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SPDE LIMITS OF MANY-SERVER QUEUES

BY HAYA KASPI1 AND KAVITA RAMANAN2

Technion and Brown University

This paper studies a queueing system in which customers with indepen-
dent and identically distributed service times arrive to a queue with many
servers and enter service in the order of arrival. The state of the system is
represented by a process that describes the total number of customers in the
system, and a measure-valued process that keeps track of the ages of cus-
tomers in service, leading to a Markovian description of the dynamics. Under
suitable assumptions, a functional central limit theorem is established for the
sequence of (centered and scaled) state processes as the number of servers
goes to infinity. The limit process describing the total number in system is
shown to be an Itô diffusion with a constant diffusion coefficient that is in-
sensitive to the service distribution beyond its mean. In addition, the limit of
the sequence of (centered and scaled) age processes is shown to be a diffusion
taking values in a Hilbert space and is characterized as the unique solution of
a stochastic partial differential equation that is coupled with the Itô diffusion
describing the limiting number in system. Furthermore, the limit processes
are shown to be semimartingales and to possess a strong Markov property.
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1. Introduction.

1.1. Background, motivation and results. Many-server queues constitute a
fundamental model in queueing theory and are typically harder to analyze than
single-server queues. The main objective of this paper is to establish useful func-
tional central limit theorems for many-server queues in the asymptotic regime in
which N , the number of servers, tends to infinity and λ(N), the mean arrival rate
in the system with N servers, scales as λ(N) = λN − β

√
N for some λ > 0 and

β ∈ (−∞,∞). For many-server queues with Poisson arrivals, this scaling was con-
sidered more than half a century ago by Erlang [8] and thereafter by Jagerman [17]
for a loss system with exponential service times, but it was not until the influential
work of Halfin and Whitt [14] that a heavy traffic limit theorem was established.
As a result, the asymptotic regime where λ = 1 and β > 0 is often referred to
as the Halfin–Whitt regime. In contrast to conventional heavy traffic scalings, in
the Halfin–Whitt regime, the limiting stationary probability of a positive wait is
nontrivial (i.e., it lies strictly between zero and one), which better captures the
behavior of many systems found in applications. Due to the simultaneous high
utilization and good quality of service (as captured by a positive probability of
no wait), this asymptotic regime is sometimes also referred to as the Quality-and-
Efficiency-Driven regime. Under the assumption of renewal arrivals, exponential
service times, normalized to have unit mean and limit mean arrival rate λ = 1,
Halfin and Whitt [14] showed that the limit of the sequence of processes repre-
senting the (appropriately centered and scaled) number of customers in the system
is a diffusion process with a constant diffusion coefficient and a state-dependent
drift that is linear and restoring (resembling an Ornstein–Uhlenbeck process) be-
low zero and constant above zero. Under the condition β > 0, which ensures that
each N -server queue is stable, this characterization of the limit process was used
in [14] to establish approximations to the stationary probability of positive wait in
a queue with N servers.

However, in many applications, statistical evidence suggests that it would be
more appropriate to model the service times as being nonexponential (see, e.g.,
the study of real call center data in Brown et al. [4] that indicates that the service
times are lognormally distributed). A natural goal is then to understand the behav-
ior of many-server queues in this scaling regime when the service distribution is
not exponentially distributed. Specifically, in addition to establishing a limit theo-
rem, the aim is to obtain a tractable representation of the limit process that makes
it amenable to computation, so that the limit could be used to shed insight into
performance measures of interest for an N -server queue.
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When the service times are not exponentially distributed, any Markovian rep-
resentation must keep track of the residual service times or the ages of customers
in service. This implies that the dimension of any finite-dimensional representa-
tion of the state must grow with the number of servers (the dimension must be
at least N + 1 for an N -server system), which poses a challenge for obtaining
limit theorems as N → ∞. Instead, in this work a common infinite-dimensional
state space is used for all N -server systems. Specifically, the state of the N -
server queue is represented by a nonnegative, integer-valued process X(N) that
records the total number of customers in system, as well as a measure-valued pro-
cess ν(N) that keeps track of the ages of customers in service, where the age is
the time elapsed since entry into service. This representation, which provides a
Markovian description of the dynamics, was first introduced in Kaspi and Ra-
manan [21], where it was shown that the fluid-scaled sequence (X(N), ν(N))/N

converges almost surely to a certain deterministic process (X, ν), referred to as the
fluid limit. Fluctuations around the fluid limit can be captured by the diffusion-
scaled state sequence {(X̂(N), ν̂(N))}N∈N, which is obtained by centering the fluid-
scaled state (X(N), ν(N))/N around the fluid limit (X, ν) and multiplying the dif-
ference by

√
N .

In the present work, under suitable assumptions, in each of the cases when the
fluid limit is subcritical, critical or supercritical (which, roughly speaking, corre-
spond to the cases λ < 1, λ = 1 or λ > 1), it is shown in Theorems 2 and 3 that the
diffusion-scaled state sequence {(X̂(N), ν̂(N))}N∈N converges weakly to a càdlàg
stochastic process (X̂, ν̂). Moreover, the X̂ component of the limit is shown (in
Corollary 5.10) to be a real-valued Itô diffusion with a constant diffusion coeffi-
cient that is insensitive to the service distribution beyond its mean, and whose drift
is an adapted process that is a functional of ν̂. In particular, although X̂ is non-
Markovian, it admits a fairly tractable representation. The proof of this representa-
tion relies on an asymptotic independence result for the centered arrival and depar-
ture processes (see Proposition 8.4), which may be of independent interest. As for
the age process, although the ν̂(N) are (signed) Radon measure valued processes,
the limit ν̂ lies outside this space. A key challenge was to identify a suitable space
in which to establish convergence without imposing overly restrictive assumptions
on the service distribution G. Under conditions that include a large class of service
distributions relevant in applications such as phase-type, lognormal, logistic and
(for a certain class of parameters) Erlang and Pareto distributions, it is shown that
ν̂(N) converges weakly to ν̂ in the space of H−2-valued càdlàg processes, where
H−2 is the dual of a certain Hilbert space H2. In addition, in Theorem 5(a) the ν̂

component of the limit is characterized as the unique solution to a stochastic par-
tial differential equation that is coupled with the Itô diffusion X̂. Furthermore, it is
also shown in Theorem 4 that (X̂, ν̂) is a semimartingale with an explicit decom-
position and in Theorem 5(b) that (X̂, ν̂), along with an appended state, is a strong
Markov process. The proof of the strong Markov property relies on a consistency
property (see Lemma 9.3 and Appendix E), which shows that the assumptions that
are imposed on the initial state are also satisfied by the state at any positive time.
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1.2. Relation to prior work. To date, the most general results on process level
convergence in the Halfin–Whitt regime were obtained in a nice pair of papers by
Reed [27] and Puhalskii and Reed [25]. Under the assumptions that λ = 1, the ini-
tial residual service times of customers in service are independent and identically
distributed (i.i.d.) and taken from the equilibrium fluid distribution, and the total
(fluid scaled) number in system converges to 1, a heavy traffic limit theorem for the
sequence of processes {X̂(N)}N∈N was established by Reed [27] with only a finite
mean condition on the service distribution. This result was extended by Puhalskii
and Reed [25] to allow for more general, possibly inhomogeneous arrival processes
as well as more general conditions on the residual service times of customers in
service at the initial time. In this setting, convergence of finite-dimensional dis-
tributions was established in [25], and strengthened to process level convergence
when the service distribution is continuous. In both papers, the limit is character-
ized as the unique solution to a certain stochastic convolution equation.

Other previous works had also extended the Halfin–Whitt process level result
for specific classes of service distributions. Noteworthy amongst them is the paper
by Puhalskii and Reiman [26], in which phase-type service distributions are con-
sidered, and the limit is characterized as a multidimensional diffusion, where each
dimension corresponds to a different phase of the service distribution. Whitt [32]
also established a process level result for a many-server queue with finite waiting
room and a service distribution that is a mixture of an exponential random variable
and a point mass at zero. In addition to the process level results described above,
under the stability assumption β > 0, results on the asymptotics of steady state
distributions in the Halfin–Whitt regime have been obtained by Jelenkovic, Man-
delbaum and Momçilović [18] for deterministic service times and by Gamarnik
and Momçilović [12] for service times that are lattice-valued with finite support.

Our work serves to complement the above mentioned results, with the focus
being on establishing tractability of the limit process under assumptions on the
service distribution that are satisfied by a large class of service distributions of
interest. Whereas in all the above papers only the number in system is consid-
ered, we establish convergence for a more general state process, which implies the
convergence of a large class of functionals of the process and not just the num-
ber in system. As a special case, we can recover the results of Halfin and Whitt
[14] and Puhalskii and Reiman [26] and, for the smaller class of service distri-
butions that we consider, Reed [27]. The Markovian representation of the state,
though infinite dimensional, leads to an intuitive characterization of the dynamics,
which facilitates the incorporation of more general features into the model. For
example, this framework was extended by Kang and Ramanan to include aban-
donments in [19] and [20]. In the subcritical case the results of this paper also
provide a characterization of the diffusion limit of the well-studied infinite-server
queue. The latter is easier to analyze due to the absence of a queue and the con-
sequent lack of interaction between those in service and those waiting in queue.
A few representative works on diffusion limits of the number in system in the
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infinite-server queue include Iglehart [15] and Glynn and Whitt [13], where the
limit process is characterized as an Ornstein–Uhlenbeck process, and Krichagina
and Puhalskii [22], who provide an alternative representation of the limit in terms
of the so-called Kiefer process. More recently, a functional central limit theorem in
the space of distribution-valued processes was established for the M/G/∞ queue
by Decreusefond and Moyal [7]. In contrast to the infinite-dimensional Marko-
vian representation in terms of residual service times used in Decreusefond and
Moyal [7], the Markovian representation in terms of the age process that is used
here allows us to associate some natural martingales that facilitate the analysis.

1.3. Outline of the paper. Section 2 contains a precise mathematical descrip-
tion of the model and the state descriptor used, as well as the defining dynamical
equations. A deterministic analog of the model, described by dynamical equations
that are referred to as the fluid equations, is introduced in Section 3. Section 3
also recapitulates the relevant functional strong law of large numbers limit results
established in [21]. In Section 4 a sequence of martingales that are obtained as
compensated departure processes and play an important role in the analysis is in-
troduced, and the associated scaled martingale measures M̂(N), N ∈ N, are shown
to be orthogonal. An associated sequence of stochastic convolution integrals Ĥ(N)

t ,
t ≥ 0, which arise in the representation of the dynamics, is also defined. The main
results and their corollaries are stated in Section 5, and their proofs are presented in
Section 9. The proofs rely on results obtained in Sections 6, 7 and 8. Section 6 con-
tains a succinct characterization of the dynamics and establishes a representation
(see Proposition 6.4) for ν̂(N), the diffusion-scaled age process in the N -server sys-
tem, in terms of Ĥ(N), another stochastic convolution process K̂(N) and the initial
data. In Section 7, it is shown that the processes K̂(N), X̂(N) and ν̂(N) can be ob-
tained as a continuous mapping of the initial data sequence and the process Ĥ(N).
Section 8 is devoted to establishing the joint convergence of the martingale mea-
sure sequence {M̂(N)}N∈N and the associated sequence {Ĥ(N)}N∈N of stochastic
convolution integrals, together with the sequence of centered arrival processes and
initial conditions (see Corollary 8.7). To maintain the flow of the exposition, some
supporting results are relegated to the Appendix. First, in Section 1.4 we introduce
some common notation and terminology used in the paper.

1.4. Notation and terminology. As usual, let Z+ denote the set of nonnega-
tive integers, N denote the set of natural numbers or, equivalently, strictly positive
integers and R denote the set of real numbers. For a, b ∈ R, let a ∨ b and a ∧ b,
respectively, denote the maximum and minimum of a and b. The short-hand nota-
tion a+ and a− will sometimes also be used for a ∨ 0 and −(a ∧ 0), respectively.
Given B ⊂ R, IB denotes the indicator function of the set B [i.e., IB(x) = 1 if
x ∈ B and IB(x) = 0 otherwise].
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1.4.1. Function spaces. Given any metric space E , B(E ) denotes the Borel
sets of E (with topology compatible with the metric on E ), and C(E ) denotes
the space of continuous real-valued functions defined on E . Also, Cb(E ) is the
subset of bounded functions in C(E ) and let Cc(E ) be the subset of functions in
C(E ) that have compact support in E . Let DE [0,∞) denote the space of E -valued
càdlàg functions defined on [0,∞), and let supp(ϕ) denote the support of a func-
tion ϕ. When E is a domain (open connected subset) or closure of a domain in R

n,
equipped with the usual Euclidean metric and Lebesgue measure, let AC(E ) rep-
resent the space of absolutely continuous functions (in the sense of Carathéodory)
defined on E , and let ACb(E ) denote the subset of bounded functions in AC(E ).

We will mostly be interested in the case when E = [0,L) and E = [0,L) ×
[0,∞), for some L ∈ (0,∞]. To distinguish these cases, f will be used to denote
generic functions on [0,L) and ϕ to denote generic functions on [0,L) × [0,∞).
By some abuse of notation, given f on [0,L), it will also be treated as a function
on [0,L) × [0,∞) that is constant in the second variable. For either choice of E ,
let C

1(E ) and C
∞(E ), respectively, represent the space of real-valued, once con-

tinuously differentiable and infinitely differentiable functions on E , let C
1
c(E ) be

the subspace of functions in C
1(E ) that have compact support and C

1
b(E ) the sub-

space of functions in C
1(E ) that, together with their first derivatives, are bounded.

Here, a function on E is said to be differentiable if it is the restriction to E of a
differentiable function on some open neighborhood of E . Recall that given T < ∞
and a continuous function f ∈ C[0, T ], the modulus of continuity wf (·) of f is
defined by

wf (δ)
.= sup

s,t∈[0,T ] : |t−s|<δ

|f (t) − f (s)|, δ > 0.(1.1)

For any ϕ ∈ AC([0,L) × [0,∞)), the partial derivatives ϕx and ϕs are well de-
fined as locally integrable functions on [0,L) × [0,∞). The space C

1,1([0,L) ×
[0,∞)) is defined as the subset of functions in AC([0,L) × [0,∞)) for which
ϕx + ϕs , the directional derivative in the (1,1) direction, is continuous. More-
over, C

1,1
b ([0,L) × [0,∞)) and C

1,1
c ([0,L) × [0,∞)) denote the subset of func-

tions ϕ in C
1,1([0,L) × [0,∞)) such that both ϕ and ϕx + ϕs are bounded or,

respectively, have compact support. Let I0[0,∞) denote the space of nondecreas-
ing functions f ∈ DR[0,∞) with f (0) = 0. For L ∈ [0,∞], L

α[0,L), α ≥ 1, and
L

∞[0,L) represent, respectively, the spaces of measurable functions f on [0,L)

such that
∫
[0,L) |f (x)|α dx < ∞ and the space of essentially bounded functions

(with respect to Lebesgue measure) on [0,L). Also, L
α
loc[0,L) represents the cor-

responding space in which the associated property holds only locally, that is, on
every compact (i.e., closed and bounded) interval in [0,L). The constant func-
tions f ≡ 1 and f ≡ 0 on [0,L) will be represented by the symbols 1 and 0,
respectively. Given any càdlàg, real-valued function f defined on [0,L), we de-
fine ‖f ‖T

.= sups∈[0,T ] |f (s)| for every T < L, and let ‖f ‖∞ .= sups∈[0,L) |f (s)|,
which could possibly equal infinity. As usual, for f ∈ DR[0,∞) and t > 0, let
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f (t−) = limu↑t f (u) denote the left limit of f at t , with the convention that
f (0−) = f (0), and also let �f (t) = f (t) − f (t−) denote the jump of f at t .

For f,g ∈ C
∞
c [0,∞) and n = 0,1,2, . . . , consider the weighted inner product

defined by

〈f,g〉Hn

.=
n∑

m=0

∫ ∞
0

dmf

dxm
(x)

dmg

dxm
(x)(1 + |x|2)n dx(1.2)

and the associated norm

‖f ‖Hn

.= (〈f,f 〉Hn
)1/2.(1.3)

It is clear from the definition that the norm ‖ · ‖Hn
is Hilbertian (i.e., it satisfies

‖f + g‖2
Hn

− ‖f − g‖2
Hn

= 2‖f ‖2
Hn

+ 2‖g‖2
Hn

). For each n ∈ N, let Hn be the
(weighted Sobolev) space obtained as the completion of C

∞
c [0,∞) with respect to

the norm ‖ · ‖Hn
. It is easy to verify that each Hn is a complete separable Hilbert

space and, for m < n, Hn ⊂ Hm. Now, for m,n ∈ N, m < n, ‖ · ‖Hm
is said to be

HS weaker than ‖ · ‖Hn
, and denoted ‖ · ‖Hm

HS
< ‖ · ‖Hn

, if the injection map from
Hn to Hm is a Hilbert–Schmidt (or, equivalently, quasi-nuclear) operator (see, e.g.,
page 6 of [2] or page 330 of [31]). It follows from Theorems 3.6 and 3.7 of [2] that
for all m,n ∈ N,

n > m ⇒ ‖ · ‖Hm

HS
< ‖ · ‖Hn

.(1.4)

Now, let H−n be the dual of Hn, where the dual norm ‖ · ‖H−n
is given by

‖ν‖2
H−n

=
∞∑

k=1

ν(enk)
2, ν ∈ H−n,

where {enk, k = 1, . . .} is a complete orthonormal system in Hn. Moreover, let S
be the Schwartz space of rapidly decreasing functions, namely the space of C

∞
functions on [0,∞), for which the following semi-norms are finite:

‖f ‖β,γ = sup
x∈[0,∞)

∣∣∣∣xβ dγ f

dxγ
(x)

∣∣∣∣, β ∈ N, γ ∈ N.

Let S ′ be the topological dual of S , which is the Schwartz space of tempered dis-
tributions. It is well known that S and S ′ are separable, nuclear Fréchet spaces.
Moreover, the projective limit of the spaces Hn, n ∈ N, coincides with S , and the
dual space satisfies S ′ = ⋃∞

n=0 H−n; see Theorem 3.8, relation (3.39) and the com-
ment at the end of Section 3.10 of [2]. For ν ∈ S ′ and f ∈ S and likewise, for
ν ∈ H−n and f ∈ Hn, let ν(f ) denote the duality pairing. For n = 1,2 and f for
which the corresponding first or second (weak) derivatives are well defined, some-
times the notation f ′ = f (1) and f ′′ = f (2) will also be used. The usual L

2 norm
is denoted by

‖f ‖L2 =
(∫

R

|f (x)|2 dx

)1/2

.



152 H. KASPI AND K. RAMANAN

It follows immediately from the definition of the norms ‖ · ‖n given above that

‖f ‖L2 = ‖f ‖H0,

‖f ‖2
L2

+ ‖f ′‖2
L2 ≤ ‖f ‖2

H1
,(1.5)

‖f ‖2
L2

+ ‖f ′‖2
L2 + ‖f ′′‖2

L2 ≤ ‖f ‖2
H2

.

Moreover, for any f ∈ H1, it is easy to deduce the norm inequalities

|f (0)| ≤ √
2‖f ‖H1, ‖f ‖∞ ≤ 2‖f ‖H1,(1.6)

which will be used in the sequel. Indeed, if f ∈ H1, then f is absolutely contin-
uous, and both f and f ′ lie in L

2. Therefore, there exists a real-valued sequence
{xn} with xn → ∞ and f (xn) → 0 as n → ∞. Since for each n ∈ N, we have
f 2(xn) − f 2(0) = 2

∫ xn

0 f (u)f ′(u) du, applying the Cauchy–Schwarz inequality
and then taking limits as n → ∞, we obtain |f (0)|2 ≤ 2‖f ‖L2‖f ′‖L2 ≤ 2‖f ‖2

H1
,

where the last inequality follows from the second inequality in (1.5). This yields
the first inequality in (1.6). The second inequality in (1.6) can be inferred in a
similar manner, applying the Cauchy–Schwarz inequality to the relation f 2(x) =
f 2(0) + 2

∫ x
0 f (u)f ′(u) du and using the first inequality in (1.6).

Finally, let D[0,∞) denote the usual space of test functions, namely the
space C

∞
c [0,∞) equipped with the following notion of convergence: fn → f in

D[0,∞) if the functions fn are supported in a common compact set and, for every
m ∈ N, dmfn/dxm → dmf/dxm uniformly. Also, let D′[0,∞) denote its dual,
the space of distributions. It is well known (see, e.g., Theorem 3.9 of [2]) that both
D[0,∞) and D′[0,∞) are nuclear spaces.

1.4.2. Measure spaces. The space of Radon measures on a metric space E ,
endowed with the Borel σ -algebra, is denoted by M(E ). MF (E ) is the subspace
of finite measures in M(E ) and M≤N(E ) is the subspace of positive measures with
total mass less than or equal to N . Note that then M≤1(E ) is the space of sub-
probability measures. For any Borel measurable function f : E → R that is inte-
grable with respect to ξ ∈ M(E ), the short-hand notation 〈f, ξ〉 .= ∫

E f (x)ξ(dx)

will be used. Recall that a Radon measure on E is one that assigns finite measure
to every relatively compact subset of E . By identifying a Radon measure μ ∈ M(E )

with the mapping on Cc(E ) defined by f �→ 〈f,μ〉, a Radon measure on E can be
equivalently defined as a linear mapping from Cc(E ) into R such that for every
compact set K ⊂ E , there exists LK < ∞ such that

|〈f,μ〉| ≤ LK‖f ‖∞ ∀f ∈ Cc(E ) with supp(f ) ⊂ K.

The space MF (E ) is equipped with the weak topology [generated by sets of the
form {μ : 〈f1,μ−μo〉 < ε1, . . . , 〈fn,μ−μo〉 < εn}, for μo ∈ MF (E ), n ∈ N, fi ∈
Cb(E ) and εi > 0, i = 1, . . . , n]. Also, recall that a sequence {μn}n∈N in MF (E )

converges to μ ∈ MF (E ) in the weak topology (denoted μn
w→ μ) if for every
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f ∈ Cb(E ), 〈f,μn〉 → 〈f,μ〉 as n → ∞. The symbol δx will be used to denote the
measure with unit mass at the point x, and the symbol 0̃ will be used to denote the
identically zero Radon measure. When E is an interval, say [0,L), for conciseness
the notation M[0,L) will be used instead of M([0,L)). Also, for ease of notation,
given ξ ∈ M[0,L) and an interval (a, b) ⊂ [0,L), ξ(a, b) and ξ(a) will be used to
denote ξ((a, b)) and ξ({a}), respectively.

1.4.3. Stochastic processes. Given a Polish space V , DV [0, T ] and DV [0,∞)

denote the spaces of V -valued, càdlàg functions on [0, T ] and [0,∞), respec-
tively, endowed with the usual Skorokhod J1-topology; see [3] for details on this
topology. Then DV [0, T ] and DV [0,∞) are also Polish spaces. We will be in-
terested in V -valued stochastic processes, especially in the cases when V = R,
V = MF [0,L) for some L ≤ ∞, V = S ′[0,L) and V = H−n[0,L) for n = 1,2,
and products of these spaces. These are random elements that are defined on a
probability space (, F ,P) and take values in DV [0,∞), equipped with the Borel
σ -algebra (generated by open sets under the Skorokhod J1-topology). A sequence
{Z(N)}N∈N of càdlàg, V -valued processes, with Z(N) defined on the probability
space ((N), F (N),P

(N)), is said to converge in distribution to a càdlàg V -valued
process Z defined on (, F ,P) if and only if for every bounded, continuous func-
tional F : DV [0,∞) → R,

lim
n→∞ E

(N)[F (
Z(N))] = E[F(Z)],

where E
(N) and E are the expectation operators with respect to the probability

measures P
(N) and P, respectively. Convergence in distribution of Z(N) to Z will

be denoted by Z(N) ⇒ Z.

2. Description of the model. The many-server model under consideration is
introduced in Section 2.1. The state descriptor and the dynamical equations that
describe the evolution of the state are presented in Section 2.2.

2.1. The N -server model. Consider a system with N servers, in which arriving
customers are served in a nonidling, first-come-first-serve (FCFS) manner; that is,
a newly arriving customer immediately enters service if there are any idle servers,
or if all servers are busy, then the customer joins the back of the queue and the
customer at the head of the queue (if one is present) enters service as soon as a
server becomes free. Our results are not sensitive to the exact mechanism used to
assign an arriving customer to an idle server as long as the nonidling condition
is satisfied. Customers are assumed to be infinitely patient; that is, they wait in
queue till they receive service. Servers are nonpreemptive and serve a customer
to completion before starting service of a new customer. Let E(N) denote the cu-
mulative arrival process, with E(N)(t) representing the total number of customers
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that arrive into the system in the time interval [0, t], and let the service require-
ments be given by the i.i.d. sequence {vi, i = −N + 1,−N + 2, . . . ,0,1, . . .}, with
common cumulative distribution function G. Let X(N)(0) represent the number
of customers in the system at time 0. Then, due to the nonidling condition, the
number of customers in service at time 0 is equal to X(N)(0) ∧ N . The sequence
{vi, i = −X(N)(0) ∧ N + 1, . . . ,0} represents the service requirements of cus-
tomers already in service at time zero, ordered according to their ages at time zero,
where the age of a customer that has entered service is defined to be the minimum
of the amount of time elapsed since the customer entered service and the service
time, as defined explicitly in (2.5) below. In particular, v0 is the service time of the
customer who has spent the least time in service amongst those in service at time
zero. On the other hand, for i ∈ N, vi represents the service requirement of the ith
customer to enter service after time 0.

Consider the càdlàg process R
(N)
E defined by

R
(N)
E (s)

.= inf
{
u > s :E(N)(u) > E(N)(s)

} − s, s ∈ [0,∞).(2.1)

Note that R
(N)
E (s) represents the time, at s, to the next arrival. The following mild

assumptions will be imposed throughout, without explicit mention:

• E(N) is a càdlàg nondecreasing pure jump process with E(N)(0) = 0 and almost
surely, E(N)(t) < ∞ and E(N)(t) − E(N)(t−) ∈ {0,1} for t ∈ [0,∞).

• The process R
(N)
E is Markovian with respect to the usual augmentation of its own

natural filtration; see, for example, page 10 of [30] for an explicit construction
of the filtration.

• The cumulative arrival process is independent of the i.i.d. sequence of service
requirements {vj , j = −N +1, . . .}. Moreover, given σ(R

(N)
E (0)), the σ -algebra

generated by R
(N)
E (0), the process {E(N)(t), t > 0} is independent of X(N)(0)

and the ages of the customers that have entered service by time zero.
• G has density g.
• Without loss of generality, we assume that the mean service requirement is 1.∫

[0,∞)

(
1 − G(x)

)
dx =

∫
[0,∞)

xg(x) dx = 1.(2.2)

Also, the right end of the support of the service distribution is denoted by

L
.= sup{x ∈ [0,∞) :G(x) < 1}.

Note that the existence of a density for G implies, in particular, that G(0+) = 0.

REMARK 2.1. The assumptions above are fairly general, allowing for a large
class of arrival processes and service distributions. When E(N) is a renewal pro-
cess, R

(N)
E is simply the forward recurrence time process, the second assumption

holds (see Proposition V.1.5 of Asmussen [1]) and the model corresponds to a
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GI/GI/N queueing system. However, the second assumption holds more generally
such as, for example, when E(N) is an inhomogeneous Poisson process; see, for
example, Lemma II.2.2 of Asmussen [1].

The processes R
(N)
E and E(N) described above have trajectories in DR[0,∞);

see, for example, Appendix A of [19]. The sequence of processes {R(N)
E ,E(N),

X(N)(0), vi, i = −N + 1, . . . ,0,1, . . .}N∈N are all assumed to be defined on a
common probability space (, F ,P) that is large enough for the independence
assumptions stated above to hold.

2.2. State descriptor and dynamical equations. As in the study of the func-
tional strong law of large numbers limit for this model, which was carried
out in [21], the state of the system will be represented by the vector of pro-
cesses (R

(N)
E ,X(N), ν(N)), where R

(N)
E determines the cumulative arrival process

via (2.1), X(N)(t) ∈ Z+ represents the total number of customers in system (in-

cluding those in service and those waiting in queue) at time t and ν
(N)
t is a dis-

crete, nonnegative finite measure on [0,L) that has a unit mass at the age of each
customer in service at time t . Here, the age a

(N)
j of the j th customer is (for each re-

alization) a piecewise linear function that is zero until the customer enters service,
then increases linearly while in service (representing the time elapsed since service
began) and then remains constant (equal to its service requirement) after the cus-
tomer completes service and departs the system. In order to fully describe the state
dynamics, it will be convenient to introduce the following auxiliary processes:

• the cumulative departure process D(N), where D(N)(t) is the number of cus-
tomers that have departed the system in the interval [0, t];

• the process K(N), where K(N)(t) represents the cumulative number of cus-
tomers that have entered service in the interval [0, t].

