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ASYMPTOTIC SHAPE FOR THE CONTACT PROCESS IN
RANDOM ENVIRONMENT

BY OLIVIER GARET AND REGINE MARCHAND
University of Lorraine

The aim of this article is to prove asymptotic shape theorems for the
contact process in stationary random environment. These theorems generalize
known results for the classical contact process. In particular, if H; denotes
the set of already occupied sites at time 7, we show that for almost every
environment, when the contact process survives, the set H;/t almost surely
converges to a compact set that only depends on the law of the environment.
To this aim, we prove a new almost subadditive ergodic theorem.

1. Introduction. The aim of this paper is to obtain an asymptotic shape the-
orem for the contact process in random environment on Z¢. The ordinary contact
process is a famous interacting particle system modeling the spread of an infection
on the sites of Z“. In the classical model, the evolution depends on a fixed pa-
rameter A € (0, +00) and is as follows: at each moment, an infected site becomes
healthy at rate 1 while a healthy site becomes infected at a rate equal to A times the
number of its infected neighbors. For the contact process in random environment,
the single infection parameter A is replaced by a collection (A.),cge of random
variables indexed by the set E? of edges of the lattice Z?: the random variable A,
gives the infection rate between the extremities of edge e, while each site becomes
healthy at rate 1. We assume that the law of (A.),cge is stationary and ergodic.
From the application point of view, allowing a random infection rate can be more
realistic in modelizing real epidemics; note that in his book [15], Durrett already
underlined the inadequacies of the classical contact process in the modelization of
an infection among a racoon rabbits population, and proposed the contact process
in random environment as an alternative.

Our main result is the following: if we assume that the minimal value taken
by the (A.),cga 1S above A, (Z%) (the critical parameter for the ordinary contact
process on Z%), then there exists a norm x on R such that for almost every envi-
ronment A = (A¢),cpd, the set H; of points already infected before time 7 satisfies

Py(AT >0,t>T = (1 —e)tA, C Hi+C (1 +e)tA,) =1,

where H, = H, + [0, 114, A u 1s the unit ball for 1 and P, is the law of the contact
process in the environment A, conditioned to survive. The growth of the contact
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process in random environment conditioned to survive is thus asymptotically linear
in time, and governed by a shape theorem, as in the case of the classical contact
process on Z4.

Until now, most of the work devoted to the study of the contact process in ran-
dom environment focuses on determining conditions for its survival Liggett [31],
Andjel [3], Newman and Volchan [33] or its extinction Klein [29]. They also
mainly deal with the case of dimension d = 1. Concerning the speed of the growth
when d = 1, Bramson, Durrett and Schonmann [6] show that a random environ-
ment can give birth to a sublinear growth. On the contrary, they conjecture that the
growth should be of linear order for d > 2 as soon as the survival is possible and
that an asymptotic shape result should hold.

For the classical contact process, the proof of the shape result mainly falls in
two parts:

e The result is first proved for large values of the infection rate A by Durrett and
Griffeath [17] in 1982. They first obtain, for large A, estimates essentially im-
plying that the growth is of linear order, and then they get the shape result with
superconvolutive techniques.

e Later, Bezuidenhout and Grimmett [4] show that a supercritical contact process
conditioned to survive, when seen on a large scale, stochastically dominates a
two-dimensional supercritical oriented percolation; this guarantees at least lin-
ear growth of the contact process. They also indicate how their construction
could be used to obtain a shape theorem. This last step essentially consists of
proving that the estimates needed in [17] hold for the whole supercritical regime,
and is done by Durrett [16] in 1989.

Similarly, in the case of a random environment, proving a shape theorem can also
fall into two different parts. The first one, and undoubtedly the hardest one, would
be to prove that the growth is of linear order, as soon as survival is possible; this
corresponds to the Bezuidenhout and Grimmett result in random environment. The
second one, which we tackle here, is to prove a shape theorem under conditions as-
suring that the growth is of linear order; this is the random environment analogous
to the Durrett and Griffeath work. We thus chose to put conditions on the random
environment that allow it to obtain, with classical techniques, estimates similar to
the ones needed in [17] and to focus on the proof of the shape result, which already
presents serious additional difficulties when compared to the proof in the classical
case.

The history of shape theorems for random growth models begins in 1961 with
Eden [18] asking for a shape theorem for a tumor growth model. Richardson [35]
then proves in 1973 a shape result for a class of models, including Eden model,
by using the technique of subadditive processes initiated in 1965 by Hammers-
ley and Welsh [21] for first-passage percolation. From then, asymptotic shape re-
sults for random growth models are usually proved with the theory of subadditive
processes, and, more precisely, with Kingman’s subadditive ergodic theorem [27]
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and its extensions. The most famous example is the shape result for first passage-
percolation on 74 (see also different variations of this model Boivin [5], Garet
and Marchand [19], Vahidi-Asl and Wierman [39], Howard and Newmann [24],
Howard [23], Deijfen [10]).

The random growth models can be classified in two families. The first and most
studied one is composed of the permanent models, in which the occupied set at
time ¢ is nondecreasing and extinction is impossible. First of all are, of course,
Richardson models [35]. More recently, we can cite the frog model, introduced in
its continuous time version by Bramson and Durrett, and for which Ramirez and
Sidoravicius [34] obtained a shape theorem, and also the discrete time version,
first studied by Telcs and Wormald [38] and for which the shape theorem has been
obtained by Alves et al. [1, 2]. We can also cite the branching random walks by
Comets and Popov [9]. In these models, the main part of the work is to prove that
the growth is of linear order, and the whole convergence result is then obtained by
subadditivity.

The second family contains nonpermanent models, in which extinction is pos-
sible. In this case, we rather look for a shape result under conditioning by the
survival. Hammersley [20] himself, from the beginning of the subadditive theory,
underlined the difficulties raised by the possibility of extinction. Indeed, if we want
to prove that the hitting times (#(x)) .7« are such that 7 (nx)/n converges, King-
man’s theory requires subadditivity, stationarity and integrability properties for the
collection 7 (x). Of course, as soon as extinction is possible, the hitting times can be
infinite. Moreover, conditioning on the survival can break independence, stationar-
ity and even subadditivity properties. The theory of superconvolutive distributions
was developed to treat cases where either the subadditivity or the stationarity prop-
erty lacks; see the lemma proposed by Kesten in the discussion of Kingman’s pa-
per [27], and slightly improved by Hammersley [20], page 674. Note that recently,
Kesten and Sidoravicius [26] use the same kind of techniques as an ingredient to
prove a shape theorem for a model of the spread of an infection.

Following Bramson and Griffeath [7, 8], it is on these “superconvolutive” tech-
niques that Durrett and Griffeath [17] rely to prove the shape result for the classical
contact process on Z4: see also Durrett [15], that corrects or clarifies some points
of [17]. However, as noticed by Liggett in the Introduction of [30], superconvolu-
tive techniques require some kind of independence of the increments of the process
that can limit its application. It is particularly the case in a random environment
setting; for the hitting times, we have a subadditive property of type

IA((n + p)x) < t*(nx) + **(px) + r(n, p, x).

Here, the exponent gives the environment, 7**(px) the same law as the hitting
time of px but in the translated environment nx.A, and r (n, p, x) are to be thought
of as a small error term. Following the superconvolutive road would require that
t*(nx) and "**(px) are independent and that 7"**(px) has the same law as
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( px). Now, if we work with a given (quenched) environment, we lose all the
spatial stationarity properties; 7" (px) has no reason to have the same law as
t*(px). But if we work under the annealed probability, we lose the markovianity
of the contact process and the independence properties it offers. We thus cannot
use, at least directly, the superconvolutive techniques.

Liggett’s extension [30] of the subadditive ergodic theorem provides an alter-
nate approach when independence properties fail. However, it does not give the
possibility to deal with an error term. Some works in the same decade (see, e.g.,
Derriennic [11], Derriennic and Hachem [12] and Schiirger [36, 37]) propose al-
most subadditive ergodic theorems that do not require independence, but stationar-
ity assumptions on the extra term are too strong to be used here. Thus we establish,
with techniques inspired from Liggett, a general subadditive ergodic theorem al-
lowing an error term that matches our situation.

In fact, we do not apply this almost subadditive ergodic theorem directly to
the collection of hitting times #(x), but we rather introduce the quantity o (x),
that can be seen as a regeneration time, and that represents a time when site x is
occupied and has infinitely many descendants. This ¢ has stationarity and almost
subadditive properties that ¢ lacks and thus fits the requirements of our almost
subadditive ergodic theorem. Finally, by showing that the gap between ¢ and o is
not too large, we transpose to ¢ the shape result obtained for o.

2. Model and results.

2.1. Environment. In the following, we denote by || - || and || - ||oc the norms
on R4, respectively, defined by ||x||1 = Z?Zl |x;| and ||x||co = maxj<;<q |x;|. The
notation || - || will be used for an unspecified norm.

We fix Ac(Z?) < Amin < Amax < +00, where A.(Z%) stands for the critical pa-
rameter for the classical contact process in Z¢. Additionally, we restrict our study
to random environments A = (A.),cg« taking their value in A = [Apin, kmax]Ed.
An environment is thus a collection A = (A;),cgd € A.

Let A € A be fixed. The contact process (&;);>0 in environment A is a homo-
geneous Markov process taking its values in the set P(Z¢) of subsets of Z¢. For
z € Z4 we also use the random variable §1(2) = Lyzeg,y. I & (2) = 1, we say that z
is occupied or infected, while if & (z) = 0, we say that z is empty or healthy. The
evolution of the process is as follows:

e an occupied site becomes empty at rate 1,
e an empty site z becomes occupied at rate Y-, _ .1y, =1 & (2) Az 21}

each of these evolutions being independent from the others. In the following, we
denote by D the set of cadlag functions from R to P(Z4); it is the set of trajec-
tories for Markov processes with state space P (Z4).
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To define the contact process in environment A € A, we use the Harris con-
struction [22]. It allows us to couple contact processes starting from distinct ini-
tial configurations by building them from a single collection of Poisson measures
onR,.

2.2. Construction of the Poisson measures. We endow R with the Borel o -
algebra B(R), and we denote by M the set of locally finite counting measures
m= Z;L:(’g 8;;. We endow this set with the o-algebra M generated by the maps
m +— m(B), where B describes the set of Borel sets in R ..

We then define the measurable space (€2, F) by setting

Q=M x M% and F= M @ MOZ,

On this space, we consider the family (P)),ca of probability measures defined as
follows: for every A = (A¢), cgd € A,

Py = (® 7))%,> ®’Pf®Zd,

ecEd

where, for every A € R, P, is the law of a punctual Poisson process on R with
intensity A. If A € R, we write PP, (rather than IP(,\)&E ,) for the law in determin-
istic environment with constant infection rate A.

For every t > 0, we denote by F; the o-algebra generated by the maps w +—
w.(B) and w — w;(B), where e ranges over all edges in E4, 7 ranges over all
points in Z? and B ranges over the set of Borel sets in [0, 7].

2.3. Graphical construction of the contact process. This construction is ex-
posed in all details in Harris [22]; we just give here an informal description. Let
® = ((We) pepd» (W7),c7d) € 2. Above each site z € 74, we draw a time line R,
and we put a cross at the times given by w,. Above each edge e € E¢, we draw at
the times given by w, a horizontal segment between the extremities of the edge.

An open path follows the time lines above sites (but crossing crosses is forbid-
den) and uses horizontal segments to jump from a time line to a neighboring time
line; in this description, the evolution of the contact process looks like a percola-
tion process, oriented in time but not in space. For x, y € Z¢ and ¢t > 0, we say that
£} (y) =1 if and only if there exists an open path from (x, 0) to (y, ), then we
define

£ ={yeZ: &) =1},
vAePzZh & =&

X€EA

ey

For instance, we obtain (A C B) = (Vt >0 S,A - étB).
When A € R, Harris shows that under P;, the process (S;“),Zo is the contact
process with infection rate A, starting from initial configuration A. The proof can
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readily be extended to a nonconstant A € A, which allows us to define the contact
process in environment A starting from initial configuration A. This is a Feller
process, and thus it benefits from the strong Markov property.

