If the X -valued process {Xn} is dependent then by Lemma 1 for some k, g
(k)
n (Y

(k)
0 , . . . , Y

(k)
n ) = DEP even-

tually almost surely and so TESTb
n(X

n
0 ) = DEP eventually almost surely. Now assume that {Xn} is an independent

X -valued process. Then by Lemma 1, for each k, {Y (k)
n } is independent and so

∞∑
n=m1

bn∑
k=1

E(k)
n =

∞∑
k=1

∞∑
n=mk

E(k)
n < ∞.

Thus

∞∑
n=m1

P
(
TESTb

n

(
Xn

0

) = DEP
)

=
∞∑

n=m1

P
(
g(k)

n

(
Y

(k)
0 , . . . , Y (k)

n

) = DEP for some 1 ≤ k ≤ bn

)

≤
∞∑

n=m1

bn∑
k=1

P
(
g(k)

n

(
Y

(k)
0 , . . . , Y (k)

n

) = DEP
)

≤
∞∑

n=m1

bn∑
k=1

E(k)
n < ∞.

By the Borel–Cantelli Lemma, g
(k)
n (Y

(k)
0 , . . . , Y

(k)
n ) = IND for all 1 ≤ k ≤ bn eventually almost surely. The proof of

Theorem 1 is complete. �

3. Construction of strongly consistent tests

In this section we will show how to construct a strongly consistent test for independence for the class of all processes
taking values in a fixed finite set Y . Assume {Yn} is a stationary and ergodic process taking values in Y . First let
us define a number which will measure the degree of independence of the process. It will be zero if and only if the
process is independent.

For convenience let p(y0
−k+1) and p(y|y0

−k+1) denote the distribution P(Y 0
−k+1 = y0

−k+1) and the conditional
distribution P(Y1 = y|Y 0

−k+1 = y0
−k+1), respectively.
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Define

Γ = sup
1≤k<∞

sup
{z0−k+1∈Y k,y∈Y : p(z0−k+1,y)>0}

∣∣p(y) − p
(
y|z0

−k+1

)∣∣.

We proceed to define an empirical version of this based on the observation of a finite data segment Yn
0 . To this end

first define the empirical version of p(y) and p(y|w0
−k+1) as

p̂n(y) = #{0 ≤ t ≤ n − 1: Yt+1 = y}
n

and

p̂n

(
y|w0

−k+1

) = #{k − 1 ≤ t ≤ n − 1: Y t+1
t−k+1 = (w0

−k+1, y)}
#{k − 1 ≤ t ≤ n − 1: Y t

t−k+1 = w0
−k+1}

.

These empirical distributions, as well as the sets we are about to introduce are functions of Yn
0 , but we suppress the

dependence to keep the notation manageable.
For a fixed 0 < γ < 1 let Ln

k denote the set of strings with length k which appear more than n1−γ times in Yn
0 . That

is,

Ln
k = {

y0
−k+1 ∈ Y k: #

{
k − 1 ≤ t ≤ n − 1: Y t

t−k+1 = y0
−k+1

}
> n1−γ

}
.

Finally, define the empirical version of Γ as follows:

Γ̂n = max
y∈Y

max
1≤k<∞

max
z0−k+1∈Ln

k

∣∣p̂n(y) − p̂n

(
y|z0

−k+1

)∣∣.

Let us agree by convention that if the set over which we are maximizing is empty then the maximum is zero.
Observe, that by ergodicity, the ergodic theorem implies that almost surely the empirical distributions p̂ converge

to the true distributions p and so

lim inf
n→∞ Γ̂n ≥ Γ almost surely.

If the process is dependent then clearly Γ > 0. If the process is independent then Γ = 0 and we will show that not
just Γ̂n → 0 almost surely but it converges to zero at a certain rate.

Let 0 < β <
1−γ

2 be arbitrary. Let

gn =
{

IND if Γ̂n ≤ n−β ,
DEP otherwise.

Note that gn depends on Yn
0 .

Theorem 2. Let {Yn} be an arbitrary stationary and ergodic process taking values from a finite set Y . Assume that
0 < γ < 1 and 0 < β <

1−γ
2 . If the process is independent then eventually almost surely, gn = IND and if the process

is not independent then eventually almost surely, gn = DEP. Furthermore, if the process is independent and identically
distributed then for n > 21/(1−γ−2β)

P (gn = DEP) ≤ 14|Y |n4e−n−2β+1−γ /2

and the right-hand side is summable.