A simple mass balance on the whole system shows that

D(N)(t)
.= X(N)(0) − X(N)(t) + E(N)(t), t ∈ [0,∞).(2.3)

Likewise, recalling that 〈1, ν(N)〉 = ν(N)[0,L) represents the total number of cus-
tomers in service, an analogous mass balance on the number of customers in ser-
vice yields the relation

K(N)(t)
.= 〈

1, ν
(N)
t

〉 − 〈
1, ν

(N)
0

〉 + D(N)(t), t ∈ [0,∞).(2.4)

For j ∈ N, let

θ
(N)
j

.= inf
{
s ≥ 0 :K(N)(s) ≥ j

}
with the usual convention that the infimum of an empty set is infinity. Note that
θ

(N)
j denotes the time of entry into service of the j th customer to enter service
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after time 0. In addition, for j = −(X(N)(0) ∧ N) + 1,−X(N)(0) ∧ N, . . . ,0, set
θ

(N)
j = −a

(N)
j (0) to be the amount of time that the j th customer in service at time

0 has already been in service. Then, for t ∈ [0,∞) and j = −(X(N)(0) ∧ N) +
1, . . . ,0,1, . . . , the age process is given explicitly by

a
(N)
j (t) =

{[
t − θ

(N)
j

] ∨ 0, if t − θ
(N)
j < vj ,

vj , otherwise.
(2.5)

Due to the FCFS nature of the service, K(N)(t) is also the highest index of any
customer that has entered service, and (2.5) implies that for j > K(N)(t), θ

(N)
j > t

and a
(N)
j (t) = 0. The measure ν

(N)
t representing the age distribution at time t can

then be expressed as

ν
(N)
t =

K(N)(t)∑
j=−〈1,ν

(N)
0 〉+1

δ
a

(N)
j (t)

I{a(N)
j (t)<vj },(2.6)

where δx represents the Dirac mass at the point x. The nonidling condition, which
stipulates that there be no idle servers when there are more than N customers in
the system, is expressed via the relation

N − 〈
1, ν

(N)
t

〉 = [
N − X(N)(t)

]+
, t ∈ [0,∞).(2.7)

Note that (2.3), (2.4) and (2.7), together with the elementary identity x − x ∨ 0 =
x ∧ 0, imply the relation

K(N)(t) = X(N)(t) ∧ N − X(N)(0) ∧ N + D(N)(t), t ∈ [0,∞).(2.8)

Clearly 〈1, ν
(N)
t 〉 ≤ N for every t ∈ [0,∞) because the maximum number of

customers in service at any given time is bounded by the number of servers.
In addition, if the support of ν

(N)
0 lies in [0,L), then it follows from (2.5) and

(2.6) that ν
(N)
t takes values in MF [0,L) for every t ∈ [0,∞). Thus, the state

of the system is represented by the càdlàg process (R
(N)
E ,X(N), ν(N)), which

takes values in [0,∞) × N × MF [0,L). For an explicit construction of the
state that also shows that the state and auxiliary processes are well defined and
càdlàg; see Lemma A.1 of [19]. The results obtained in this paper are indepen-
dent of the particular rule used to assign customers to stations, but for techni-
cal purposes it will be convenient to also introduce the additional “station pro-
cess” σ (N) .= (σ

(N)
j , j ∈ {−N + 1, . . . ,0} ∪ N). For each t ∈ [0,∞), if cus-

tomer j has already entered service by time t , then σ
(N)
j (t) is equal to the in-

dex i ∈ {1, . . . ,N} of the station at which customer j receives/received service
and σ

(N)
j (t)

.= 0 otherwise. Finally, for t ∈ [0,∞), let F̃ (N)
t be the σ -algbera

generated by {R(N)
E (s), a

(N)
j (s), σ

(N)
j (s), j ∈ {−N, . . . ,0} ∪ N, s ∈ [0, t]}, and let
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{F (N)
t , t ≥ 0} denote the associated right-continuous filtration that is completed

(with respect to P) so that it satisfies the usual conditions. Then it is easy to verify
that (R

(N)
E ,X(N), ν(N)) is {F (N)

t }-adapted; see, for example, Section 2.2 of [21].

In fact, as shown in Lemma B.1 of [19], {(R(N)
E (t),X(N)(t), ν

(N)
t ), F (N)

t , t ≥ 0} is
a strong Markov process.

For future purposes, we introduce some standard Markov process notation
(see [30]) associated with the Markov process (R

(N)
E ,X(N), ν(N)) = {(R(N)

E (t),

X(N)(t), ν
(N)
t ), t ≥ 0}. Let G(N),0

t be the σ -algebra generated by {(R(N)
E (s),

X(N)(s), ν
(N)
s ), s ∈ [0, t]}, and let G(N),0∞ = σ(

⋃
t≥0 G(N),0

t ). For (r, k,μ) ∈
[0,∞) × N × MF [0,L), let P

(N)
r,k,μ be the law of the Markov process (R

(N)
E ,X(N),

ν(N)) with initial condition (R
(N)
E (0),X(N)(0), ν

(N)
0 ) = (r, k,μ). Also, let {G̃(N)

t ,

t ≥ 0} be the usual augmentation of the filtration {G(N),0
t , t ≥ 0} (as carried

out, e.g., in page 25 of [30]) and let G(N)
t = ⋂

s>t G(N),0
s , t ≥ 0, be the associ-

ated right-continuous filtration. Note that for every t ≥ 0, G(N)
t ⊆ F (N)

t and that
{(R(N)

E ,X(N), ν(N)),P
(N)
r,k,μ, (r, k,μ) ∈ [0,∞)×N×MF [0,L)} is a strong Markov

family.

REMARK 2.2. The assumed Markov property of R
(N)
E with respect to the

completed, right-continuous version of its natural filtration together with the in-
dependence properties of E(N) assumed in Section 2.1 imply that for any t ∈
[0,∞), given σ {R(N)

E (t)} the future arrivals process {E(N)(s), s > t} is indepen-

dent of F (N)
t , and hence of G(N)

t because G(N)
t ⊆ F (N)

t .

3. Fluid limit. In this section we recall the functional strong law of large num-
bers limit or, equivalently, fluid limit obtained in [21]. The initial data describing
the system consists of E(N), the cumulative arrivals after zero, X(N)(0), the num-
ber in system at time zero, and ν

(N)
0 , the age distribution of customers in service at

time zero. The initial data belongs to the following space:

I N
0

.= {(f, x,μ) ∈ I0[0,∞) × [0,∞) × M≤N [0,L) :
(3.1)

N − 〈1,μ〉 = [N − x]+},
where we recall that I0[0,∞) is the subset of nondecreasing functions f ∈
D[0,∞)[0,∞) with f (0) = 0. When N = 1, I 1

0 will be denoted simply by I0. As-
sume that I N

0 is equipped with the product topology. Consider the “fluid scaled”
versions of the processes H = E,X,K,D and measures H = ν defined by

H(N) .= H(N)

N
(3.2)
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and let

R
(N)

E (t)
.= R

(N)
E

(
E(N)(t)

)
, t ∈ [0,∞),

for N ∈ N. Observe that the fluid-scaled initial data (E(N),X(N)(0), ν
(N)
0 ) lies

in I0. The strong law of large numbers results in [21] were obtained under As-
sumptions 1 and 2 below.

ASSUMPTION 1. There exists (E,x0, ν0) ∈ I0 such that almost surely, as
N → ∞, (

E(N),X(N)(0), ν
(N)
0

) → (E,x0, ν0) in I0

and moreover, as N → ∞, E[X(N)(0)] → x0 and E[E(N)(t)] → E(t) for every
t ∈ [0,∞).

Next, recall that G has density g, and let h denote its hazard rate,

h(x)
.= g(x)

1 − G(x)
, x ∈ [0,L).(3.3)

Observe that h is automatically locally integrable on [0,L) because for every 0 ≤
a ≤ b < L, ∫ b

a
h(x) dx = ln

(
1 − G(a)

) − ln
(
1 − G(b)

)
< ∞.(3.4)

However, h is not integrable on [0,L). In particular, when L < ∞, h is unbounded
on (�′,L) for every �′ < L.

ASSUMPTION 2. At least one of the following two properties holds:

(a) L = ∞ and there exists �′ < ∞ such that h is bounded on (�′,∞);
(b) there exists �′ < L such that h is lower-semicontinuous on (�′,L).

A succinct description of the dynamics of the N -server system in terms of cer-
tain integral equations is provided in Proposition 6.1; see also Theorem 5.1 of [21].
The deterministic analog of these equations, the so-called fluid equations, is intro-
duced below.

DEFINITION 3.1 (Fluid equations). The càdlàg function (X, ν) defined on
[0,∞) and taking values in [0,∞) × M≤1[0,L) is said to solve the fluid equa-
tions associated with (E,x0, ν0) ∈ I0 if X(0) = x0 and for every t ∈ [0,∞),∫ t

0
〈h, νs〉ds < ∞,(3.5)
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and the following relations are satisfied: for every ϕ ∈ C
1,1
c ([0,L) × [0,∞)),

〈ϕ(·, t), νt 〉 = 〈ϕ(·,0), ν0〉 +
∫ t

0
〈ϕs(·, s) + ϕx(·, s), νs〉ds

(3.6)

−
∫ t

0
〈h(·)ϕ(·, s), νs〉ds +

∫
[0,t]

ϕ(0, s) dK(s),

X(t) = X(0) + E(t) −
∫ t

0
〈h, νs〉ds(3.7)

and

1 − 〈1, νt 〉 = [1 − X(t)]+,(3.8)

where K is a nondecreasing process that satisfies

K(t) = 〈1, νt 〉 − 〈1, ν0〉 +
∫ t

0
〈h, νs〉ds, t ∈ [0,∞).(3.9)

We now recall the result established in [21] (see Theorems 3.5 and 3.7 therein),
which shows that under Assumptions 1 and 2, the fluid equations uniquely char-
acterize the functional strong law of large numbers or mean-field limit of the N -
server system, in the asymptotic regime where the number of servers and arrival
rates both tend to infinity.

THEOREM 1 (Kaspi–Ramanan [21]). Suppose Assumptions 1 and 2 are satis-
fied, and (E,x0, ν0) ∈ I0 is the limit of the initial data as stated in Assumption 1.
Then there exists a unique solution (X, ν) to the associated fluid equations (3.5)–
(3.8) and, as N → ∞, (X(N), ν(N)) converges almost surely to (X, ν). Moreover,
(X, ν) satisfies for every f ∈ Cb([0,∞)),∫

[0,L)
f (x)νt (dx) =

∫
[0,L)

f (x + t)
1 − G(x + t)

1 − G(x)
ν0(dx)

(3.10)
+

∫
[0,t]

f (t − s)
(
1 − G(t − s)

)
dK(s),

where K is a nondecreasing process that satisfies the relation (3.9). Furthermore,
if E is continuous, then (X, ν) and K are also continuous.

REMARK 3.2. In this context, the unique solution (X, ν) to the fluid equa-
tions will also be referred to as the fluid limit. The fluid limit is said to be critical
if X(t) = 1 for all t ∈ [0,∞). In addition, it is said to be subcritical (resp., super-
critical) if for every T ∈ [0,∞), supt∈[0,T ] X(t) < 1 [resp., inft∈[0,T ] X(t) > 1].
Although, in general, the fluid limit may not stay in one regime for all t and
may instead experience periods of subcriticality, criticality and supercriticality,
for many natural choices of initial data, such as either starting empty, that is,
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(x0, ν0) = (0, 0̃), or starting on the so-called “invariant manifold” of the fluid limit,
the fluid limit does belong to one of these three categories. Specifically, if ν∗ is the
“invariant” fluid age measure, defined to be

ν∗(dx) = (
1 − G(x)

)
dx, x ∈ [0,L),(3.11)

then it follows from Remark 3.8 and Theorem 3.9 of [21] that the fluid limit as-
sociated with the initial data (1,1, ν∗) is critical, the fluid limit associated with
the initial data (1, a, ν∗) for some a > 1 is supercritical and if the support of G is
[0,∞), then the fluid limit associated with the initial data (λ1,0, 0̃) is subcritical
whenever λ ≤ 1. A complete characterization of the invariant manifold of the fluid
in the presence of abandonments can be found in [20].

4. Certain martingale measures and their stochastic integrals. We now
introduce some quantities that arise in the proof of the functional central limit the-
orem of the state process. The sequence of martingales obtained by compensating
the departure processes in each of the N -server systems played an important role in
establishing the fluid limit result in [21]. Whereas under the fluid scaling the limit
of this sequence converges weakly to zero, under the diffusion scaling considered
here, it converges to a nontrivial limit. This limit can be described in terms of a cor-
responding martingale measure, which is introduced in Section 4.1. In Section 4.2
certain stochastic convolution integrals with respect to these martingale measures
are introduced, which arise in the representation formula for the centered age pro-
cess in the N -server system (see Proposition 6.4). Finally, the associated “limit”
quantities are defined in Section 4.3. The reader is referred to Chapter 2 of [31] for
basic definitions of martingale measures and their stochastic integrals.

4.1. A martingale measure sequence. Throughout this section, let (E(N),

X(N)(0), ν
(N)
0 ) be an I N

0 -valued random element representing the initial data of

the N -server system, and let (R
(N)
E ,X(N), ν(N)) be the associated state process de-

scribed in Section 2.2. For any measurable function ϕ on [0,L)×[0,∞), consider
the sequence of processes {Q(N)

ϕ }N∈N defined by

Q(N)
ϕ (t)

.= ∑
s∈[0,t]

K(N)(t)∑
j=−〈1,ν

(N)
0 〉+1

I{(da
(N)
j /dt)(s−)>0,(da

(N)
j /dt)(s+)=0}

(4.1)
× ϕ

(
a

(N)
j (s), s

)
for N ∈ N and t ∈ [0,∞), where K(N) and a

(N)
j are, respectively, the cumulative

entry into service process and the age process of customer j as defined by relations
(2.4) and (2.5). Note from (2.5) that the j th customer completed service (and hence
departed the system) at time s if and only if

da
(N)
j

dt
(s−) > 0 and

da
(N)
j

dt
(s+) = 0.
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This is equivalent to the condition a
(N)
j (s) = vj , and thus ϕ(a

(N)
j (s), s) can in fact

be replaced by ϕ(vj , s) in (4.1). Substituting ϕ = 1 in (4.1), it is clear that Q
(N)
1

is equal to D(N), the cumulative departure process of (2.3). Moreover, for N ∈ N

and every bounded measurable function ϕ on [0,L)×[0,∞), consider the process
A

(N)
ϕ defined by

A(N)
ϕ (t)

.=
∫ t

0

(∫
[0,L)

ϕ(x, s)h(x)ν(N)
s (dx)

)
ds, t ∈ [0,∞),(4.2)

and set

M(N)
ϕ

.= Q(N)
ϕ − A(N)

ϕ .(4.3)

It was shown in Corollary 5.5 of [21] that for all functions ϕ ∈ Cb([0,L)×[0,∞)),
A

(N)
ϕ is the {F (N)

t }-compensator of Q
(N)
ϕ , and M

(N)
ϕ is a càdlàg {F (N)

t }-martingale.

REMARK 4.1. In fact, M
(N)
ϕ is a càdlàg {F (N)

t }-martingale for all ϕ in the
larger class of bounded and measurable functions on [0,L) × [0,∞). Indeed,
since the mapping (ω, s) → (a

(N)
j (ω), s) on ×[0,∞) is continuous and {F (N)

t }-
adapted, it is {F (N)

t }-predictable. Therefore, when ϕ is measurable, the mapping
(ω, s) �→ ϕ(a

(N)
j (s,ω), s) from ×[0,∞) to R is also {F N

t }-predictable. The as-
sertion then follows from essentially the same argument as that used in Lemma 5.9
of [21].

From the proof of Lemma 5.9 of [21] it follows that for any bounded and mea-
surable ϕ on [0,L) × [0,∞), the {F (N)

t }-predictable quadratic variation of M
(N)
ϕ

takes the form〈
M(N)

ϕ

〉
t = A

(N)

ϕ2 (t)

(4.4)

=
∫ t

0

(∫
[0,L)

ϕ2(x, s)h(x)ν(N)
s (dx)

)
ds, t ∈ [0,∞).

Now, for B ∈ B[0,L) and t ∈ [0,∞), define

M(N)
t (B)

.= M
(N)
IB

(t) = Q
(N)
IB

(t) − A
(N)
IB

(t).(4.5)

Let B0[0,L) denote the algebra generated by the intervals [0, x], x ∈ [0,L). It is
easy to verify that M(N) = {M(N)

t (B), F (N)
t , t ≥ 0,B ∈ B0[0,L)} is a martingale

measure (for completeness, a proof is provided in Lemma A.1 of the Appendix).
We now show that M(N) is in fact an orthogonal martingale measure (see page 288
of Walsh [31] for a definition). Essentially, the orthogonality property holds be-
cause almost surely, no two departures occur at the same time. In Lemma 4.2 be-
low, we first state a slight generalization of this latter property, which is also used
in Section 8.2 to establish an asymptotic independence result. Given r, s ∈ [0,∞),
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let D(N),r (s) denote the cumulative number of departures during (r, r + s] of cus-
tomers that entered service at or before r . In what follows, recall that the notation
�f (t) = f (t) − f (t−) is used to denote the jump of a function f at t .

LEMMA 4.2. For every N ∈ N, P almost surely,

�D(N)(t) ≤ 1, t ∈ [0,∞),(4.6)

and ∑
s∈[0,∞)

�E(N)(r + s)�D(N),r (s) = 0, r ∈ [0,∞).(4.7)

The proof of the lemma is relegated to Section A.2, and the orthogonality prop-
erty is now established.

COROLLARY 4.3. For each N ∈ N, the martingale measure

M(N) = {
M(N)

t (B), F (N)
t ; t ≥ 0,B ∈ B0[0,L)

}
is orthogonal and has covariance functional

Q(N)
t (B, B̃)

.= 〈
M(N)(B), M(N)(B̃)

〉
t = A

(N)
I
B∩B̃

(t)

(4.8)

=
∫ t

0

(∫
B∩B̃

h(x)ν(N)
s (dx)

)
ds

for B, B̃ ∈ B0[0,L).

PROOF. In order to show that the martingale measure M(N) is orthogonal, it
suffices to show that for every B, B̃ ∈ B0[0,L), such that B ∩ B̃ = ∅, the martin-
gales {M(N)

t (B); t ≥ 0} and {M(N)
t (B̃); t ≥ 0} are orthogonal or, in other words,

that

B ∩ B̃ = ∅ ⇒ 〈
M(N)(B), M(N)(B̃)

〉 ≡ 0.(4.9)

Here, 〈·, ·〉 represents the {F (N)
t }-predictable quadratic covariation between the

two martingales. Fix two sets B, B̃ ∈ B0[0,L) with B ∩ B̃ = ∅. By (4.1), (4.3)
and Remark 4.1, it follows that M(N)(B) = M

(N)
IB

and M(N)(B̃) = M
(N)
I
B̃

are mar-
tingales that are compensated sums of jumps, where the jumps occur at departure
times of customers whose ages lie in the sets B and B̃ , respectively. Since, by
(4.6) of Lemma 4.2, there are almost surely no two departures that occur at the
same time, the set of jump points of M(N)(B) and M(N)(B̃) are almost surely
disjoint. By Theorem 4.52 of Chapter 1 of Jacod and Shiryaev [16], it then follows
that the martingales are orthogonal, and (4.9) holds. The relation (4.8) follows on
combining (4.9) with (4.4) and the biadditivity of the covariance functional. �
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The orthogonality property established in Corollary 4.3 allows us to define
stochastic integrals with respect to the martingale measure M(N). The stochas-
tic integral is defined for a large class of so-called predictable integrands sat-
isfying a suitable integrability property (see page 292 of Walsh [31]) which,
since E[A(N)

1 (T )] < ∞ by Lemma 5.6 of [21] and ν(N) is a finite nonnegative
measure, includes the class of deterministic functions in Cb([0,L) × [0,∞)).
Moreover, by Theorem 2.5 on page 295 of Walsh [31], it follows that for all
ϕ ∈ Cb([0,L) × [0,∞)), the stochastic integral {M(N)

t (ϕ)(B), {F (N)
t }; t ≥ 0,B ∈

B0[0,L)} of ϕ with respect to M(N) is a càdlàg orthogonal martingale measure
with covariance functional〈

M(N)(ϕ)(B), M(N)(ϕ̃)(B̃)
〉
t

(4.10)

=
∫ t

0

(∫
B∩B̃

ϕ(x, s)ϕ̃(x, s)h(x)ν(N)
s (dx)

)
ds

for bounded, continuous ϕ, ϕ̃ and B, B̃ ∈ B0[0,L). When B = [0,L), we will drop
the dependence on B and simply write

M(N)(ϕ) = M(N)(ϕ)([0,L)).

REMARK 4.4. For ϕ ∈ Cb([0,L) × [0,∞)), the stochastic integral M(N)(ϕ)

admits a càdlàg version. Indeed, the càdlàg martingale M
(N)
ϕ defined in (4.3) is a

version of the stochastic integral M(N)(ϕ).

It was shown in Lemma 5.9 of [21] that

M(N) .= M(N)

N
⇒ M ≡ 0̃

in the space DMF [0,L)[0,∞). Now, let M̂(N) be the diffusion-scaled version of the
process

M̂(N) .= M(N)

√
N

.(4.11)

It is clear from the above discussion that each M̂(N) is an orthogonal martingale
measure with covariance functional

Q̂(N)
t (B, B̃) =

∫ t

0

(∫
B∩B̃

h(x)ν(N)
s (dx)

)
ds

and that for any ϕ in a suitable class of functions that includes the space
Cb([0,L) × [0,∞)), the stochastic integral M̂(N)(ϕ) is a well-defined càdlàg,
orthogonal {F (N)

t } martingale measure. Moreover, for every ϕ, ϕ̃ ∈ Cb([0,L) ×
[0,∞)) and t ∈ [0,∞),〈

M̂(N)(ϕ), M̂(N)(ϕ̃)
〉
t =

∫ t

0

(∫
[0,L)

ϕ(x, s)ϕ̃(x, s)h(x)ν(N)
s (dx)

)
ds.(4.12)
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4.2. Some associated stochastic convolution integrals. In Proposition 6.4 it
is shown that the stochastic measure-valued process {ν(N)

t , t ≥ 0} that describes
the ages of customers in the N -server system admits a representation that is sim-
ilar to the representation (3.10) for its fluid counterpart {νt , t ≥ 0}, except that it
contains an additional stochastic term involving a stochastic convolution integral
with respect to the martingale measure M(N), which is defined below. For N ∈ N,
ϕ ∈ Cb([0,L) × [0,∞)) and t ∈ [0,∞), define

H(N)
t (ϕ)

.=
∫ ∫

[0,L)×[0,t]
ϕ(x + t − s, s)

1 − G(x + t − s)

1 − G(x)
M(N)(dx, ds).(4.13)

For each t ∈ [0,∞), the stochastic integral with respect to M(N) in (4.13) is
well defined because M(N) is an orthogonal martingale measure and the function
(x, s) �→ ϕ(x + t − s, s)(1−G(x + t − s))/(1 −G(x)) lies in Cb([0,L)×[0,∞))

for all ϕ ∈ Cb([0,L) × [0,∞)). The scaled version of this quantity is then defined
in the obvious manner: for N ∈ N, ϕ ∈ Cb([0,L) × [0,∞)) and t ∈ [0,∞), let

Ĥ(N)
t (ϕ)

.= H(N)

√
N

(4.14)

=
∫ ∫

[0,L)×[0,t]
ϕ(x + t − s, s)

1 − G(x + t − s)

1 − G(x)
M̂(N)(dx, ds).

4.3. Related limit quantities. We now define some additional quantities,
which we subsequently show (in Corollaries 8.3 and 8.7) to be limits of the se-
quences {M̂(N)}N∈N and {Ĥ(N)}N∈N. Fix a probability space (̂, F̂ , P̂) and, on
this space, let M̂ = {M̂t (B),B ∈ B0[0,L), t ∈ [0,∞)} be a continuous martin-
gale measure with the deterministic covariance functional

Q̂t (B, B̃)
.= 〈M̂(B), M̂(B̃)〉t =

∫ t

0

(∫
[0,L)

I
B∩B̃

(x)h(x)νs(dx)

)
ds(4.15)

for t ∈ [0,∞). Thus, M̂ is a white noise. Let CM̂ denote the subset of continuous
functions on [0,L) × [0,∞) that satisfies∫ t

0

(∫
[0,L)

ϕ2(x, s)h(x)νs(dx)

)
ds < ∞, t ∈ [0,∞).(4.16)

Note that CM̂ includes, in particular, the space Cb([0,L) × [0,∞)).
For any ϕ ∈ CM̂ and t ∈ [0,∞), the stochastic integral of ϕ with respect to M̂

on [0,L) × [0, t], denoted by

M̂t (ϕ)
.=
∫ ∫

[0,L)×[0,t]
ϕ(x, s)M̂(dx, ds)(4.17)

is well defined. In fact, for such ϕ, M̂(ϕ) = {M̂t (ϕ), t ≥ 0} is a càdlàg, orthogo-
nal martingale measure; see page 292 of Walsh [31] for the definition. Moreover,
because M̂ is a continuous martingale measure, M̂(ϕ) has a version as a contin-
uous real-valued process. In fact, as Corollary 8.3 shows, M̂ admits a version as a
continuous H−2-valued process.
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Next, for t ∈ [0,∞) and f ∈ Cb[0,L), let Ĥt (f ) be the random variable given
by the following convolution integral:

Ĥt (f )
.=
∫ ∫

[0,L)×[0,t]
f (x + t − s)

1 − G(x + t − s)

1 − G(x)
M̂(dx, ds).(4.18)

In order to express the convolution integrals in a more succinct fashion, consider
the family of operators {�t, t ≥ 0} defined, for t > 0 and (x, s) ∈ [0,L) × [0,∞),
by

(�tf )(x, s)
.= f

(
x + (t − s)+

)1 − G(x + (t − s)+)

1 − G(x)
(4.19)

for bounded and measurable functions f on [0,L), where recall (t − s)+ =
max(t − s,0). Each operator �t maps the space of bounded measurable functions
on [0,∞) to the space of bounded measurable functions on [0,L) × [0,∞) and
we also have

sup
t∈[0,∞)

‖�tf ‖∞ ≤ ‖f ‖∞.(4.20)

The processes Ĥ and Ĥ(N), respectively, can then be rewritten in terms of M̂ and
M̂(N) as follows:

Ĥt (f ) = M̂t (�tf ), Ĥ(N)
t (f ) = M̂(N)

t (�tf ), t ≥ 0.(4.21)

It is shown in Lemma 8.6 and Corollary 8.7 that if f is bounded and Hölder
continuous then the real-valued stochastic process Ĥ(N)(f ) = {Ĥ(N)

t (f ), t ≥ 0}
admits a càdlàg version and the process Ĥ(f ) = {Ĥt (f ), t ≥ 0} admits a continu-
ous version, and, moreover, that Ĥ(N) and Ĥ also admit versions as, respectively,
càdlàg and continuous H−2-valued processes.

5. Main results. The main results of the paper are stated in Section 5.3. They
rely on some basic assumptions and the definition of a certain map, which are first
introduced in Sections 5.1 and 5.2, respectively. Corollaries of the main results are
discussed in Section 5.4.

5.1. Basic assumptions. For Y = E,x0, ν,X,K , let Y be the corresponding
fluid limit as described in Theorem 1. For N ∈ N, the diffusion scaled quantities
Ŷ (N) are defined as follows:

Ŷ (N) .= √
N

(
Y (N) − Y

)
.(5.1)

For simplicity, we only consider arrival processes that are either renewal processes
or time-inhomogeneous Poisson processes.

ASSUMPTION 3. The sequence {E(N)}N∈N of cumulative arrival processes
satisfies one of the following two conditions:



166 H. KASPI AND K. RAMANAN

(a) there exist constants λ,σ 2 ∈ (0,∞) and β ∈ R such that for every N ∈ N,
E(N) is a renewal process with i.i.d. inter-renewal times {ξ (N)

j }j∈N that have mean

1/λ(N) and variance (σ 2/λ)/(λ(N))2, where

λ(N) .= λN − β
√

N,(5.2)

and the following Lindeberg condition holds: for every ε > 0,

lim
N→∞N2

E
[(

ξ
(N)
1

)2
I{ξ (N)

1

√
N>ε}

] = 0;

(b) there exist locally integrable functions λ and β on [0,∞) such that for every
N ∈ N, E(N) is an inhomogeneous Poisson process with intensity function

λ(N)(t)
.= λ(t)N − β(t)

√
N, t ∈ [0,∞).(5.3)

REMARK 5.1. Let λ(·) and β(·) be the locally integrable functions defined in
Assumption 3, and note that they are in fact constant if Assumption 3(a) holds.
Also, let σ(·) be the locally square integrable function that is equal to the constant√

σ 2 if Assumption 3(a) holds, and is equal to (λ(·))1/2 if Assumption 3(b) holds.
Then, given a standard Brownian motion B , the process Ê given by

Ê(t)
.=
∫ t

0
σ(s) dB(s) −

∫ t

0
β(s) ds, t ∈ [0,∞),(5.4)

is a well-defined diffusion and therefore a semimartingale, with
∫ t

0 σ(s) dB(s),
t ≥ 0, being the local martingale and

∫ t
0 β(s) ds, t ≥ 0, the finite variation pro-

cess in the decomposition. If Assumption 3 holds, then it is easy to see that E in
Assumption 1 is given by E(t) = ∫ t

0 λ(s) ds, t ≥ 0, and Ê(N) ⇒ Ê as N → ∞
(a proof of the latter convergence can be found in Proposition 8.4, which estab-
lishes a more general result).

We now impose a technical condition on the service distribution, which is used
mainly to establish the convergence of Ĥ(N)(f ) to Ĥ(f ) in DR[0,∞) for bounded
and Hölder continuous functions f in Section 8.