2.4. Time translations. For t > 0, we define the translation operator 6; on a
locally finite counting measure m = Zj;of 8; on R by setting

+00
Om = =181

i=1
The translation 6; induces an operator on £2, still denoted by 6;; for every w € €,
we set

Orw = ((sze)eeﬂzd, (9t0)z)zezd)-

The Poisson point process being translation invariant, every probability measure
IP, is stationary under 6;. The semigroup property of the contact process here has a
stronger trajectorial version; for every A C Z¢, for every s, t > 0, for every w € S,
we have

A
2) g @) =& 0,.0) = 60) 0 & (),
that can also be written in the classical markovian way
VBEeB(D)  P((4)s=0 € BIF) =P((§)s>0 € B) o &

We can write in the same way the strong Markov property: if 7 is an (F;);>0
stopping time, then, on the event {T" < +o00},

A
(
8, (o) =&7“ (Orw),

VBeB(D)  P((Ef,)s=0 € BIFr) =P((§)s=0 € B) 0 &7
We recall that Fr is defined by
Fr={BeF:Vt=0BN{T <t} e F}.
2.5. Spatial translations. The group Z¢ can act on the process and on the

environment. The action on the process changes the observer’s point of view of
the process. For x € Z¢, we define the translation operator T by

Vo € Q Tiow= ((a)x+€)geEd7 (wXJrZ)zeZd)’

where x + e the edge e translated by vector x.
Besides, we can consider the translated environment x.A defined by (x.A), =
Ax+e- These actions are dual in the sense that for every A € A, for every x € Z¢,

3) VAeF P, (Tywe A) =P j(w € A).

Consequently, the law of £* under PP;, coincides with the law of £° under P, ;.
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2.6. Essential hitting times and associated translations. For aset A C Z¢, we
define the life time 74 of the process starting from A by

td =inf{r > 0:£2 = 2).

For A ¢ Z¢ and x € Z¢, we also define the first infection time #4 (x) of site x from
set A by

tA(x) =inf{r > 0:x € £},

Ig y € Z4, we write ¥ (x) instead of 1} (x). Similarly, we simply write 7 (x) for
7 (x).

We now introduce the essential hitting time o (x): it is a time where the site x is
infected from the origin 0 and also has an infinite life time. This essential hitting
time is defined through a family of stopping times as follows. We set ug(x) =
vo(x) = 0 and we define recursively two increasing sequences of stopping times
(un(x))n=0 and (vn(x))n=0 With ug(x) = vo(x) < uj(x) < vi(x) < uz(x)--- as
follows:

e Assume that vi(x) is defined. We set ugy1(x) = inf{t > vx(x):x € Sto}. If
Vg (x) < +00, then ugy1(x) is the first time after vg(x) where site x is once
again infected; otherwise, ugy1(x) = 400.

e Assume that uy (x) is defined, with k > 1. We set v (x) = ug(x) + 1 06y, (x). If
ur(x) < 400, the time t* o 6, () is the life time of the contact process starting
from x at time uy(x); otherwise, vi(x) = +o00.

We then set
@) K(x) =min{n > 0:v,(x) =+00 or u,+1(x) =400}

This quantity represents the number of steps before the success of this process;
either we stop because we have just found an infinite v, (x), which corresponds
to a time u, (x) when x is occupied and has infinite progeny, or we stop because
we have just found an infinite u, 4 (x), which says that after v, (x), site x is never
infected anymore.

We then set o (x) = uk (), and call it the essential hitting time of x. It is, of
course, larger than the hitting time 7 (x) and can been seen as a regeneration time.

Note however that o (x) is not necessary the first time when x is occupied and
has infinite progeny. For instance, such an event can occur between u(x) and
v1(x), being ignored by the recursive construction.

We will see that K (x) is almost surely finite, so o (x) is well defined. At the
same time, we define the operator 6, on by

6. — T, oeg(x), if o(x) < +o0,
YT Ty, otherwise,

or, more explicitly,

= ) T (Qg(x)(w)a)), if o (x)(w) < 400,
Ox)(@) = { Ty (w), otherwise.
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We will mainly deal with the essential hitting time o (x) that enjoys, unlike 7 (x),
some good invariance properties in the survival-conditioned environment. We will
also control the difference between o (x) and ¢ (x), which will allow us to transpose
to t(x) the results obtained for o (x).

2.7. Contact process in the survival-conditioned environment. We now have to
introduce the random environment. In the following, we fix a probability measure
v on the sets of environments A = [Amin, Amax]Ed. We assume that v is stationary
and, denoting by Erg(v) the set of x € Z¢ \ {0} such that the translation by x is
ergodic for v, then the cone generated by Erg(v) is dense in R?. This condition is
obviously fulfilled if Erg(v) = Z¢ \ {0}. This perhaps odd condition allows us to
consider some natural models where the ergodicity assumption is not satisfied in
some directions, for example, along the coordinate vectors. This setting naturally
contains the case of an i.i.d. random environment and the case of a deterministic
environment A > A.(Z%); we simply take for v the Dirac measure (81)®Ed.

For A € A, we define the probability measure P on (2, F) by

VEeF P, (E)=P,(E|t"=+00).

It is thus the law of the family of Poisson point processes, conditioned to the sur-
vival of the contact process starting from 0. On the same space (2, F), we define
the corresponding annealed probability P by setting

VEeF @(E):/ P, (E)dv(D).
A

In other words, the environment A = (A.),cgs Where the contact process lives is a
random variable with law v, and it is under the probability measure P that we seek
the asymptotic shape theorem.

It could seem more natural to work with the following probability measure:

JPL(E)Pu(z0 = +00) dv(})
[Py (79 = +00) dv(A)

VEeF P(E)=P(E|It"=+400) =

It appears that our proofs do not work with this probability measure. However,
our restrictions on the set A of possible environments ensure that P and P are
equivalent; the P-a.s. asymptotic shape theorem is thus also a P-a.s. asymptotic
shape theorem.

2.8. Organization of the paper and results. In Section 3, we establish the in-
variance and ergodicity properties. In particular, we prove the following theorem.

THEOREM 1.  Forevery x € Erg(v), the measure-preserving dynamical system
(2, F,P,0,) is ergodic.
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In Section 4, we study the integrability properties of the family (o (x)),czq4; we
also control the discrepancy between o (x) and 7 (x) and the lack of subadditivity
of 0.

THEOREM 2. There exist As, Bs > 0 such that for any A € A, for any x,
d
y ez,

5) Vi>0 Pilox+y) —(0(x)+0(y)ob)=1) < Asexp(—Bsv1).

At first sight, one could think that o (x + y) <o(x) + o(y) o éx always holds,
but this is not the case because o (x + y) is not necessary the first time when x + y
is occupied and has infinite progeny.

However, the theorem says that the lack of subadditivity of o is really small; in
particular, it does not depend on the considered points. Then, in the same spirit as
Kingman [28] and Liggett [30], we prove in Section 5 that for every x € Z¢, the
ratio @ P
be extended into a norm on R?, which will characterize the asymptotic shape. In
the following, A, will denote the unit ball for ;1. We define the sets

converges [P-a.s. to a real number ©(x). The functional x > w(x) can

H ={xe Zd:t(x) <t},
G ={xe 74 co(x) <t},
K| ={xeZ?:Vs>1 £0(x) =& ()},
and we denote by I:I,, G,, K / their “fattened” versions
H=H+1[0,11, G,=G,+1[0,11 and K=K, +I0,1]¢.
We can now state the asymptotic shape result.
THEOREM 3 (Asymptotic shape theorem). For every & > 0, P-a.s., for every t
large enough,
KNG, G,

6) (1-8)A,C =

H,
C T c (1 +8)AM'

The set K; N G, is the coupled zone of the process. Usually, the asymptotic
shape result for the coupled zone is rather expressed in terms of K; N H;, where

K ={xe2?:62x) = £ (x)).

Our result also gives the shape theorem for K; N H;, because K t/ NG, C K; N
H; C H;.

Let us note that the shape result can also be formulated in the following
“quenched” terms: for v-a.e. environment, we know that on the event “the con-
tact process survives,” its growth is governed by (6) for ¢ large enough. We can
also give a complete convergence result.
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THEOREM 4 (Complete convergence theorem). For every A € A, the contact
process in environment A admits an upper invariant measure m;, defined by

VACZ |Al<+o0  my(@>DA)= lim PyEZ > A).
t— 400

Then, for every finite set A C Z¢ and for v-a.e. environment X, one has
P{, = P, (t" < +00)85 + Po.(v* = co)m;,
where Pf’t is the law of étA under P, and = stands for the convergence in law.
The proof of this result does not require any new idea, and we just give a hint at
the end of Section 6.
As explained in the Introduction, in order to prove the asymptotic shape theo-

rem, we need some estimates analogous to the ones needed in the proof by Durrett
and Griffeath in the classical case. We set

BY ={yeZ': |y — xlloc <1},
and we write B, instead of B?.

PROPOSITION 5. There exist A, B, M, c, p > 0 such that for every A € A, for
every y € 74, for every t > 0,

(7 Pu(? = +00) > p,

(8) Py.(HY ¢ Buy) < Aexp(—Bt),

©)] Pyt <79 < +00) < Aexp(—Bt),

(10) P, (to(y) > M +1, 0= —i—oo) < Aexp(—B1),
C

(11) P; (0 ¢ K/, 1% = 400) < Aexp(—Bt1).

All these estimates are already available for the classical contact process in the
supercritical regime. For large A, they are established by Durrett and Griffeath [17],
and the extension to the entire supercritical regime is made possible thanks to
Bezuidenhout and Grimmett’s work [4]. For the crucial estimate (9), one can find
the detailed proof in Durrett [16] or in Liggett [32]. The need for these estimates
explains our restrictions on the possible range of the random environment.

We chose to focus on the stationarity and subadditivity properties of the essen-
tial hitting time o and on the proof of the shape result. We thus admit in Sections
3, 4 and 5 the uniform controls given by Proposition 5, whose proof (via restart
arguments) is postponed to Section 6. That section is totally independent of the
rest of the paper. Finally, in the Appendix, we prove a general (almost) subadditive
ergodic theorem. As we think it could also be useful in other situations, we present
it in a more general form than what is needed for our aim.
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3. Properties of 0.

3.1. First properties. We first check that K (x) is almost surely finite and even
has a subgeometrical tail.

LEMMA 6. VA CZ? Vx eZ? Vre A,Vn e NPy (K (x) >n) < (1 —p)".

PROOF. Remember that p is given in (7). Let A € A and n € N. The strong
Markov property applied at time 4,41 (x) ensures that
Py (K (x) > n+ 1) =Py (upy2(x) < +00)
<P (upt1(x) < 400, Upp1(x) < +00)

< P(uns1(x) <400, 7% 06, ,(x) < +00)

< Py (tns1(x) < 400)(1 — p)
=P (Kx)>n)(1—p),

which proves the lemma. [

(
(
< Py (un+1(x) < +00)Py (t* < +00)
(
(

LEMMA 7. Let A € A. Py-a.s., for every x € 74,

(K(x)=k) and
(12)
(t"=400) = (ux(x) <400 and vi(x) = +00).

PROOF. LetA € A. By Lemma 6, the number K (x) is P -a.s. finite. Let k € N;
the strong Markov property applied at time vg (x) ensures that
P; (t9 = 400, v (x) < 400, ug41(x) = 00| Fy (x))
= Ly () <+00)Pa (T = +00, 1*(x) = +00) 0 & ).
Consider now a finite nonempty set B C Z%. With (10), we get

Pi(t? =400, (x) = +00) < Y Py (t¥ = +00, ¥ (x) = +00)
yeB

< Y Pyi(r" = +00,t%(x — y) = +00) = 0.
yeB

This gives the direct implication. The reverse one comes from (2). [

Our construction of o (x) is very similar to the restart process exposed in Durrett
and Griffeath [17]. The essential difference is that in that paper, the aim is to find,
close to x, a point that survives while we require here the point to be exactly at x.
Thus, we will be able to describe precisely the law of the contact process starting
from x at time o (x), and construct transformations under which P is invariant.
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LEMMA 8. Let x € Z4\ {0}, A in the o -algebra generated by o (x) and B € F.
Then
VieA  Pi(AN @) H(B)) =Pi(A)P, . (B).