Proof. If the process is not independent then there is a string z0
−k+1 ∈ Y k and a letter y ∈ Y such that

p(y) �= p(y|z0
−k+1) and p(z0

−k+1y) > 0. By ergodicity, p̂n(y) → p(y) and p̂n(y|z0
−k+1) → p(y|z0

−k+1) and so

lim infn→∞ Γ̂n > 0 almost surely which in turn implies that gn = DEP eventually almost surely.
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Assume that the process is independent and identically distributed. Then

P
(
Γ̂n > n−β

)

= P
(

max
y∈Y

max
1≤k<∞

max
(z0

−k+1,y)∈Ln
k

∣∣p̂n(y) − p̂n

(
y|z0

−k+1

)∣∣ > n−β
)

≤ P
(

max
y∈Y

∣∣p̂n(y) − p(y)
∣∣ > n−β/2

)

+ P
(

max
y∈Y

max
1≤k<n

max
z0−k+1∈Ln

k

∣∣p(
y|z0

−k+1

) − p̂n

(
y|z0

−k+1

)∣∣ > n−β/2
)

≤ P
(
For some y ∈ Y :

∣∣p̂n(y) − p(y)
∣∣ > n−β/2

)
+ P

(
For some y ∈ Y ,1 ≤ k < n, k − 1 ≤ l ≤ n − 1: Y l

l−k+1 ∈ Ln
k ,∣∣p̂n

(
y|Y l

l−k+1

) − p
(
y|Y l

l−k+1

)∣∣ > n−β/2
)
.

By the union bound this in turn is:

P
(
Γ̂n > n−β

) ≤
∑
y∈Y

P
(∣∣p̂n(y) − p(y)

∣∣ > n−β/2
)

+
∑
y∈Y

n−1∑
k=1

n−1∑
l=k−1

P
(
Y l

l−k+1 ∈ Ln
k ,

∣∣p̂n

(
y|Y l

l−k+1

) − p
(
y|Y l

l−k+1

)∣∣ > n−β/2
)
.

By Hoeffding’s inequality (cf. Theorem 2 in [4]) for sums of bounded independent random variables, for a given
y ∈ Y ,

P
(∣∣p̂n(y) − p(y)

∣∣ > n−β/2
) ≤ 2e−0.5n−2βn.

Summing over y we get that
∑
y∈Y

P
(∣∣p̂n(y) − p(y)

∣∣ > n−β/2
) ≤ 2|Y |e−0.5n−2βn.

Now for a given 0 ≤ l ≤ n − 1, 1 ≤ k ≤ n − 1 and y ∈ Y we will give an upper bound on the probability

P
(
Y l

l−k+1 ∈ Ln
k ,

∣∣p̂n

(
y|Y l

l−k+1

) − p
(
y|Y l

l−k+1

)∣∣ > n−β/2
)
.

Let l + θ+(l, j, i) and l − θ−(l, j, i) denote the position of the ith occurrence of the pattern Y l
l−j (with length j

and position l) going in positive and negative directions respectively. Formally, set θ+(l, j,0) = 0, θ−(l, j,0) = 0 and
define

θ+(l, j, i) = θ+(l, j, i − 1) + min
{
t > 0: Y

l+θ+(l,j,i−1)+t

l+θ+(l,j,i−1)−j+1+t
= Y

l+θ+(l,j,i−1)

l+θ+(l,j,i−1)−j+1

}
and

θ−(l, j, i) = θ−(l, j, i − 1) + min
{
t > 0: Y

l−θ−(l,j,i−1)−t

l−θ−(l,j,i−1)−j+1−t
= Y

l−θ−(l,j,i−1)

l−θ−(l,j,i−1)−j+1

}
.