ASSUMPTION 4. The function y �→ (1 − G(x + y))/(1 − G(x)) is Hölder
continuous on [0,∞), uniformly with respect to x ∈ [0,L), that is, there exist
CG < ∞, γG ∈ (0,1] and δ > 0 such that for every x ∈ [0,L) and y, ỹ ∈ [0,L)

with |y − ỹ| < δ,

|G(x + y) − G(x + ỹ)|
1 − G(x)

≤ CG|y − ỹ|γG.(5.5)

REMARK 5.2. As shown below, Assumption 4 is satisfied if either h is
bounded, or if there exists l0 < ∞ such that supx∈[l0,∞) h(x) < ∞ and G is uni-
formly Hölder continuous on [0,L). In either case, it follows that L = ∞ because
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the hazard rate function h is locally integrable, but not integrable, on [0,L). Under
the first condition above, for any x, y, ỹ ∈ [0,∞), ỹ < y,∣∣∣∣G(x + y) − G(x + ỹ)

1 − G(x)

∣∣∣∣ = ∫ ỹ

y

g(x + u)

1 − G(x)
du ≤

∫ ỹ

y
h(x + u)du ≤ ‖h‖∞|y − ỹ|,

and so Assumption 4 is satisfied. On the other hand, if there only exists �0 < ∞
such that supx∈[�0,∞) h(x) < ∞, but G is uniformly Hölder continuous on [0,∞),
with constant C < ∞ and exponent γ > 0, then straightforward calculations show∣∣∣∣G(x + y) − G(x + ỹ)

1 − G(x)

∣∣∣∣ ≤ max
(

C

1 − G(�0)
,
∥∥I[�0,∞)(x)h(x)

∥∥∞
)
(y − ỹ)γ∧1,

and once again Assumption 4 is satisfied. A relatively easily verifiable sufficient
condition for G to be uniformly Hölder continuous is that g ∈ L

1+α for some
α > 0 (recall that since g is a density, we automatically have g ∈ L

1; thus the latter
condition imposes just a little additional regularity on g). Indeed, in this case,
Hölder’s inequality implies that

|G(y) − G(ỹ)| =
∣∣∣∣∫ y

ỹ
g(u) du

∣∣∣∣ ≤ ‖g‖L1+α (y − ỹ)α/(1+α),

and so G is uniformly Hölder continuous with exponent γ = α/(1 + α) < 1.

Now, given s ≥ 0, recall that ν̂
(N)
s represents the (scaled and centered) age dis-

tribution at time s, and define

J ν̂
(N)
s

t (f )
.=
∫
[0,L)

f (x + t)
1 − G(x + t)

1 − G(x)
ν̂(N)
s (dx), f ∈ Cb[0,L), t ≥ 0.

The process {J ν̂
(N)
0

t (f ), t ≥ 0} plays an important role in the analysis because it
arises in the representation for 〈f, ν̂(N)〉 given in Proposition 6.4. In order to write

J ν̂
(N)
s more concisely, consider the following family of operators: for t ∈ [0,∞),

define

(�tf )(x)
.= f (x + t)

1 − G(x + t)

1 − G(x)
, x ∈ [0,L).(5.6)

Since G is continuous, each �t maps the space of bounded and measurable (resp.,
continuous) functions on [0,L) into itself and, moreover,

sup
t∈[0,∞)

‖�tf ‖∞ ≤ ‖f ‖∞.(5.7)

For future purposes, note that {�t, t ≥ 0} defines a semigroup, that is, �0f = f

and

�t(�sf ) = �t+sf, s, t ≥ 0.(5.8)
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Also, recalling the definition (4.19) of the family of operators {�t, t ≥ 0}, it is
easily verified that for every bounded and measurable function f on [0,L) and
s, t ≥ 0,

(�s�tf )(x,u) = (�s+t f )(x, u), (x, u) ∈ [0,L) × [0, s].(5.9)

The process J ν̂
(N)
s can now be rewritten in terms of the operators �t , t ≥ 0, as

follows:

J ν̂
(N)
s (f ) = 〈

�tf, ν̂(N)
s

〉
, s, t ≥ 0.(5.10)

The properties stated above imply �tf ∈ Cb[0,L) when f ∈ Cb[0,L) and hence,

for each s ≥ 0, {J ν̂
(N)
s

t (f ), f ∈ Cb[0,L), t ≥ 0} is a well-defined stochastic pro-
cess. In what follows, we will refer to the spaces Hn and H−n that were introduced
in Section 1.4.1.

REMARK 5.3. Since ν̂
(N)
0 is a signed measure with finite total mass bounded

by
√

N , using the norm inequality (1.6) it is easy to see that almost surely for
f ∈ H1, ∣∣〈f, ν̂

(N)
0

〉∣∣ ≤ 2
√

N‖f ‖∞ ≤ 4
√

N‖f ‖H1 .

Moreover, if Assumption 4 holds, then calculations similar to those in Remark 5.2,
the norm inequality (1.6) and the Cauchy–Schwarz inequality show that for f ∈ H1
and 0 ≤ s < t < ∞,∣∣J ν̂

(N)
0

t (f ) − J ν̂
(N)
0

s (f )
∣∣ ≤ CG(t − s)γG2

√
N‖f ‖∞ + ‖f ‖H0(t − s)1/2

≤ (
4CG

√
N + 1

)‖f ‖H1 |t − s|γG∧1/2.

This shows that for every N ∈ N, J ν̂
(N)
0 is a continuous (and so, in particular,

càdlàg) process that almost surely takes values in H−1.

We now consider the initial conditions. We impose fairly general assumptions
on the initial age sequence so as to establish the Markov property for the limit
process. As shown in Lemma 9.3, these conditions are consistent in the sense that
they are satisfied at any time s > 0 if they are satisfied at time 0. In addition,
they are trivially satisfied if ν̂

(N)
0 = 0 or, equivalently, ν

(N)
0 = Nν0 for every N .

The reader may prefer to make the latter assumption on first reading to avoid the
technicalities in the statement of Assumption 5 below. To motivate the form of
this assumption, first note that the total variation of the sequence of finite signed
measures {̂ν(N)

0 }N∈N tends to infinity as N → ∞, and so it is not reasonable to
expect the sequence to converge in the space of finite or Radon measures. Instead,
we impose convergence in a different space. As observed in Remark 5.3 above,
ν̂

(N)
0 can be viewed as an H−1-valued and, hence H−2-valued, random element,
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and under Assumption 4, {J ν̂
(N)
0

t , t ≥ 0} is a càdlàg H−1-valued stochastic process

and {J ν̂
(N)
0

t (1), t ≥ 0} is a càdlàg real-valued process.

ASSUMPTION 5. There exists an R-valued random variable x̂0 and a family
of random variables {̂ν0(f ), f ∈ ACb[0,L)}, all defined on a common probability
space, such that:

(a) ν̂0 admits a version as an H−2-valued random element;
(b) there exist random variables

J ν̂0
t (f )

.= ν̂0(�tf )
(5.11)

= ν̂0

(
f (· + t)

1 − G(· + t)

1 − G(·)
)
, t ≥ 0, f ∈ ACb[0,L),

such that (J ν̂0
t = J ν̂0(f ), f ∈ H2), t ≥ 0, admits a version as a continuous H−2-

valued process, {J ν̂0
t (1), t ≥ 0} admits a version as a continuous R-valued process

and, for every f ∈ ACb[0,L) almost surely, t �→ J ν̂0
t (f ) is a measurable function

on [0,∞);

(c) as N → ∞, (X̂(N)(0), ν̂
(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)) ⇒ (x̂0, ν̂0, J ν̂0, J ν̂0(1)) in

R × H−2 × DH−2[0,∞) × DR[0,∞).

Some results will require the strengthening of Assumption 5 stated below.

ASSUMPTION 5′ . The following property holds in addition to Assumption 5:

(d) Suppose that ϕ ∈ Cb([0,L) × [0,∞)) is such that for every r > 0, x �→
ϕ(x, r) is absolutely continuous, for every T < ∞, ϕx(·, ·) is integrable on [0,L)×
[0, T ], and x �→ ∫ t

0 ϕ(x, r) dr is Hölder continuous. Then P-almost surely, r �→
ν̂0(�rϕ(·, r)) is measurable and for every t ≥ 0,∫ t

0
ν̂0(�rϕ(·, r)) dr = ν̂0

(∫ t

0
�rϕ(·, r) dr

)
.(5.12)

Now, let (̂, F̂ , P̂) be a common probability space that supports the martin-
gale measure M̂ introduced in Section 4.3, the standard Brownian motion B of
Remark 5.1, the family of random variables ν̂0(f ), f ∈ ACb[0,L) and the ran-
dom variable x̂0 of Assumption 5 such that M̂,B and (x̂0, ν̂0(f ), f ∈ ACb[0,L))

are mutually independent. Let F̂0 be the σ -algebra generated by (x̂0, ν̂0(f ), f ∈
ACb[0,L)) and, for t ≥ 0, let F̂t

.= F̂0 ∨ σ(Bs, M̂s, s ∈ [0, t]). Then for t ≥ 0,
J ν̂0

t (f ), f ∈ ACb[0,L), and J ν̂0
t (1) are all well-defined F̂0-measurable random

variables. In addition, (Êt , M̂t )t≥0 are {F̂t }-adapted stochastic process. The de-
scription of the N -server model listed prior to Remark 2.1 assumes that for each
N ∈ N, given σ(R

(N)
E (0)), {E(N)(t), t > 0} is independent of the initial conditions
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ν
(N)
0 and X(N)(0). Together with Assumptions 3, 5 and the fact that R

(N)
E (0) → 0

almost surely as N → ∞, this implies that as N → ∞,(
Ê(N), X̂(N)(0), ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)

) ⇒ (Ê, x̂0, ν̂0, J ν̂0, J ν̂0(1))(5.13)

in DR[0,∞) × R × H−2 × DH−2[0,∞) × DR[0,∞).

5.2. The centered many-server map. The centered many-server map defined
below will be used to characterize the limit process. Let D

0
R
[0,∞) be the subset

of functions f in DR[0,∞) with f (0) = 0. The input data for this map lies in the
following space:

Î0
.= D

0
R
[0,∞) × R × DR[0,∞).

DEFINITION 5.4 (Centered many-server equations). Let X ∈ D[0,∞)[0,∞) be
fixed. Given (E,x0,Z) ∈ Î0, (K,X,v) ∈ D

0
R
[0,∞) × DR[0,∞)2 is said to solve

the centered many-server equations (CMSE) associated with X and (E,x0,Z) if
for t ∈ [0,∞),

v(t) = Z(t) + K(t) −
∫ t

0
g(t − s)K(s) ds,(5.14)

K(t) = E(t) + x0 − X(t) + v(t) − v(0)(5.15)

and

v(t) =
⎧⎨⎩X(t), if X(t) < 1,

X(t) ∧ 0, if X(t) = 1,
0, if X(t) > 1.

(5.16)

Note that this definition automatically requires that E(0) = K(0) = 0, X(0) =
x0, Z(0) = v(0), and v(0) is equal to x0, x0 ∧ 0 or 0, respectively, depending on
whether X(0) < 1, X(0) = 1 or X(0) > 1. It is shown in Proposition 7.3 that there
exists at most one solution to the CMSE for any given input data in Î0. When
a solution exists, let � denote the corresponding “centered many-server” map-
ping (associated with X) that takes (E,x0,Z) ∈ Î0 to the corresponding solution
(K,X,v) of the CMSE. The collection of input data in Î0 for which a solution to
the CMSE exists is defined to be the domain of � and is denoted dom(�).

REMARK 5.5. Suppose (K,X,v) ∈ �(E,x0,Z) for some (E,x0,Z) ∈ Î0.
Then (5.14) and (5.15) together show that for t ≥ 0,

X(t) = x0 − v(0) + E(t) + Z(t)
(5.17)

−
∫ t

0
g(t − s)[E(s) + x0 − v(0) − X(s) + v(s)]ds.

Thus, if E, Z and g are continuous, then X is also continuous. If, in addition, the
fluid limit is either subcritical, critical or supercritical then the continuity of X and
(5.16) imply the continuity of v and, in turn, (5.15) implies the continuity of K .
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The importance of the CMSE stems from the relation(
K̂(N), X̂(N),

〈
1, ν̂(N)〉)

(5.18)
= �

(
Ê(N), X̂(N)(0), J ν̂

(N)
0 (1) − Ĥ(N)(1)

)
, N ∈ N,

which is established in Lemma 7.2 under the assumption that the fluid limit is
either subcritical, critical or supercritical.

5.3. Statements of main results. The first result of the paper, Theorem 2 below,
identifies the limit of the sequence {X̂(N)}N∈N. Let

Ŷ
(N)
1

.= (
Ê(N), X̂(N)(0), ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1), M̂(N), Ĥ(N), Ĥ(N)(1)

)
,(5.19)

and let Ŷ1 be the corresponding quantity without the superscript N , where Ê, x̂0,
ν̂0, J ν̂0 and J ν̂0(1) are as defined in Remark 5.1 and Assumption 5, and M̂, Ĥ
and Ĥ(1) are as defined in Section 4.3. Also, let Y1 be the space given by

Y1
.= DR[0,∞) × R × H−2 × DH−2[0,∞) × DR[0,∞)

(5.20)
× DH−2[0,∞)2 × DR[0,∞).

THEOREM 2. Suppose Assumptions 1–5 are satisfied and suppose that the
fluid limit is either subcritical, critical or supercritical. Then (Ê, x̂0, J ν̂0(1) −
Ĥ(1)) ∈ dom(�), and as N → ∞,(

Ŷ
(N)
1 , X̂(N), K̂(N),

〈
1, ν̂(N)〉) ⇒ (Ŷ1, X̂, K̂, ν̂(1))(5.21)

in Y1 × DR[0,∞)3, where (K̂, X̂, ν̂(1))
.= �(Ê, x̂0, J ν̂0(1) − Ĥ(1)) is almost

surely continuous. Furthermore, if g is continuous, then

X̂(t) = x̂0 + Ê(t) − M̂t (1) − D̃(t), t ∈ [0,∞),(5.22)

where

D̃(t)
.= ν̂0(1) − J ν̂0

t (1) − M̂t (1) + Ĥt (1) +
∫ t

0
g(t − s)K̂(s) ds.(5.23)

The proof of Theorem 2 is presented in Section 9.1. In addition to establishing
the relation (5.18), the key elements of the proof involve showing the convergence
Ŷ

(N)
1 ⇒ Ŷ1 in Y1, which is carried out in Corollary 8.7, and establishing continu-

ity of the centered many-server map � and another auxiliary map �, which are
established in Proposition 7.3 and Lemma 7.1, respectively.

We now state a more general convergence result for the pair {(X̂(N), ν̂(N))}N∈N,
whose proof is also given in Section 9.1. With K̂ equal to the limit process obtained
in Theorem 2, for all f ∈ ACb[0,L), let

ν̂t (f )
.= J ν̂0

t (f ) + f (0)K̂(t) +
∫ t

0
K̂(s)f ′(t − s)

(
1 − G(t − s)

)
ds

(5.24)

−
∫ t

0
K̂(s)g(t − s)f (t − s) ds − Ĥt (f ).
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Note that the first term on the right-hand side is well defined by the discussion fol-
lowing Assumption 5 (see also Lemma B.1), the next three terms are well defined
because K̂ is continuous and f ′, (1−G), g and f are all locally integrable, and the
last term is well defined since Ĥt (f ) = M̂t (�tf ) and �tf ∈ Cb([0,L)×[0,∞)),
where �t is the operator defined in (4.19).

THEOREM 3. Suppose Assumptions 1–5 are satisfied, the fluid limit is either
subcritical, critical or supercritical and g is continuous. Then, as N → ∞,(

Ŷ
(N)
1 , X̂(N), K̂(N), ν̂(N)) ⇒ (Ŷ1, X̂, K̂, ν̂)(5.25)

in Y .= Y1 × DR[0,∞)2 × DH−2[0,∞).

A main goal of this paper is to show that the limit process (X̂, ν̂) is a tractable
process that is amenable to analysis. The next two theorems show that this is in-
deed the case under some additional regularity conditions on the hazard rate h.
First, Theorem 4 shows that {X̂t , F̂t , t ≥ 0} is a semimartingale. By Itô’s formula
this enables the description of the evolution of suitably regular functionals of the
process. The proof of Theorem 4 is given in Section 9.2.

THEOREM 4. Suppose that Assumptions 1, 3 and 5′ are satisfied, the fluid
limit is either subcritical, critical or supercritical and h is bounded and absolutely
continuous. If (K̂, X̂, ν̂) is the limit process of Theorem 3, then X̂ and K̂ are
semimartingales with decompositions X̂ = X̂(0)+MX +CX and K̂ = MK +CK ,
respectively, where

MX(t) =
∫ t

0
σ(s) dB(s) − M̂t (1),

CX(t) = −
∫ t

0
β(s) ds −

∫ t

0
ν̂s(h) ds, t ≥ 0,

and if X is subcritical, then K̂ = Ê, and so

MK(t) =
∫ t

0
σ(s) dB(s), CK(t) = −

∫ t

0
β(s) ds, t ≥ 0,

if X is supercritical, then

MK(t) = M̂t (1), CK(t) =
∫ t

0
ν̂s(h) ds, t ≥ 0,

and if X is critical, then

MK(t) =
∫ t

0
I{X̂(s)≤0}σ(s) dBs +

∫ t

0
I{X̂(s)>0} dM̂s(1), t ≥ 0,
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and

CK(t) = −
∫ t

0
β(s)I{X̂(s)≤0} ds +

∫ t

0
I{X̂(s)>0}ν̂s(h) ds + 1

2
LX̂

0 (t), t ≥ 0,

where, LX̂
0 (t) is the cumulative local time of X̂ at zero over the interval [0, t].

Moreover, for each t > 0 and f ∈ ACb[0,L), ν̂t (f ) admits the alternative repre-
sentation

ν̂t (f ) = J ν̂0
t (f ) +

∫ t

0
f (t − s)

(
1 − G(t − s)

)
dK̂(s) − Ĥt (f ),(5.26)

where the second term is a stochastic convolution integral with respect to the semi-
martingale K̂ .

REMARK 5.6. If for f ∈ Cb[0,L), {J ν̂0
t (f ), t ≥ 0} is a well-defined stochas-

tic process, then {̂νt (f ), t ≥ 0} is also a well-defined stochastic process given
by the right-hand side of (5.26). Moreover, under a slight strengthening of the
conditions of Theorem 4, specifically of Assumption 5(c), the convergence in
Theorem 4 can in fact be established for a slightly larger class of functions
than those in H2. More precisely, if for any bounded and Hölder continu-
ous function f , {J ν̂0

t (f ), t ≥ 0} defined in (5.11) is a well-defined continuous

stochastic process and, as N → ∞, (X(N)(0), ν̂
(N)
0 (f ), J ν̂

(N)
0 (f ), J ν̂

(N)
0 (1)) ⇒

(x̂0, ν̂0, J ν̂0(f ), J ν̂0(1)) in R
2 × DR[0,∞)2, then the process ν̂(f ) defined by

(5.26) is also continuous and, as N → ∞, ν̂(N)(f ) ⇒ ν̂(f ) in DR[0,∞). In fact,
due to the independence assumptions of the model, the following joint conver-
gence: (

Ê(N),X(N)(0), ν̂
(N)
0 (f ), J ν̂

(N)
0 (f ), J ν̂

(N)
0 (1)

)
(5.27)

⇒ (Ê, x̂0, ν̂0(f ), J ν̂0(f ), J ν̂0(1))

in DR[0,∞) × R
2 × DR[0,∞)2 also holds. A brief justification of this assertion

is provided at the end of Section 9.2.

We now show that the limit process (K̂, X̂, ν̂) described in Theorem 2 can alter-
natively be characterized as the unique solution to a stochastic partial differential
equation (SPDE), coupled with an Itô diffusion equation, and also satisfies a strong
Markov property. We first introduce the SPDE, which we refer to as the stochas-
tic age equation. In the definition of the stochastic age equation given below, h is
the hazard rate function of the service distribution and ν̂0, M̂ and K̂ are the limit
processes defined on the filtered probability space (̂, F̂ , {F̂t}, P̂), as specified in
Theorem 4.

DEFINITION 5.7 (Stochastic age equation). Given (̂ν0, K̂, M̂) defined on the
filtered probability space (̂, F̂ , {F̂t }, P̂), ν = {νt , t ≥ 0} is said to be a strong
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solution to the stochastic age equation associated with (̂ν0, K̂, M̂) if for every
f ∈ ACb[0,L), νt (f ) is an F̂t -measurable random variable for t > 0, s �→ νs(f )

is almost surely measurable on [0,∞), {νt , t ≥ 0} admits a version as a continuous,
H−2-valued process and P-almost surely, for every ϕ ∈ C

1,1
b ([0,L) × R) such that

ϕt(·, s) + ϕx(·, s) is Lipschitz continuous for every s, and for every t ∈ [0,∞),

νt (ϕ(·, t)) = ν0(ϕ(·,0)) +
∫ t

0
νs

(
ϕx(·, s) + ϕs(·, s) − ϕ(·, s)h(·))ds

(5.28)

−
∫ ∫

[0,L)×[0,t]
ϕ(x, s)M̂(dx, ds) +

∫ t

0
ϕ(0, s) dK̂s.

THEOREM 5. Suppose Assumptions 1, 3 and 5′ are satisfied, the fluid limit
is either subcritical, critical or supercritical and h is absolutely continuous and
bounded. Given the limit process (K̂, X̂, ν̂) of Theorem 3, the following assertions
are true:

(1) If the density g′ of g lies in L
2
loc[0,L)∪L

∞
loc[0,L), then {̂νt , F̂t , t ≥ 0} is the

unique strong solution to the stochastic age equation associated with (̂ν0, K̂, M̂).
(2) If g′/(1−G) is bounded, then {(X̂t , ν̂t , J ν̂t (1)), F̂t , t ≥ 0} is an R×H−2 ×

CR[0,∞)-valued strong Markov process.

Note that if h is absolutely continuous and bounded, this immediately implies
that g is also absolutely continuous and bounded, and therefore the density g′ of
g exists. The characterization of (X̂, ν̂) in terms of the stochastic age equation is
established in Section 9.4 and the proof of the strong Markov property is given in
Section 9.5. It is more natural to expect the process {(X̂, ν̂t ), F̂t , t ≥ 0} to be strong
Markov with state R×H−2. However, due to technical reasons (see Remark 9.7 for
a more detailed explanation) it was necessary to append an additional component
to obtain a Markov process.

REMARK 5.8. Elementary calculations show that the boundedness assump-
tions imposed on g/(1 − G) and g′/(1 − G) in Theorem 5 (which, in particular,
imply Assumption 4) are satisfied by many continuous service distributions (with
finite mean, normalized to have mean one) of interest. These include the families
of lognormal, Pareto, logistic and phase-type distributions, the Gamma(a, b) dis-
tribution with shape parameter a = 1 or a ≥ 2 and corresponding rate parameter
b = 1/a to produce a mean one distribution, the inverted Beta(a, b) distribution
when a > 2 and b = a + 1. Note that the mean one exponential distribution is also
included as a special case of the Gamma distribution.

5.4. Corollaries of the main results. From Theorem 4, it follows that when
the fluid limit is critical, the limiting (scaled and centered) total number in system
X̂ can be characterized as an Itô diffusion. Recall from Remark 3.2 that ν∗ is the
probability measure on [0,L) given by ν∗(dx) = (1 − G(x)) dx.
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COROLLARY 5.9. Suppose Assumptions 1, 3(a) with λ = 1 and Assumption 5
are satisfied and h is bounded and absolutely continuous. If (x0, ν0) = (1, ν∗),
then X̂ satisfies the following Itô diffusion equation:

X̂(t) = x̂0 + σB(t) − B̃(t) − βt −
∫ t

0
ν̂s(h) ds,(5.29)

where B̃ is a Brownian motion independent of B .

PROOF. When the fluid initial condition is given by (x0, ν0) = (1, ν∗), the
fluid limit is critical by Remark 3.2, and M̂(1) is a continuous martingale with
quadratic variation t and hence a Brownian motion. Thus, using B̃ to denote M̂(1),
Corollary 5.9 can be deduced from Remark 5.1 and the decomposition for X̂ given
in Theorem 4. �

In the particular case of an exponential service distribution, this allows us to
immediately recover the form of the limiting diffusion obtained in the seminal
paper of Halfin and Whitt [14]. In what follows, recall that x− = −(x ∧ 0) =
−min(x,0).

COROLLARY 5.10. Suppose G(x) = 1 − e−x for x ∈ [0,∞), and suppose
Assumption 1 holds with (x0, ν0) = (1, ν∗), Assumption 3(a) holds with λ = 1 and
Assumption 5′ is satisfied. Then X̂ is the unique strong solution to the stochastic
differential equation

X̂(t) = x̂0 +
√

1 + σ 2W(t) − βt +
∫ t

0
(X̂(s))− ds,(5.30)

where W is a standard Brownian motion.

PROOF. When G is the exponential distribution, h ≡ 1 and therefore∫ t

0
ν̂s(h) ds =

∫ t

0
ν̂s(1) ds =

∫ t

0

(
X̂(s) ∧ 0

)
ds,

where the last equality follows from the relations (K̂, X̂, ν̂(1))
.= �(Ê, x̂0,

J ν̂0(1) − Ĥ(1)) and (5.16) because X ≡ 1. By the independence of B and
B̃ = M̂(1), σB − B̃ has the same distribution as

√
1 + σ 2W , where W is a stan-

dard Brownian motion. On substituting this back into (5.29), equation (5.30) is
obtained. The Lipschitz continuity and local boundedness of the drift coefficient
x �→ −β + x− guarantees that the stochastic differential equation (5.30) has a
unique strong solution. �

REMARK 5.11 (Insensitivity result). As a comparison of (5.29) and (5.30)
reveals, under the same assumptions on the arrival process as in Corollary 5.10,
the dynamical equation for X̂ for general service distributions is remarkably close
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to the exponential case. Indeed, the “diffusion” coefficient is the same in both cases
(and is equal to

√
1 + σ 2), but the difference is that in the case of general service

distributions, the drift is an {F̂t }-adapted process that could in general depend on
the past, and not just on X̂t , so that the resulting process is no longer Markovian.

6. Representation of the system dynamics. A succinct characterization of
the dynamics of the centered state process is presented in Section 6.1. This is then
used in Section 6.2 to derive an alternative representation for the centered age
process.

6.1. A succinct characterization of the dynamics. We first recall the descrip-
tion of the dynamics of the N -server system that was established in [21].

PROPOSITION 6.1. The process (X(N), ν(N)) almost surely satisfies the fol-
lowing coupled set of equations: for ϕ ∈ C

1,1
b ([0,L) × [0,∞)) and t ∈ [0,∞),

〈
ϕ(·, t), ν(N)

t

〉 = 〈
ϕ(·,0), ν

(N)
0

〉 + ∫ t

0

〈
ϕx(·, s) + ϕs(·, s), ν(N)

s

〉
ds

−
∫ t

0

〈
ϕ(·, s)h(·), ν(N)

s

〉
ds − M(N)

t (ϕ)(6.1)

+
∫
[0,t]

ϕ(0, s) dK(N)(s),

X(N)(t) = X(N)(0) + E(N)(t) −
∫ t

0

〈
h, ν(N)

s

〉
ds − M(N)

t (1)(6.2)

and

N − 〈
1, ν

(N)
t

〉 = [
N − X(N)(t)

]+
,(6.3)

where K(N) is nondecreasing and

K(N)(t) = 〈
1, ν

(N)
t

〉 − 〈
1, ν

(N)
0

〉 + ∫ t

0

〈
h, ν(N)

s

〉
ds + M(N)

t (1)

(6.4)
= X(N)(0) + E(N)(t) − X(N)(t) + 〈

1, ν
(N)
t

〉 − 〈
1, ν

(N)
0

〉
.

PROOF. This is essentially a direct consequence of Theorem 5.1 of [21]. In-
deed, by subtracting and adding A

(N)
ϕ on the right-hand side of equations (5.4) and

(5.5) in [21], and then using (4.3) above and the fact that M
(N)
ϕ is indistinguishable

from M(N)(ϕ) (see Remark 4.4), one obtains (6.1) and (6.2), respectively. Equa-
tion (6.3) coincides with equation (5.6) in [21]. Finally, the first equality in (6.4)
follows from (2.6) of [21] and (4.3) above, whereas the second equality in (6.4)
follows from (6.2). �
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The characterizations of the N -server system and the fluid limit given in Propo-
sition 6.1 and Theorem 1, respectively, when combined, immediately yield a useful
representation for the centered diffusion-scaled state dynamics. In what follows,
recall the centered, diffusion-scaled quantities defined in (4.11), (4.14) and (5.1).

PROPOSITION 6.2. For each N ∈ N, the process (X̂(N), ν̂(N)) almost surely
satisfies the following coupled set of equations: for every ϕ ∈ C

1,1
b ([0,L)×[0,∞))

and t ∈ [0,∞),〈
ϕ(·, t), ν̂(N)

t

〉 = 〈
ϕ(·,0), ν̂

(N)
0

〉 + ∫ t

0

〈
ϕx(·, s) + ϕs(·, s), ν̂(N)

s

〉
ds

−
∫ t

0

〈
ϕ(·, s)h(·), ν̂(N)

s

〉
ds − M̂(N)

t (ϕ)(6.5)

+
∫
[0,t]

ϕ(0, s) dK̂(N)(s),

X̂(N)(t) = X̂(N)(0) + Ê(N)(t) −
∫ t

0

〈
h, ν̂(N)

s

〉
ds − M̂(N)

t (1)(6.6)

and

〈
1, ν̂

(N)
t

〉 =
⎧⎪⎨⎪⎩

X̂(N)(t) ∧ √
N

(
1 − X(t)

)
, if X(t) < 1,

X̂(N)(t) ∧ 0, if X(t) = 1,√
N

(
X(N)(t) − 1

) ∧ 0, if X(t) > 1,
(6.7)

where K̂(N) is nondecreasing and satisfies

K̂(N)(t) = 〈
1, ν̂

(N)
t

〉 − 〈
1, ν̂

(N)
0

〉 + ∫ t

0

〈
h, ν(N)

s

〉
ds + M̂(N)

t (1)

(6.8)
= X̂(N)(0) + Ê(N)(t) − X̂(N)(t) + 〈

1, ν̂
(N)
t

〉 − 〈
1, ν̂

(N)
0

〉
.