PROOF. We just have to check that for any k € N*, one has
Py(AN 007 (B)N{K (x) =k}) =P, (AN{K (x) =k})Px 1 (B).

Consider a Borel set A’ C R such that A = {o(x) € A’}. The essential hitting time
o (x) is not a stopping time, but we can use the stopping times of the construction

P, ({t° =400} N AN @) H(B) N {K (x) =k})

(13) = Px(ro =+00,0(x) € A", Ty 005 (x) € B, up(x) < +00, vy = +00)
(14) =P (ug(x) <400, ur(x) € A, t* 06y, (x) = +00, Ty 0 by, (x) € B)
(15) =P (up(x) € A, ug(x) < +00)Py(z* =400, Ty € B)

(16) =Py (ur(x) € A, up(x) < +00)P, 5 ({t° = 400} N B).

For (13), we use equivalence (12). For (14), we notice that for any stopping time 7',
(17) {T<+Oo,xES?,TOOTXOQT:—FOO}C{TO:_i_oo}.

Equality (15) follows from the strong Markov property applied at time wuy(x),
while (16) comes from the spatial translation property (3). Dividing the identity
by P, (% = 4+00), we obtain an identity of the form

P, (AN @)~ "(B)N{K(x) =k}) =¥ (x, 1, k, APy 1 (B),
and the number ¥ (x, A, k, A) is identified by taking B =Q. [

COROLLARY 9. Letx,y € Z% and ) € A. Assume that x # 0.

o The probability measure P is invariant under the translation 0.

e Under Py, o(y)o 9 and o (x) are independent. Moreover, the law of o (y) o 0
under Py, is the same as the law of o (y) under P, ;.

e The random variables (o (x) o (9 )) j>0 are independent under Py.

PROOF. For the first point, we just apply the previous lemma with A = €,
then we integrate with respect to A and use the stationarity of v.

For the second point, let A’, B’ be two Borel sets in R and apply Lemma 8 with
A={o(x) e A’} and B={o(y) 0oby € B'}.

Letn >1and Ag, Ay, ..., A, be some Borel sets in R. We have

Py (0(x) € Ag,0(x) 00y € Ay, ...,0(x) 0 (By)" € Ay)
=Py (0(x) € A, (0(x),...,0(x) 0 (5x)”_1) 00y €Ap X -+ X Ap)
=P (0(x) € Ag)Py (0 (x) € Ay, 0(x) 0fy €An,...,0(x)0 (@) e Ay),
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where the last equality comes from Lemma 8. We recursively obtain
E( M (0G0 @) € Aj}) = T[] Bpalo) ea)),
0<j=n O<j=n
which ends the proof of the lemma. [

3.2. Ergodicity. To prove Theorem 1, it seems natural to estimate the evolu-
tion with m of the dependence between A and 6,7 (B) for some events A and B.

If m > 1, the operator 5;” corresponds to a spatial translation by vector mx and to
a time translation by vector S, (x)

m—1

OF =Ty 005,y With Sp(x) =) o(x) 0.
j=0

We begin with a lemma in the same spirit as Lemma 8.

LEMMA 10. Lett>0,A e F,and Be F.

Then, for any x € Zd, any A €A, anym > 1,

Pr(AN{t < S0} N @)~ (B)) =Pr(A N {t < Su(0)})Pruxa(B).

PROOF. Set K, (x) = (K(x), K(x) 08y, ..., K(x) 06", It is sufficient to

prove that for any k = (ko, ..., kn—1) € (N*)", one has
Pi(A,1 < Sn(x),0,"(B), K (x) =k)
= @)\(A’ t < Sn(x), fm(x) = k)@mx,)»(B)-

Let k € (N*)™. We set Ro(x) =0 and, for [ <m — 2, Rj41(x) = R; + uy, (x) o
OR,(x)- Thanks to remark (17), the following events coincide (see Figure 1):

{1 =400, Kpn(x) = k)
= {uk, (x) < 400, ug,(x) o T 0 O, (x) < +00, ...,

g, (X) © Ton—1yx 0 Or, _ (x) < +00,7° 0 Ty 0 Or,, (x) = +00}.

Moreover, on this event, S, (x) = R,,(x) holds. Thus
P; (1% =400, A, 1 < S (x), K (x) =k, 8, (B))
=P (A, ug, (x) <400, Uk, (x) o Ty 0 Og, (x) < +00, ...,
g, (x) 0 Ton—1)x 0OR,,_;(x) < +00,1 < Ry (x),
10 Ty 0 OR,, (x) = +00, Tynx 0Ok, (x) € B).

By construction, R, (x) is a stopping time and the event

AN {ug, (x) <+oo}N---N {ukm (x) o Tyn—1)x 0 OR,,_(x) < +OO} N{t < Ry(x)}
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)
R3(x)

ugg (T) 0 992: = Uky () 0 T2z 0 ORy (a)

Uy (T) O 0 = U, () 0 Te 0 OR ()

Uk (z)

0 x 2x 3z

FI1G. 1. An example with k|1 =3, kp =2 and k3 = 4.

is measurable with respect to Fg,, (). Using the strong Markov property and the
spatial translation property (3), we get

P (t% = +00, A, 1 < Sy (x), K (x) =k, 6, (B))
=Py (A, ug, (x) < +00, ug,(x) o Ty o Ouy, (x) < 00, ...,
Ui, (X) 0 Ton—1)x 0 OR,, ,(x) < +00,1 < Ry(x))
X Ppxa({t =400} N B).
Dividing the identity by P, (r = 4-00), we obtain an identity of the form
Pi(A, 1 < Su(x),0.™(B), K (x) =k) =¥ (x, A, k, m, APy 1 (B),
and we identify the value of ¥ (x, A, k, m, A) by taking B =Q. U

We can now state a mixing property.

LEMMA 11. Lett > 0and q > 1 be fixed. There exists a constant A(t, q) such
that for any x € 74\ {0}, for any A € F;, forany B € F, » € A and every £ > 1,

P (AN 05 ™(B)) = Pr(A)Pr 1 (B)| < At q)g .

PROOF. Let ¢ > 1. With Lemma 10, we get
P.(AN6;4(B)) — Pr(AP,.(6;“(B))]
<|Pi(t < Se(x), ANO 7 (B)) — Py (r < Se(x), A)PL(0;“(B))|
+ 2P (t > Se(x))
= 2P, (t > S¢(x)).
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Let us now fix @ > 0. _ B
With the Markov inequality, Py (Se(x) < t) < exp(at)E; (exp(—aS¢(x))). Us-
ing the two last points of Corollary 9, one has

-1
Ej (exp(—aSe(x))) < E; (exp(—a Y o(x)o0b ))
Jj=0

H 3 (exp(—ao (x) 0 6))

N&.

= H jua(exp(—ao (x))).

Now we just have to prove the existence of some « > 0 such that for every A € A,

Ej (exp(—ao (x))) <gq ..

Let p be the constant given in (7):
— 1
[y (exp(—ao (x))) < ;Ex(eXp(—aa(X)))

1
< ;Ekmax (exp(—ao (x)))

_ 1 2dhma
T po42dimax

because o (x) > #(x), and #(x) stochastically dominates an exponential random
variable with parameter 2dA . This gives the desired inequality if o is large
enough. [

We can now move forward to the proof of the ergodicity properties of the sys-
tems (2, F, P, 6,).

PROOF OF THEOREM 1. We have already seen in Corollary 9 that for any
x € Z, the probability measure P is invariant under the action of 6,. To prove
ergodicity, we use an embedding in a larger space to consider simultaneously a
random environment and a random contact process.

We thus set Q = A x Q, equipped with the o -algebra F=B(A)® F, and we
define a probability measure Q on F by

Y(A,B) € B(A) x F Q(A x B) = /A L4(W)P(B)dv(}).
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We define the trzglsformation ®, on S? by setting O, A, w) = (x.A, Oy (w)). It is
easy to see that Q is invariant under ®,. Indeed, for (A, B) € B(A) x F, using
Lemma 8, one has

QO,(h, )€ Ax B)=Q(x.1 € A, 0, (») € B)

=fA11A(x.x)E(§x(a)) € B)dv())
:/A]lA(x.)L)@x.k(B)dv()\)

_ /A 14WP, (B)dv (L)
=Q(A x B).

Note that if g(A, w) = f()), then [gdQ = [ fdv.

Similarly, if g(A, w) = f(w), then [gdQ = [ f dP.

Note that A = J,~oF; is an algebra that generates F. To prove that G, is er-
godic, it is then sufficient to show that for every A € A,

1 n—1 B . .
(18) — 71405  convergesin L*(P) to P(A).
k=0

The quantity above can be seen as a function of the two variables (A, w). Thus it
is equivalent to prove that the sequence of functions (A, ®) — % 22;6 1 A(é)]fw)
converges to P(A) in L>(Q). Let A € A and r > 0 be such that A € F;. For every
(w, 1) € Q, we split the sum into two terms:

1 n—1 - 1 n—1 " -

- ;) T4 (0;0) =~ };}(L\(ex ®) — Prr 1 (A))

n—1

1=t
+ - ZPkX.X(A)-
=0

If we set f (1) =IP; (A), the second term can be written
l }’l—l_ 1 n—1
=D Pra(A) == flkx.d).
" k=0 " k=0

Since x € Erg(v), the Von Neumann ergodic theorem says that this quantity con-
Verges_in L2£v) to [ fdv =P(A). Seen as a function of (A, w), it also converges
in L2(Q) to P(A). Set, k > 0,

Yi = 1465 0) — Po(075(A)) = 14 (05 w) — Py 1 (A)
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and L, =Yp+ Y1 +---+ Y,_1. It only remains to prove that L, /n converges to 0
in Lz(@). AsY,=Ypo @';, the field (Yx)k>o is stationary. We thus have

/Lﬁd@: > /Y,-de@

0<i,j<n—1
n—1 n—1
:Z/Yizd@+22(n—£)fYngd@
i=0 =1
+00 +00
< (EZO‘ [ vov: d@‘) < (EZO A |EA(Y0YZ)|dV()~)>
+00
< 2n<2/ PL(ANG4(A)) —E(A)E(é;ﬁ(A)ﬂdu(,\))
t=0"4

+00

<2n <Z Alt, 2)2—‘3) =4A(t,2)n,
£=0

thanks to Lemma 11. This ends the proof of (18), hence, the proof of Theorem 1.

O

4. Bound for the lack of subadditivity. In this section, we are going to bound
quantities suchas o(x +y) — [oc(x) +o(y) o 6, ] and o(x)—t(x).

We will use these results in the application of a (almost) subadditive ergodic
theorem in Section 5. In both cases, we use a kind of restart argument. Considering
the definition of the essential hitting time o, we will have to deal with two types
of sums of random variables that are quite different: sums of v; — u; on one hand,
and sums of u; | — v; on the other hand.

e The life time v; (x) — u; (x) of the contact process starting from x at time u; (x)
can be bounded independently of the precise configuration of the process at time
u; (x). So the control is quite simple.

e On the contrary, u;11(x) — v;(x), which represents the amount of time needed
to reinfect site x after time v; (x), clearly depends on the whole configuration of
the process at time v; (x), which is not easy to control precisely and uniformly
in x. This explains why the restart argument we use is more complex and the
estimates we obtain less accurate than in more classical situations (e.g., in Sec-
tion 6, we obtain the exponential estimates of Proposition 5 by standard restart
arguments).

As an illustration of the first point, we easily obtain the following lemma.