For a given 0 ≤ l ≤ n − 1, 1 ≤ k ≤ n − 1, y ∈ Y , r ≥ 0 and s ≥ 0, by Hoeffding’s inequality (cf. Theorem 2 in [4]) for
sums of bounded independent random variables,

P

(∣∣∣∣
∑r

h=1 1{Yl−θ−(l,k,h)+1=y} + ∑s
h=0 1{Yl+θ+(l,k,h)+1=y}

r + s + 1
− p

(
y|Y l

l−k+1

)∣∣∣∣ ≥ 0.5n−β
∣∣∣Y l

l−k+1 = y0
−k+1

)

≤ 2e−0.5n−2β(r+s+1).
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Multiplying both sides by P(Y l
l−k+1 = y0

−k+1) and summing over all possible y0
−k+1 ∈ Y k we get that

P

(
Y l

l−k+1 ∈ Ln
k ,

∣∣∣∣
∑r

h=1 1{Yl−θ−(l,k,h)+1=y} + ∑s
h=0 1{Yl+θ+(l,k,h)+1=y}

r + s + 1
− p

(
y|Y l

l−k+1

)∣∣∣∣ > 0.5n−β

)

≤ P

(∣∣∣∣
∑r

h=1 1{Yl−θ−(l,k,h)+1=y} + ∑s
h=0 1{Yl+θ+(l,k,h)+1=0}

r + s + 1
− p

(
y|Y l

l−k+1

)∣∣∣∣ > 0.5n−β

)

≤ 2e−0.5n−2β(r+s+1).

Summing over all 0 ≤ l ≤ n − 1 and over all pairs (r, s) such that r ≥ 0, s ≥ 0, r + s + 1 ≥ �n1−γ 	 we get that

n−1∑
l=0

P
(
Y l

l−k+1 ∈ Ln
k ,

∣∣p̂n

(
y|Y l

l−k+1

) − p
(
y|Y l

l−k+1

)∣∣ > n−β/2
) ≤ n

∞∑
h=�n1−γ 	

h2e−0.5n−2βh.

Thus

∑
y∈Y

n−1∑
k=0

n−1∑
l=k−1

P
(
Y l

l−k+1 ∈ Ln
k ,

∣∣p̂n

(
y|Y l

l−k+1

) − p
(
y|Y l

l−k+1

)∣∣ > n−β/2
) ≤ 2n2|Y |

∞∑
h=�n1−γ 	

he−n−2βh/2.

Now we give an upper bound on the sum on the right-hand side. Observe that he−n−2βh/2 is monotone decreasing
in h as soon as the derivative e−n−2βh/2 − h0.5n−2βhe−n−2βh/2 is negative for h > n1−γ which is the case for n >

21/(1−γ−2β). Using this fact, we bound the sum by the integral

∞∑
h=�n1−γ 	

he−n−2βh/2 ≤
∫ ∞

n1−γ

he−n−2βh/2 dh.

Integrating by parts we get that
∫ ∞

n1−γ

he−n−2βh/2 dh =
[
h

−1

n−2β/2
e−n−2βh/2

]∞

n1−γ

−
∫ ∞

n1−γ

−1

n−2β/2
e−n−2βh/2 dh

= n1−γ

n−2β/2
e−n−2βn1−γ /2 −

[
1

(n−2β/2)2
e−n−2βh/2

]∞

n1−γ

= n1−γ

n−2β/2
e−n1−γ−2β/2 + 1

(n−2β/2)2
e−n1−γ−2β/2

= (
2n1−γ+2β + 4n4β

)
e−n1−γ−2β/2

≤ (
2n2 + 4n2)e−n1−γ−2β/2

since by assumption 0 < γ < 1 and 0 < β <
1−γ

2 .
Combining all these we get that for n > 21/(1−γ−2β)

P (gn = DEP) = P
(
Γ̂n > n−β

)
≤ 2|Y |e−0.5n1−2β + 12n4|Y |e−n1−γ−2β/2

≤ 14n4|Y |e−n1−γ−2β/2.

The right-hand side is summable provided 2β + γ < 1 and the Borel–Cantelli Lemma yields that

P
(
Γ̂n ≤ n−β eventually

) = 1
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and so gn = IND eventually almost surely. The proof of Theorem 2 is complete. �

This test can be used as the input needed for Theorem 1. Now let (X , F ) be a countably generated measurable
space. As is well known any countably generated measurable space has a refining sequence of finite partitions Ak

such that
⋃∞

k=1 Âk generates the whole σ -algebra F on X where Âk denotes the algebra which is generated by

partition Ak . Let g
(k)
n be the test constructed above for partition Ak . Then choosing b so as to satisfy the condition in

Theorem 1 we have the following corollary.

Corollary 1. For all stationary and ergodic X -valued process {Xn} eventually almost surely, TESTb
n(X

n
0 ) = IND if

the process is independent and eventually almost surely TESTb
n(X

n
0 ) = DEP if the process is not independent.
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