PROOF. Equation (6.5) is obtained by dividing each side of (6.1) by N , sub-
tracting the corresponding side of (3.6) from it and multiplying the resulting quan-
tities by

√
N . In an exactly analogous fashion, equation (6.6) can be derived from

(6.2) and (3.7), and equation (6.8) can be obtained from (6.4), (3.7) and (3.9). It
only remains to justify the relation in (6.7). Dividing (6.3) by N , subtracting it
from (3.8) and multiplying this difference by

√
N , we obtain〈

1, ν̂
(N)
t

〉 = √
N

([1 − X(t)]+ − [
1 − X(N)(t)

]+)
.(6.9)

If X(t) < 1, then [1−X(t)]+ = (1−X(t)), and so the right-hand side above equals{√
N

(
1 − X(t) − (

1 − X(N)(t)
)) = X̂(N)(t), if X(N)(t) < 1,√

N
(
1 − X(t)

)
, if X(N)(t) ≥ 1,
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which can be expressed as X̂(N)(t) ∧ √
N(1 − X(t)). On the other hand, if

X(t) = 1, then [1 − X(t)]+ = 0, and the right-hand side of (6.9) equals

−√
N

[
1 − X(N)(t)

]+ = −√
N

[
X(t) − X(N)(t)

]+ = X̂(N)(t) ∧ 0.

Lastly, if X(t) > 1, then [1 − X(t)]+ = 0, and so the right-hand side of (6.9) re-
duces to

√
N(X(N)(t) − 1) ∧ 0, and (6.7) follows. �

REMARK 6.3. Under suitable conditions, for large N , the nonidling condition
(6.7) can be further simplified and written purely in terms of 〈1, ν̂(N)〉 and X̂(N).
Let ∗ be the set of full P-measure on which the fluid limit theorem (Theorem 1)
holds. Fix ω ∈ ∗ (and henceforth suppress the dependence on ω), and let t ∈
[0,∞) be a continuity point of the fluid limit. If X(t) < 1, then by Theorem 1
there exists N0 = N0(ω, t) < ∞ such that for all N ≥ N0, X(N)(t) < 1 and so

X̂(N)(t) = √
N

(
X(N)(t) − X(t)

) ≤ √
N

(
1 − X(t)

)
.

On the other hand, if X(t) > 1, then there exists N0 = N0(ω, t) < ∞ such that for
all N ≥ N0, X(N)(t) > 1 and hence√

N
(
X(N)(t) − 1

) ≥ 0.

Therefore, there exists N0 = N0(ω, t) < ∞ such that for all N ≥ N0,

〈
1, ν̂

(N)
t

〉 =
⎧⎪⎨⎪⎩

X̂(N)(t), if X(t) < 1,
X̂(N)(t) ∧ 0, if X(t) = 1,
0, if X(t) > 1.

(6.10)

Now, suppose the fluid limit X is continuous, and for some T < ∞, the fluid is
subcritical on [0, T ] in the sense of Definition 3.2. Then N0 can clearly be chosen
uniformly in t ∈ [0, T ], and so there exists N0 = N0(ω,T ) < ∞ such that for all
N ≥ N0(ω,T ), 〈

1, ν̂
(N)
t

〉 = X̂(N)(t), t ∈ [0, T ].
An analogous statement holds for the supercritical case. Finally, in the critical case
when X(t) = 1 for t ∈ [0,∞), it trivially follows that almost surely, (6.10) holds
for all N ∈ N and t ∈ [0,∞).

6.2. A useful representation. Equations (6.1) and (6.5) for the age and (scaled)
centered age processes, respectively, in the N -server system have a form that is
analogous to the deterministic integral equation (3.6) that describes the dynamics
of the age process in the fluid limit, except that they contain an additional stochastic
integral term. Indeed, all three equations fall under the framework of the so-called
abstract age equation introduced in Definition 4.9 of [21]. Representations for so-
lutions to the abstract age equation were obtained in Proposition 4.16 of [21]. In
Corollary 6.4 below, this result is applied to obtain explicit representations for the



SPDE LIMITS OF MANY-SERVER QUEUES 179

age and centered age processes in the N -server system. Not surprisingly, these rep-
resentations are similar to the corresponding representation (3.10) for solutions to
the fluid age equation, except that they contain an additional stochastic convolution
integral term.

We now state the representation result, which is easily deduced from Proposi-
tion 4.16 of [21]; the details of the proof are deferred to Appendix C. For concise-
ness of notation, for N ∈ N and continuous f , we define

K̂(N)
t (f )

.=
∫
[0,t]

(
1 − G(t − s)

)
f (t − s) dK̂(N)(s), t ∈ [0,∞),(6.11)

and let K(N) be defined analogously, but with K̂(N) replaced by K(N). By applying
integration by parts to the right-hand side of (6.11) and using the fact that K̂(N)

has at most a countable number of discontinuities, we see that for f ∈ AC[0,L)

and t ∈ [0,∞),

K̂(N)
t (f ) = f (0)K̂(N)(t) +

∫ t

0
K̂(N)(s)ξf (t − s) ds,(6.12)

where

ξf
.= (

f (1 − G)
)′ = f ′(1 − G) − fg.(6.13)

Also, recall the definition of the process J ν̂
(N)
0 given in (5.10).

PROPOSITION 6.4. For every N ∈ N, f ∈ Cb[0,L) and t ∈ [0,∞),〈
f, ν

(N)
t

〉 = J ν
(N)
0

t (f ) − H(N)
t (f ) + K(N)

t (f )(6.14)

and, likewise, 〈
f, ν̂

(N)
t

〉 = J ν̂
(N)
0

t (f ) − Ĥ(N)
t (f ) + K̂(N)

t (f ).(6.15)

REMARK 6.5. For subsequent use, we make the simple observation that on
substituting ϕ = 1 in (6.5) and substracting it from (6.15), with f = 1, then rear-
ranging terms and using (6.12) and the fact that ξ1 = (1 − G)′ = −g by (6.13), we
obtain for every N ∈ N and t > 0,∫ t

0

〈
h, ν̂(N)

s

〉
ds = 〈

1, ν̂
(N)
0

〉 − J ν̂
(N)
0

t (1) − M̂(N)
t (1) + Ĥ(N)

t (1)

(6.16)

+
∫ t

0
g(t − s)K̂(N)(s−) ds.

7. Continuity properties. Continuity of the mapping that takes K̂(N) to K̂(N)

is established in Section 7.1, and continuity of the centered many-server map � is
established in Section 7.2. Together, these results show that both K̂(N) and X̂(N)

can be obtained as continuous mappings of the initial data and Ĥ(N).
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7.1. Continuity of an auxiliary map. Given any (deterministic) càdlàg func-
tion K , we define

Kt (f )
.= f (0)K(t) +

∫ t

0
K(s)ξf (t − s) ds, t ∈ [0,∞), f ∈ AC[0,L),(7.1)

where ξf = (f (1 − G))′, as defined in (6.13). Since K , g and f ′ are all locally
integrable, for each t > 0, Kt is a well-defined linear functional on the space
AC[0,L). Moreover, from elementary properties of convolutions, it is clear that for
any f ∈ AC[0,L), if K is càdlàg (resp., continuous) then so is K(f ). Lemma 7.1
below shows that the mapping � that takes K to K maps DR[0,∞) to DH−2[0,∞)

and is continuous. Note that by (6.12), K̂(N) = �(K̂(N)) for N ∈ N. The continu-
ity of � is used in the proof of Theorem 3 to establish convergence of K̂(N) to the
analogous limit quantity K̂, defined by

K̂t (f )
.= �(K̂)

(7.2)

= f (0)K̂(t) +
∫ t

0
K̂(s)ξf (t − s) ds, t ∈ [0,∞), f ∈ AC[0,L).

The third property in Lemma 7.1 below is used in the proof of the strong Markov
property in Section 9.5.

LEMMA 7.1. Let � be the map that takes K ∈ DR[0,∞) to K = {Kt , t ≥ 0},
the family of linear functionals on AC[0,L) defined in (7.1). If g is continuous,
the following three properties are satisfied:

(1) If K ∈ DR[0,∞), then K ∈ DH−2[0,∞). Likewise, if K ∈ CR[0,∞), then
K ∈ CH−2[0,∞).

(2) � is a continuous map from DR[0,∞) to DH−2[0,∞), when the domain
and range are either both equipped with the topology of uniform convergence on
compact sets or both equipped with the Skorokhod topology. Likewise, the map
from DR[0,∞) to itself that takes K �→ K(1) is also continuous with respect to
the Skorokhod topology on DR[0,∞).

(3) If K ∈ CR[0,∞), then, for any t ∈ [0,∞), the real-valued function u �→
Kt (�u1) on [0,∞) is continuous and the map from CR[0,∞) to itself that takes K

to this function is continuous (with respect to the topology of uniform convergence
on compact sets).

PROOF. Let g be continuous. We first derive a general inequality, (7.7) below,
that is then used to prove both properties 1 and 2. Fix K,K̃(n) ∈ DR[0,∞), T ∈
[0,∞), t, τ (n)(t) ∈ [0, T ], and let δ(n)(t)

.= |t − τ (n)(t)|, n ∈ N. Also, let K .=
�(K) and K̃(n) .= �(K̃(n)), n ∈ N. For f ∈ H2, we have

K̃(n)

τ (n)(t)
(f ) − Kt (f ) = f (0)

(
K̃(n)(τ (n)(t)

) − K(t)
) +

3∑
i=1

�
(n)
i (t),(7.3)
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where

�
(n)
1 (t)

.=
∫ t∧τ (n)(t)

0
K(u)

(
ξf (t − u) − ξf

(
τ (n)(t) − u

))
du,

�
(n)
2 (t)

.=
∫ t∧τ (n)(t)

0

(
K(u) − K̃(n)(u)

)
ξf

(
τ (n)(t) − u

)
du,

�
(n)
3 (t)

.=
∫ t

t∧τ (n)(t)
K(u)ξf (t − u)du +

∫ τ (n)(t)

t∧τ (n)(t)
K̃(n)(u)ξf

(
τ (n)(t) − u

)
du.

To bound the above terms, let wG be the modulus of continuity of G as defined
in (1.1). Then, by applying the inequality (1 − G) ≤ 1, the Cauchy–Schwarz in-
equality and Tonelli’s theorem, it follows that for 0 ≤ s ≤ t ≤ T ,∫ s

0

∣∣f ′(t − u)
(
1 − G(t − u)

) − f ′(s − u)
(
1 − G(s − u)

)∣∣du

≤
∫ s

0
|f ′(t − u)||G(t − u) − G(s − u)|du +

∫ s

0
|f ′(t − u) − f ′(s − u)|du

≤ wG(|t − s|)T 1/2‖f ′‖H0 +
∫ s

0

(∫ t

s
|f ′′(w − u)|dw

)
du

≤ wG(|t − s|)T 1/2‖f ′‖H0 + T |t − s|1/2‖f ′′‖H0 .

Similarly, using (1.5), we have∫ s

0
|f (t − u)g(t − u) − f (s − u)g(s − u)|du

≤
∫ s

0
|f (t − u)||g(t − u) − g(s − u)|du

+
∫ s

0
g(s − u)|f (t − u) − f (s − u)|du

≤ T 1/2‖f ‖H0wg(|t − s|) +
∫ s

0
g(s − u)

∫ t

s
|f ′(w − u)|dw du

≤ T 1/2‖f ‖H0wg(|t − s|) + |t − s|1/2‖f ′‖H0

≤ (
T 1/2wg(|t − s|) + |t − s|1/2)‖f ‖H1,

where wg is the modulus of continuity of g. Recalling that ξf = (f (1 − G))′, the
last two inequalities and the norm inequalities (1.5) show that∫ s

0
|ξf (t − u) − ξf (s − u)|du ≤ c1(T , |t − s|)‖f ‖H2,(7.4)

where c1(T , δ)
.= (T 1/2(wG(δ) + wg(δ)) + (T + 1)δ1/2) satisfies limδ→0 c1(T ,

δ) = 0. On the other hand, another application of the Cauchy–Schwarz inequality
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and the norm inequality (1.6) shows that∫ t

s
|ξf (t − u)|du ≤

∫ t

s
|f ′(u)|du + ‖f ‖∞

(
G(t) − G(s)

)
≤ |t − s|1/2‖f ′‖H0 + ‖f ‖∞

(
G(t) − G(s)

)
(7.5)

≤ 3
(|t − s|1/2 + wG(|t − s|))‖f ‖H1

≤ c2(T )‖f ‖H1

and

‖ξf ‖T ≤ ‖f ′‖∞ + ‖f ‖∞‖g‖T ≤ c2(T )‖f ‖H2(7.6)

for an appropriate finite constant c2(T ) < ∞ that depends only on G and T . Sub-
stituting (7.4)–(7.6) into (7.3), for f ∈ H2, f �= 0, we obtain

|Kt (f ) − K̃(n)

τ (n)(t)
(f )|

‖f ‖H2

≤ ∣∣K(t) − K̃(n)(τ (n)(t)
)∣∣ + c1

(
T , δ(n)(t)

)‖K‖T

+ c2(T )

∫ t∧τ (n)(t)

0

∣∣K̃(n)(u) − K(u)
∣∣du(7.7)

+ 2δ(n)(t)c2(T )
(‖K‖T ∨ ∥∥K̃(n)

∥∥
T

)
.

Now, suppose K̃(n) = K so that K̃(n) = K, n ∈ N, and consider t < T and any
sequence of points τ (n)(t) ∈ [0, T ], n ∈ N, such that τ (n)(t) ↓ t as n → ∞. Then
the third term on the right-hand side of (7.7) vanishes, the first term converges
to zero because K ∈ DR[0,∞) and the second and fourth terms converge to zero
because ‖K‖T < ∞ and δ(n)(t) → 0. This shows that ‖Kt − Kτ (n)(t)‖H−2 → 0 and
hence, K ∈ DH−2[0,∞). The same argument also shows that K is continuous if K

is. This proves the first property.
Next, suppose that K̃(n), n ∈ N, is a sequence that converges to K in the Sko-

rokhod topology. By the definition of the Skorokhod topology (see, e.g., Chap-
ter 3 of [3]) there exists a sequence of strictly increasing maps τ (n), n ∈ N,
that map [0, T ] onto itself and satisfy ‖δ(n)‖T

.= supt∈[0,T ] |t − τ (n)(t)| → 0

and ‖K̃(n) ◦ τ (n) − K‖T → 0 as n → ∞. Moreover, supn ‖K̃(n)‖T < ∞ and
K̃(n)(u) → K(u) for almost every u ∈ [0, T ]. Taking first the supremum over
t ∈ [0, T ] and then limits as n → ∞ in (7.7), the above properties show that
the right-hand side of (7.7) goes to zero (where the dominated convergence the-
orem is used to argue that the third term vanishes). In turn, this implies that
supt∈[0,T ] ‖Kt − K̃(n)

τ (n)(t)
‖H−2 → 0, thus establishing convergence of K̃(n) to K in

the Skorokhod topology on DH−2[0,∞). This establishes continuity of the map �

in the Skorokhod topology. Continuity with respect to the uniform topology can be
proved by setting τ (n)(t) = t , n ∈ N, in the argument above. The continuity of the
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map that takes K to K(1) can be established in an analogous fashion. The proof is
left to the reader.

To prove the last property, fix K ∈ CR[0,∞) and t ∈ [0,∞). For u ≥ 0, the
function �u1 is absolutely continuous and ξ�u1 = (1 − G(· + u))′ = −g(· + u).
Setting f = �u1 in (7.1) yields

Kt (�u1) = (
1 − G(u)

)
K(t) −

∫ t

0
K(s)g(t − s + u)ds.

The continuity of G and K and the bounded convergence theorem then show that
u �→ Kt (�u1) lies in CR[0,∞). On the other hand, given K(i) ∈ CR[0,∞) for
i = 1,2 and the corresponding K(i),

sup
u∈[0,T ]

∣∣K(1)
t (�u1) − K(2)

t (�u1)
∣∣ ≤ 2

∥∥K(1) − K(2)
∥∥
T ,

from which it is clear that the map from CR[0,∞) to itself that takes K to the
function u �→ Kt (�u1) is continuous. �

7.2. Continuity of the centered many-server map. First, in Lemma 7.2, the rep-
resentation (5.18) for (X̂(N), K̂(N), ν̂(N)(1)) in terms of the centered many-server
map � introduced in Definition 5.4 is established. Then, in Proposition 7.3 and
Lemma 7.4, certain continuity and measurability properties of � are established.

LEMMA 7.2. Suppose Assumption 4 holds. If the fluid limit is either subcriti-
cal or supercritical, there exists ∗ ∈ F with P(∗) = 1 such that for every T < ∞
and ω ∈ ∗, there exists N∗(ω,T ) < ∞ such that for all N ≥ N∗(ω,T ),(

K̂(N), X̂(N),
〈
1, ν̂(N)〉)(ω) = �

(
Ê(N), X̂(N)(0), J ν̂

(N)
0 (1) − Ĥ(N)(1)

)
(ω)(7.8)

on the interval [0, T ]. Moreover, when the fluid limit is critical, (7.8) holds almost
surely for every N ∈ N and t ∈ [0,∞).

PROOF. Fix N ∈ N. By the basic definition of the model, Ê(N) is càdlàg
and ν̂(N) takes values in DMF [0,L)[0,∞) and hence, in DH−2[0,∞). Assump-

tion 4 and Remark 5.3 show that J ν̂
(N)
0 (1) is continuous. Moreover, since K̂(N)

and 〈1, ν̂(N)〉 are càdlàg, from the representation (6.15), it follows that Ĥ(N)(1)

is also càdlàg. Thus, for almost surely every ω ∈ , (Ê(N), X̂(N)(0), J ν̂
(N)
0 (1) −

Ĥ(N)(1))(ω) ∈ Î0. Representation (7.8) then follows on comparing the three
many-server equations (5.14), (5.15) and (5.16) with the second equation in (6.8),
equation (6.10) of Remark 6.3 and equations (6.12) and (6.15) with f = 1. �

We now establish continuity and measurability properties of the mapping �.
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PROPOSITION 7.3. Fix X ∈ D[0,∞)[0,∞). For i = 1,2, suppose (Ei, xi
0,

Zi) ∈ Î0 and (Ki,Xi, vi) ∈ �(Ei, xi
0,Z

i). Let ∇S
.= S2 − S1 for S = K,X,v,E,

x0 and Z, and recall ‖f ‖T
.= sups∈[0,T ] |f (s)|. Then for any T ∈ [0,∞),

‖∇K‖T ∨ ‖∇X‖T ∨ ‖∇v‖T ≤ 3
(
1 + U(T )

)
εT ,(7.9)

where U is the renewal function associated with the service distribution G and

εT
.= (‖∇E‖T ∨ |∇x0| ∨ ‖∇Z‖T ).(7.10)

Hence, � is continuous with respect to the topology of uniform convergence on
compact sets and is single-valued on its domain.

PROOF. Fix T < ∞. We first show that ‖∇K‖T ≤ 2εT (1 + U(T )). For any
t ∈ [0, T ], we consider two cases.

Case 1: Either X(t) < 1, or both X(t) = 1 and X1(t) ≤ 0.
We claim that in this case we always have

∇v(t) − ∇X(t) ≤ 0.(7.11)

Indeed, (5.16) shows that if X(t) < 1, then vi(t) = Xi(t) for i = 1,2 and so
the left-hand side above is identically zero. On the other hand, if X(t) = 1 and
X1(t) ≤ 0, then (X1(t))+ = 0, and so (5.16), combined with the elementary iden-
tity x ∧ 0 − x = −x+, implies

∇v(t) − ∇X(t) = (X1(t))+ − (X2(t))+ = −(X2(t))+ ≤ 0,

and so (7.11) holds. Combining (7.11) with the fact that each solution satisfies
equation (5.15) and the fact that (5.16) implies |∇x0 − ∇v(0)| ≤ |∇x0|, we obtain

∇K(t) = ∇x0 + ∇E(t) − ∇X(t) + ∇v(t) − ∇v0

≤ |∇x0| + ∇E(t)(7.12)

≤ 2εT .

Case 2: Either X(t) > 1, or both X(t) = 1 and X1(t) > 0.
First, we claim that in this case,

∇v(t) = v2(t) − v1(t) ≤ 0.(7.13)

If either X(t) > 1, or the relations X(t) = 1, X1(t) > 0 and X2(t) > 0 hold, this
is trivially true since by (5.16) each term on the left-hand side of (7.13) is equal
to zero. In the remaining case when X(t) = 1, X1(t) > 0 and X2(t) ≤ 0, (5.16)
shows that v1(t) = 0 and v2(t) = X2(t) ≤ 0, and once again (7.13) follows.

Next, since each solution satisfies (5.14), we have for every t ∈ [0,∞),

∇K(t) = ∇v(t) +
∫ t

0
g(t − s)∇K(s) ds − ∇Z(t).(7.14)

Now, define

B .=
{
t :

∫ t

0
g(t − s)∇K(s) ds > 0

}
.
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Then, combining (7.14) with (7.13), we conclude that

∇K(t) ≤ 2εT + IB(t)

∫ t

0
g(t − s)∇K(s) ds.

Applying the same inequality recursively to K(s), s ∈ [0, t], on the right-hand
side, we obtain

∇K(t) ≤ 2εT + IB(t)

∫ t

0
g(t − s)

(
2εT + IB(s)

∫ s

0
g(s − r)∇K(r) dr

)
ds

≤ 2εT

(
1 + G(t)

) + IB(t)

∫ t

0
g(t − s)

(
IB(s)

∫ s

0
g(s − r)∇K(r) dr

)
ds.

Reiterating this procedure, we obtain

∇K(t) ≤ 2εT

(
1 + G(t) + G∗,2(t) + · · ·) ≤ 2εT U(T ),(7.15)

where G∗,n denotes the n-fold convolution of G.
By symmetry, inequalities (7.12) and (7.15) obtained in cases 1 and 2, respec-

tively, also hold with ∇K replaced by −∇K . Since U(T ) ≥ 1, we then have

|∇K(t)| ≤ 2εT U(T ) for every t ∈ [0, T ].
Taking the supremum over t ∈ [0, T ], we obtain

‖∇K‖T ≤ 2εT U(T ).(7.16)

On the other hand, relations (5.14) and (5.15), together, show that for i = 1,2 and
t ∈ [0, T ],

Xi(t) = Ei(t) + xi
0 − vi(0) −

∫ t

0
g(t − s)Ki(s) ds + Zi(t).

Taking the difference and using the fact that (5.16) implies |∇x0 −∇v(0)| ≤ |∇x0|,
we obtain

|∇X(t)| ≤ ‖∇E‖T + |∇x0| +
∫ t

0
g(t − s)‖∇K‖T ds + ‖∇Z‖T .

Taking the supremum over t ∈ [0, T ] and using (7.16), we then conclude that

‖∇X‖T ≤ 3εT + 2εT U(T )G(T ) ≤ 3εT

(
1 + U(T )

)
.

Together with (7.16) and the fact that (5.16) implies ‖∇v(t)‖T ≤ ‖∇X‖T , this es-
tablishes (7.9). Since the Skorokhod topology coincides with the uniform topology
on the space of continuous functions, (7.9) implies that the map � is continuous
at points (E,x0,Z) ∈ C[0,∞) × R × C[0,∞). �

LEMMA 7.4. Suppose the fluid limit is subcritical, critical or supercritical.
Then the centered many-server map � : dom(�) ⊆ DR[0,∞) × R × DR[0,∞) �→
DR[0,∞)3, where DR[0,∞) is equipped with the Skorokhod topology, is measur-
able.
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PROOF. We first establish the measurability of the mapping that takes
(E,x0,Z) ∈ dom(�) to X, where (K,X,v) ∈ �(E,x0,Z). By Remark 5.5, if
(K,X,v) = �(E,x0,Z), then X satisfies the integral equation

X(t) = R(t) +
∫ t

0
g(t − s)F (X(s)) ds, t ≥ 0,

where R(t) = R1(t)
.= Z(t) + E(t) − ∫ t

0 g(t − s)E(s) ds and F = 0 if X is sub-
critical, R(t) = R2(t)

.= R1(t) + (1 − G(t))x0 and F(x) = x if X is supercritical,
and R(t) = R3(t)

.= R1(t) + (1 − G(t))x+
0 and F(x) = x+ if X is critical. Note

that in all cases, F is Lipschitz. Also, for fixed t , the map (E,Z,x0) �→ R(t)

from DR[0,∞)2 × R �→ R is clearly measurable. The latter fact implies the re-
sult for the subcritical case. For the other two cases, by standard arguments from
the theory of Volterra integral equations (see Theorem 3.2.1 of [5]) it follows that
X(t) = limn→∞(T (n)0)(t), where T (n) is the n-fold composition of the opera-
tor T : DR[0,∞) �→ DR[0,∞) given by (T ξ)(t) = R(t) + ∫ t

0 g(t − s)F (ξ(s)) ds,
ξ ∈ DR[0,∞). Due to the fact that convergence in the Skorokhod topology implies
convergence in L

1
loc, the map ξ �→ F(ξ) is a continuous mapping from L

1
loc[0,∞)

to itself and the Laplace convolution θ �→ ∫ ·
0 g(· − s)θ(s) ds is a continuous map

from L
1
loc[0,∞) to C[0,∞), it follows that for every t > 0, (R, ξ) �→ T (ξ)(t)

is a measurable map. Because the Borel algebra associated with the Skorokhod
topology is generated by cylinder sets, and measurability is preserved under com-
positions and limits, this implies that the map from R to X is measurable. Note
that in the critical case, the above equation is of the same form as the one obtained
in Theorem 3.1 of Reed [27], and a more detailed proof of measurability in the
critical case can also be found in the Appendix of [27].

Now, to complete the proof, note that by (5.16), v equals either X, X ∧ 0 or 0,
depending on whether the fluid X is, respectively, subcritical, critical or super-
critical. The maps f �→ (f, f ), f �→ (f, f ∧ 0) and f �→ (f,0) from DR[0,∞),
equipped with the Skorokhod topology, to D

2
R
[0,∞) are all measurable (in fact,

continuous). In addition, for each t , K(t) is a linear combination of E(t), x0,
X(t), v(t) and v(0) by (5.15). Therefore, it immediately follows that the map from
(E,x0,Z) to (K,X,v) is also measurable. �

8. Convergence results. The representation (6.15) of the N -server queue dy-
namics and the continuity properties established in Section 7 reduce the problem
of convergence of the sequence {X̂(N)}N∈N to that of joint convergence of the
sequence of stochastic convolution integrals {Ĥ(N)}N∈N and the sequences repre-
senting the initial data. The joint convergence of the sequence {M̂(N)}N∈N and the
sequence of centered arrival processes and initial conditions is first established in
Section 8.2. In particular, Proposition 8.4 shows that the centered departure process
is asymptotically independent of the centered arrival process and initial conditions.
Then, in Section 8.3 (see Corollary 8.7), the limit of the sequence {Ĥ(N)}N∈N is
identified. Both limit theorems are proved using some basic estimates, which are
first obtained in Section 8.1.
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8.1. Preliminary estimates. We begin with a useful bound, whose proof is rel-
egated to Appendix D. Recall that U is the renewal function associated with the
service distribution G, and also recall the definition of A

(N)
ϕ , the fluid-scaled com-

pensator of the departure process, given in (4.2).

LEMMA 8.1. Fix T < ∞. For every N ∈ N and positive integer k,

E
[(

A
(N)
1 (T )

)k] = E

[(∫ T

0

∫
[0,L)

h(x)ν(N)
s (dx) ds

)k]
≤ k!(U(T ))k.(8.1)

Moreover, there exists C(T ) < ∞ such that for every positive integer k and mea-
surable function ϕ on [0,L) × [0, T ],

sup
N∈N

E
[(

A(N)
ϕ (T )

)k] ≤ k!(C(T ))k
(∫

[0,L)
ϕ∗(x)h(x) dx

)k

,

where ϕ∗(x)
.= sups∈[0,T ] |ϕ(x, s)|. Furthermore, if Assumptions 1 and 2 hold, then

(A1(T ))k =
(∫ T

0

∫
[0,L)

h(x)νs(dx) ds

)k

≤ k!(U(T ))k.(8.2)

We now establish some estimates on the martingale measure M̂(N), which are
used in Sections 8.2 and 8.3 to establish various convergence and sample path
regularity results.

LEMMA 8.2. For every even integer r , there exists a universal constant Cr <

∞ such that for every ϕ ∈ Cb([0,L) × [0,∞)) and T < ∞,

E

[
sup

s∈[0,T ]
∣∣M̂(N)

s (ϕ)
∣∣r] ≤ Cr‖ϕ‖r∞

[(
r

2

)
!(U(T ))r/2 + 1

Nr/2

]
, N ∈ N,(8.3)

E

[
sup

s∈[0,T ]
|M̂s(ϕ)|r

]
≤ Cr

(
r

2

)
!(U(T ))r/2‖ϕ‖r∞(8.4)

and, for 0 ≤ s ≤ t ,

E[|M̂t (ϕ) − M̂s(ϕ)|r ] ≤ Cr

(
Aϕ2(t) − Aϕ2(s)

)r/2
.(8.5)

PROOF. Since M̂(N)(ϕ) is a martingale, by the Burkholder–Davis–Gundy
(BDG) inequality (see, e.g., Theorem 7.11 of Walsh [31]) it follows that for any
r > 1, there exists a universal constant Cr < ∞ (independent of ϕ and M̂(N)) such
that

E

[
sup
s≤T

∣∣M̂(N)
s (ϕ)

∣∣r] ≤ CrE
[(〈

M̂(N)(ϕ)
〉
T

)r/2] + CrE
[∣∣�M̂(N),∗

T (ϕ)
∣∣r ],(8.6)
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where

�M̂(N),∗
T (ϕ)

.= sup
t∈[0,T ]

∣∣�M̂(N)
t (ϕ)

∣∣ = sup
t∈[0,T ]

∣∣M̂(N)
t (ϕ) − M̂(N)

t− (ϕ)
∣∣.

Because the jumps of M̂(N)(ϕ) are bounded by ‖ϕ‖∞/
√

N , we have

E
[∣∣�M̂(N),∗

T (ϕ)
∣∣r ] ≤ ‖ϕ‖r∞

Nr/2 .(8.7)

On the other hand, by (4.12) it follows that for any r > 0,

E
[〈

M̂(N)(ϕ)
〉r/2
T

] = E
[(

A
(N)

ϕ2 (T )
)r/2] ≤ ‖ϕ‖r∞E

[(
A

(N)
1 (T )

)r/2]
.