LEMMA 12. There exist A, B > 0 such that for every A € A,
19) VxeZd Vt>0 P;(3i < K(x):v;(x) —u;(x) > t) < Aexp(—Bt).
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PROOF. Let F:Q — R be a measurable function and x € Z¢. We set

+00

Li(F) =3 Ly <+oo) F 00
i=0

With the Markov property and the definition of K (x), we have

+00 T
BALLx(F)] =) Ea[Luu;(r) <400} JEALF] = (1 + ) Pu(K(x) > i))EA[F]
i=0 i=0

— (1 + B, [K (O] EA[F] < (1 + %)EA[F],

where the last equality comes from Lemma 6. We choose F = 1{; -, (x)—v; (x) <00} »
and with estimate (7), we obtain

p—

Po(Fi < K(x):vi(x) —ui(x) > 1) < =Py (3i < K(x):vi(x) —ui(x) >1)

)

!B =)< %M@(F)]

i)

1 1 .
< —<1+—>P)\(Z‘<T < 400).
p 1Y

We can then conclude with inequality (9). U

To deal with the reinfection times u;11(x) — v; (x), the idea is to look for a point
(y, t) (in space—time coordinates) close to (x, u; (x)), infected from (0, 0) and with
infinite life time. The at-least-linear-growth estimate (10) will then ensure it does
not take too long to reinfect x after time ¢, just by looking at infection starting
from the new source point (y, t). The difficulty lies in the control of the distance
between (x, u; (x)) and a source point (y, t); if the configuration around (x, u; (x))
is “reasonable,” this point will not be too far from (x, #; (x)), and we will obtain a
good control of u;1(x) and u; (x).

We recall that for every x € Z%, w, is the Poisson point process giving the
possible death times at site x, and that M and c are, respectively, given in (8) and
(10). Note that we can assume that M > 1. We note

(20) y=3M{+1/c)>3.

Forx,y e 74 and t > 0, we say that the growth from (y, 0) is bad at scale ¢ with
respect to x if the following event occurs:

E¥(x,1) = {wyl0,1/2] =0y U{H;" ¢ y + Bu:} U {t/2 < 7% < +00}
U{tY =+o0,inf{s > 2r:x € &)} > yt}.
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We want to check that with a high probability, there is no such bad growth point in
a box around x. So we define, for every x € 74, every L > 0 and every ¢ > 0,

L
Ni(x,t)= Z /ﬂEy(x,,)oésd<a)y+ Z a)e—l—(So)(s).

YEX+Bpr42 eckd : yee

In other words, we count the number of points (y, s) in the space—time box (x +
Brr+1) x [0, L] such that something happens for site y at time ¢, either a possible
death, or a possible infection, and at this time the bad event EY (x, t) o 65 occurs.
We first check that if the space—time box has no bad points and if u; (x) is in the
time window, then we can control the delay before the next infection.

LEMMA 13. IfNp(x,t)o0;,=0and s+t <u;(x) <s+ L, then v;(x) =400
oruj+1(x) —ui(x) < yt.

PROOF. By definition of u;(x), site x is infected from (0, 0) at time u; (x).
Since s+t < u;(x) < s+ L and u;(x) is a possible infection time for x, the nonoc-
currence of E*(x, t) 00, (x) ensures that t* 00, (y) = +oo or that 7* 060, () < t/2.
If 7% 0 6, (x) = +00, we are done because then v; (x) = +00. Otherwise, note that
vi(x) —u;i(x) <t/2.

By definition, there exists an infection path y; : [0, u; (x)] — 74 from (0, 0) to
(x, u; (x)), that is, such that ;(0) = 0 and y; (#;(x)) = x. Consider the portion of
y; between time u;(x) — ¢ and time u;(x). Denote by xo = y; (u; (x) — t) and let
us see that xo € x + Bpry2. Indeed, if xg ¢ x + Bpsr42, we seek the first time #;
after time u; (x) —t when y; enters in x + By at a site we call x; (note that
since x1 is in the inside boundary of x + Byss42, we have ||x — x1|lco = Mt + 1).
Time #; is a possible infection time for x;, and the nonoccurrence of E*!(x, t) o 6;,
ensures that the infection of x from (xp, #1) will at least require a delay ¢, which
contradicts u; (x) —t > 0.

So xg € x + Bps42. Since Np(x,t) o Oy = 0, the first possible death at site
xo after time u;(x) — t cannot occur after a delay of 7/2; thus the first time t»
when the path y; jumps to a different point xp satisfies f, < u;(x) —t +1/2 =
u;(x) —t/2. Consequently, when (x3, 2) infects (x, u;(x)), it is at least #/2 aged,
and the nonoccurrence of E*?(x, t) o 6;, ensures it lives forever and

influ>2t:x€§)? o6, <yt.

So there exists 13 € [t + 2t, 1, + yt] with x € Sg. Since v; (x) — u;j(x) <t/2, one
has

3>ty +2t > (ui(x) — 1) + 2t =u;(x) +1 > v; (x).

Finally, u;41(x) —u;(x) <t3 —u;(x) <tr —u;(x) +yt <yt. O

Now we estimate the probability that a space—time box contains no bad points.
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LEMMA 14. There exist Az1, Ba1 > 0 such that for every . € A,
(21) VL >0,Vxe 74 ¥t >0 P, (Np(x,1) > 1) < A2 (1 + L) exp(—Ba11).

PROOF. Let us first prove there exist A, B > 0 such that for every A € A,
(22) VxeZ4 Vi>0,Yyex+ Byis2 Py (E? (x,1)) < Aexp(—Bt).

Let x € Z4, t > 0 and y € x + By42. If 7 = 400, there exists z € Szy, with
7% 0 6 = +00. Thus, definition (20) of y implies that

{t¥ = +o0,inf{s > 2t :x € §)} > yt}

Cl&, ¢y+BmtU |J {F(x)oby>(y —2M)1)
z€y+Bome

lx —z]| 3
C &, & y+ Bami} U U t*(x) 00y > . +Mt—;},
Z€y+Bth

Hence, with (8) and (10),
Py (t¥ =400, inf{s > 2t:x € )} > yt)
< Aexp(—2BM1) + (1 4+4M1)? Aexp(—B(Mt —3/c)).

The distribution of the number wy ([0, #/2]) of possible deaths on site y between
time O and time ¢ /2 is a Poisson law with parameter 7/2, so

P, (wy ([0, 1/2]) = 0) = exp(—1/2).

The two remaining terms are controlled with (8) and (9); this gives (22).

Now fix y € x + Bys+2 and note By = wy + 3 cpd . yeo We. Under Py, By is a
Poisson point process with intensity 2dA.. Let Sop =0 and (S, ),>1 be the increas-
ing sequence of the times given by this process:

L +00
fo ey 0 Oy d(By +80)(5) = 3 L5, <11 pv(en) 0 s,
n=0
So, with the Markov property,
L
E, ( [ 16 08 d (8, 4800
—+00 “+00
=Y Ex(Ls,=0yLeven 00s,) = O Ea(Lis,<2)) Pa(EY (x, 1))

n=0 n=0

= (1 +EalBy ([0, LD)PA(E? (x, 1)) = (1 + L(2dAe + D)Po(EY (x,1)).

So (21) follows from (22), from the remark that P, (N7 (x, 1) > 1) <E, [Ny (x, 1)]
and from an obvious bound on the cardinality of Bys;4o. U
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Once the process is initiated, Lemma 13 can be used recursively to control
uj+1(x) —u;(x). To initiate the process, we assume that there exists a point (u, ),
reached from (0, 0), living infinitely and close to x in space.

LEMMA 15. Foranyt,s > 0, for every x € Z2, the following inclusion holds:

{t" =400} N {Fu € x + Byr42, T 0 0y = +00, u € £}

(23) N{Nk @)yt (x,1) 0 bs =0}

(24) N () i) —uix) <t}
1<i<K(x)

(25) c{t=4o0}N{o(x) <s+ K(x)yt}.

PROOF. If every finite u; (x) is smaller than s + ¢, we are done because o (x) <
s+t <s+ K(x)yt. So set

lo=max{i:u;(x) <s—+t}.

Since v;,(x) < +00, the event (24) ensures that v;, (x) —u;,(x) <, and so v;;(x) <
s + 2t. Now, since t" = 400, the nonoccurrence of E“(x, t) o 6 implied by (23)
says that

inf{s >2r:x €&/} o6 <yt,

which leads to u;1(x) < s+ yt. Noting that forany j > I, u;j4j(x +y) > s +1,
we prove by a recursive use of Lemma 13 with the event {Ng (x),/(x, ) 0 65 =0}
that

Vie(l,...,K()—io) Uip+j < S+ jyt.

For j = K(x) —ip, we get o (x) =u;y4;(x) <5+ (K(x) —ig)yt <s+ Kx)yt,
which proves (25). U

4.1. Bound for the lack of subadditivity. Tobound o(x +y) —[o(x)+a(y) o
6,1, we apply the strategy we have just explained around site x + y. To initiate the
recursive process, one can benefit here from the existence of an infinite start at the
precise point (x + y,o(x) +o(y) o éy).

PROOF OF THEOREM 2. Letx,ye€ Z4 reAandr>0.Wesets =o(x)+
o(y) 00y:
@A(a(x +y)>0(x)+0(y)ob, +1)
— t
By (Kt > i)
14

+E<r°=+oo, Kx+y) < %,a<x+y> >s+K(x +y>w?).
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With the sub-geometrical behavior of the tail of K given in Lemma 6 and the
uniform control (7), we can control the first term. Note that if K (x +y) < g, then
K (x + y)y+/t <t, and so that

[Nk i@ + 3. V1) Z 1 C{Ni(x + 3, V1) 2 1.

\ZVe apply Lemma 15 around x + y, on a scale /7, an initial time s = o (x) +0(y) o
0, and a source point u = x + y,

@A(r°=+oo,l<(x+y)§g,a(ery)szrK(ery)yﬁ)

(26) <Py (N, (x 4+ y,v/1) 065 > 1)
+ P (3 < K(x+y):vi(x +y) —ui(x +y) > /).
Since N;(x + y, /) = N;(0, /1) o Ty o Ty and s = & (x) + o (¥) o Oy, we have
Ni(x + v, V1) 06y = N (0, /1) 0 6, 0 6.

Thus B (N/(x 4+ y, /1) 0 05 > 1) = P(y4) 2 (N (0, /1) > 1), which is controlled
by Lemma 14 and estimate (7). Finally, (26) is bounded with Lemma 12. [J

3 COROLLARY 16. Forx,y € 74, set r(x,y)=(cx+y)—(cx)+o(y)o
o).
For any p > 1, there exists M, > 0 such that

@7 VieAVx,yeZd  Bulr(x,y)P1< M.

PROOF. We write E;[r(x, y)P] = 0+°° puP~ P, (r(x,y) > u)du and use
Theorem 2. [

4.2. Control of the discrepancy between hitting times and essential hitting
times. To bound o (x) — #(x), we would like to apply the same strategy start-
ing from (x,#(x)) but we do not have any natural candidate for an infinite start
close to this point. We are going to look for such a point along the infection path
between (0, 0) and (x, (x)) which requires controls on a space-time box whose
height (in time) of order 7 (x), that is, of order || x||. So we will lose in the precision
of the estimates and in their uniformity.

PROPOSITION 17. There exist Asg, Byg, apg > 0 such that for every z > 0,
every x € Z%, every A € A,

(28) Pi(0(x) = 1(x) + K (x)(cr2s log(1 + [|x|)) + 2)) < Azg exp(—Basz).
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PROOF. Forx,ye 74 and t, L > 0, we define

EY (1) = {‘[y < 400, UHSy gZy—I—BM,},

s>0

o= Y /()Lnﬁy(t)oesd( 3 a)e)(s).

yex+Buyii1 eckd: yee

With (7), (8) and (9), it is easy to get the existence of A, B > 0 such that
(29) VrieA,VxeZi Vi>0 ?,\(NL(x, 1) >1) < A(1 + L) exp(—Bt).

Now, we choose the last point (u,s) on the infection path between (0,0) and
(x,1(x)) such that t* o 8, = +00. Note that on {ro = +00}, such an s always
exists.