When combined with (8.1) of Lemma 8.1 this shows that if r = 2k, where k is a
positive integer, then

E
[(〈

M̂(N)(ϕ)
〉
T

)r/2] ≤ ‖ϕ‖r∞
(

r

2

)
!(U(T ))r/2.(8.8)

Combining estimates (8.6)–(8.8) obtained above, we obtain (8.3).
In an exactly analogous fashion, replacing M̂(N) and A(N), respectively, by M̂

and A, and using the continuity of M̂(ϕ) and inequality (8.2) of Lemma 8.1, we
obtain (8.4). Furthermore, for fixed s ≥ 0, because {M̂t (ϕ)− M̂s(ϕ)}t≥s is a con-
tinuous martingale with quadratic variation process {Aϕ2(t)−Aϕ2(s)}t≥s , another
application of the Burkholder–Davis–Gundy (BDG) inequality yields (8.5). �

As a corollary, we obtain results on the regularity of the processes M̂(N)

and M̂. In what follows, we will make use of the function spaces Hn, H−n, S ,
S ′ and the norm inequalities in (1.6) introduced in Section 1.4.1.

COROLLARY 8.3. Each M̂(N),N ∈ N, is a càdlàg H−2-valued (and hence
S ′-valued) process. M̂ is a continuous H−2-valued (and hence S ′-valued) process.
Moreover, for any T < ∞, if for every f ∈ S , M̂(N)(f ) ⇒ M̂(f ) in DR[0, T ] as
N → ∞ then M̂(N) ⇒ M̂ in DH−2[0, T ] as N → ∞.

PROOF. Fix N ∈ N. By Remark 4.4, for every f ∈ S , there exists a càdlàg
version of M̂(N)(f ). Moreover, for any T < ∞ it follows from (8.3) and (1.6)
that given any ε > 0 and λ < ∞ there exists δ > 0 such that if ‖f ‖H1 ≤ δ, then

lim sup
N

P

(
sup

s∈[0,T ]
∣∣M̂(N)

s (f )
∣∣ > λ

)
≤ lim sup

N

E[sups∈[0,T ]|M̂(N)
s (f )|]

λ
≤ ε.(8.9)

Thus, each M̂(N) is a 1-continuous stochastic process in the sense of Mitoma [23].

Since S is a nuclear Fréchet space and ‖ · ‖H1

HS
< ‖ · ‖H2 , by Theorem 4.1 of Walsh

[31] and Corollary 2 of Mitoma [23] it follows that M̂(N) is a càdlàg H−2-valued,
and hence S ′-valued, process.



SPDE LIMITS OF MANY-SERVER QUEUES 189

On the other hand, it easily follows from Lemma 8.2 that M̂(f ) is a continuous
process for every f ∈ S . An analogous argument to the one above, that instead
invokes Corollary 1 of Mitoma [23] and (8.4), shows that M̂ is a continuous H−2-
valued process. The last assertion of the corollary follows from (8.9) and Corol-
lary 6.16 of Walsh [31]. �

8.2. Asymptotic independence. We now identify the limit of the sequence of
martingale measures {M̂(N)}N∈N and also show that the sequence is asymptoti-
cally independent of the sequences of centered arrival processes and initial con-
ditions. Recall from Assumption 5, Remark 5.1 and the discussion following As-
sumption 5′ that (̂, F̂ , P̂) is a probability space on which is defined the initial
conditions (x̂0, ν̂0, J ν̂0, J ν̂0(1)), a standard Brownian motion B and a martingale
measure M̂ that is independent of B and the initial conditions and has the covari-
ance functional specified in (4.15). Moreover, as shown in (5.4), Ê is a diffusion
driven by the Brownian motion B , with diffusion coefficient σ 2 and drift coeffi-
cient −β . Let Ê denote expectation with respect to P̂.

PROPOSITION 8.4. Suppose Assumptions 1–3 and 5 hold. Then for every
ϕ ∈ Cb([0,L) × R), M̂(N)(ϕ) ⇒ M̂(ϕ) in DR[0,∞) as N → ∞. Moreover, as
N → ∞,(

Ê(N), X̂(N)(0), ν̂
(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1), M̂(N)) ⇒ (Ê, x̂0, ν̂0, J ν̂0, J ν̂0(1), M̂)

in DR[0,∞) × R × H−2 × DH−2[0,∞) × DR[0,∞) × DH−2[0,∞).

PROOF. We shall first prove the assertion under the supposition that Assump-
tion 3(a) is satisfied, in which case λ,σ 2 are positive constants and β is a real-
valued constant. We start by using results of [26] to recast the problem in a more
convenient form. Fix N ∈ N and define

L̂(N)(t)
.= 1√

N

E(N)(t)+1∑
j=2

(
1 − λ(N)ξ

(N)
j

)
, t ∈ [0,∞),

where recall that {ξ (N)
j }j∈N is the i.i.d. sequence of interarrival times of the N th re-

newal arrival process E(N), which has mean 1/λ(N) and variance (σ 2/λ)/(λ(N))2.
Define

γ̂ (N)(t)
.= 1√

N

(
E(N)(t)+1∑

j=2

λ(N)ξ
(N)
j − λ(N)t

)
, t ≥ 0.

Using the definition (5.2) of β and the fact that E(t) = λt , we see that

Ê(N)(t) = E(N)(t) − Nλt√
N

= E(N)(t) − λ(N)t√
N

− βt

(8.10)
= L̂(N)(t) + γ̂ (N)(t) − βt.
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In [26] [see page 30, Lemma A.1 and (5.15) therein] it was shown that {L̂(N)(t),

F (N)
t , t ≥ 0} is a locally square integrable martingale and, as N → ∞,

supt≤T |γ̂ (N)(t)| → 0 in probability, which implies γ̂ (N) ⇒ 0.
We will now show that for every f ∈ Cb[0,L),(

L̂(N), M̂(N)(f )
) ⇒ (B, M̂(f )) as N → ∞(8.11)

and for real-valued, bounded, continuous functions F1 on DR2[0,∞) and F2 on
R × H−2 × DH−2[0,∞) × DR[0,∞),

lim
N→∞ E

[
F1

(
L̂(N), M̂(N)(f )

)
F2

(
X̂(N)(0), ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)

)]
= Ê[F1(B, M̂(f ))]Ê[F2(x̂0, ν̂0, J ν̂0, J ν̂0(1))](8.12)

= Ê[F1(B, M̂(f ))F2(x̂0, ν̂0, J ν̂0, J ν̂0(1))].
Before presenting the proofs of these results, we show how these results are suf-
ficient to establish the proposition. We first note that (8.11), together with the
convergence γ̂ (N) ⇒ 0, implies the joint convergence (L̂(N), M̂(N)(f ), γ̂ (N)) ⇒
(B, M̂(f ),0) for every f ∈ Cb[0,L). Given (8.10) and the relation Ê(t) =
B(t) − βt , an application of the continuous mapping theorem then shows that
for every f ∈ Cb[0,L), (Ê(N), M̂(N)(f )) ⇒ (Ê, M̂(f )) in DR[0,∞)2. Similarly,
the continuous mapping theorem and (8.12) imply that for every f ∈ Cb[0,L), as
N → ∞, (

Ê(N), X̂(N)(0), ν̂
(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1), M̂(N)(f )

)
⇒ (Ê, x̂0, ν̂0, J ν̂0, J ν̂0(1), M̂(f )).

Together with Corollary 8.3 this implies the desired convergence stated in the
proposition.

To complete the proof in the case when Assumption 3(a) holds, it suffices to
establish (8.11) and (8.12). This is done in the following five claims; the first
three claims below verify conditions of the martingale central limit theorem to
establish (8.11), the fourth claim establishes a slight variant of (8.11) and the last
claim proves (8.12). Let {[L̂(N)]t } and {[M̂(N)(f )]t } represent the {F (N)

t }-optional
quadratic variation processes associated with {L̂(N)

t , t ≥ 0} and {M̂(N)
t (f ), t ≥ 0},

respectively. Also, let f ∈ Cb[0,L).

CLAIM 1. For t ≥ 0, as N → ∞, [L̂(N)]t → σ 2t and [M̂(N)(f )]t → Af 2(t)

in probability.

PROOF. By (5.10) of [26], the {F (N)
t }-predictable quadratic variation of L̂(N)

at time t , is given by〈
L̂(N)〉

t = E(N)(t)E
[(

1 − λ(N)ξ
(N)
j

)2]
/N = (

E(N)(t)σ 2)/(Nλ),(8.13)
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where the last equality holds due to Assumption 3(a). It is easy to check that the
{F (N)

t }-predictable jump measure of L̂(N), which we denote by π(N)(dt, dx), is
equal to dE

(N)
t P((1 −λ(N)ξ

(N)
1 )/

√
N ∈ dx). By the Lindeberg condition imposed

in Assumption 3(a), the sequence of predictable jump measures {π(N)}N∈N satis-
fies condition [̂δ5 − D] of Theorem VIII 3.11 on page 432 of [16]. Therefore, the
{F (N)

t }-optional quadratic variation, [L̂(N)]t , converges in probability to a limit if
and only if 〈L̂(N)〉t , its {F (N)

t }-predictable quadratic variation, converges in proba-
bility to the same limit. However, by Assumption 3(a) and Remark 5.1, as N → ∞,
E(N)(t)/N → λt . When combined with (8.13), it follows that as N → ∞, 〈L̂(N)〉t
converges in probability to σ 2t . This establishes the first limit of Claim 1.

Note that M̂
(N)
f , being a compensated sum of jumps, is a local martingale of

finite variation. Thus, it is a purely discontinuous martingale (see Lemma 4.14(b)
of Chapter I of [16]) and hence (by Theorem 4.5.2 of Chapter 1 of [16]), its {F (N)

t }
optional quadratic variation at time t satisfies[

M̂
(N)
f

]
t = ∑

s≤t

(
�M̂

(N)
f (s)

)2 = Q
(N)

f 2 (t),

where the last equality follows because the jumps of M
(N)
f coincide with those

of Q
(N)
f . The law of large numbers results in [21] (specifically, Theorem 5.4

and the discussion below Theorem 5.15 and Proposition 5.17 therein) show that
Q

(N)

f 2 (t) → Af 2(t) in probability. This proves the second limit in Claim 1. �

CLAIM 2. For every t > 0, [L̂(N), M̂
(N)
f ]t → 0 in probability as N → ∞.

PROOF. For i ∈ N, let τ
(N)
i

.= ∑i
j=1 ξ

(N)
j be the time of the ith jump of E(N).

Since both L̂(N) and M̂
(N)
f are compensated sums of jumps, arguing as in Claim 1

the optional quadratic co-variation is given by[
L̂(N), M̂

(N)
f

]
t = 1√

N

∑
i∈N : τ

(N)
i ≤t

(
1 − λ(N)ξ

(N)
i+1

)
�M̂

(N)
f

(
τ

(N)
i

)
,(8.14)

where we have also used the fact that E(N) has unit jumps. To prove the claim, it
suffices to show that

E
[[

L̂(N), M̂
(N)
f

]2
t

] ≤ σ 2‖f ‖2∞
λN

E

[ ∑
i∈N : τ

(N)
i ≤t

�D(N)(τ (N)
i

)]
.(8.15)

Indeed, then the right-hand side goes to zero as N → ∞ because the expectation
on the right-hand side is bounded by supN E[D(N)(t)], which is finite by Lem-
ma 5.6 of [21]. Alternatively, the convergence to zero of the right-hand side of
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(8.15) could also be deduced from the stronger result stated in Corollary A.3. The
claim would then follow by an application of Chebysev’s inequality.

To establish (8.15), we first introduce the filtration {F̃ (N)
t , t ≥ 0}, which is

defined exactly like the filtration {F (N)
t , t ≥ 0}, except that the forward recur-

rence time process R
(N)
E associated with the renewal arrival process E(N) is re-

placed by the age or backward recurrence time process α
(N)
E , which satisfies

α
(N)
E (s) = s − sup{u < s :E(N)(u) < E(N)(s)} ∨ 0 for s ≥ 0. It is easy to verify

that M̂
(N)
f is an {F̃ (N)

t }-adapted process and, for each i ∈ N, τ
(N)
i is an {F̃ (N)

t }-
stopping time. Moreover, for every i ∈ N, using the independence of ξ

(N)
i+1 from

F̃ (N)

τ
(N)
i

, we have

E
[
1 − λ(N)ξ

(N)
i+1 |F̃ (N)

τ
(N)
i

] = E
[
1 − λ(N)ξ

(N)
i+1

] = 0,(8.16)

E
[(

1 − λ(N)ξ
(N)
i+1

)2|F̃ (N)

τ
(N)
i

] = E
[(

1 − λ(N)ξ
(N)
i+1

)2] = σ 2/λ.(8.17)

Combining (8.17) with the estimate (�M̂
(N)
f )2 ≤ ‖f ‖2∞�D(N), we obtain for

i ∈ N,

E
[(

1 − λ(N)ξ
(N)
i+1

)2
�M̂

(N)
f

(
τ

(N)
i

)2|F̃
τ

(N)
i

]
= σ 2

λ
�M̂

(N)
f

(
τ

(N)
i

)2

≤ σ 2‖f ‖2∞
λ

�D(N)(τ (N)
i

)
.

A similar conditioning argument using (8.16) shows that for 2 ≤ k < i, i, k ∈ N,

E
[(

1 − λ(N)ξ
(N)
k+1

)
�M̂

(N)
f

(
τ

(N)
k

)(
1 − λ(N)ξ

(N)
i+1

)
�M̂

(N)
f

(
τ

(N)
i

)] = 0.

Taking first the square and then the expectation of each side of (8.14) and using
the last two relations, we obtain (8.15). As argued above, this proves the second
claim. �

CLAIM 3. The jumps of (L̂(N), M̂(N)(f )) are asymptotically negligible and
(8.11) holds.

PROOF. The sizes of the jumps of Ê(N) and L̂(N) converge to zero as N → ∞
because E(N) is a counting process with unit jumps and supt≤T |γ̂ (N)(t)| → 0

in probability. Also, by Lemma 4.2 and the continuity of A
(N)
f , the sizes of the

jumps of M̂(N)(f ) = M̂
(N)
f are uniformly bounded by ‖f ‖∞/

√
N , and so they

also converge to zero in probability. Because {(L̂(N), M̂(N)(f ))}N∈N is a sequence
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of martingales starting at zero, we can apply the martingale central limit theorem
(see, e.g., Theorem 1.4 on page 339 of Ethier and Kurtz [9]). The conditions of that
theorem are verified by Claims 1–2 above and the first assertion of Claim 3, and
(8.11) follows from the observation that B and M̂(f ) are independent, centered
Gaussian processes with variance processes σ 2t and Af 2(t), t ≥ 0, respectively.

�

For the next two claims, recall from Section 2.2 that for each N ∈ N, {G(N)
t }

is the augmented right-continuous filtration associated with the Markov process
(R

(N)
E ,X(N), ν(N)) and E

(N)
(r,k,μ) is the expectation with respect to the Markovian

measure with initial distribution concentrated at (r, k,μ).

CLAIM 4. For every N ∈ N, the process {L̂(N)
t , M̂(N)

t (f ), t ≥ 0} is {G(N)
t }-

adapted. Moreover, let {(r(N), k(N),μ(N))}N∈N ⊂ [0,∞)×N×MF [0,L) be a de-
terministic sequence that satisfies r(N) → 0, k(N)/N → x0, μ(N)/N ⇒ ν0, where
x0, ν0 are the limit of the fluid-scaled initial conditions, as defined in Assumption 1.
Then, given any bounded and continuous functional F on DR2[0,∞),

lim
N→∞ E

(N)

(r(N),k(N),μ(N))

[
F
(
L̂(N), M̂(N)(f )

)] = Ê[F(B, M̂(f ))].(8.18)

PROOF. Fix t ∈ [0,∞). It is easy to see from the definitions that E(N)(t), ξ (N)
j ,

j ≤ E(N)(t), and hence L̂
(N)
t , are all measurable with respect to σ(R

(N)
E (s), s ∈

[0, t]) ⊂ G(N)
t . In a similar fashion, for f ∈ Cb[0,L), it follows from the

definitions given in (4.1) and (4.2) that Q
(N)
f (t) and A

(N)
f (t) are measur-

able with respect to σ(ν
(N)
s , s ∈ [0, t)) ⊆ G(N)

t . Thus, from (4.3), (4.5) and

(4.11) it follows that M̂(N)
t (f ) is also G(N)

t -measurable and the first asser-
tion of the claim is proved. The limit in (8.11) was established in Claim 3.
Since both L̂(N) and M̂(N) are adapted with respect to {G(N)

t }, one can use
the Markov property and repeat the argument used in the proof of that claim
to establish the slightly modified version of (8.11) that is stated in (8.18).

�

CLAIM 5. The asymptotic independence property in (8.12) holds.

PROOF. Let F1 be a continuous functional on DR2[0,∞) and F2 a continuous
functional on R × H−2 × DH−2[0,∞) × DR[0,∞). Then

lim
N→∞ E

[
F1

(
L̂(N), M̂(N)(f )

)
F2

(
x̂

(N)
0 , ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)

)]
= lim

N→∞ E
[
E
[
F1

(
L̂(N), M̂(N)(f )

)
(8.19)

× F2
(
x̂

(N)
0 , ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)

)|G(N)
0

]]
.
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Now, X̂(N)(0) and ν̂
(N)
0 are measurable functions of X(N)(0) and ν

(N)
0 because the

fluid limit quantities x0 and ν0 are almost surely deterministic. Moreover, J ν̂
(N)
0

and J ν̂
(N)
0 (1) are measurable functions of ν̂

(N)
0 . Therefore, F2(X̂

(N)(0), ν̂
(N)
0 ,

J ν̂
(N)
0 , J ν̂

(N)
0 (1)) is G(N)

0 -measurable. Since {(L̂(N)(t), M̂(N)
t (f )), t ≥ 0} is

{G(N)
t }-adapted by Claim 4, the Markov property shows that

E
[
E
[
F1

(
L̂(N), M̂(N)(f )

)
F2

(
X̂(N)(0), ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)

)|G(N)
0

]]
= E

[
F2

(
X̂(N)(0), ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)

)
(8.20)

× E
(N)

(R
(N)
E (0),X(N)(0),ν

(N)
0 )

[
F1

(
L̂(N), M̂(N)(f )

)]]
.

Since (R
(N)
E (0),X(N)(0), ν

(N)
0 ) → (0, x0, ν0) P-almost surely by Assumption 1,

the conditions of Claim 4 are satisfied and it follows from (8.18) that P-almost
surely,

lim
N→∞ E

(N)

(R
(N)
E (0),X(N)(0),ν

(N)
0 )

[
F1

(
L̂(N), M̂(N)(f )

)] = Ê[F1(B, M̂(f ))].

Since F1 and F2 are bounded (say by C), the bounded convergence theorem im-
plies that

lim
N→∞

∣∣E[
F2

(
X̂(N)(0), ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)

)
× E

(N)

(R
(N)
E (0),X(N)(0),ν

(N)
0 )

[
F1

(
L̂(N), M̂(N)(f )

)]]
− E

[
F2

(
X̂(N)(0), ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)

)
Ê[F1(B, M̂(f ))]]∣∣(8.21)

≤ C lim
N→∞ E

[∣∣E(N)

(R
(N)
E (0),X(N)(0),ν

(N)
0 )

[
F1

(
L̂(N), M̂(N)(f )

)]
− Ê[F1(B, M̂(f ))]∣∣]

= 0.

On the other hand, since F2 is bounded and continuous, by Assumption 5,

lim
N→∞ E

[
F2

(
X̂(N)(0), ν̂

(N)
0 , J ν̂

(N)
0 , J ν̂

(N)
0 (1)

)]
(8.22)

= Ê[F2(x̂0, ν̂0, J ν̂0, J ν̂0(1))].
Combining (8.19)–(8.22), we obtain the first equality in (8.12). The second equal-
ity of (8.12) follows from the first due to the fact that, by construction, (B, M̂(f ))

depend only on the fluid initial conditions x0 and ν0, which are P almost surely
deterministic.
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We now turn to the proof of (8.12) for the case when Assumption 3(b) is satis-
fied. The proof in this case is similar, and so we only elaborate on the differences.
First, for N ∈ N, define L̂(N) = L(N)/

√
N , where now

L(N)(t)
.=
(
E(N)(t) −

∫ t

0
λ(N)(s) ds

)
, t ∈ [0,∞),

is the scaled and centered inhomogeneous Poisson process, and note that

Ê(N)(t) = √
N

(
E(N)(t) −

∫ t

0
λ(s) ds

)
= L̂(N)(t) +

∫ t

0
β(s) ds.(8.23)

Fix f that is bounded and continuous. To complete the proof of the propo-
sition, it suffices to show that (L̂(N), M̂(N)(f )) ⇒ (

∫ ·
0(λ(s))1/2 dB(s), M̂(f )).

Let {F̃ (N)
t } be the filtration defined in Claim 2 above. Then, as is well known,

{L̂(N)(t), F̃ (N)
t , t ≥ 0} and {M̂(N)

t (f ), F̃ (N)
t , t ≥ 0} are martingales. Hence, once

again, we need only verify the conditions of the martingale central limit theorem.
Arguing exactly as in Claims 3 and 1 of the proof for case (a), it is clear that the
jumps of Ê(N) and M̂(N)(f ) are uniformly bounded by (1 + ‖f ‖∞)/

√
N and for

each t > 0, [M̂(N)(f )]t → Af 2(t) in probability. Keeping in mind that the candi-
date limit (Ê, M̂(f )) is a pair of independent, continuous Gaussian martingales
with respective quadratic variations

∫ t
0 λ(s) ds and Af 2(t), to complete the proof

it suffices to verify that for every t ∈ [0,∞), as N → ∞, the following limits hold
in probability: [

L̂(N)]
t →

∫ t

0
λ(s) ds,

[
L̂(N), M̂(N)(f )

]
t → 0.(8.24)

Clearly, the {F̃ (N)
t }-predictable quadratic variation of L̂(N) is given by 〈L̂(N)〉t =

1
N

∫ t
0 λ(N) ds, which converges to

∫ t
0 λ(s) ds as N → ∞. By Theorem 3.11 of

Chapter VIII of [16], this implies that the {F̃ (N)
t }-optional quadratic variation

[L̂(N)]t converges in law to
∫ t

0 λ(s) ds. Because the limit
∫ t

0 λ(s) ds is determinis-
tic, the convergence is also in probability. This establishes the first limit in (8.24).
To establish the second limit, note that L̂(N) and M̂(N)(f ) are both compensated
pure jump processes with continuous compensators, and so their optional quadratic
covariation takes the form[

L̂(N), M̂(N)(f )
]
t = 1

N

∑
s≤t

�L(N)(s)�M(N)
s (f ) = 1

N

∑
s≤t

�E(N)(s)�Q
(N)
f (s).

Noting that �Q
(N)
f ≤ ‖f ‖∞�D(N), taking expectations of both sides above and

then the limit as N → ∞, Corollary A.3 shows that

lim
N→∞ E

[∣∣[L̂(N), M̂(N)(f )
]
t

∣∣] ≤ lim
N→∞

‖f ‖∞
N

E

[∑
s≤t

�E(N)(s)�D(N)(s)

]
= 0.
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An application of Markov’s inequality then yields the second limit in (8.24). The
asymptotic independence from the initial conditions is proved exactly in the same
way as when Assumption 3(a) holds (see the first part of the proof of Claim 5) and
is thus omitted. �

8.3. Convergence of stochastic convolution integrals. We now show that for
suitable f , {Ĥ(N)(f )}N∈N is a tight sequence of càdlàg processes. Since each
Ĥ(N)(f ) is not a martingale, the proof is more involved than the corresponding
result for {M̂(N)(f )}N∈N, and we require an additional regularity assumption (As-
sumption 4) on G, which holds if the hazard rate function h is bounded or if g is in
L

1+α for some α > 0; see Remark 5.2. For conciseness, we will use the notation

G(x) = 1 − G(x), f G(x) = f (x)G(x), x ∈ [0,∞).(8.25)

We first derive an elementary inequality.

LEMMA 8.5. Suppose Assumption 4 is satisfied, let f be a bounded, Hölder
continuous function with constant Cf and exponent γf , and let γ ′

f

.= γG ∧γf . The
family of operators {�t, t ≥ 0} defined in (4.19) satisfies, for all 0 < t < t ′ < ∞,

‖�tf − �t ′f ‖∞ ≤ (Cf + CG‖f ‖∞)|t − t ′|γ ′
f .(8.26)

Moreover, if f ∈ H1, then Cf ≤ ‖f ‖H1 and there exists a constant C0 < ∞,
independent of f , such that the right-hand side of (8.26) can be replaced by

C0‖f ‖H1 |t − t ′|γ ′
f .

PROOF. Fix f as in the statement of the lemma. Then we can write �tf −
�t ′f = ϕ(1) + ϕ(2), where

ϕ(1)(x, s) = G(x + (t − s)+)

G(x)

(
f
(
x + (t − s)+

) − f
(
x + (t ′ − s)+

))
and

ϕ(2)(x, s) = f
(
x + (t ′ − s)+

)G(x + (t − s)+) − G(x + (t ′ − s)+)

G(x)
.

The Hölder continuity of f and the fact that G is nonincreasing show that
‖ϕ(1)‖∞ ≤ Cf |t − t ′|γf , and Assumption 4 shows that ‖ϕ(2)‖∞ ≤ CG‖f ‖∞|t −
t ′|γG . When combined, these two inequalities yield (8.26). If f ∈ H1, the Cauchy–
Schwarz inequality and (1.5) imply

|f (t) − f (t ′)| =
∣∣∣∣∫ t ′

t
f ′(u) du

∣∣∣∣ ≤ ‖f ′‖L2(t − t ′)1/2 ≤ ‖f ‖H1(t − t ′)1/2.

Thus, Cf = ‖f ′‖L2 ≤ ‖f ‖H1 and γf = 1/2, respectively, serve as a Hölder
constant and exponent for f . When combined with (1.6) this shows that f is
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bounded and Hölder continuous and the second assertion of the lemma holds with
C0

.= 1 + 2CG. �

In what follows, for t > 0, let ϒt : Cb([0,L) × [0, t]) �→ Cb([0,L) × [0, t]) be
the operator given by

(ϒtϕ)(x,u)
.=
∫ t

u
(�sϕ(·, s))(x, u) ds

(8.27)

=
∫ t

u
ϕ(x + s − u, s)

1 − G(x + s − u)

1 − G(x)
ds

for (x, u) ∈ [0,L) × [0, t] and f ∈ Cb[0,L). The first two properties of the
next lemma are used in Corollary 8.7 to establish convergence of the sequence
{Ĥ(N)(f )}N∈N and regularity of the limit. The third property below is used in the
proof of the Fubini-type result in Lemma E.1 and the last property is used in the
proof of Theorem 5.

LEMMA 8.6. If Assumption 4 is satisfied, the following properties hold:

(1) Given a bounded and Hölder continuous function f on [0,L), the sequence
of processes {Ĥ(N)(f )}N∈N is tight in DR[0,∞) and Ĥ(f ) is P̂-almost surely
continuous.

(2) There exists r ≥ 2 and a constant C0 < ∞ such that for any f ∈ S ,

sup
N

E

[
sup

t∈[0,T ]
∣∣Ĥ(N)

t (f )
∣∣r] ≤ C0‖f ‖r

H1
.(8.28)

(3) Suppose ϕ : [0,L) × [0,∞) �→ R is a Borel measurable function such that
for every x ∈ [0,L), the function r �→ ϕ(x, r) is locally integrable and, for every
t ∈ [0, T ], the function x �→ ∫ t

0 ϕ(x, r) dr is bounded and Hölder continuous with
constant Cϕ,T and exponent γϕ,T (that are independent of t). Then P̂-almost surely,
the random field {Ĥs(

∫ t
0 ϕ(·, r) dr)), s, t ≥ 0} is jointly continuous in s and t .

(4) Suppose ϕ ∈ Cb([0,L) × [0,∞)). Then the process {M̂t (ϒtϕ), t ≥ 0} ad-
mits a continuous version.

PROOF. The proof of the lemma is based on a modification of the approach
used in Walsh [31] to establish convergence of stochastic convolution integrals,
tailored to the present context (the proof of Theorem 7.13 in [31] works with a
different space of test functions and imposes different conditions on the martingale
measure M̂(N), and hence does not apply directly). Fix a bounded and Hölder
continuous f with constant Cf and exponent γf and fix T < ∞. Recall from

(4.21) that Ĥ(N)
t (f ) = M̂(N)

t (�tf ), t ≥ 0. The proof of the first two properties
will be split into four main claims.

CLAIM 1. For each N ∈ N, {Ĥ(N)
t (f ), t ≥ 0} admits a càdlàg version.
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PROOF. The estimates obtained in this proof are also used to establish the
other claims. Fix N ∈ N and consider the following stochastic integral:

V
(N)
t (f )

.= M̂(N)
T (�tf ), t ∈ [0, T ].(8.29)

Because M̂(N) is a martingale measure, we have

Ĥ(N)
t (f ) = M̂(N)

t (�tf ) = E
[
V

(N)
t (f )|F (N)

t

]
, t ∈ [0, T ],(8.30)

which shows that the process {M̂(N)
t (�tf ), t ≥ 0} is a version of the optional

projection of V (N)(f ). It is well known from the general theory of stochastic pro-
cesses (see, e.g., Theorem 7.10 of Chapter V of Rogers and Williams [29]) that the
optional projection of a continuous process is an adapted càdlàg process. There-
fore, to show that {M̂(N)

t (�tf ), t ∈ [0, T ]} admits a càdlàg version, it suffices to
show that V (N)(f ) admits a continuous version. In turn, to establish continuity,
it suffices to verify Kolmogorov’s continuity criterion, namely, to show that there
exist C̃f < ∞, θ̃ > 1 and r < ∞ such that for every 0 ≤ t ′ < t < T ,

E
[∣∣V (N)

t (f ) − V
(N)
t ′ (f )

∣∣r] ≤ C̃f |t − t ′|θ̃ ;(8.31)

see, for example, Corollary 1.2 of Walsh [31]. Fix 0 ≤ t ′ ≤ t ≤ T and note that∣∣V (N)
t (f ) − V

(N)
t ′ (f )

∣∣ = ∣∣M̂(N)
T (�tf − �t ′f )

∣∣.(8.32)

Let r be any positive even integer greater than 1/γ ′
f . Together with (8.3) and

(8.26), this implies that (8.31) is satisfied with θ̃ = rγ ′
f > 1 and

C̃f = Cr(Cf + CG‖f ‖∞)r
(
(r/2)!Ur/2(T ) + 1

)
.(8.33) �

CLAIM 2. Ĥ(f ) has a continuous version.

PROOF. Analogously to (8.29) and (8.30), we define Vt(f )
.= M̂T (�tf ),

t ≥ 0, and observe that

Ĥt (f ) = M̂t (�tf ) = E[Vt(f )|F̂t ], t ≥ 0.(8.34)

Arguments analogous to those used in Claim 1, with the inequalities (8.4) and
(8.2), respectively, now playing the role of (8.3) and (8.1), can be used to show
that

E[|Vt(f ) − Vt ′(f )|r ] ≤ C̃f |t − t ′|θ̃(8.35)

with θ̃ = rγ ′
f . Fix 0 < t ′ < t < ∞ with |t − t ′| < 1 and a bounded, Hölder contin-

uous f . Using (8.34) and adding and subtracting M̂t ′(�tf ) = E[Vt(f )|F̂t ′ ], we
obtain

Ĥt (f ) − Ĥt ′(f ) = E[Vt(f ) − Vt ′(f )|F̂t ′ ] + M̂t (�tf ) − M̂t ′(�tf ).(8.36)



SPDE LIMITS OF MANY-SERVER QUEUES 199

Consider any even integer r > 2/γ ′
f ∨ 4 so that (8.35) holds with θ̃ > 2, let θ

.=
�r/2 ∧ θ̃� and note that θ is an integer greater than or equal to 2. Taking first the
r th power and then expectations of both sides of (8.36), and using the inequality
(x + y)r ≤ 2r (xr + yr) and Jensen’s inequality, we obtain

E[|Ĥt ′(f ) − Ĥt (f )|r ]
≤ 2r(

E[|Vt(f ) − Vt ′(f )|r ] + E[|M̂t (�t ′f ) − M̂t ′(�t ′f )|r ]).
Applying the estimates (8.31), (8.5) and the fact that ‖�tf ‖∞ ≤ ‖f ‖∞, and then
the inequality x2 + y2 ≤ (x + y)2 for x, y ≥ 0, this implies that

E[|Ĥt ′(f ) − Ĥt (f )|r ]
≤ 2r C̃f |t − t ′|θ̃ + 2rCr

(
A(�t ′f )2(t) − A(�t ′f )2(t

′)
)r/2(8.37)

≤ 2r (C̃f ∨ Cr‖f ‖2∞)
(
t + A1(t) − t ′ − A1(t

′)
)2

.

Since t + A1(t) is a nonnegative, increasing function of t , the generalized Kol-
mogorov’s continuity criterion (see, e.g., Corollary 3 of [23]) implies that Ĥ(f )

has a continuous version. �

CLAIM 3. The estimate (8.28) is satisfied.

PROOF. From the proof of Corollary 1.2 of Walsh [31] it is straightforward to
deduce that (8.31) also implies that there exists a constant C̃r < ∞, which depends
on r but is independent of N and f , such that

E

[
sup

s∈[0,T ]
∣∣V (N)

s (f )
∣∣r] ≤ C̃r C̃f .(8.38)

By (8.30), for every t ∈ [0, T ],∣∣Ĥ(N)
t (f )

∣∣ ≤ E

[
sup

s∈[0,T ]
V (N)

s (f )|F (N)
t

]
≤ E

[
sup

s∈[0,T ]
∣∣V (N)

s (f )
∣∣|F (N)

t

]
.

By (8.38), the last term above (viewed as a processs in t) is a Doob martingale,
and hence is càdlàg. Since r > 1, Doob’s inequality and (8.38) imply that

E

[
sup

t∈[0,T ]
∣∣Ĥ(N)

t (f )
∣∣r] ≤ E

[
sup

t∈[0,T ]

(
E

[
sup

s∈[0,T ]
∣∣V (N)

s (f )
∣∣|F (N)

t

])r]

≤
(

r

r − 1

)r

E

[
E

[
sup

s∈[0,T ]
∣∣V (N)

s (f )
∣∣r |F (N)

T

]]

=
(

r

r − 1

)r

E

[
sup

s∈[0,T ]
∣∣V (N)

s (f )
∣∣r]

≤
(

r

r − 1

)r

C̃r C̃f .
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If f ∈ S , then by the expression for C̃f given in (8.33) and the inequalities
‖f ‖∞ ≤ √

6‖f ‖H1 and Cf ≤ ‖f ‖H1 established in (1.6) and Lemma 8.5, respec-
tively, the right-hand side above can be replaced by C0‖f ‖r

H1
, for an appopriate

constant C0 = C0(G, r, T ) < ∞ that is independent of N and f . Thus, (8.28) fol-
lows. �

CLAIM 4. The sequence {Ĥ(N)
t (f ), t ≥ 0}N∈N is tight in DR[0,∞).

PROOF. We will prove the claim by verifying Aldous’ criteria for tightness of
stochastic processes. A minor modification of the arguments in Claims 1–3 shows
that if δN ∈ (0,1) and TN is an {F (N)

t } stopping time such that TN + δN ≤ T , then
for any even integer r ≥ 2,

E
[∣∣V (N)

TN+δN
(f ) − V

(N)
TN

(f )
∣∣r] ≤ C̃f δ

rγ ′
f

N .(8.39)

Let δN ∈ (0,1), and let TN be an {F (N)
t } stopping time such that TN + δN ≤ T .

Using (8.30) and (8.29), the difference Ĥ(N)
TN+δN

(f )− Ĥ(N)
TN

(f ) can be rewritten as

E
[
V

(N)
TN+δN

|F (N)
TN+δN

] − E
[
V

(N)
TN

|F (N)
TN

]
= E

[
V

(N)
TN+δN

− V
(N)
TN

|F (N)
TN+δN

] + E
[
V

(N)
TN

|F (N)
TN+δN

] − E
[
V

(N)
TN

|F (N)
TN

]
= E

[
V

(N)
TN+δN

− V
(N)
TN

|F (N)
TN+δN

]
+

∫ ∫
[0,L)×(TN ,TN+δN ]

�TN
(f )(x, s)M̂(N)(dx, ds).

Recalling the covariance functional of M̂(N) specified in (4.12) and the fact that
‖�TN

(f )‖∞ ≤ ‖f ‖∞, this implies that

E
[∣∣Ĥ(N)

TN+δN
(f ) − Ĥ(N)

TN
(f )

∣∣2]
≤ 2E

[∣∣V (N)
TN+δN

(f ) − V
(N)
TN

(f )
∣∣2] + 2‖f ‖2∞E

[
A

(N)
1 (TN + δN) − A

(N)
1 (TN)

]
≤ 2C̃f δ

2γ ′
f

N + 2‖f ‖2∞ sup
Ñ

E

[
sup

t∈[0,T ]
(
A

(Ñ)

1 (t + δN) − A
(Ñ)

1 (t)
)]

,

where the last equality uses (8.39) with r = 2. As δN → 0, the first term on the
right-hand side clearly converges to zero, whereas Lemma 5.8(2) of [21] shows
that the second term also converges to zero. We conclude that Ĥ(N)

TN+δN
(f ) −

Ĥ(N)
TN

(f ) converges to zero in L
2, and hence in probability. On the other hand,

(8.28) shows that the sequence {Ĥ(N)(f )}N∈N is uniformly bounded in L
r . We

have thus verified Aldous’ criteria (see, e.g., Theorem 6.8 of Walsh [31]), and
hence the sequence {Ĥ(N)(f )}N∈N is tight. �
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We now turn to the proof of property 3. Fix T < ∞, let ϕ be as stated in the
lemma and for t ∈ [0, T ], define f t

ϕ(x) = ∫ t
0 ϕ(x, r) dr . For s, t, s′, t ′ ∈ [0, T ] with

t ′ < t , we have

Ĥs(f
t
ϕ) − Ĥs′(f t ′

ϕ ) = Ĥs(f
t
ϕ) − Ĥs′(f t

ϕ) + M̂s′
(
�s

(∫ t

t ′
ϕ(·, r) dr

))
.

Due to the assumed boundedness and Hölder continuity of f t
ϕ , (8.37) and (8.4)

together with the above relation imply that there exists a sufficiently large integer r ,
constant C(T , r, ϕ) < ∞ and θ̃ = θ̃ (r, ϕ) > 1 such that

E

[∣∣∣∣Ĥs′
(∫ t ′

0
ϕ(·, r) dr

)
− Ĥs

(∫ t

0
ϕ(·, r) dr

)∣∣∣∣r]
= E[|Ĥs′(f t ′

ϕ ) − Ĥs(f
t
ϕ)|r ]

≤ C(T , r, ϕ)
(|s + A1(s) − s′ − A1(s

′)|θ̃ + |t − t ′|θ̃ ).
Property 3 then follows from the generalized Kolmogorov criterion for continuity
of random fields; see, for example, [6].

The proof of the last property of the lemma is similar to the proof of the
continuity of Ĥ given in Claim 2, and so we only provide a rough sketch. Let
Rt(ϕ)

.= M̂t (ϒtϕ), define Ṽt (ϕ)
.= M̂T (ϒtϕ) and note that Rt(ϕ) = E[Ṽt (ϕ)|Ft ].

In a manner similar to (8.36), we can write

Rt(ϕ) − Rt ′(ϕ) = E

[
M̂T

(∫ t

t ′
�sϕ(·, s) ds

)∣∣∣Ft ′
]

+ M̂t (ϒtϕ) − M̂t ′(ϒtϕ).

Using Jensen’s inequality, (8.4) and (8.5) with r = 4 and the inequalities
‖∫ t

t ′ �sϕ(·, s) ds‖∞ ≤ |t − t ′|‖ϕ‖∞ and ‖ϒtϕ‖∞ ≤ T ‖ϕ‖∞, it follows that for
0 < t ′ < t < T , t − t ′ ≤ 1,

E[|Rt(ϕ) − Rt ′(ϕ)|4] ≤ 24
E

[∣∣∣∣M̂T

(∫ t

t ′
�sϕ(·, s) ds

)∣∣∣∣4]
+ 24‖ϒt(ϕ)‖4∞

(
A1(t) − A1(t

′)
)2

≤ 24C̃(T )‖ϕ‖4∞
(|t − t ′|4 + (

A1(t) − A1(t
′)
)2)

≤ 24C̃(T )‖ϕ‖4∞
(
(t − t ′)2 + (

A1(t) − A1(t
′)
)2)

≤ 24C̃(T )‖ϕ‖4∞
(
t − t ′ + A1(t) − A1(t

′)
)2

,

where C̃(T )
.= (2C4U(T )2) ∨ T 4. The claim then follows from the generalized

Kolmogorov continuity criterion. �

Combining Lemma 8.6 with arguments similar to those used in the proof of
Corollary 8.3, we now obtain the main convergence result of the section. In what
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follows, recall the definition of the process Ŷ
(N)
1 given in (5.19), and let Ŷ1 be the

analogous limit process, given by

Ŷ1
.= (Ê, x̂0, ν̂0, J ν̂0, J ν̂0(1), M̂, Ĥ, Ĥ(1)).

COROLLARY 8.7. As N → ∞, Ŷ
(N)
1 ⇒ Ŷ1 in Y1. Also, if for any bounded,

Hölder continuous f , (5.27) holds, then (Ŷ
(N)
1 , Ĥ(N)(f )) ⇒ (Ŷ1, Ĥ(f )) as N →

∞, and Ĥ admits a version as a continuous H−2-valued process.

PROOF. Fix N ∈ N. For k̃, k ∈ N, i = 1, . . . , k̃, j = 1, . . . , k, let f̃i and fj ,
respectively, be bounded, continuous and bounded, Hölder continuous functions.
Proposition 8.4 and Lemma 8.6 imply that the sequence{(

M̂(N)(f̃1), . . . , M̂(N)(f̃
k̃
), Ĥ(N)(f1), . . . , Ĥ(N)(fk)

)}
N∈N

is tight in DR[0,∞)k̃+k . Since Ĥ(N)
t (f ) = M̂(N)

t (�tf ) and, likewise, Ĥt (f ) =
M̂t (�tf ), Proposition 8.4 also shows that for t̃i , tj ∈ [0,∞), i = 1, . . . , k̃, j =
1, . . . , k, as N → ∞, the following corresponding terms converge:(

M̂(N)

t̃1
(f̃1), . . . , M̂(N)

t̃k
(f̃k), Ĥ(N)

t1
(f1), . . . , Ĥ(N)

tk
(fk)

)
⇒ (M̂t̃1

(f̃1), . . . , M̂t̃k
(f̃k), Ĥt1(f1), . . . , Ĥtk (fk)).

Since S is a subset of the space of bounded and Hölder continuous functions,
together the last two statements show that(

M̂(N)(f̃ ), Ĥ(N)(f ), Ĥ(N)(f1)
) ⇒ (M̂(f̃ ), Ĥ(f ), Ĥ(f1))

for f, f̃ ∈ S and f1 bounded and Hölder continuous. Because S and S ′ are
nuclear Fréchet spaces, by Theorem 5.3(2) of Mitoma [24] it follows that
(M̂(N), Ĥ(N), Ĥ(N)(f1)) ⇒ (M̂, Ĥ, Ĥ(f1)) in DS ′ [0,∞)2 × DR[0,∞). Since

‖ · ‖H1

HS
< ‖ · ‖H2

and estimate (8.28) holds, Corollary 6.16 of Walsh [31] then

shows that (M̂(N), Ĥ(N), Ĥ(N)(f1)) ⇒ (M̂, Ĥ, Ĥ(f1)) in DH−2[0,∞)2 ×
DR[0,∞), as N → ∞. In fact, from Corollary 8.3, Lemma 8.6(1) and the proofs
of Corollary 1 of [24] and Corollary 6.16 of [31], it follows that the sample paths
of (M̂, Ĥ, Ĥ(f1)) lie in CH−2[0,∞)2 ×CR[0,∞), which proves the last assertion
of the corollary. Now, (Ĥ, Ĥ(f1)) is adapted to the filtration generated by M̂, and
M̂ is independent of (Ê, x̂0, ν̂0, J ν̂0, J ν̂0(1)) by (8.12) and the construction of M̂
and B described after Assumption 5′. The same argument used to establish asymp-
totic independence in Proposition 8.4 also shows that the convergence above can
be strengthened to Ŷ

(N)
1 ⇒ Ŷ1 and (Ŷ

(N)
1 , Ĥ(N)(f )) ⇒ (Ŷ1, Ĥ(f )). �

9. Proofs of main theorems.

9.1. The functional central limit theorem. Before presenting the proof of The-
orem 2, we first establish the main convergence result.
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PROPOSITION 9.1. Suppose Assumptions 1–5 are satisfied, and suppose that
the fluid limit is either subcritical, critical or supercritical. Then the limit in (5.21)
holds and (K̂, X̂, ν̂(1)) has almost surely continuous sample paths. Moreover, if g

is continuous, and ν̂ is defined as in (5.24), then as N → ∞,(
Ŷ

(N)
1 , K̂(N), X̂(N), ν̂(N), K̂(N), K̂(N)(1)

) ⇒ (Ŷ , K̂, X̂, ν̂, K̂, K̂(1))(9.1)

in Y1 × DR[0,∞)2 × D
2
H−2

[0,∞) × DR[0,∞).

PROOF. Corollary 8.7 shows that Ŷ
(N)
1 ⇒ Ŷ1 in Y1 as N → ∞, which in par-

ticular implies that(
Ê(N), X̂(N)(0), J ν̂

(N)
0 (1), Ĥ(N)(1)

) ⇒ (Ê, x̂0, J ν̂0(1), Ĥ(1))

as N → ∞. By Remark 5.1, Assumption 5, Lemma 8.6(1) and Corollary 8.7,
(Ê, J ν̂0(1), Ĥ(1), J ν̂0, Ĥ) has almost surely continuous sample paths with val-
ues in R

3 ×H
2−2. Since addition in the Skorokhod topology is continuous at points

in C[0,∞), as N → ∞,(
Ŷ

(N)
1 , Ê(N), X̂(N)(0), J ν̂

(N)
0 (1) − Ĥ(N)(1)

) ⇒ (
Ŷ1, Ê, x̂0, J ν̂0(1) − Ĥ(1)

)
.(9.2)

By Lemma 7.2, almost surely (K̂(N), X̂(N), 〈1, ν̂(N)〉) = �(Ê(N), X̂(N)(0),

J ν̂
(N)
0 (1) − Ĥ(N)(1)) for all N large enough. The continuity of � with respect

to the uniform topology on DR[0,∞) established in Proposition 7.3, the measur-
ability of � with respect to the Skorokhod topology on DR[0,∞) established in
Lemma 7.4 and a generalized version of the continuous mapping theorem (see,
e.g., Theorem 10.2 of Chapter 3 of [9]), then shows that convergence (5.21) holds
with (K̂, X̂, ν̂(1))

.= �(Ê, x̂0, J ν̂0(1) − Ĥ(1)). By the model assumptions and
Lemma 4.2, almost surely, �E(N)(t) ≤ 1 and �D(N)(t) ≤ 1 for every t ≥ 0. Com-
bining this with (2.3), (6.10) and the second equation for K̂(N) in (6.8), it follows
that almost surely for every t ≥ 0,

max
(
�K̂(N)(t),�X̂(N)(t),�

〈
1, ν̂

(N)
t

〉) ≤ 3√
N

.

Because the jump size functional (at some fixed time t) is continuous in the Sko-
rokhod topology, the weak convergence of the process (K̂(N), X̂(N), ν̂(N)(1)) to
the process (K̂, X̂, ν̂(1)), which was established in (9.1), shows that (K̂, X̂, ν̂(1))

is almost surely continuous. Note that when g is continuous, the continuity of
(K̂, X̂, ν̂(1)) is also guaranteed by Remark 5.5.

Next, suppose g is continuous. By Lemma 7.1(2), both the map � that takes
K̂(N) to K̂(N) and the map that takes K̂(N) to K̂(N)(1) are continuous (with respect
to the Skorokhod topology on both the domain and range). So by (5.21) and the
continuous mapping theorem, as N → ∞,(

Ŷ
(N)
1 , K̂(N), X̂(N), K̂(N), K̂(N)(1)

) ⇒ (Ŷ , K̂, X̂, K̂, K̂(1)).(9.3)
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In turn, (6.15) shows that ν̂(N) = J ν̂
(N)
0 − Ĥ(N) + K̂(N), and hence, ν̂(N) can

be obtained as a continuous mapping of Ŷ
(N)
1 and K̂(N). Thus, (9.3) and an-

other application of the continuous mapping theorem show that (5.25) holds with
ν̂ = J ν̂0 − Ĥ + K̂. That this coincides with the definition of ν̂ given in (5.24) can
be seen on recalling the definition of K given in (7.1). �

We now prove the first two main results of the paper.

PROOF OF THEOREMS 2 AND 3. The limit in (5.21), the continuity of
(K̂, X̂, ν̂(1)) and Theorem 3 follow from Proposition 9.1. Relation (6.16) and the
fact that K̂(N) is almost everywhere continuous because it is càdlàg, shows that∫ ·

0

〈
h, ν̂(N)

s

〉
ds = 〈

1, ν̂
(N)
0

〉 − J ν̂
(N)
0· (1) − M̂(N)· (1)

+ Ĥ(N)· (1) +
∫ ·

0
K̂(N)(s)g(· − s) ds.

The last term equals K̂(N) − K̂(N)(1), and so by Lemma 7.1(2) the mapping from
K̂(N) to the last term is continuous. Limit (5.21) along with the continuous map-
ping theorem then show that

∫ ·
0〈h, ν̂

(N)
s 〉ds ⇒ D̃, where D̃ is as defined in (5.23).

Relation (6.6) for X̂(N), the continuity of the limit and another application of the
continuous mapping theorem then yield the representation (5.22) for X̂. This com-
pletes the proof of both theorems. �

9.2. The semimartingale property. In view of representation (5.22) for X̂ and
the fact that M̂1 and Ê are by definition semimartingales, to show that X̂ is a
semimartingale it suffices to show that D̃ is a process of almost surely finite vari-
ation (on every bounded interval), and hence a semimartingale. This is carried out
in Lemma 9.2 below. Throughout, we assume that Assumptions 1, 3 and 5 are sat-
isfied, the fluid limit is subcritical, critical or supercritical and that, in addition, h is
bounded and absolutely continuous. If h is bounded, then Assumptions 2 and 4 are
also satisfied by Remark 5.2, and so the results of Theorems 2 and 3 are valid.

LEMMA 9.2. Almost surely, the function t �→ D̃(t) is absolutely continuous
and

dD̃(t)

dt
= ν̂t (h) a.e. t ∈ [0,∞).(9.4)

PROOF. We start by rewriting the expression (5.23) for D̃ in a more convenient
form. For t > 0, definitions (5.6) and (5.11) of �t and J ν̂0 , respectively, show that

ν̂0(1) − J ν̂0
t (1) = ν̂0

(
G(· + t) − G(·)

1 − G(·)
)

= ν̂0

(∫ t

0
h(· + r)

1 − G(· + r)

1 − G(·) dr

)

= ν̂0

(∫ t

0
�rh(·) dr

)
.
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By (5.7) and the boundedness of h, �rh is bounded (uniformly in r) and abso-
lutely continuous, and Assumption 4 implies that

∫ t
0 �rhdr = (G(· + t) − G(·))/

(1 − G(·)) is Hölder continuous. Therefore, applying Assumption 5′(d) with
ϕ = �rh, it follows that

ν̂0(1) − J ν̂0
t (1) =

∫ t

0
ν̂0(�rh)dr =

∫ t

0
J ν̂0

r (h) dr.(9.5)

In a similar fashion, for t > 0, using the identity Ĥt (1) = M̂t (�t1), we have

M̂t (1) − Ĥt (1)

=
∫ ∫

[0,L)×[0,t]
G(x + t − u) − G(x)

1 − G(x)
M̂(dx, du)

=
∫ ∫

[0,L)×[0,t]

(∫ t

u

h(x + r − u)(1 − G(x + r − u))

1 − G(x)
dr

)
M̂(dx, du)

= M̂t (ϒth),

where ϒt is the operator defined in (8.27). Substituting ϕ̃ = h ∈ Cb[0,L) in (E.1)
of Lemma E.1 then yields the equality

M̂t (1) − Ĥt (1) =
∫ t

0
Ĥr (h) dr.(9.6)

If h is absolutely continuous, then g is absolutely continuous and by the commu-
tativity of the convolution and differentiation operations, the function t �→ ∫ t

0 g(t −
s)K̂(s) ds is absolutely continuous with derivative g(0)K̂(t)+∫ t

0 g′(t −s)K̂(s) ds.
Together with relations (9.5) and (9.6) and definition (5.23) of D̃, it follows that
almost surely, D̃ is absolutely continuous with respect to Lebesgue measure, and
has density equal to

dD̃t

dt
= J ν̂0

t (h) − Ĥt (h) + g(0)K̂(t) +
∫ t

0
g′(t − s)K̂(s) ds.

Relation (9.4) then follows on comparing the right-hand side above with the right-
hand side of (5.24) for ν̂(f ), setting f = h therein and using the elementary rela-
tions h(0) = g(0) and g′ = h′(1 − G) − hg. �

PROOF OF THEOREM 4. From (5.22), (5.4) and Lemma 9.2 (see also the dis-
cussion prior to the lemma), it follows that X̂ is a semimartingale with the decom-
position stated in Theorem 4. Using the relation (K̂, X̂, ν̂(1)) = �(Ê, x̂0, J ν̂0(1)−
Ĥ(1)) established in Theorem 3 along with (5.15) and (5.16), it follows that

K̂(t) =
⎧⎪⎨⎪⎩

Ê(t), if X is subcritical,
Ê(t) + x̂0 − X̂(t) ∨ 0, if X is critical,
Ê(t) + x̂0 − X̂(t), if X is supercritical.

(9.7)
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Thus, in the subcritical case, the semimartingale decomposition of K̂ follows from
that of Ê (see Remark 5.1), whereas in the supercritical case the semimartingale
decomposition of K̂ follows from those of X̂ and Ê. On the other hand, when X

is critical we need the additional observation that by Tanaka’s formula,

X̂(t) ∨ 0 = x̂0 ∨ 0 +
∫ t

0
I{X̂(s)>0} dX̂s + 1

2
LX̂

t (0),(9.8)

where LX̂
t (0) is the local time of X̂ at zero, over the interval [0, t]. When combined

with (9.7), this provides the semimartingale decomposition of K̂ in the critical
case. When K̂ is a semimartingale, the stochastic integration by parts formula for
semimartingales shows that for every f ∈ ACb[0,∞),

K̂s(f ) =
∫
[0,s]

f (s − u)
(
1 − G(s − u)

)
dK̂(u), s ≥ 0,(9.9)

where the latter is the convolution integral with respect to the semimartingale K̂ .
Thus, we obtain (5.26) from (5.24) and (7.1). �

SKETCH OF JUSTIFICATION OF REMARK 5.6. By Corollary 8.7, if f is
bounded and Hölder continuous, then Ĥ(N)(f ) ⇒ Ĥ(f ) in DR[0,∞), and
{Ĥt (f ), t ≥ 0} is a continuous process. We now argue that one can, in fact,
show that K̂(N)(f ) ⇒ K̂(f ) as N → ∞ for all Hölder continuous f . Given the
semimartingale decomposition K̂ = MK + CK established in Theorem 4, the in-
tegral on the right-hand side of expression (9.9) for K̂(f ) can be decomposed
into a stochastic convolution integral with respect to the local martingale MK

and a Lebesgue–Stieltjes convolution integral with respect to the finite variation
process CK . An argument exactly analogous to the one used in Lemma 8.6(1)
to analyze Ĥ(f ) can then be used to analyze the stochastic convolution inte-
gral with respect to MK and a similar, though simpler, argument can be used
to study the convolution integral with respect to CK to show, as in Lemma 8.6
and Corollary 8.7, that for functions f that are Hölder continuous and bounded,
K̂(N)(f ) ⇒ K̂(f ) as N → ∞, and K̂(f ) admits a continuous version. When com-
bined with Assumptions 3 and 5, it is easy to argue as in the proof of Theorem 2

that, in fact, the joint convergence (Ê(N), X̂(N), J ν̂
(N)
0 (f ), K̂(N)(f ), Ĥ(N)(f )) ⇒

(Ê, X̂, J ν̂0(f ), K̂(f ), Ĥ(f )) holds. Due to (6.15), by the continuous mapping the-
orem, this implies that ν̂(N)(f ) ⇒ ν̂(f ) in DR[0,∞), where ν̂(f ) is continuous,
and in fact the joint convergence specified in (5.27) holds. �

9.3. A consistency property. In this section a certain consistency property is
established. This consistency property will be used in Section 9.4.2 to show that
ν̂ satisfies the stochastic age equation and in Section 9.5 to establish the strong
Markov property. Roughly speaking, the consistency property states that if the
age distribution satisfies the conditions stated in Assumption 5 at the initial time,
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then these conditions are also satisfied at any future time s > 0. For a precise
statement, consider the following shifted processes: for F = Ê(N), K̂(N), Ê, K̂ ,
and R = M̂(N), M̂, and s ≥ 0, u ≥ 0,

(�sF )(u)
.= F(s + u) − F(s), (�s R)u

.= Rs+u − Rs,(9.10)

and for f bounded and continuous, we define

(�s Ĥ(N))t (f )
.= (

�s M̂(N))
t (�s+t f ),

(9.11)
(�s Ĥ)t (f )

.= (�s M̂)t (�s+t f ),

(�s K̂(N))t (f ) =
∫
[0,t]

(
1 − G(t − u)

)
f (t − u)d

(
�sK̂

(N))(u),(9.12)

(�s K̂)t (f ) = f (0)(�sK̂)(t) +
∫ t

0
(�sK̂)(u)ϕf (t − u)du.(9.13)

LEMMA 9.3. For every bounded and continuous f ,

ν̂
(N)
s+t (f ) = J ν̂

(N)
s

t (f ) + (
�s K̂(N))

t (f ) − (
�s Ĥ(N))

t (f ), s, t ≥ 0.(9.14)

Likewise, if Assumptions 1–5 hold and g is continuous, then for every bounded and
absolutely continuous f ,

ν̂s+t (f ) = J ν̂s
t (f ) + (�s K̂)t (f ) − (�s Ĥ)t (f ), s, t ≥ 0.(9.15)

In addition, for every s > 0,

(�sK̂, X̂s+·, ν̂s+·(1)) = �
(
�sÊ, X̂(s), J ν̂s (1) − (�s Ĥ)(1)

)
.(9.16)

Furthermore, if Assumption 5′ holds, then for every s > 0, Assumption 5′ holds

with the sequence {̂ν(N)
0 }N∈N and limit ν̂0, respectively, replaced by {̂ν(N)

s }N∈N

and ν̂s .

We defer the proof of this lemma to Appendix E.