Let us see that if N,(x)(x, t) =0, then u € x + Bpss+2. Indeed, if |u — x| >
Mt + 2, we consider the first point («’, s”) on the infection path after (u, s) to be in
X + Byy;. The definition of s ensures that the contact process starting from (u', s”)
does not survive, but, since it contains (x, 7(x)), its diameter must be larger than
M¢, which implies that Nt () (x,1) > 1, and gives the desired implication.

On event {Nt(x)(x, t) = 0}, we are going to apply Lemma 15 around point
(x,0), at scale

,_los(l+ Ik +z 2
14 14
with source point (u, s) and a time length L = K (x)y¢. Here and in the following,
o > 0 is a large constant that will be chosen later. Since s < f(x),

Py (0 (x) = 1(x) 4+ K (x)(er log(1 + [|x[) + 2))
Pi(o(x) = 1(x) + K (x)yt)
<Pi(oc(x)>s+K@x)yt)

<P (0(x) > s+ K@x)yt, Ny (x, 1) =0)

(30) _ .
+ PA(N;(X)(X, l‘) > 1)

<P (Nk )y (x,1) 065 > 1)
+ P (3i < K(x):vi(x) —ui(x) > 1)
+@k(1§7,(x)(x,t) > 1).

The second term in (30) is bounded with Lemma 12. For the last term, we write

_ o _ H
Py (Nioy(x, 1) 2 1) < Pa(Njjxpjesz(x, 1) = 1) +Px<t(x) > +z>.
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The second term is controlled with (7) and (10), and (29) ensures that
Po(Nisijerr (v ) 2 1) < A(l + U + )exp(—Bt)

SA( +U+ ) p<_B(0610g(1;H|x||)+z))

< A'exp(—B'z)

as soon as « is large enough.
For the first term of (30), we note that Nk (x),/(x, 1) 0 0y < Nyxo)+ Kk (x)yr (X, 1).
Thus

P3 (Nk oyt (X, 1) 005 > 1) < Pu(Njxj /et K rype (X, 1) = 1)

+m<r<x> > I, )

As previously stated, the second term is bounded with (7) and (10) and while
using (21), we get

Py (Nllxll/c+z+K(x)yz(x, t) > 1)

+00 — —
<3 VB (K (0) = Ky By Ny ety (6, ) > 1)
k=1

“+00

<Y VPuK(x)=k) \/A21 k)/t-i-u-l-z)exp( Byi1)
k=1
\/A 1(1+u>(1+z)(1+yt)eXP<—BTt>

+00 —
x 31+ BEL(K () =k).

k=1

The sub-geometrical behavior of the tail of K (x) given by Lemma 6 ensures that
the sum is finite, and we end the proof by increasing « if necessary. [

LEMMA 18. For every p > 1, there exists C31(p) > 0 such that for every
xez4

(€29) VieA  Ei(jo(x) —1()IP) < Cai(p)(log(l + [Ix]))”.

PROOF.  Set V, = T4 — anglog(1 + ||x). By Proposition 17, there ex-
ists a random variable W with exponential moments that stochastically dominates
V. under P, for every x and every A. Moreover, Lemma 6 ensures that K (x) is

stochastically dominated by a geometrical random variable K'.
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Setv(x) =0(x) —t(x) = K(x)(alog(l + |lx||) + Vy) and let p > 1. With the
Minkowski inequality, we have

Erv@)")YP <alog(l + IxNE K ()")/P + E[K ()P VIDYP
< alog(l + [IxIDELK ()PP + (E; K (x)*PE, VP @P)
< alog(l + [x[NEK'P) /P + (RKPEW?P)/CP),

and the proof is complete. [

COROLLARY 19.  P-a.s., limy|— 400 % =0.

PROOF. Let p > d. Equation (31) gives

o () — 1)) (log(1 + |lx))”
E—— "L <C — <4
XZ: A+ Ixh? 31(p)x§d TN T

So (%)xezd is almost surely in £7(Z?) and thus goes to 0. [J

COROLLARY 20. There exist Az, B3y, C3p > 0 such that for every A € A,
32) Vxe Zd, vVt >0 F)\(O'(x) > Cy||lx|| + l‘) <Az exp(—B32«/;).

PROOF. Let o = apg be given as in Proposition 17, and note that if K (x) <
% lxIl +7/2 and z = a/][x || +£/2, then, since log(1 + u) < /u, we get

K(x)[alog(1+ [Ix|) + 2] <2zK(x) < |lx|| 4+1/2.
Thus with (10) and (7),

B (00> (% 1)l +1)
S@A(t(x) > ”j—” +t/2) +E<K(x) > %W)

+ Py (0 (x) > 1(x) + K(x) (alog(l + I1x]1) +ay/llx[| +1/2)).

The first term is controlled with (10), the second one with Lemma 6 and the last
one by Proposition 17. [

COROLLARY 21. Forany p > 1, there exists C33(p) > 0 such that
(33) VieAVxeZ?  Bilo(x)P1< Caz(p)(1+ lIx])?.

PROOF. With the Minkowski inequality, one has

(Bl (0)PD? < Callxll + (B[ (o) — Caallx ) )] 7.
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Moreover,

B o too
E:[((0(x) — Caallx]) )] = /0 pu? 1B (0 (x) — Callx || > u) du < +00

by Corollary 20. 0

REMARK. In classical restart arguments, the existence of exponential mo-
ments for a random variable usually comes from the following argument: if
(Xn)nen are independent identically distributed random variables with exponen-
tial moments, if K is independent of the (X),en’s and also has exponential mo-
ments, then Y o, <x X, has exponential moments. Here, our difficulties to pre-
cisely bound the reinfection times u;+1 — v; prevent us to use this scheme; we thus
have to use ad hoc arguments, which lead to weaker estimates.

5. Asymptotic shape theorems. We can now move forward to the proof of
Theorem 3. The first step consists of proving convergence for ratios of the type
@. With Corollary 16, we know that for every n, p > 0,

E[o((n + p)x)] < Elo (nx)] + E[o (px)] + M;.

Thus the Fekete lemma says that %E[a (nx)] has a finite limit when n goes to +o00

and the natural candidate for the limit of %’”‘) 1s thus
E(o (nx
po) = lim 290D)
n—400 n
THEOREM 22. P-a.s. Vx € Z4 1imy— oo T =Timy, s oo 2200 = 1y (x).

This convergence also holds in any L (P), p > 1.

To prove this result, we need the two following (almost) subadditive ergodic
theorems, whose proof will be given in the Appendix.

THEOREM 23. Let (2, F,P) be a probability space, (6,)n>1 a collection of
transformations leaving the probability measure P invariant. On this space, we
consider a collection ( f,)n>1 of integrable functions, a collection (g,),>1 of non-
negative functions and a collection (ry,p)n,p>1 of real functions such that

(34) Vn,p>1 Jntp S Jnt fpoOnt+gpoby+rnp.

We assume that:
Efn

n

e c=inf,> > —00.

e g is integrable, g,/n almost surely converges to 0 and % converges to 0.
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o There exists a > 1 and a sequence of positive numbers (Cp)p>1 such that
[(rJr )¥]1 < C), for every n, p and

+00

Z%<+OO.

p=1

Then %E fn converges; if u denotes its limit, one has

E[ lim ﬁ}zu.

n—-+oo

Ifwe set f =lim,_, +OO , then [ is invariant under the action of each 6.

THEOREM 24. We keep the setting and assumptions of Theorem 23. We as-
sume, moreover, that for every k,

+
(fnk - Z Jio (Ok)' ) -0  as.

i=0

Then fn/n converges a.s.to f.

PROOF OF THEOREM 22. We apply Theorem 23 with the choices f, =
o(nx), 6, = an, gp =0,r, p, =r(nx, px) and the probability measure P = P. We
take « > 1. Corollary 21 gives the integrability of o (x) under P and Corollary 16
gives the necessary controls on its moments.

We now check the extra assumption of Theorem 24; it is easy to see that

n—1
t(nkx) <Y o (kx) o (i)',
i=0
which implies that (o (nkx) — Z:’:_Ol o(kx) o (0~kx)i)Jr <o(nkx)—t(nkx).
Corollary 19 ensures that this quantity is o(n). Thus o (nx)/n converges to a
random variable w(x), which is invariant under the action of 6. But Theorem 1
says that this w(x) is in fact a constant, which ends the proof of the a.s. conver-
gence.
To prove that a sequence converges in L7, it suffices to show that it converges
a.s. and that it is bounded in L? for some g > p. Since Corollary 21 says that f;,/n
is bounded in any L7, the proof is complete. [

The next step is to prove the asymptotic shape result, namely, Theorem 3. We
start by proving the shape result for the essential hitting time o, by following the
classical strategy:

e We extend 1 to an asymmetric norm on R? in Lemma 25.
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e We prove that the directional convergence given by Theorem 22 is in fact uni-
form in the direction in Lemma 27.
e We easily deduce the shape result from this lemma in Lemma 28.

To transpose this shape result for the classical hitting time ¢ (Lemma 29), we just
need to control the discrepancy between o and ¢; this was done in Lemma 19.
Finally, the shape result for the coupled zone is proved in Lemma 30 by introducing
a coupling time ¢ and by bounding the difference between this time ¢’ and the
essential hitting time o .

Note that we did not succeed in proving immediately that p could be extended
to a norm, but only to an asymmetric norm; that is, the property u(Ax) = |A|u(x)
a priori only holds for nonnegative A. We will finally deduce from the asymptotic
shape theorems that u is actually a norm.

LEMMA 25. The functional u can be extended to an asymmetric norm on R¢.

PROOF. Homogeneity in natural integers. By extracting subsequences, we
prove the homogeneity in natural integers,

Vk e N, Vx e 74 wkx) = kpu(x).

Subadﬂitivity. One has o (nx +ny) < agnx) 4+ o(ny)o Opx + r(nx, ny).
Since P is invariant under the action of 6,,,, we get, with Corollary 16,

Eo (nx + ny) < Eo (nx) + Eo (ny) + Er(nx, ny) < Eo (nx) + Ea(ny) + M;.

We deduce that Vx € Z¢,Vy € Z%, u(x + y) < pu(x) + u(y).
Extension to R?. The Fekete lemma ensures that

Eo (nx) + M,

n(x) + My = inf
n>1 n

so w(x) < Eo(x). Corollary 21 gives some L > 0 such that Eo (x) < L||x|| for
any x. Finally, u(x) < L||x|| for every x € Z4, which leads to lw(x) — u(y)| <
L||x — y||. We can then extend i to Q4 par homogeneity, then to R4 by uniform
continuity.

Positivity. Let M be given by Proposition 5. With (8), we obtain

@<0(nx) < %) < F(ﬂnx) < %) <P(Euxi/m € Bujxi2)

/ P.(z" = +00, &)1 om) € Bujxi/2)

< dv(h
= P,.(t0 = +00) .
_A ( n||x||)
< —exp|—B .

Jo 2M
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With the Borel-Cantelli lemma, we deduce that p(x) > ﬁ lx||. This inequality,

once established for every x € Z¢, can be extended by homogeneity and continuity
to R?. So w is an asymmetric norm. [

In the following, we set C = 2C3;, where Cs; is as given in Corollary 20.

LEMMA 26. Forevery ¢ > 0, P-a.s., there exists R > 0 such that

vx,yeZ?  (lIxl = Rand |x — yl| < lx]) = (lo (x) — 0 ()| < Cellx]]).

PROOF. Form € N and ¢ > 0, we define the event
Ap(e)={3x,y¢€ VAR x|l =m, ||lx —y|| <em and |o(x) — o (y)| > Cem}.
Noting that
Ap(e) C U {o(y —x)0b¢ +r(x,y—x) > Cem},

(I—e)m=|x||<(1+&)m
lx=yll<em

we see, with Corollaries 20 and 16, that

Py (Am(e)) < Z @A(G(Z)oéx+r(x,z)>C8m)
(I—e)ym=|x|=(1+e)m
lzll<em

< > P, ;(0(z) > 2Cem/3)
(1—e)m=|x[|<(1+e)m
lzll<em

+ Py (r(x,y — x) > Cem/3)

< (14 2em)? (1 +2(1 + &)m)“ Az exp(— Bapy/Cem /3)

+ A7 exp(—Ba7,/C'em/3)

by Corollary 20 and Theorem 2. Integrating then with respect to A, we conclude
the proof with the Borel-Cantelli lemma. [

LEMMA 27, P-a.s. limj - o0 12510 = 0.