9.4. Stochastic age equation. The focus of this section is the characterization
of the limiting state process in terms of a stochastic partial differential equation
(SPDE), which we have called the stochastic age equation in Definition 5.7. First,
in Section 9.4.1 we establish a representation for integrals of functionals of the
limiting centered age process {̂νs, s ≥ 0}. This representation is then used in Sec-
tion 9.4.2 to show that {̂νt , t ≥ 0} is a solution to the stochastic age equation asso-
ciated with (̂ν0, K̂, M̂). The proof of uniqueness of solutions to the stochastic age
equation and the proof of Theorem 5(1) is presented in Section 9.4.3. Throughout
the section we assume that the conditions of Theorem 5 (namely, Assumptions 1,
3 and 5, and the conditions on the fluid limit), are satisfied, and that h is bounded
and absolutely continuous, and state only additional assumptions when imposed.
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9.4.1. An integral representation. We start by establishing an integral repre-
sentation that results from the semimartingale property for K̂ . In what follows, re-
call the definition of the operator ϒt given in (8.27). Also, note that if h is bounded,
then Assumption 2 and (by Remark 5.2) Assumption 4 are both satisfied. Since h

is also absolutely continuous, by Theorem 4 K̂ is a semimartingale, and ν̂t (f ) is
given by (5.26) for every f ∈ ACb[0,L).

LEMMA 9.4. For any ϕ ∈ Cb([0,L)×[0,∞)) such that ϕ(·, t) is Hölder con-
tinuous uniformly in t and absolutely continuous, P-almost surely for every t > 0,
we have∫ t

0
ν̂s(ϕ(·, s) ds = ν̂0((ϒtϕ)(·,0)) − M̂t (ϒtϕ)

(9.17)

+
∫
[0,t]

(∫ t

u
ϕ(s − u, s)

(
1 − G(s − u)

)
ds

)
dK̂(u).

PROOF. Setting t = s and f = ϕ(·, s) in (5.26), then using the identities
J ν̂0

s (·) = ν̂0(�s ·) and Ĥs(·) = M̂s(�s ·), and then integrating over s ∈ [0, t], we
obtain ∫ t

0
ν̂s(ϕ(·, s)) ds

=
∫ t

0
ν̂0(�sϕ(·, s)) ds −

∫ t

0
M̂s(�sϕ(·, s)) ds(9.18)

+
∫ t

0

(∫
[0,s]

ϕ(s − u, s)
(
1 − G(s − u)

)
dK̂(u)

)
ds.

From the definition (8.27) of ϒt and the fact that (�sf )(·,0) = �sf (·), it follows
that

(ϒtϕ)(x,0) =
∫ t

0
(�sϕ(·, s))(x,0) ds =

∫ t

0
(�sϕ(·, s))(x) ds.

Together with Assumption 5′(d), this implies that∫ t

0
ν̂0(�sϕ(·, s)) ds = ν̂0

(∫ t

0
(�sϕ(·, s))(·) ds

)
(9.19)

= ν̂0((ϒtϕ)(·,0)),

which shows that the first terms on the right-hand sides of (9.17) and (9.18) are
equal. Equality of the second terms on the right-hand sides of (9.17) and (9.18)
follows from (E.1) of Lemma E.1, whereas equality of the third terms follows from
Fubini’s theorem for stochastic integrals with respect to semimartingales; see, for
example, (5.17) of Revuz and Yor [28]. This completes the proof of the lemma.

�
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9.4.2. A verification lemma. We now show that the process {̂νt , t ≥ 0} of The-
orem 3 is a solution to the stochastic age equation. For this, it will be conve-
nient to introduce the function ψh defined as follows: ψh(x, t)

.= exp(rh(x, t))

for (x, t) ∈ [0,L) × [0,∞), where

rh(x, t)
.=

⎧⎪⎪⎨⎪⎪⎩
−

∫ x

x−t
h(u) du, if 0 ≤ t ≤ x,

−
∫ x

0
h(u)du, if 0 ≤ x ≤ t .

(9.20)

Since h = g/(1 − G), this implies that

ψh(x, t) =
⎧⎨⎩

1 − G(x)

1 − G(x − t)
, if 0 ≤ t ≤ x,

1 − G(x), if 0 ≤ x ≤ t .
(9.21)

If g is absolutely continuous, then G is continuously differentiable, and ψh lies in
C 1,1

b ([0,L) × [0,∞)) and satisfies

∂ψh

∂x
+ ∂ψh

∂t
= −hψh(9.22)

for almost every (x, t) ∈ [0,L)×[0,∞). Furthermore, from the definition it is easy
to see that ψh(0, s) = ψh(x,0) = 1 and, for (x, s) ∈ [0,L)×[0,∞) and u ∈ [0, s],

ψh(x + s − u, s)

ψh(x,u)
= 1 − G(x + s − u)

1 − G(x)
(9.23)

=
⎧⎪⎨⎪⎩

1 − G(x + s)

1 − G(x)
, if u = 0,(

1 − G(s − u)
)
, if x = 0.

PROPOSITION 9.5. If h is Hölder continuous, then the process {̂νt , t ≥ 0} de-
fined by (5.26) satisfies the stochastic age equation associated with {̂ν0, K̂, M̂}.

PROOF. Theorem 5 shows that for every t > 0, {̂νt (f ), f ∈ ACb[0,L)} is a
family of F̂t -measurable random variables, and {̂νt , t ≥ 0} admits a version as an
{F̂t }-adapted continuous, H−2-valued process. Moreover, it follows from Lem-
ma 9.3 that for every f ∈ ACb[0,L), almost surely s �→ ν̂s(f ) is measurable.
Therefore, it only remains to show that ν̂ satisfies equation (5.28). Fix t ∈ [0,∞)

and ϕ ∈ C
1,1
b ([0,L) × [0,∞)) such that ϕx(·, s) + ϕs(·, s) is Lipschitz continuous

for every s. Since h is bounded, Hölder continuous and absolutely continuous, it
follows that ϕx + ϕs − hϕ is bounded, Hölder continuous and absolutely continu-
ous. Moreover, it is clear from (9.22) that

(ϕx + ϕs − hϕ)ψh = (ϕψh)x + (ϕψh)s.
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Substituting this and identity (9.23) into the definition (8.27) of ϒt , it follows that(
ϒt(ϕx + ϕs − hϕ)

)
(x, u)

=
∫ t

u

((ϕx + ϕs − hϕ)ψh)(x + s − u, s)

ψh(x,u)
ds

(9.24)

=
∫ t

u

((ϕψh)x + (ϕψh)s)(x + s − u, s)

ψh(x,u)
ds

= ϕ(x + t − u, t)ψh(x + t − u, t)

ψh(x,u)
− ϕ(x,u).

Note that the integrand in the last integral on the right-hand side of (9.17) of
Lemma 9.4 is ϒt(ϕ(·, s))(0, u). Therefore, applying Lemma 9.4 with ϕ replaced
by ϕx + ϕs − hϕ, and using (9.24) and the identity ψh(x,0) = ψh(0, u) = 1, it
follows that∫ t

0
ν̂s

(
ϕx(·, s) + ϕs(·, s) − hϕ(·, s))ds

= ν̂0
(
ϕ(· + t, t)ψh(· + t, t)

) +
∫
[0,t]

ϕ(t − u, t)ψh(t − u, t) dK̂(u)

(9.25)

−
∫ ∫

[0,L)×[0,t]
ϕ(x + t − u, t)

ψh(x + t − u, t)

ψh(x,u)
M̂(dx, du)

− ν̂0(ϕ(·,0)) −
∫
[0,t]

ϕ(0, u) dK̂(u) +
∫ ∫

[0,L)×[0,t]
ϕ(x,u)M̂(dx, du).

Since ϕ is bounded, and x �→ ϕ(x, s) is absolutely continuous for every s, by the
definition (5.26) of ν̂t and the identities in (9.23), it is clear that the sum of the
first three terms on the right-hand side of (9.25) is equal to ν̂t (ϕ(·, t)). With this
substitution, (9.25) reduces to the stochastic age equation (5.28) associated with
(̂ν0, K̂, M̂). �

9.4.3. Uniqueness of solutions to the stochastic age equation. In order to es-
tablish uniqueness, we begin with a basic “variation of constants” transformation
result. Recall from Section 1.4.1 that D[0,∞) is the space of test functions, and

D′[0,∞) is the space of distributions. Also, recall that g′ denotes the density of g

(which is well defined since we have assumed g is absolutely continuous).

LEMMA 9.6. Suppose that g′ ∈ L
∞
loc[0,L). Given a solution {νt , t ≥ 0} to the

stochastic age equation associated with (̂ν0, K̂, M̂), define

μt(f̃ )
.= νt

(
f̃ (1 − G)−1), f̃ ∈ D[0,∞).(9.26)

Then {μt, t ≥ 0} is a continuous D′[0,∞)-valued process that satisfies the fol-
lowing stochastic transport equation associated with (̂ν0, K̂, M̂): for every f̃ ∈
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D[0,∞) and t ≥ 0,

μt(f̃ ) = ν̂0
(
f̃ (1 − G)−1) +

∫ t

0
μs(f̃x) ds + f̃ (0)K̂(t)

(9.27)
− M̂t

(
f̃ (1 − G)−1).

PROOF. Fix f̃ ∈ D[0,∞), and let f
.= f̃ (1 − G)−1. Under the given assump-

tions on G, it follows from Lemma B.1 that f ∈ H2. Because {νt , t ≥ 0} is a solu-
tion of the stochastic age equation, it is a continuous H−2-valued processes. There-
fore {νt (f ), t ≥ 0}, and hence {μt(f̃ ), t ≥ 0}, are continuous real-valued stochastic
processes. Since D[0,∞) and D′[0,∞) are nuclear spaces, by Mitoma’s theorem
[23] it follows in fact that {μt, t ≥ 0} is a continuous D′[0,∞)-valued process.

We now show that {μt, t ≥ 0} solves the transport equation (9.27). Indeed, by
property 2 of Lemma B.1 it also follows that for f̃ ∈ D[0,∞), fx = f̃x(1−G)−1 +
f h is bounded and Lipschitz continuous. Therefore, we can substitute ϕ = f in
the stochastic age equation (5.28) and use the identity 1 − G(0) = 1 to obtain, for
t ≥ 0,

μt(f̃ ) = νt

(
f̃ (1 − G)−1)

= ν0
(
f̃ (1 − G)−1) +

∫ t

0
νs

(
f̃x(1 − G)−1)ds(9.28)

+ f̃ (0)K̂(t) − M̂t

(
f̃ (1 − G)−1).

However, (9.26) implies that νs(f̃x(1 − G)−1) = μs(f̃x). Substituting this back
into (9.28), it follows that {μt, t ≥ 0} satisfies (9.27). �

We can now complete the proof of Theorem 5(1).

PROOF OF THEOREM 5(1). By assumption, h is Hölder continuous. There-
fore, Proposition 9.5 shows that {̂νt , t ≥ 0} is a solution to the stochastic age
equation associated with (̂ν0, K̂, M̂). Thus, in order to establish the theorem,
it suffices to show that the stochastic age equation has a unique solution. Sup-
pose that the stochastic age equation associated with (̂ν0, K̂, M̂) has two solu-
tions, ν(1) and ν(2), and for i = 1,2, let μ(i) be the corresponding continuous
D′[0,∞)-valued process defined as in (9.26), but with ν replaced by ν(i). By Lem-
ma 9.6, each μ(i) satisfies the stochastic transport equation (9.27) associated with
(̂ν0, K̂, M̂). Define η

.= μ(1) − μ(2). It follows that for every f̃ in D[0,∞),

d

dt
ηt (f̃ ) − ηt (f̃x) = 0, η0(f̃ ) = 0.

However, this is simply a deterministic transport equation and it is well known that
the unique solution to this equation is the identically zero solution η ≡ 0; see, for
example, Theorem 4 on page 408 of [10].
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Thus, for every f̃ ∈ D[0,∞) = C
∞
c [0,∞), μ(1)(f̃ ) = μ(2)(f̃ ) or equivalently,

ν
(1)
t

(
f̃ (1 − G)−1) = ν

(2)
t

(
f̃ (1 − G)−1).(9.29)

Now, by Lemma B.1 for any f ∈ C
∞
c [0,∞), the assumptions on G imply that

f (1 − G) ∈ H2. Since C
∞
c [0,∞), equipped with the ‖ · ‖H2 norm, is dense in

H2 (by the very definition of H2) there exists a sequence f̃n ∈ C
∞
c [0,∞) such

that f̃n → f (1 − G) in H2 as n → ∞. Replacing f̃ by f̃n in (9.29) and then
letting n → ∞, it follows that ν

(1)
t (f ) = ν

(2)
t (f ) for every f ∈ C

∞
c [0,∞). Once

again using the fact that C
∞
c [0,∞) is dense in H2, this shows ν

(1)
t and ν

(2)
t are

indistinguishable as H−2-valued elements. This proves uniqueness of solutions to
the stochastic age equation, and the theorem follows. �

9.5. The strong Markov property. We now establish the strong Markov prop-
erty stated as Theorem 5(2). We will use the notation introduced in Section 9.3,
and the consistency property stated as Lemma 9.3.

PROOF OF THEOREM 5(2). Fix s, t > 0. First, note that by Theorem 3, (X̂, ν̂)

is a continuous R × H−2-valued process. Moreover, by Lemma 9.3, Assump-
tion 5 is satisfied with ν̂0 replaced by ν̂s , which in particular implies that the ran-
dom element J ν̂s

t+·(1) = {J ν̂s
t+u(1), u ≥ 0} almost surely takes values in CR[0,∞).

Next, observe that �u1 = 1 − ∫ u
0 (�rh)(·) dr and that x �→ ∫ u

0 (�rh)(x) dr is
bounded and (due to Assumption 4) Hölder continuous, uniformly with respect
to u. Properties 1 and 3 of Lemma 8.6 (with Ĥ replaced by �s Ĥ) then show
that the random processes (�s Ĥ)·(1) = {(�s Ĥ)t (1), t ≥ 0} and (�s Ĥ)t (�·1) =
{(�s Ĥ)t (�u1), u ≥ 0} take values in CR[0,∞). In addition, Assumption 3 and
Corollary 8.7 show that �sÊ and �s Ĥ are, respectively, CR[0,∞)-valued and
CH−2[0,∞)-valued. We now claim that there exists a continuous mapping from
R × H−2 × CR[0,∞)4 × CH−2[0,∞) to R × H−2 × CR[0,∞), which we denote
by �̃ = �̃t , such that P̂-almost surely,(

X̂(s + t), ν̂s+t , J ν̂s+t (1)
)

(9.30)
= �̃(X̂(s), ν̂s, J ν̂s· (1),�sÊ, (�s Ĥ)t (�·1), (�s Ĥ)·(1),�s Ĥ).

To see why this is the case, first note that equation (9.15) shows that ν̂s+t is the
sum of (�s Ĥ)t , J ν̂s

t and (�s K̂)t and, by Lemma B.1(2), the map from H−2 to
DH−2[0,∞) that takes ν̂s to {J ν̂s

t , t ≥ 0} is continuous. Also, for u > 0, �u1 is
bounded and absolutely continuous. Hence, by (9.15), the definition of J ν̂s+t and
the semigroup property for �, P̂-almost surely, for u, s, t ≥ 0,

J ν̂s+t
u (1) = J ν̂s

t (�u1) + (�s K̂)t (�u1) − (�s Ĥ)t (�u1)

= J ν̂s
t+u(1) + (�s K̂)t (�u1) − (�s Ĥ)t (�u1).
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Due to the almost sure continuity of K̂ established in Theorem 2, definitions (7.1)
and (9.13) of K and (�sK̂), respectively, and properties 2 and 3 of Lemma 7.1, it
follows that �s K̂ and u �→ (�s K)t (�u1) are almost surely obtained as continuous
mappings of �sK̂ . In turn, by (9.16) of Lemma 9.3, (�sK̂, X̂(s + ·)) are equal to
the first and second marginals of �(�sÊ, X̂(s), J ν̂s (1)−�s Ĥ(1)), where � is the
centered many-server map, which is continuous by Proposition 7.3. Since X̂ almost
surely has continuous sample paths, for any given t ≥ 0, the pair (�sK̂, X̂(s + t))

can also be obtained as a continuous mapping of (�sÊ, X̂(s), J ν̂s (1) − �s Ĥ(1)).
When combined, the above observations show that claim (9.30) holds, with �̃ a
suitable continuous mapping.

We now show that the claim implies the Markov property. First, from (5.4) we
observe that �sÊ is adapted to the filtration generated by �sB , and, likewise,
(9.11) shows that �s Ĥ is adapted to the filtration generated by �s M̂. Moreover,
by the definition of B as a standard Brownian motion and the definition of M̂ (see
Section 4.3 and Remark 5.1), both B and M̂ are processes with independent incre-
ments with respect to the filtration {F̂t , t ≥ 0}. In particular, this implies that �sB ,
�s Ĥ and u �→ (�s Ĥ)t (�u1) are independent of F̂s . Therefore, for any bounded
continuous function F on [0,∞) × (R × H−2 × CR[0,∞)),

Ê[F(s, X̂s+t , ν̂s+t , J ν̂s+t· (1))|F̂s]
= Ê[F(s, �̃(X̂(s), ν̂s, J ν̂s· (1),�sÊ, (�s Ĥ)t (�·1),�s Ĥ(1),�s Ĥ))|F̂s]
= Ê[F(s, �̃(X̂(s), ν̂s, J ν̂s· (1),�sÊ, (�s Ĥ)t (�·1),�s Ĥ(1),�s Ĥ))|

X̂(s), ν̂s, J ν̂s· (1)]
= Ê

[
F
(
s, X̂(s + t), ν̂s+t , J ν̂s+t· (1)

)|X̂(s), ν̂s, J ν̂s (1)
]
.

This shows that {(X̂s, ν̂s, J ν̂s· (1)), F̂s, s ≥ 0} is a Markov process.
By Theorems 2 and 3, the sample paths s �→ (X̂(s), ν̂s, J ν̂s· (1)) of the Markov

process take values in the state space R × H−2 × CR[0,∞) and are continuous.
Since the state space is a Polish space, there exists a Markov stochastic kernel Ps,u

on (R×H−2 ×CR[0,∞),B(R×H−2 ×CR[0,∞))) such that for each (x, ν,ψ) ∈
R × H−2 × CR[0,∞), and measurable function F on R × H−2 × CR[0,∞),

Ts,uF (x, ν,ψ)
.= Ê[F(X̂(u), ν̂u, J ν̂u· (1))|(X̂(s), ν̂s, J ν̂s· (1)) = (x, ν,ψ)]
=

∫
R×H−2×CR[0,∞)

F (w)Ps,u((x, ν,ψ), dw).

Note that for 0 ≤ s ≤ u ≤ v < ∞, Ts,uTu,v = Ts,v and Ts,s is the identity. It now
follows from (9.30), the continuity of �̃ established above and the continuity of the
sample paths of the deterministic fluid processes E and ν, which, respectively, de-
termine the distribution of �sÊ and the quadratic variation of the martingale �s M̂
(and hence the distribution of �s Ĥ) that for every continuous functional F on
R×H−2 ×CR[0,∞) and t ≥ 0, the map (s, (x, ν,ψ)) �→ Ts,s+tF (x, ν,ψ) is con-
tinuous. This implies that the Markov process {(X̂(s), ν̂s, J ν̂s· (1)), s ≥ 0} satisfies
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the Feller property (as defined, e.g., on page 23 of [11]). Hence, by Theorem 2.4 of
Friedman [11], {(X̂(s), ν̂s, J ν̂s· (1)), s ≥ 0} is a strong Markov process. (The Feller
property and Theorem 2.4 of [11] are stated for Euclidean spaces, but carry over
with no changes to state spaces that are complete, separable metric spaces, as is
the case in the present setting.) Furthermore, note that the strong Markov process
is time-homogeneous if the arrival process satisfies Assumption 3(a) with λ = 1
and (x0, ν0) = (1, ν∗), in which case the fluid limit is critical and constant. �

REMARK 9.7. A more natural candidate for the (strong) Markov process
would be the process {(X̂t , ν̂t ), F̂t , t ≥ 0} that takes values in R × H−2. However,
in order to establish the Markov property, we need J ν̂s and J ν̂s (1) to be expressed
as measurable mappings of ν̂s . As shown in Lemma B.1, the additional bounded-
ness assumption on g′/(1 − G)) ensures that the map from H−2 �→ DH−2[0,∞)

that takes ν̂s to J ν̂s = {J ν̂s
t , t ≥ 0} is continuous. This is a reasonable assumption

because, as noted in Remark 5.8, it is satisfied by a large class of distributions
of interest. However, unfortunately, it appears that measurability of the map from
H−2 to CR[0,∞) that takes ν̂s to J ν̂s (1) = {J ν̂s

t (1), t ≥ 0}, which would require
that �s1 lie in H2, cannot be obtained without imposing rather severe assumptions
on the service distribution G. While ν̂s does extend as a random linear functional
to act on continuous and bounded functions such as �sf , the space of random
linear functionals appears not to be a sufficiently nice space to support a Markov
process. In particular, it is not clear that a regular conditional probability would
exist so as to enable the construction of the Markov kernel. We chose to resolve
this issue by adding the CR[0,∞)-valued process J ν̂s (1) = {J ν̂s

t (1), t ≥ 0} to the
state descriptor.

APPENDIX A: PROPERTIES OF THE MARTINGLE MEASURE SEQUENCE

A.1. Proof of the martingale measure property. Recall that B0[0,L) is the
algebra generated by the intervals [0, x], x ∈ [0,L). We now show that the col-
lection of random variables {M(N)

t (B); t ≥ 0,B ∈ B0[0,L)} introduced in (4.5)
defines a martingale measure.

LEMMA A.1. For each N ∈ N, M(N) = {M(N)
t (B), F (N)

t ; t ≥ 0,B ∈ B0[0,

L)} is a martingale measure on [0,L). Moreover, for every B ∈ B0[0,L) and t ∈
[0,∞),

E
[(

M(N)
t (B)

)2] = E

[∫ t

0

(∫
B

h(x)ν(N)
s (dx)

)
ds

]
.(A.1)

PROOF. In order to show that {M(N)
t (B); t ≥ 0,B ∈ B0[0,L)} defines a mar-

tingale measure on [0,L), it suffices to verify the three properties stated in the def-
inition of a martingale measure given on page 287 of Walsh [31]. The first property
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in [31], namely that M(N)
0 (B) = 0 for every B ∈ B0[0,∞), follows trivially from

the definition and the third property, which states that {M(N)
t (B), F (N)

t , t ≥ 0}
is a local martingale for each B ∈ B0[0,∞), is an immediate consequence of
Remark 4.1. In addition, from (4.4) it follows that 〈M(N)(B)〉, the predictable
quadratic variation of M(N)(B), is equal to A

(N)
IB

. Since E[A(N)
IB

(t)] is dominated

by E[D(N)(t)], which is finite by Lemma 5.6 of [21], the relation (A.1) follows. On
the other hand, because {ν(N)

t , t ≥ 0} is an MF [0,L)-valued process, this shows
that the set function B �→ E[(M(N)

t (B))2] is countably additive on B0[0,L), and
hence defines a finite L

2(, F (N),P)-valued measure. This shows that the second
property in [31] is also satisfied, and thus completes the proof of the lemma. �

A.2. Proof of Lemma 4.2. We fix N ∈ N and, for conciseness, suppress the
superscript N from the notation. As shown below, Lemma 4.2 is essentially a con-
sequence of the strong Markov property of the state process, the continuity of the
{Ft }-compensator of the departure process and the independence assumptions on
the service times and arrival process.

We shall first prove (4.6); namely we will show that almost surely, �D(t) ≤ 1
for every t ∈ [0,∞). For k = −〈1, ν0〉 + 1,−〈1, ν0〉 + 2, . . . , let Ek denote the
event that the departure time of customer k lies in the set of the union of departure
times of customers j , j < k. To establish (4.6), it is clearly sufficient to show that
P(Ek) = 0 for every k. Fix k ∈ N, and let θk be the {Ft }-stopping time

θk
.= inf{t :K(t) = k}.

Now, consider a modified system with initial data ν̃0 = νθk
, X̃(0) = 〈1, νθk

〉 and
Ẽ ≡ 0. By Lemma B.1 of [19], {(RE(t),X(t), νt ), t ≥ 0} is a strong Markov pro-
cess. Therefore, conditioned on Fθk

, the departure times of customers j , j ≤ k,
are independent of the arrivals after θk and, moreover, the distributions of their de-
parture times only depend on {aj (θk), j ≤ k}. Consequently, the probability of the
event Ek is the same in the original and modified systems. In the modified system,
let {ãj (s), s ∈ [0,∞)} denote the age process of customer j for j ≤ k, let D̃θk (s)

denote the cumulative departures in the time [0, s] of all customers with index
j < k and let J̃ k .= {s ∈ [0,∞) : D̃θk (s) �= D̃θk (s−)} be the jump times of D̃θk .
Also, let G̃k

t
.= σ(ãj (s), j < k, s ∈ [0, t]), and let {Gk

t , t ≥ 0} be the right continu-
ous completion (with respect to P) of {G̃k

t , t ≥ 0}. By the assumed independence of
the service times for different customers and the fact that ãk(0) = 0, the departure
time ṽk of customer k in the modified system has cumulative distribution function
G and is independent of J̃ k . Therefore,

P(Ek) = P(ṽk ∈ J̃ k)
(A.2)

=
∫
[0,L)

P(t ∈ J̃ k|ṽk = t) dG(t) =
∫
[0,L)

P(t ∈ J̃ k) dG(t),
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where the last equality follows from the independence of ṽk and J̃ k . The logic that
was used in Lemma 5.4 of [21] to identify the compensator of D can also be used
to show that the {Gk

t }-compensator of D̃θk equals∫ ·
0

(∫
[0,L)

g(x + s)

1 − G(x)
ν′

0(dx)

)
ds where ν′

0
.= ν̃0 − δ0,

where the mass at zero is deleted from the modified age measure ν̃0 to remove cus-
tomer k, which has age zero at time 0 in the modified system. By the continuity of
the {Gk

t }-compensator of D̃θk , D̃θk is quasi-left-continuous and so �D̃θk (T ) = 0
for every {Gk

t }-predictable time T ; see, for example, Theorem 4.2 and Defini-
tion 2.25 of Chapter I of Jacod and Shiryaev [16]. Choosing T to be the deter-
ministic time t , this implies that P(t ∈ J̃ k) = 0 for every t ≥ 0. When substituted
into (A.2), this shows that P(Ek) = 0. For k ≤ 0, we set θk = 0 and observe that,
conditioned on F0, the departure time ṽk of the kth customer has cumulative dis-
tribution function G̃(·) .= (G(·) − G(ak(0))/(1 − G(ak(0)), rather than G, so that
(A.2) holds with G replaced by G̃. The rest of the proof follows exactly as in the
case k > 0, and thus (4.6) holds.

We now turn to the proof of (4.7). Fix r, s ∈ [0,∞), recall that Dr(s) is the
cumulative departures in the interval [r, r + s) of customers that entered service at
or before time r , define J r to be the jump times of Dr in [0,∞) and let Gt = Fr+t ,
t ∈ [0,∞). Using the same logic as in the proof of Lemma 5.4 of [21], it can be
shown that {Dr(t), t ≥ 0} has a continuous {Gt }-compensator, given explicitly by∫ t

0

(∫
[0,L)

g(x + s)

1 − G(x)
νr(dx)

)
ds, t ∈ [0,∞),

and hence has no fixed jump times, that is, P(t ∈ J r |Fr ) = 0 for every t ∈ [0,∞).
Moreover, due to the assumption of independence of the arrival processes and the
service times, {E(r + t)−E(r)}t≥0 and {Dr(t)}t≥0 are conditionally independent,
given Fr . Let

T .= {t = (t1, . . . , tm, . . .) ∈ [0,∞)∞ : 0 ≤ t1 ≤ t2 ≤ · · ·},
and let T r denote the random T -valued sequence of times after r at which E

has a jump. Moreover, let μ denote the conditional probability distribution of T r ,
given Fr . For any t ∈ T , using the fact that 0 ≤ �E(t) ≤ 1, the conditional inde-
pendence of {Dr(t), t ≥ 0} from T r given Fr and the property established above
that, conditional of Fr , Dr has almost surely no fixed jumps, we have

E

[ ∑
s∈[0,∞)

�E(r + s)�Dr(s)|Fr , T
r = t

]
= ∑

t∈T

E[�Dr(t)|Fr , T
r = t]

= ∑
t∈T

E[�Dr(t)|Fr ]

= ∑
t∈T

P(t ∈ J r |Fr ) = 0.
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In turn, integrating the left-hand side above with respect to the conditional distri-
bution μ and then taking expectations, it follows that

E

[ ∑
s∈[0,∞)

�E(r + s)�Dr(s)

]
= 0.

Since the term inside the expectation is nonnegative, this proves (4.7).

REMARK A.2. From the proof, it is clear that relations (4.6) and (4.7) also
hold almost surely with respect to P

(N)
r,k,μ for every (r, k,μ) ∈ [0,∞) × N ×

MF [0,L).

A.3. A consequence of Lemma 4.2. We now establish a consequence of
Lemma 4.2, which will be used in the proof of the asymptotic independence prop-
erty in Section 8.2.

COROLLARY A.3. As N → ∞,

1

N
E

[∑
s≤t

�E(N)(s)�D(N)(s)

]
→ 0.

PROOF. With the aim of computing the left-hand side above, and using the
same notation as in Lemma 4.2, for r, s ∈ [0,∞), let D(N),r (s) denote the cumu-
lative number of departures during (r, r + s] of customers that entered service at
or before time r , and let D(N)+,r (s) be the cumulative number of departures dur-
ing (r, r + s] of customers that have entered service after time r . For δ > 0 and
k = 0,1,2, . . . , we have∑

s∈(kδ,(k+1)δ]
�E(N)(s)�D(N)(s) = ∑

s∈(0,δ]
�E(N)(kδ + s)�D(N),kδ(s)

+ ∑
s∈(0,δ]

�E(N)(kδ + s)�D(N)+,kδ(s).