PROOF. Assume by contradiction that there exists ¢ > 0 such that the event
“lo(x) — u(x)| > €||x|| for infinitely many values of x”” has a positive probability.
We focus on this event. There exists a random sequence (y,),>0 of sites in 74 such
that ||y, |l1 = 400 and, for every n, |6 (y,) — i (yn)| = €|lynll1. By extracting a
subsequence, we can assume that

Yn
|yl
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Fix &1 > 0 (to be chosen later); we can find z’ € Erg(v) such that
i

12"

-z <eé1.

1

For each y,, we can find an integer point on Rz’ close to y,. Let &, be the integer
part of Wﬁ '}|||‘11 . We have

lynll1 lynll1
IVn = hnZ'll1 < || yn — =7 = = ha| 112111
2" e T
/
Yn < /
< llynlh - + Izl
Iyalle 2110

Take N > 0 large enough to have (n > N) = (IIHyy’# — z|l1 < ¢&1). By our choice

5281>
1

and, consequently, ||y, — h,.2'[l1 < 2¢e1llynll1 + 112’11 Thus, increasing N if nec-
essary, one has, for every n > N, |lyn — hyn.2' |1 < 3e1llynll1. But if N is large
enough, Lemma 26 ensures that

for 7/, one has

Yn 4

yalle N2l

w20

Vn>=N  |o(y) =0 h.2) <3Cetllyal.
Finally, for every large n, we have

lo(yn) — u(yn)l
<lo(n) — o (hp.2) 4+ lo(hp.2') — p(hy )| + | (hn.2) — w(yn)l

o (hp.7)
= 3Ceillynlli + hn| === = (@) + LUz = yull
n
1yallt o (.2))
<3Cetllynlli + (1 +e1) lé’,’nl = = (&) +3er Lyl
n

But the a.s. convergence in the 7z’ direction ensures that for every large n,

‘ o (hy.2')

<é.
hn

— u(z)

Now if e > 0 is small, we obtain, for every large n, |0 (y,) — L(Vn)| < €llynll1;
this brings contradiction and the proof is complete. [

We can now prove the shape result for the “fattened” version G of G;={x €
Z4: o (x) <t}; we recall that A w 1s the unit ball for u.
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LEMMA 28. For every ¢ > 0, P-a.s., for every large t,

G,
(I-e)A, C - C(I+e)A,.

PROOF. Let us prove by contradiction that if ¢ is large enough, % c 1+
€)A,. Thus assume that there exists an increasing sequence(?,),>1, with #, —

400 and G"‘ Z (1 +€)Ay; so there exists x, with o(x,) <1, and u(x,)/t, >
1+ e¢&.So M(xn) /o (xp) > 1 4 ¢, which contradicts the uniform convergence of
Lemma 27. Since u(x,) > t,(1 + ¢), the sequence (||x,||),>1 goes to infinity.

For the inverse inclusion, we still assume by contradiction that there exists an

increasing sequence (t,;),>1, with 1, — +o00 and (1 —¢)A, gZ ; this means we
n

can find x;, with u(x,) < (1 — &)t,, but o(x,) > t,. Since ¢, goes to +oo, the

sequence (x,),>1 is not bounded and satisfies g (;”) < 1 — &; this contradicts once

again the uniform convergence of Lemma 27 and the proof is complete. [J

Then we immediately recover the uniform convergence result for the hitting
time 7 via Lemma 19, and, by an argument similar to the one used in Lemma 28, the
asymptotic shape result for the “fattened” version H; of H; = {x € 74t (x) <t}

LEMMA 29. P-a.s., lim | 400 % =0, and for every ¢ > 0, P-a.s., for

every larget, (1 —&)A, C % C+e)A,.

It only remains now to prove the shape result for the coupled zone K /, which is
the “fattened” version of K, = {x € 74 Vs > tsso(x) = Sszd (x)}.

LEMMA 30. For every ¢ > 0, P-a.s., for every large t, (1 — e)A, C K’/?G’.

PROOF. Since f — K/ N G, is nondecreasing, we use the same scheme of
proof as for Lemma 28. We set, for x € 74,

f'(x)=inf{t >0:x € K, N G,}.
=0l _ o

flx1l
By definition, ¢'(x) > o (x); thus it is sufficient to prove the existence of con-

stants A’, B’ > 0 such that

(35) VxeZd ¥s>0  P('(x)—o(x)>s)<Ae 5",

It is then sufficient to prove that P-a.s., limjx - +o0

o First note that for every t > 0, K5 (x)4+: Dx + K; 0 éx.

Indeed, let z € x + K; o éx. First consider the case z ¢ ngx) it

.. d
tivity (1), SS(X)H C éaz(x)ﬂ, we have 7 ¢ SS(X)H, and so that z € Ko (x)+4+-

Since, by addi-
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Consider now the case z € écz(dx) 4+ Since, by additivity, gcz(dx) - ";‘Ozd o0y, we
have y=z —x € thd o éx. But since y € K; o éx, the definition of K; implies
that Eto(y) o éx = gzzd (y) o éx = 1. Since x € Sg(x) and y € fto o éx, we obtain
z=x+ye€ ES(X)H, and s0 z € K5 (x)4+-

e Fix s > 0. The previous point says that

(ﬂ Kg(x)+,> ) (x + ﬂ(Kt o éx)) and so K(/,(XH_S D (x+ (Ko éx)).
1>s

1>s
Since PP is invariant under éx, we get
P(t'(x) > 0 (x) +5) =P(x ¢ K} (115 N Go(x)ts)
=P(x ¢ K (oy4s) SP(x & (x + K 06y))
<P(0¢K.ob,)=P0¢K)).
We conclude with (11). [

Let us finally prove that u is a norm. Considering Lemma 25, we only have to
prove that z(x) = (—x) holds for each x € Z¢. This would be immediate if we
had supposed that the law v of the random environment was invariant under the
central symmetry. But, in general, we have to use a time reversal argument and the
shape theorem for the coupled zone. We first give a characterization of p that will
allow us to use the symmetries of the model.

LEMMA 31. Let us define P by P(A) = JaPi(A)dv(X). Then, for each
xez4
nx) = sup[a >0; lim If”(nx €&nja) > O}.

n—-+00

PROOF. Define g(x) = sup{a > 0;lim,_, , If”(nx € &17a) > 0}. Let a >
wu(x). By the asymptotic shape theorem, lim,_, 1 oo Py (nx € &,/,) =0 v almost
surely holds, so by dominated convergence, lim,_, I@(nx € &n/a) = 0. This
gives g(x) < u(x). Now take some a < u(x). We will show that

im P (nx €&n/q) = Py, (1=+00)>,  vaas,
n——+00

which will give

lim Box € 6y) > [ lim Py(ux €6ya) dv = Py, (r = +00)°

n——+00 A n—+o00

min

by Fatou’s lemma, whence g(x) > a, which will lead to g(x) = u(x). Obvi-
ously, lim, , . . Py(nx € §,/4) > lim, , , (P (nx € &,/4, 79 = +00). However,
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the convergence theorem for the coupled zone implies that

: 74 0
nLlrJ{lOOIP’A(nx € Sn/a, nx ¢ &y, T =+00) =0, v-a.s.,

hence, by a classical time-reversal argument and using the FKG inequality,

lim Py(nx €€yy) = lim Py(nx €41, 10 = +00)
n——+00 n——+00

> lim P, (nx € &7, (10 = +00)
n—+oo

> lim Px(f”ZE)Px(TO=+O®)
a

n——+0o
2
= Phpin (T = +00)7,

which ends the proof of the lemma. [J

We now have a handsome expression to prove the symmetry property. Actually,
for every x € Z¢,t > 0, 1 € A, a time-reversal argument proves that P, (x € &) =
P, (—x € &), hence integrating with respect to v and using the invariance of v
under the translation by x,

P(x &) =P(—x €&),

which, with Lemma 31, gives the symmetry of .

6. Uniform controls of the growth. The aim of this section is to establish
some of the uniform controls announced in Proposition 5. To control the growth
of the contact process, we need some lemmas on the Richardson model.

6.1. Some lemmas on the Richardson model. We call Richardson model
with parameter A the time-homogeneous, P(Z%)-valued Markov process (1;):>0,
whose evolution is defined as follows: an empty site z becomes infected at rate
A z—z/|,=1 M (), the different evolutions being independent. Thanks to the
graphical construction, we can, for each A € A, build a coupling of the contact
process in environment A with the Richardson model with parameter Ay, in the
following way: at any time ¢, the space occupied by the contact process is con-
tained in the space occupied by the Richardson model.

The first lemma, whose proof is omitted, easily follows from the representation
of the Richardson model in terms of first passage percolation, together with a path
counting argument.

LEMMA 32. Forevery A > 0, there exist constants A, B > 0 such that

Vi>=0 POy € By) < Aexp(—Br).
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LEMMA 33. Forevery A > 0, there exist constants A, B, M > 0 such that

Vs >0 PEt = 0:n¢ & Byr+s) < Aexp(—Bs).

PROOF. The representation of the Richardson model in terms of first passage
percolation ensures the existence of A’, B, M’ > 0 such that for each r > 0,

(36) P(n & But) < A'exp(—B't).

For more details, one can refer to Kesten [25].
We first control the process in integer times thanks to the following estimate:

P(3k € N:ng & Byrits2) <P(Ek € Niniig/0my) € Bwk+s)2)
—+00

(37 <Y P(Mrs/om) € Burkss)2)
k=0

A’ ( B's )
< ——  exp| — .
1 —exp(—B) 2M’
Let us now control the fluctuations between integer times. Let M > M’,

P({3t > 0: 1 & Bmr+s} N {Vk € N, e C Bpgrieys2})

+00

<Y P@Erelk.k+11:n C Byriysy2 and nr & Bagis)-
k=0

(38)

Then, denoting by C’ > 0 a constant such that |B,| < C’(1 + )¢ and by A, B the
constants appearing in Lemma 32,

P@3r e[k, k+ 1]:nx C Byrits/2 and 0y & Baygr+s)
< PO C Byrk+sy2 and ng41 € Byk+s)
(39) < |Bmri+s2|P(m & Bi(m—m'y+s/2)
<C'(0+Mk+s/2)Aexp(—B(k(M — M') +5/2))
< AC'(1+5/2)% exp(—Bs/2)(1 + M'k)? exp(—B(k(M — M"))).

Inequality (39) comes from the Markov property and from the subadditivity of the
contact process. Since the series ((1+ M'k)? exp(—B(k(M — M')))>1 converges,
the desired result follows from (37) and (38). [

6.2. A restart procedure. We will use here a so-called restart argument, which
can be summed up as follows. We couple the system that we want to study (the
strong system) with a system that it stochastically dominates (the weak system),
and that is best understood. Then, we can transport some of the properties of the
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known system to the one we study; we let the processes simultaneously evolve
and, each time the weaker dies and the stronger remains alive, we restart a copy
of the weakest, coupled with the strongest again. Thus, either both processes die
before we found any weak process surviving. In this case, the control of large
finite lifetimes for the weak can be transposed to the strongest one, or the strongest
indefinitely survives and is finally coupled with a weak surviving one. In that case,
a bound for the time that is necessary to find a successful restart permits us to
transfer properties of the weak surviving process to the strong one.

This technique is already old; that can be found, for example, in Durrett [14],
Section 12, in a very pure form. It is also used by Durrett and Griffeath [17],
in order to transfer some controls for the one-dimensional contact process to the
contact process in a larger dimension. We will use it here by coupling the contact
process in inhomogeneous environment A € A with the contact process with a
constant birth rate Anpi,. Here, the assumption Apin > AC(Zd ) matters.