The first summand on the right-hand side above is almost surely equal to zero
by (4.7) of Lemma 4.2. Since E(N) has unit jump sizes, the second term can be
bounded as follows:∑

s∈(kδ,(k+1)δ]
�E(N)(s)�D(N)(s) ≤ ∑

s∈(0,δ]
�D(N)+,kδ(s)

(A.3)

≤
K(N)((k+1)δ)∑
j=K(N)(kδ)+1

I{vj≤δ}.
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Summing (A.3) over k = 0,1, . . . , �t/δ� and dividing by N , we obtain

1

N
E

[∑
s≤t

�E(N)(s)�D(N)(s)

]
≤ E

[∫ t+δ

0
I{v

K(N)(s)
≤δ} dK(N)(s)

]

≤ E
[
Q

(N)
I[0,δ](t + 2δ)

]
= E

[
A

(N)
I[0,δ](t + 2δ)

]
,

where the last equality follows from the martingale property stated in Remark 4.1.
On both sides, taking first the limit supremum as N → ∞, and then the limit as
δ ↓ 0, we obtain

lim sup
N→∞

1

N
E

[∑
s≤t

�E(N)(s)�D(N)(s)

]
≤ lim

δ↓0
lim sup
N→∞

E
[
A

(N)
I[0,δ](t + 2δ)

] = 0,

where the last equality follows from Lemma 5.8(3) of [21]. Since �E(N)(s) and
�D(N)(s) are always nonnegative this establishes the corollary. �

APPENDIX B: RAMIFICATIONS OF ASSUMPTIONS ON THE
SERVICE DISTRIBUTION

LEMMA B.1. The following properties hold:

(1) If h is bounded, then Assumptions 2 and 4 are satisfied.
(2) Suppose g is absolutely continuous and either g′ ∈ L

∞
loc[0,L) or g′ ∈

L
2
loc[0,L). Then for any f̃ ∈ D[0,∞), the corresponding functions f

.= f̃ (1 − G)

and f
.= f̃ (1 − G)−1 lie in H2. Furthermore, in the case when g′ ∈ L

∞
loc[0,L),

f ′ is Lipschitz continuous.
(3) If h is bounded, g is absolutely continuous and g′/(1 − G) ∈ L

∞[0,L),
then f ∈ H2 implies �tf ∈ H2 for every t ≥ 0 and, moreover, for every t > 0, the
mapping from H−2 to H−2 that takes ν �→ J ν

t = ν(�t ·) is Lipschitz continuous.

PROOF. If h is uniformly bounded, then Assumption 2 is trivially satisfied and

G(x + y) − G(x + ỹ)

1 − G(x)
=

∫ y

ỹ

g(x + u)

1 − G(x + u)

1 − G(x + u)

1 − G(x)
du ≤ ‖h‖∞|y − ỹ|,

which shows that Assumption 4 is satisfied with CG = ‖h‖∞ and γG = 1.
Now, suppose that g is absolutely continuous. Then for any f̃ ∈ D[0,∞), f̃ , f̃ ′

and f̃ ′′ lie in C
∞
c [0,∞) and so f = f̃ (1 − G) is absolutely continuous with

density f ′ = f̃ ′(1 − G) − f̃ g and f ′ is also absolutely continuous, with density
f ′′ = f̃ ′′(1−G)−2f̃ ′g− f̃ g′. Thus f , f ′ and the first two terms on the right-hand
side of the expression for f ′′ are continuous and bounded with compact support.
Moreover, if g′ ∈ L

∞
loc[0,L), then f̃ g′ is also bounded and has compact support.
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Thus, f ∈ H2 in this case. On the other hand, if g′ ∈ L
2
loc[0,L) and the support of

f is contained in the interval [0,R], for some R < ∞, then∫ ∞
0

f̃ 2(x)(g′(x))2(1 + x2)2 dx

≤ sup
x∈[0,R]

|f 2(x)(1 + x2)2|
∣∣∣∣∫ R

0
|g′(x)|2 dx

∣∣∣∣ < ∞,

where the finiteness follows from the fact that f , and therefore the function x �→
f 2(x)(1 + x2)2, is continuous and the fact that g′ ∈ L

2
loc[0,L). Thus, in this case

too, f ∈ H2.
Next, consider f = f̃ (1 − G)−1. Then f ′ = f̃ ′(1 − G)−1 + hf is also abso-

lutely continuous with compact support (and hence lies in L
2
loc[0,L)). Moreover,

elementary calculations show that f ′′ = f̃ ′′(1 − G)−1 + 2hf ′ + +f̃ g′(1 − G)−2.
Since G and g are absolutely continuous and f̃ ′′ and f ′ are continuous with com-
pact support, the first two terms on the right-hand side of the expression for f ′′ are
also continuous with compact support, and hence are bounded and lie in L

2
loc[0,L).

In addition, if g′ ∈ L
∞
loc[0,L), then the last term is also bounded and with compact

support and hence lies in L
2
loc[0,L). Thus, in this case f ∈ H2 and f ′ is Lip-

schitz continuous. On the other hand, if g′ lies in L
2
loc[0,L) then an argument

similar to that given above shows that the last term lies in L
2
loc[0,L) and hence

f ′′ ∈ L
2
loc[0,L) and so it follows that f ∈ H2 in this case as well.

Finally, suppose that g is absolutely continuous and g′/(1 − G) ∈ L
∞[0,L).

Fix t ≥ 0 and f ∈ H2. For notational conciseness, let

r(x)
.= rt (x)

.= 1 − G(x + t)

1 − G(x)
, x ∈ [0,L).

Then, by the definition (4.19) of �t , for x ∈ [0,L),

(�tf )(x) = r(x)f (x + t),

(�tf )′(x) = r ′(x)f (x + t) + r(x)f ′(x + t),

(�tf )′′(x) = r ′′(x)f (x + t) + 2r ′(x)f ′(x + t) + r(x)f ′′(x + t).

By the assumptions on g, if f ∈ H2, then �tf is continuously differentiable, has
an absolutely continuous derivative and elementary calculations show that

r ′(x) = g(x)(1 − G(x + t)) − (1 − G(x))g(x + t)

(1 − G(x))2

= r(x)
(
h(x) − h(x + t)

)
,

r ′′(x) = r(x)

(
g′(x)

1 − G(x)
+ h2(x) − g′(x + t)

1 − G(x + t)
− h2(x + t)

)
+ r ′(x)

(
h(x) − h(x + t)

)
.
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Clearly, ‖r‖∞ ≤ 1, and, due to the assumed boundedness of h and g′/(1 − G), it
follows that there exists C ∈ [1,∞) such that ‖r ′‖∞ ≤ C and ‖r ′′‖∞ ≤ C. The
above observations, when combined, show that

‖(�tf )‖2
H2

≤ 10C2
(∫ ∞

0
[f (x + t)2 + f ′(x + t)2 + f ′′(x + t)2](1 + x2)2 dx

)
= 10C2

(∫ ∞
t

[f (x)2 + f ′(x)2 + f ′′(x)2](1 + (x − t)2)2
dx

)
≤ 10C2‖f ‖2

H2
.

This shows that for any t > 0, �tf ∈ H2 and the map from H2 to H2 that takes
f to �tf is Lipschitz continuous (with constant

√
10C). This, in turn, trivially

implies that for ν ∈ H−2, the linear functional on H2 given by J ν
t :f �→ ν(�tf )

also lies in H−2 and that the map from H−2 to itself that takes ν to J ν is also
Lipschitz continuous with the same constant. Indeed,

‖J ν
t ‖H−2 = sup

f : ‖f ‖H2≤1
|J ν

t (f )| = sup
f : ‖f ‖H2≤1

|ν(�tf )|

≤ sup
f : ‖f ‖H2≤1

‖ν‖H−2‖�tf ‖H2 ≤ √
10C‖ν‖H−2 .

This completes the proof of the lemma. �

APPENDIX C: PROOF OF THE REPRESENTATION FORMULA

Fix N ∈ N. We first show how (6.15) can be deduced from (6.5); the proof of
how to obtain (6.14) from (6.1) is analogous (in fact, a bit simpler), and is there-
fore omitted. Let ̃ be a set of full P-measure such that on ̃, A(N)(t), D(N)(t),
Q

(N)
1 (t) and K(N)(t) are finite for all t ∈ [0,∞). Fix ω ∈ ̃, and let γ and hν̂(N)

be the linear functionals on Cc([0,L) × [0,∞)) defined, respectively, by

γ (ϕ)
.=
∫
[0,L)

ϕ(x,0)̂ν
(N)
0 (dx) −

∫ ∫
[0,L)×[0,∞)

ϕ(x, s)M̂(N)(dx, ds)

+
∫
[0,∞)

ϕ(0, s) dK̂(N)(s)

and

hν̂(N)(ϕ)
.=
∫ ∞

0

〈
h(·)ϕ(·, s), ν̂(N)

s

〉
ds

for ϕ ∈ Cc([0,L) × [0,∞)). The total variation of ν̂
(N)
0 on [0,L) is bounded by

2
√

N , the total variation of M̂(N)
t (1) is bounded by

√
N(D(N)(t) + A

(N)
1 (t)) and
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the total variation of K̂(N) on [0, t] is bounded by
√

N(K(N)(t)+K(t)). Moreover,
for ϕ ∈ Cc([0,L) × [0,∞)) such that supp(ϕ) ⊂ [0,L) × [0, t], we have

|γ (ϕ)| ≤ √
N‖ϕ‖∞

(
2 + D(N)(t) + A

(N)
1 (t) + K(N)(t) + K(t)

)
and, likewise, it can be argued that∣∣hν̂(N)(ϕ)

∣∣ ≤ √
N‖ϕ‖∞

(
A

(N)
1 (t) + A1(t)

)
.

This shows that γ and hν̂(N) define Radon measures on [0,L) × [0,∞). Now, for
every ϕ ∈ C

1,1
c ([0,L) × [0,∞)), sending t → ∞ in (6.5), the left-hand side of

(6.5) vanishes because ϕ has compact support, and we obtain

−
∫ ∞

0

〈
ϕx(·, s) + ϕs(·, s), ν̂(N)

s

〉
ds = −hν̂(N)(ϕ) + γ (ϕ).

Since {̂ν(N)
t , t ≥ 0} ∈ DMF [0,L)[0,∞), the last equation shows that {̂ν(N)

t , t ≥ 0}
satisfies the so-called abstract age equation for γ introduced in Definition 4.9
of [21]. Therefore, by Corollary 4.17 and (4.24) of [21], for every f ∈ Cc[0,L),
〈f, ν̂

(N)
t 〉 = γ (ϕ

f
t ), t ≥ 0, where

ϕ
f
t (x, s) = ψ−1

h (x, s)f (x + t − s)ψh(x + t − s, t), (x, s) ∈ [0,L) × [0, t],
and ψh is the function defined in (4.55) of [21], and introduced as (9.21) in the
present paper. Elementary algebra [specifically combining the relations in (9.23)
with the definition (4.19) of �t ] then shows that ϕ

f
t (x, s) = �tf (x, s).

Using the definition of γ given above together with the relations (�tf )(·,0) =
�tf , (�tf )(0, ·) = f (t − ·)(1 − G(t − ·)), Ĥ(N)

t (f ) = M̂(N)
t (�tf ) and the defi-

nition (6.11) of K̂(N), for f ∈ Cc[0,L), it can be shown that γ (�tf ) is equal to the
right-hand side of representation (6.15). This establishes (6.15) for f ∈ Cc[0,L).
A standard approximation argument can then be used to show that representation
(6.15) holds for all f ∈ Cb[0,L).

APPENDIX D: SOME MOMENT ESTIMATES

In this section, we prove the estimates stated in Lemma 8.1.

PROOF OF LEMMA 8.1. Fix N ∈ N and T < ∞. For brevity, let the state
process be represented by Y (N)(s) = (R

(N)
E (s),X(N)(s), ν

(N)
s ), s ∈ [0,∞). Recall

from (4.3) that M
(N)
1 = D(N) − A

(N)
1 is a martingale. Therefore, taking expecta-

tions of both sides of inequality (5.30) of [21], with t and δ replaced by 0 and T ,
respectively, it follows that

EY (N)(0)

[
A

(N)
1 (T )

] = EY (N)(0)

[
D(N)(T )

] ≤ U(T ),(D.1)
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where U is the renewal function associated with G. This shows that inequality
(8.1) holds for k = 1. We proceed by induction. Suppose that (8.1) holds with
k = j − 1 for some integer j ≥ 2. Then we can write(

A
(N)
1 (T )

)j =
∫ T

0
· · ·

∫ T

0

(〈
h, ν(N)

s1

〉〈
h, ν(N)

s2

〉 · · · 〈h, ν(N)
sj

〉)
dsj · · ·ds1

=
∫ T

0

〈
h, ν(N)

s1

〉(∫ T

0
· · ·

∫ T

0

(〈
h, ν(N)

s2

〉 · · · 〈h, ν(N)
sj

〉)
dsj · · ·ds2

)
ds1

= j

∫ T

0

〈
h, ν(N)

s1

〉(∫ T

s1

· · ·
∫ T

s1

(〈
h, ν(N)

s2

〉 · · · 〈h, ν(N)
sj

〉)
dsj · · ·ds2

)
ds1

= j

∫ T

0

〈
h, ν(N)

s1

〉(
A

(N)
1 (T ) − A

(N)
1 (s1)

)j−1
ds1.

Taking expectations of both sides above and applying Tonelli’s theorem, we obtain

EY (N)(0)

[(
A

(N)
1 (T )

)j ] = j

∫ T

0
EY (N)(0)

[〈
h, ν(N)

s1

〉(
A

(N)
1 (T ) − A

(N)
1 (s1)

)j−1]
ds1.

For each s1 ∈ [0, T ], due to the Markov property of Y (N) established in Lemma B.1
of [19], we obtain

EY (N)(0)

[〈
h, ν(N)

s1

〉(
A

(N)
1 (T ) − A

(N)
1 (s1)

)j−1]
= EY (N)(0)

[
EY (N)(0)

[〈
h, ν(N)

s1

〉(
A

(N)
1 (T ) − A

(N)
1 (s1)

)j−1|F (N)
s1

]]
= EY (N)(0)

[〈
h, ν(N)

s1

〉
EY (N)(s1)

[(
A

(N)
1 (T − s1)

)j−1]]
.

Applying the induction assumption to the last term above, it follows that

EY (N)(0)

[〈
h, ν(N)

s1

〉(
A

(N)
1 (T ) − A

(N)
1 (s1)

)j−1]
≤ (j − 1)!U(T )j−1

EY (N)(0)

[〈
h, ν(N)

s1

〉]
.

Combining the last three displays, applying Tonelli’s theorem again and using
(D.1), we obtain

EY (N)(0)

[(
A

(N)
1 (T )

)j ] ≤ j !U(T )j−1
EY (N)(0)

[∫ T

0

〈
h, ν(N)

s1

〉
ds1

]
≤ j !U(T )j .

This shows that (8.1) is also satisfied for k = j and hence, by induction, for all
positive integers k.

We now turn to the proof of the second bound. Recall that given ϕ ∈ C[[0,L)×
[0, T ]), ϕ∗ is the function defined by ϕ∗(x)

.= sups∈[0,T ] ϕ(x, s). We can assume
without loss of generality that ϕ∗h is integrable on [0,L) because otherwise the
inequality holds trivially. On substituting l = ϕ∗h, ϕ = 1, r = 0 and t = T in (5.31)
of Proposition 5.7 of [21], for every N ∈ N, we have

EY (N)(0)

[
A(N)

ϕ (T )
] ≤ EY (N)(0)

[
A

(N)
ϕ∗ (T )

] ≤ C1(T )

(∫
[0,L)

ϕ∗(x)h(x) dx

)
,(D.2)
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where

C1(T )
.= sup

N

E
[
X(N)(0) + E(N)(T )

] ≤ C(T )

.= sup
N

sup
s∈[0,T ]

E
[
X(N)(s) + E(N)(T )

]
,

which is finite by Theorem 1. Given (D.2), the same inductive argument used in
the proof of the first assertion of the lemma can then be used to complete the proof
of the second bound.

Next, note that if Assumptions 1 and 2 hold, then A
(N)
1 ⇒ A1 by Proposi-

tion 5.17 of [21] and A1 is continuous. Together with the Skorokhod representation
theorem, Fatou’s lemma and the inequality (D.1), this implies that

A1(T ) ≤ lim inf
N→∞ E

[
A

(N)
1 (T )

] ≤ lim sup
N→∞

E
[
A

(N)
1 (T )

] ≤ U(T ).

Inequality (8.2) can now be deduced from this inequality exactly as inequality
(8.1) was deduced from inequality (D.1), though the proof is in fact much simpler
because A1 is deterministic. �

APPENDIX E: PROOF OF CONSISTENCY

We first start by establishing some Fubini theorems.

LEMMA E.1. Let Assumptions 1–4 be satisfied, let g be continuous and let
Ĥ and K̂ be defined as in (4.18) and (7.2), respectively. Suppose ϕ̃ ∈ Cb([0,L) ×
[0,∞)). Then, almost surely, for every t ≥ 0, we have

M̂t (ϒt ϕ̃) =
∫ t

0
M̂r (�r(ϕ̃(·, r)) dr =

∫ t

0
Ĥr (ϕ̃(·, r)) dr,(E.1)

where ϒt , t ≥ 0, is the family of mappings defined in (8.27). Moreover, if for every
T < ∞, x �→ ∫ t

0 ϕ̃(x, r) dr is bounded and Hölder continuous, uniformly in t ∈
[0, T ], then for every s ≥ 0, almost surely for every t ≥ 0,

M̂s

(∫ t

0
�s(ϕ̃(·, r)) dr

)
=

∫ t

0
M̂s(�s(ϕ̃(·, r))) dr =

∫ t

0
Ĥs(ϕ̃(·, r)) dr.(E.2)

Moreover, if either x �→ ϕ̃(x, r) is absolutely continuous for every r > 0 and
(x, r) �→ ϕ̃x(x, r)(1 − G(x)) is locally integrable on [0,L) × [0,∞), or g is ab-
solutely continuous and ϕ̃ ∈ Cb([0,L) × [0,∞)), then almost surely, for every
s, t ≥ 0,

K̂s

(∫ t

0
ϕ̃(·, r) dr

)
=

∫ t

0
K̂s(ϕ̃(·, r)) dr.(E.3)
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PROOF. Fix s, t ≥ 0. Then
∫ t

0 �s(ϕ̃(·, r)) dr = �s(
∫ t

0 ϕ̃(·, r) dr) and so, by in-
equality (4.20) and the boundedness assumption on ϕ,

∫ t
0 �s(ϕ̃(·, r)) dr and ϒtϕ̃

are uniformly bounded on [0,L) × [0, t]. We can thus apply Fubini’s theorem for
stochastic integrals with respect to martingale measures (see Theorem 2.6 of [31])
to conclude that almost surely, (E.2) and (E.1) are satisfied. The processes on the
right-hand sides of (E.2) and (E.1) are clearly continuous in t , whereas the con-
tinuity of the processes on the left-hand sides of (E.2) and (E.1) follows from
properties 1 and 4 of Lemma 8.6. Thus, there exists a set of full P̂-measure on
which (E.2) and (E.1) hold simultaneously for all t ≥ 0.

Next, by the definition of K̂ in (7.2), note that K̂s(
∫ t

0 ϕ̃(·, r) dr) is equal to(∫ t

0
ϕ̃(0, r) dr

)
K̂(s) +

∫ s

0
K̂(u)

∂

∂x

((
1 − G(x)

) ∫ t

0
ϕ̃(x, r) dr

)∣∣∣∣
x=s−u

du

=
∫ t

0
ϕ̃(0, r)K̂(s) dr +

∫ s

0
K̂(u)

∂

∂x

(∫ t

0

(
1 − G(x)

)
ϕ̃(x, r) dr

)∣∣∣∣
x=s−u

du.

By the stated assumptions, it follows that g is continuous and for each r > 0,
the function x �→ (1 − G(x))ϕ̃(x, r) is absolutely continuous and its derivative
(with respect to x) is locally integrable. Moreover, by Theorem 2, K̂ is almost
surely continuous, and thus locally bounded. Thus, we can first exchange the order
of differentiation and integration and then apply Fubini’s theorem for Lebesgue
integrals in the last display to conclude that K̂s(

∫ t
0 ϕ̃(·, r) dr) is equal to∫ t

0
ϕ̃(0, r)K̂(s) dr +

∫ s

0
K̂(u)

(∫ t

0

∂

∂x

((
1 − G(x)

)
ϕ̃(x, r)

)∣∣∣∣
x=s−u

dr

)
du

=
∫ t

0
ϕ̃(0, r)K̂(s) dr +

∫ t

0

(∫ s

0
K̂(u)

∂

∂x

((
1 − G(x)

)
ϕ̃(x, r)

)∣∣∣∣
x=s−u

du

)
dr

=
∫ t

0
K̂s(ϕ̃(·, r)) dr,

which completes the proof of the lemma. �

We now prove the consistency lemma.

PROOF OF LEMMA 9.3. Fix f ∈ S and s, t ≥ 0. Then, replacing t by t + s in
(6.15), we obtain

ν̂
(N)
s+t (f ) = J ν̂

(N)
0

s+t (f ) − Ĥ(N)
t+s(f ) + K̂(N)

t+s (f ).(E.4)

Using the shift relations introduced in (9.10)–(9.12), and recalling the definitions
of Ĥ(N) and K̂(N) in (4.14) and (6.12), respectively, the last two terms on the
right-hand side of (E.4) can be decomposed as follows:

Ĥ(N)
t+s(f ) = M̂(N)

t+s(�t+sf ) = M̂(N)
s (�t+s(f )) + (

�s M̂(N))(�t+sf )(E.5)
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and, similarly,

K̂(N)
t+s (f ) =

∫
[0,s+t]

f (s + t − u)
(
1 − G(s + t − u)

)
dK̂(N)(u)

=
∫
[0,s]

f (s + t − u)
(
1 − G(s + t − u)

)
dK̂(N)(u)(E.6)

+
∫
[0,t]

(
1 − G(t − u)

)
f (t − u)d

(
�sK̂

(N))(u).

On the other hand, since �tf ∈ Cb[0,L), replacing f and ν̂
(N)
0 in (6.15) by �tf

and ν̂
(N)
s , respectively, and using the semigroup property (5.8) and the fact that

�s�t = �s+t on the appropriate domain as specified in (5.9), we obtain

J ν̂
(N)
s

t (f ) = 〈
�tf, ν̂(N)

s

〉
= 〈

�s+t f, ν̂
(N)
0

〉 − M̂(N)
s (�s�tf )

+
∫
[0,s]

(�tf )(s − u)
(
1 − G(s − u)

)
dK̂(N)(u)(E.7)

= J ν̂
(N)
0

s+t (f ) − M̂(N)
s (�s+t f )

+
∫
[0,s]

f (s + t − u)
(
1 − G(s + t − u)

)
dK̂(N)(u).

Relation (9.14) is then obtained by subtracting (E.7) from (E.4), rearranging terms
and using the relations (E.6) and (E.5).

Now, suppose that Assumptions 1–4 are satisfied and further, assume that g is
continuous. Then Theorem 3 shows that the limit ν̂ of {̂ν(N)}N∈N is a continuous
H−2-valued process that is given explicitly by (5.24). The shifted equation (9.15)
for the limit ν̂ is proved in a similar fashion as for the corresponding quantity ν̂(N)

in the N -server system, except that now K̂ has the slightly different representa-
tion (7.2). We fill in the details for completeness. Applying (5.24) with t replaced
by t + s, we see that for bounded and absolutely continuous f ,

ν̂t+s(f ) = J ν̂0
t+s(f ) − Ĥt+s(f ) + f (0)K̂(t + s) +

∫ t+s

0
K̂(u)ξf (t + s − u)du.

On the other hand, applying (5.24) with f and t , respectively, replaced by �tf

and s and using the semigroup relation (5.8) for �t and the fact that (�tf )(0) =
f (t)(1 − G(t)), we obtain

J ν̂s
t (f ) = ν̂s(�tf )

= J ν̂0
s+t (f ) − M̂s(�s�tf ) + f (t)

(
1 − G(t)

)
K̂(s)(E.8)

+
∫ s

0
K̂(u)ξ�tf (s − u)du.
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Simple calculations show that ξ�tf = ξf (· + t). Hence,∫ t+s

0
K̂(u)ξf (t + s −u)du−

∫ s

0
K̂(u)ξ�tf (s −u)du =

∫ t

0
K̂(s +u)ξf (t −u)du

and, since ξf = (f (1 − G))′,∫ t

0
K̂(s)ξf (t − u)du = f (0)K̂(s) − f (t)

(
1 − G(t)

)
K̂(s).

Equation (9.15) can now be obtained by combining the last four equations with the
limit analog of (E.5), in which Ĥ(N) and M̂(N), respectively, are replaced by Ĥ
and M̂.

To show that (9.16) is satisfied, note that by Theorem 2, (K̂, X̂, ν̂0(1)) =
�(Ê, x̂0, J ν̂0(1) − Ĥ(1)). This implies that the centered many-server equa-
tions (5.14)–(5.16) are satisfied with v,Z,X,K and E, respectively, replaced by
ν̂(1), J ν̂0(1) − Ĥ(1), X̂, K̂ and Ê. Fix any s > 0. Subtracting (5.15) evaluated at
t + s from the same equation evaluated at t , it follows that (5.15) also holds when
K,E,X and v is replaced, respectively, by �sK̂,�sÊ, X̂s+· and ν̂s+·(1). It is also
clear that (5.16) is satisfied with v and X replaced by ν̂s+t (1) and X̂s+t for all
t ≥ 0. Finally, substituting f = 1 in (9.15), using the definition (9.13) of �s K̂ and
the fact that ξ1 = −g, it follows that (5.14) holds with v,Z and K , respectively,
replaced, by ν̂s+·(1), J ν̂s (1) − �s Ĥ(1) and �sK̂ . This proves (9.16).

Fix s > 0. We first need to show that Assumption 3 is satisfied when Ê(N)

and Ê, respectively, are replaced by �sÊ
(N) and �sÊ. This is easily deduced us-

ing basic properties of renewal processes and Poisson processes and is thus left to
the reader. Next, we show that Assumption 5′ is satisfied when X̂(N)(0), x̂0, ν̂

(N)
0 ,

and ν̂0, respectively, are replaced by X̂(N)(s), X̂(s), ν̂
(N)
s and ν̂s . By definition

(5.24), ν̂s is a random linear functional on the space of bounded and absolutely
continuous functions. In addition, due to the continuity of the limit in the conver-
gence (9.1) established in Proposition 9.1, it follows that(

X̂(N)(s), ν̂
(N)
s+· ,�s K̂(N),�s Ĥ(N)) ⇒ (X̂(s), ν̂s+·,�s K̂,�s Ĥ)

in the space R × D3
H−2

[0,∞). In particular, this implies that ν̂s has an H−2-valued
version, and so property (a) of Assumption 5 is satisfied. Next, by (9.14) and

(9.15), J ν̂
(N)
s can be expressed as a linear combination of the H−2-valued pro-

cesses (̂ν
(N)
s+· ,�s K̂(N),�s Ĥ(N)) and, likewise, J ν̂s is the same linear combination

of (̂νs+·,�s K̂,�s Ĥ). Therefore, the continuity of ν̂s+·,�s K̂ and �s Ĥ show that
J ν̂s is a continuous H−2-valued process. The same logic used above then shows
that the real-valued process J ν̂s (1) is continuous and that the limits in property (c)
of Assumption 5 holds. Thus, we have established that Assumption 5 continues to
hold at a shifted time.

Now, for every s ≥ 0, ν̂(N)
s satisfies Assumption 5′(d) because it is a finite signed

measure. Thus, it only remains to show that Assumption 5′(d) is satisfied when ν̂0
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is replaced by ν̂s . Fix ϕ ∈ Cb([0,L) × [0,∞)) such that x �→ ϕ(x, r) is absolutely
continuous and Hölder continuous, and ϕx is integrable on [0,L) × [0, T ] for any
T < ∞. We will make repeated use of the semigroup property �s ◦�r = �s+r , the
relation �s+r = �s ◦ �r on the appropriate domain as specified in (5.9), and the
form (7.2) of K̂, without explicit mention. Then, by the other assumptions on h, for
any r > 0, �rϕ(·, r) and

∫ t
0 �rϕ(·, r) dr are both bounded, Hölder continuous and

absolutely continuous functions on [0,L). Therefore, substituting f = �rϕ(·, r)
into (5.24) we see that

ν̂s(�rϕ(·, r)) = ν̂0(�s+rϕ(·, r)) − M̂s(�s+rϕ(·, r)) + K̂s(�rϕ(·, r)).(E.9)

By (5.11), it follows that ν̂0(�s+rϕ(·, r)) = J ν̂0
s (�rϕ(·, r)). First, note that due

to (E.9) and (5.24), the almost sure measurability of s �→ ν̂s(�rϕ(·, r)) follows
from the assumed measurability of s �→ J ν̂0

s (f ) and the joint measurability of the
maps (s, f ) �→ M̂s(f ) and (s, f ) �→ K̂s(f ) for f ∈ Cb[0,L), which is a con-
sequence of the definition of these stochastic integrals. Essentially the same ar-
gument shows that for f ∈ ACb[0,L) and s > 0, almost surely t �→ J ν̂s

t (f ) is
measurable. Furthermore, substituting f = ∫ t

0 �rϕ(·, r) dr into (5.24), invoking
Assumption 5′(d) with ϕ(·, r) replaced by �sϕ(·, r), and applying the Fubini-type
relations in (E.2) and (E.3) with the absolutely continuous and uniformly bounded
function ϕ̃(x, r) = (�rϕ(·, r))(x), it follows that ν̂s(

∫ t
0 �rϕ(·, r) dr) is equal to

ν̂0

(∫ t

0
�s+rϕ(·, r) dr

)
− M̂s

(∫ t

0
�s+r (ϕ(·, r)) dr

)
+ K̂s

(∫ t

0
�rϕ(·, r) dr

)
=

∫ t

0
ν̂0(�s+rϕ(·, r)) dr −

∫ t

0
M̂s(�s+rϕ(·, r)) dr +

∫ t

0
K̂s(�rϕ(·, r)) dr.

A comparison with (E.9) shows that the right-hand side above equals
∫ t

0 ν̂s(�rϕ(·,
r)) dr . Thus, Assumption 5′(d) holds with ν̂0 replaced by ν̂s . �
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