To this end, we will couple collections of Poisson point processes. Fix A € A.
We can build a probability measure P, on Q x € under which:

o the first coordinate w is a collection ((w,),cpd, (@;),c74¢) of Poisson point pro-
cesses, with respective intensities (A¢),cge for the bond-indexed processes, and
intensity 1 for the site-indexed processes.

e the second coordinate 7 is a collection ((1.),cpd, (177),c7¢) of Poisson point
processes, with intensity Ay, for the bond-indexed processes, and intensity 1
for the site-indexed processes.

e site-indexed Poisson point processed (death times) coincide; for every z € Z¢,
Nz = Wz

e bond-indexed Poisson point processed (birth-times candidates) are coupled; for
each e € B¢, the support of 7, is included in the support of w,.

We denote by £4 = £4(w, 1) the contact process in environment A starting from
A and built from the Poisson process collection w, and ¢ 2 = ¢ 8 (w, n) the contact
process in environment Apj, starting from B and built from the Poisson process
collection n. If B C A, then ]13’,\ almost surely, {,B C étA holds for each ¢ > 0. We
can note that the process (£€4, ¢5) is a Markov process.

We introduce the lifetimes of both processes:

T=inf{r >0:£°=2) and forxeZ? 1/ =inf{r>0:¢"=o).

Note that the law of z/ under P;, is the law of 7, under Py ; it actually does not
depend on the process starting point, because the model with constant birth rate is
translation invariant.

We recursively define a sequence of stopping times (ux)x>0 and a sequence of
points (zx)k=>0, letting ug =0, zo = 0 and for each k > 0:
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o ifuy <+ooand§, #@,thenuyi = rsz 0 6y,;

o if uy =+ooorif §, =d,then uyy; = +o0;

o if upy; < +o00 and &, , # 9, then zi4 is the smallest point of &,, ., for the
lexicographic order;

o ifupy) =+ooorif§,, =, then zx41 = +o0.

In other words, until ux < 400 and §,, # &, we take in &,, the smallest point
zx for the lexicographic order, and look at the lifetime of the weakest process,
namely, ¢, starting from z; at time u. The restart procedure can stop in two ways;
either we find k such that u; < 400 and §,, = &, which implies that the strongest
process (which contains the weak) precisely dies at time ug, or we find k such that
up < 400, &, # < and uy41 = +o0. In this case, we have found a point z; such
that the weak process which starts from z; at time uy survives; particularly, this
implies that the strongest also survives. We then define

K =inf{n > 0:u,4+1 = +o0}.

The name of the K variable is chosen by analogy with Section 3. The current
section being independent from the rest of the article, confusion should not be
possible. It comes from the preceding discussion that

(40) (=400 &=£) #2) andif 7<+oo  thenug=rt.
We regroup in the next lemma some estimates on the restart procedure that are
necessary to prove Proposition 5. Recall that p is introduced in (7).

LEMMA 34. We work in the preceding frame. Then:

o VA A VneNP,(K>n)<(1-p). B
e VB eB(D) Py(t =400, 06, € B) =P (t = +oo)P;_. (£° € B).
o there exist a, B > 0 such that for every A € A, E, (exp(aug)) < B.

PROOF. By the strong Markov property, we have
Pr(K = n+1) =Py (unt1 < +00)
=P, (u, < +00, €, # 2, rz/n 06y, <+00)
< Pa(up < +00)(1 = p)
=Pu(K =n)(1 - p).

Thus, K has a subexponential tail, which proves the first point. Particularly, K is
almost surely finite.
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Using (40) and the strong Markov property, we also have
P, (t =400, 06, € B)

=Py (Euy # 9, K 06y, € B)

+o00 _
= Z Z PX(K:"’S;),{ # 2,2k =2,(¥ 00y, €B)
k=0 zezd

400
=) Pu(uk < +00,&, # D, 2k =2, 7., 06y =+00,(K 06y, € B)
k=0ze74

—+00
=3 > Pi(up < +00.&) # D, 2% = 2Py, (T = +00,£% € B)
k=0zez4

+0oo
=P (1 =+00,E2€ B) Y Py (ux < +o0, &) # 2).
k=0

Taking for B the whole set of trajectories, we can identify

400
P(r = +00) =P (r = +00) =Py, (t = +00) D Py (ux < +00, £, # D),
k=0
which gives us the second point.

Since Amin > Ac(Zd ), the results by Durrett and Griffeath [17] for large A, ex-
tended to the whole supercritical regime by Bezuidenhout and Grimmett [4], en-
sure the existence of A, B > 0 such that

V>0 P in (t < T < +00) < Aexp(—B1),

which gives the existence of exponential moments for T1{; ;). Since P;, . (T =
400) > 0, we can choose (e.g., by dominated convergence) some « > 0 such that
B (@Xp(@T) Lz < 4o0)) =7 < 1.

For k > 0, we note

k—1

Sk = exp(a Z Tz/,- o Qui>ll{uk<+oo}.
i=0

We note that Sy is F,, -measurable. Let £k > 0. We have
exp(auk)Lik=k} < Sk.
Thus, applying the strong Markov property at time u;_; < +00, we get, for k > 1,
Ex[exp(aux)Lix=t] < Er(S1) = Er(St=1) By, (€Xp@T) Lz <+00))
< rEa(Sk-1).

Since r < 1, it comes that I, [exp(aug)] < = <+oo. O
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6.3. Proof of Proposition 5. Estimates (8) and (7) follow from a simple
stochastic comparison.

PROOF OF (7). It suffices to note that for every environment A € A and each
z €749, we have

P; (15 = +00) > Py, (t° =+00) =P, (1" = +00) > 0. O

PROOF OF (8). We use the stochastic domination of the contact process in
environment A by the Richardson model with parameter Apax. For this model,
(36) ensures a growth which is at least linear. [

Then, it remains to prove (9), (10) and (11) with a restart procedure.

PROOF OF (9). Leta, 8 > 0 as given in the third point of Lemma 34. Recall
that ux = 7 on {t < +00}. For each A € A and each ¢ > 0, we have

Pt <7 < +00) =Py (e < e, 1 < +00) = Py (e < *K, T < +00)
fﬁbk(eat <eauK) Se—at}]::)\ecqu S,Be_at,

which concludes the proof. [

PROOF OF (10). Since Apjn > AC(Zd ), Durrett and Griffeath’s results [17] for
large A, extended to the whole supercritical regime by Bezuidenhout and Grim-
mett [4], ensure the existence of constants A, B, ¢ > 0 such that, for each y € Z¢,
foreacht > 0,

41 Py (t( ) > M + t) < Aexp(—Bt1).

Besides, the domination by the Richardson model with parameter Apax and Lem-
ma 33 ensure the existence of A, B, M > 0 such that for every A € A, for each
s >0,

(42) Py (3t > 0,£0 ¢ Byris) < Aexp(—Bs).

By decreasing c or increasing M if necessary, we can also assume that §; < 1.
Now,

~ tc
= PA(”K z 6—M> -HPA(MK = 6—M 5,”( A Btc/3>

[l
+]P))»<T —+OO ug <— 6M 5“1{ C Btc/3at(y) z— +t>
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By Lemma 34, u g has exponential moments, so we can bound the first term; there
exist C, « > 0 such that for each A € A, foreach ¢t > 0,

P( - tc)<Cex ( act)
ug > — —— ).
MUK =6m ) =P\ Tom

The second term is controlled with the help of (42):

Ba (1 = or 60, @ Buops) <Pa(3r 2 0.60¢ Burscos) < Aexp( ~ B ).
It remains to bound the last term. We note here
'(y) =inf{r > 0:y e 0}
Recall that if T = 400, then §,, # & and zg is well defined. Since (y) is the
hitting time of y and Sto D g“,o for each ¢, we have, on {t = 400},
t(y) Sug +1'(y —zk) 0 T 0 Ouy

Ifug < 6tzf/1 < ’ ,thent(y) < +t’(y—zK)oTZK 00y, . If, moreover, f;‘o C Bi¢s3s
we have || y|| > ||y — zk || — %, which gives, with the second point in Lemma 34,

Iyl
Pk<r—+oo ug < — M EMK C Beyyz, 1(y) = —+f>

—Z t
SPA(T=+OO,I/(y—ZK)oTZK 00y, > ”')16.71(”4_5)

ly —zll

<Py(t = +00) sup By, (r -2z 2) < Aexp(—Bt/2),

zeZ74

where the last inequality follows from (41). The proof is complete. [

PROOF OF (11). Let s >0, and denote by n the integer part of 5. Let y > 0
be a fixed number, whose precise value will be specified later:

PO¢K)=P@Et>s:0¢K,)

+oo
< S P(Byi ¢ Ki)
k=n
+00
+ Y P(Byi C Ky, 31 € [k, k+ 1) such that 0 ¢ K;).
k=n
Let us first bound the second sum. Fix k > n. Assume that B, C K and con-
sider 7 € [k, k+1) such that 0 ¢ K. Then, there exists x € Z¢ such that 0 € & \Sto .
Since 0 € &* and t > k, there exists y € Z9 such that y € & and 0 € ", o 6. If

y € Byr C Ki, then &2(y) = ng" (y) = 1, which implies that y € £2. Now, since
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0e Sty_ % © Ok, we obtain 0 € é,o , which contradicts the assumption 0 ¢ Eto . Thus, we
necessarily have y ¢ By, so

Py (Byk C Ki, 3t € [k, k+ 1) tel que 0 ¢ K;)

1 -1 Zd\Byk
fmpk<9k <O€ U ‘i:s ))

s€[0,1]

< %PA(O e U s?d\BV") < 1%( U &¢ Byk)

s€(0,1] s€[0,1]

— Lp.HY ¢ B,
Joj
Since the Richardson model with parameter Apax Stochastically dominates the con-
tact process in environment A, we control the last term thanks to Lemma 32.
To control the first sum, it is sufficient to prove that there exist positive constants
A, B, y (and this will fix the precise value of y) such that for each A € A and each
t>0

(43) P, (B, ¢ K;, 7% = 400) < Aexp(—B1).

The number of integer points in a ball being polynomial with respect to the
radius, it is sufficient to prove that there exist some constants A, B, ¢’ > 0 such
that for each r > 0, for each x € Z¢,

@) xll=ct = BE#£ o x e \&") < Aexp(—Br).

To prove (44), we will use the following result, that has been obtained by Durrett
[16] as a consequence of the Bezuidenhout and Grimmett construction [4]. If £°
and &% are two independent contact processes with parameter A > A.(Z%), respec-
tively, starting from O and from x, then there exist positive constants A, B, « such
that for each 7 > 0 and each x € Z¢,

@5) lxllsat = PENE =2,§ #0,8)+#2) < Aexp(—B).

Let ¢ and M be the constants, respectively, given by equations (45) and (8). We
put ¢’ = «/2 and choose ¢ > 0 such that ¢/ +2eM < «.
Leta e Bgt/4 and b € B,, 4. We set

Oy s = é‘f o Qgt/z and ﬁb,s = {y S Zd b e {Yy o 9;(1_8/2)_5}.

Then, (otq,5)0<s<r/2(1—¢) and (Ba,s)o<s<t/2(1—¢) are independent contact processes
with constant birth rate Ani,, respectively, starting from a and from b. The pro-
cess (Ba,s)o<s<r/2(1—¢) 1S a contact process, but for which the time axis has been
reverted. In the same way, we set

E={yez':ixeg o).

Note that (ésx )o<s<t/2 has the same law as (& )o<s<//2. Note that:
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e assuming a € 52/2’ Aa,(1—e)t/2 N Bb,(1—e)t/2 # D and b € ;/27 then x € fzo,
e ifx e ’;‘,Zd, then étx/z is nonempty;
o if ’;‘to is nonempty, then 5,0/2 is nonempty.

Thus, letting

E’= {5;0/2 #2}\{Ja e 32[/4 N 52,/2 NOg, (1-e)t)2 F o)

and
E¥ =&, # D)\ {3b € By, s NE, 1 Bo.1-enp2 # 2,
we get
~ d ~ A N
o P&l #£ 0, x X N\E) <P, # 0.5, # 0.8, NE5, = 0)

<Pu(E®) + Po(EY) + 5,

where S =3 0ep0 , besy  Fr@a-ens2 # D, Bp.a-en2 # 9. daa-ep/2 N
Bb,(1—e)t/2 = D).

For every couple (a, b) that appears in S, we have |ja — b|| < |lal| + ||b — x| +
x| <at/4+ at/4 + at /2 = ot, which allows us to use (45), and gives the exis-
tence of constants A, B, C’ > 0 such that

S<C'(14at/4)* Aexp(—B(1 —&)t/2).

By another time reversal, we see that IF”A (E )= ]f”x, 5 (E%); then it suffices to control
P, (EY) uniformly in A. Let

Ei={&),# 2\ {FaeZ a k) aua-eup# 2}

We have ]f”k(EO) < ]f”A(El) + ]f”k (égt/z Z B21/4). By the choice we made for ¢ and
inequality (8), we have

VieA V=0  Py(E),, ¢ B(0.at/4)) < Aexp(—Bet/2).
Thanks to the restart Lemma 34, we can see that
Py (ug > e1/2) < Bexp(—aet/2).

Suppose then that ux < et/2 and 5,0/2 # & 7k is thus well defined and we have
rZ/K 06y, = —+00. Then, there exists an infinite infection branch in the coupled pro-
cess in environment A, starting from EL?K . This branch contains at least one point
ac S(Ol —e)t)2 By construction a € 5(01_8)[/2 and o (1—¢)r/2 # &, which completes
the proof of (43). U
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REMARK. On our way, we proved that for each A € A,
s s0 P 0~ 2
lim B¢ £ 0.6 #0600k =0)=

which is the essential ingredient in the proof of the complete convergence Theo-
rem 4. One can refer to the article by Durrett [16] for the details in the case of the
classical contact process.

APPENDIX: PROOF OF ALMOST SUBADDITIVE ERGODIC
THEOREMS 23 AND 24

PROOF OF THEOREM 23. Leta, = C,l, “and u, = E[ f,]; forevery n, p € N,

we have E[r, 1 < (EI (r+ yapl/ie < Cl/a = ap, hence,

Upyp SUn +Up +E[gp] +E[rn,p] Suptup +E[gp] +ap.

The general term of a convergent series tends to 0, so C, = o(p*) or a, = o(p).

Since %E"” tends to 0, the convergence of u, /n is classical (see Derriennic [11],
e.g.). The limit p is finite because u, > cn holds for each n.

We are going to show that f =lim,_, | ];” stochastically dominates a random

variable whose mean value is not less than .
For every random variable X, let us denote by £(X) its law under IP. We denote
by K the set of probability measures on Rﬂ\f whose marginals m satisfy

Vi>0  m(]t, +ool) <P(f1 + g1 >1/2) + C1(2/1)".
Define, for k > 1,
Ak = fet1 — fk

and denote by A the process A = (Ag)k>1. For k € N, subadditivity ensures that
Ax < (f1 + g1) 0 6k + r.1, hence, for each 1 > 0,

P(Ar > 1) §P((f1 + g1) o bk >l‘/2)+[P’(r,j:1 >1/2)
<P(fi +g1>1/2)+C1(2/)".

This ensures that A € K.
We denote by s the shift operator s((uk)k>o) (uk)k>1, and consider the se-
quence of probability measures on RY

(Ln)nzl = < ZL(S o A)) .
n>1

j=1
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Since K is convex and invariant by s, the sequence (L,),>1 is K-valued. Let
n,k>1.

fnk(x)dLn(x) ZE T (s) o A))

j 1

- Z E(fetj+r1 = fir)

] 1
= ;(E[fn-l—k—l-l] — Elfi1D-

Let My = sup,~; }1|E[fn+k+1] — E[ fx+1]|. The convergence of u, /n implies that
My is finite. Similarly, the subadditivity gives

/n,j(x)dLn(x) Z]E J(s/ o A))

— ZE (fetjt1 — fra)T]

_/ 1
<ELf;"1+Elgi] +ai.

Thus, we have

/ 17 (0) | d L (x) < / 27 (1) d Ly (x) + ‘ / e (x) d Ly (x)

< My +2E[f{"]+ 2E[g{ ] + 2a;.

Let K’ be the family of laws m on RN such that for each k, [ mkldm < 2My +
E[ f1+ 1+ E[gf] + a;. K’ is compact for the topology of the convergence in law
and the sequence (L,),>1 is K'-valued. So, let y be a limit point of (L,),>; and
(nx)k>1 a sequence of indexes such that L,, = y. By construction, y is invariant
under the shift s.

Now, the sequence of the laws of the first coordinate 7r1(x) under (L, )k>0
weakly converges to the law of the first coordinate under y. Also, by definition
of K, the positive parts of these elements form a uniformly integrable collection,
so [t dy =lim [ 7r;" dL,,. However, the Fatou lemma tells us that [ 7, dy <
limy_, , ., [ 7, dLpy,, hence, finally

/deZ lim [ mdL, =pn.
k——+00
Let ¥ = (Yx)k>1 be a process whose law is y. Since y is invariant under the
shift s, the Birkhoff theorem tells us that the sequence (% Y k1 Yi)n=1 a.s. con-
verges to a random variable Y, which then satisfies E(Ys) = [ 71 dy > u.
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It remains to see that the law of Y, is stochastically dominated by the law of
f=1lm, 17 We will show that for each a € R, P(Yoo > a) < P(f > a).
By left-continuity, it is sufficient to prove the inequality in a dense subset of R.
Thus, we can assume that a is not an atom for the law of f:

Yi4+...4+Y, Yi4+...+Y

n— 400 n k=1 n>k n
Hence,
P(Yso > a)
— T
— Tim ]P’y(infu>a)
k—+o00 n>k n
R n oo TT;
= Tim ianPy< inf $>a)
k—+oon>k k<i<n 1
ng
_ T TTi .
< Tim inf lim — IP’( inf gos"oA>a>.
k—>+oon>k g 5 { oo NK = k<i<n 1
Let ¢ > 0. We have, for fixed &, n, j,
n .o ] .
]P’( inf gowww)
k<i<n 1
:P( inf S =i >a)
k<i<n 1
<IP< inf (fi+8i)objt1+rjt1i >a)
—  \k<i<n I
51[”( inf w >a —s) +]P’<sup rjfl’l >8>.
k<i<n 1 i~k
On one hand, we have
p( sup i+l <P i\ ey Lprot e
sup ——>¢ | < Z — ) >¢&" ) <¢ ZE [(rj_H’i) ]
i~k 1 . i —~ |
= i>k i>k
C.
— i
<e l—a

i>k
We can note that this term does not depend on j nor on n. On the other hand,

i+ 8ol . i+ &i
IF’( inf M>a—s>:[@( inf fj>a—s>,

k<i<n i k<i<n |
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which does not depend on j. Then, for each ¢ > 0, we have for every n, k, with
n>k,
1 K . .
lim —ZP< inf uos10A>a)
K—+oo NK = k<i<n 1

*‘"Z —HP’( M>a—8);

z>k k<l<n 1
next
1 'K T oo 4T .
inf lim — ZIP( inf u os/ oA >a>
n>k g 100 MK - k<i<n 1
_“Z +1anP’( inf fi—?_gi>a—8>.
l>k n>k k<i<n 1
Finally,
_ 4 o _ C;
P(Ys > a) < lim ianP’( inf m >a—8) + Iim ¢%) =
k—+oon>k \k<i<n 1 k—+o00 Py ¢

< lim P(lnfﬁ+gl a—s)

k—+00 i>k 1

iP( lim fiJ.rgi >a—8>=IP’( lim £>a—8>,
i—400 l i—+oo 1

considering that g; /i almost surely converges to 0. Letting ¢ tend to zero, we
obtain

]P’(Yoo>a)§IP>< lim £2a>:]}”(i>a).

i—+4oo 1

It remains to see that i is invariant under the 6,,’s. Fix n > 1. We have

SCI R [CONER

p=1 p p=1 p p=1

+
Particularly, r’;” almost surely converges to 0 when p tends to infinity. Since

Jotp < fa+ fp o b+ gpoby+r,,, dividing by n + p and letting p tend to
+00, it comes that

igioen a.s.

Since P is invariant under 6,,, we classically conclude that f is invariant under 6,,.
n O
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REMARK. In the present article, we made no use of the possibility to take a
nonzero g,. In the case where the (g,) are not zero, but the r,, ,’s are, we obtain a
result which sounds a bit like Theorem 3 in Schiirger [37]. Like Schiirger [36], we
use the idea of a coupling with a stationarized process. This idea is due to Durrett
[13] and has been popularized by Liggett [30]. However, here there is a refinement,
because we directly establish a stochastic comparison with the random variable Y,
whereas previous papers establish a stochastic comparisons with the whole process
(Y3)n>1, that admits Y as its infimum limit.

In the majority of almost subadditive ergodic theorems, almost sure conver-
gence requires strong conditions on the lack of subadditivity (stationarity, e.g.).
Here we obtain an almost sure behavior by only considering a condition on the
moments (of order greater than 1) of the lack of subadditivity. Besides, we know
that bounding the first moment of the lack of subadditivity is not sufficient to get an
almost sure behavior (see the remark by Derriennic [11] and the counter-example
by Derriennic and Hachem [12]).

PROOF OF THEOREM 24. It remains to prove that Eim,— 400 %) < u.
We fix k > 1. By subadditivity, we have foreachn >0 andevery 0 <r <k —1,
Juk+r = fuk + (fr + &) 0 Opi + rtj;c,r
n—1 ) n—1 ) +
< (Z fro (Qk)’> + (fnk - > fio (9k)’)
i=0 i=0
+ (fr +&r) 0 Our + r;;(,r-

Since P is invariant under 6, the Birkhoff theorem gives the L' and almost-sure
convergence

lnil fio 6! E(filZe)

— k k ’
where 7y, is the o -algebra of the 6x-invariant events. Let us now control the resid-
ual terms. Since the finite collection (f; + gr)o<r<k—1 is equi-integrable and P is
invariant under 6, the collection (supy, <1 (fr +&r) 0 67 )n>1 is equi-integrable,

which ensures the almost sure and L' convergence

1 \
lim — sup (fr+g)o )" =0.

+
We have Z:;xl) IE[(F"%)“] < Z;{;"l’ S—O’[ < +00, which implies, as previously, that
+

rnk,r

/n almost surely converges to 0. Finally,

. . E[RIT
Vre{0,... . k—1) fm ke Bk
n—+oo nk +r k

’
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hence, E[lim,,_, ;o0 %] < %. We complete the proof by letting k tend to +oo.
Il

REMARK. When there is no lack of subadditivity, the assumptions of Theo-
rem 24 obviously hold; thus we obtain a subadditive ergodic theorem which sounds
very much like Liggett’s [30]. However, these theorems are not strictly compara-
ble, in the following sense that no one implies the other one.

Indeed, extending a remark made by Kingman in his Saint-Flour’s course [28],
page 178, we can note that the assumption of Kingman’s original article [the sta-
tionarity of the doubly indexed process (X :)s>0:>0] can be weakened in two
different ways:

o Either assuming that for each k, the process (X —1)k,rk)r>1 18 stationary; this
assumption will be used by Liggett [30].

e Or assuming that the law of X, ,+, does not depend on p. That assumption,
suggested by Hammersley and Welsh, is the one that we use here, also used by
Schiirger in [37].

Note, however, that the special assumption of stationarity is used in Liggett’s proof
[30] only in the so-called easy part, that is, the bound for the supremum limit.

Kingman thought that the first set of assumptions surpassed the second one,
in view of possible applications. More than 30 years later, the progresses of sub-
additive ergodic theorems, particularly about bounding the infimum limit, lead to
moderate this affirmation.
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