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A CENTRAL LIMIT THEOREM FOR STOCHASTIC RECURSIVE
SEQUENCES OF TOPICAL OPERATORS

BY GLENN MERLET

CEREMADE, Université Paris–Dauphine

Let (An)n∈N be a stationary sequence of topical (i.e., isotone and addi-
tively homogeneous) operators. Let x(n, x0) be defined by x(0, x0) = x0 and
x(n + 1, x0) = Anx(n, x0). It can model a wide range of systems including
train or queuing networks, job-shop, timed digital circuits or parallel process-
ing systems.

When (An)n∈N has the memory loss property, (x(n, x0))n∈N satisfies a
strong law of large numbers. We show that it also satisfies the CLT if (An)n∈N

fulfills the same mixing and integrability assumptions that ensure the CLT for
a sum of real variables in the results by P. Billingsley and I. Ibragimov.

1. Model. An operator A : Rd → R
d is called additively homogeneous if it

satisfies A(x + a1) = Ax + a1 for all x ∈ R
d and a ∈ R, where 1 is the vector

(1, . . . ,1)′ in R
d . It is called isotone if x ≤ y implies Ax ≤ Ay, in which the order

is the product order on R
d . It is called topical if it is isotone and homogeneous.

The set of topical operators on R
d will be denoted by Topd .

We recall that the action of matrices with entries in the semiring Rmax = (R ∪
{−∞},max,+) on R

d
max is defined by (Ax)i = maxj (Aij + xj ). When matrix A

has no −∞-row, this formula defines a topical operator, also denoted by A. Such
operators are called max-plus operators and operators composition corresponds to
the product of matrices in the max-plus semiring.

Let (An)n∈N be a sequence of random topical operators on R
d . A stochastic

recursive sequence (SRS) driven by stochastic recursive sequence is a sequence
(Xn)n∈N satisfying equation Xn+1 = AnXn. To study such sequences, we define
(x(n, x0))n∈N by

x(0, x0) = x0,
(1)

x(n + 1, x0) = Anx(n, x0).

This class of system can model a wide range of situations. A review of
applications can be found in the last section of [5]. When the x(n, ·)’s are
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FIG. 1. A simple production system.

daters, the isotonicity assumption expresses the causality principle, whereas the
additive homogeneity expresses the possibility to change the origin of time.
(See Gunawardena and Keane [18], where topical functions were introduced.)
The max-plus case has, for instance, been applied to model queuing networks
(Mairesse [26], Heidergott [20]), train networks (Heidergott and De Vries [21]
and Braker [9]) or job-shop (Cohen, Dubois, Quadrat and Viot [11]). It also com-
putes the daters of some task resources models (Gaubert and Mairesse [16])
and timed Petri nets including events graphs (Baccelli [1]) and 1-bounded
Petri nets (Gaubert and Mairesse [15]). The role of the max operation is
to synchronize different events. For developments on the max-plus modeling
power, see Baccelli, Cohen, Olsder and Quadrat [2] or Heidergott, Olsder and
van der Woude [22].

To clarify things, let us introduce a simple example.

EXAMPLE 1.1. Our process assembles two parts. The nth time it is done, it
takes time a3(n). The parts are prepared separately, which respectively takes times
a1(n) and a2(n). Then, they are sent from the preparation places to the assemblage
place, which takes times t1(n) and t2(n) respectively. Once the assembly place has
finished an operation, it asks for new parts. At that time, if a preparation place
has a ready part, it sends it and starts preparing another one. Otherwise, it finishes
the one it is processing, sends it, and immediately starts preparing another one.
This is summed up in Figure 1. We denote by (Xn)1 and (Xn)2 the starting date
of preparation of the nth part of each type and by (Xn)3 the starting date of the
(n − 1)th assembly.

Sequence (Xn)n∈N is ruled by equations

(Xn+1)1 = max
(
(Xn)1 + a1(n), (Xn)3

)
,

(Xn)2 = (
(Xn)2 + a1(n), (Xn)3

)



CLT FOR SRS OF TOPICAL OPERATORS 1349

and

(Xn+1)3 = a3(n) + max
(
(Xn)1 + t1(n), (Xn)2 + t2(n)

)
= max

(
(Xn)1 + t1(n) + a3(n − 1) + a1(n),

(Xn)2 + t2(n) + a3(n − 1) + a2(n),

(Xn)3 + t1(n) ∨ t2(n) + a3(n − 1)
)
,

in which we recognize equation (1), with An defined by the action in the max-plus
algebra of

A(n) =

 a1(n) −∞ a3(n)

−∞ a2(n) a3(n)

a1(n) + t1(n) a2(n) + t2(n) t1(n) ∨ t2(n) + a3(n − 1)


 .

We assume that the sequence (A(n))n∈N is stationary and ergodic.

We will focus on the asymptotic behavior of (x(n, ·))n∈N. It follows from The-
orem 2.1, due to Vincent, that ( 1

n

∨
i xi(n,X0))n∈N converges to a limit γ .

In many cases, if the modeled system is closed, then every sequence of coordi-
nate (xi(n,X0))n∈N also tends to γ , by Theorem 2.2. The so-called cycle time γ

is the inverse of the network’s throughput or the inverse of the production system’s
output, as in Example 1.1. Therefore, there have been many attempts to estimate it
(Cohen [12], Gaujal and Jean-Marie [17], Resig et al. [30]). Even when the An’s
are i.i.d. and take only finitely many values, approximating γ is NP-hard (Blondel,
Gaubert and Tsitsiklis [7]). Hong and his coauthors have obtained [3, 4, 14] an-
alyticity of γ as a function of the law of A1. They did so under the so-called
memory loss property (MLP) introduced by Mairesse to ensure some stability of
(x(n, ·))n∈N (see [26]).

We prove another type of stability under the same assumptions. If (An)n∈N has
the MLP, then (x(n, ·))n∈N actually satisfies a central limit theorem (CLT) under
the same mixing and integrability hypotheses as the real variables in the CLT for
sum of stationary variables by Billingsley [6] and Ibragimov [24].

As far as we know, two CLTs have already been proved for this type of se-
quences: one in [30] and the other in [28]. The most obvious improvement is that
both assumed that the An’s are i.i.d. Moreover, in [30], the hypothesis is difficult
to check and the An’s are max-plus operators defined by almost surely bounded
matrices. In [28] the main hypothesis is also the MLP, but integrability hypotheses
were stronger, except for a subclass of topical operators.

The remainder of this article is divided into two sections. In Section 2 we de-
fine the memory loss property, present some law of large number type results
and state our central limit theorems. In Section 3 we prove the theorems. First,
we state the CLT for subadditive processes by Ishitani [25], then we check that
(
∨

i xi(n,0))n∈N satisfies each of its hypotheses. To this aim, we use Mairesse’s
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construction of the stationary version of the SRS, as well as different results from
ergodic theory, depending on the hypothesis. We eventually deduce the results on
(x(n, ·))n∈N from those on (

∨
i xi(n,0))n∈N.

2. Presentation.

2.1. Memory loss property. Dealing with homogeneous operators, it is natural
to introduce the quotient space of R

d by the equivalence relation ∼ defined by
x ∼ y if x−y is proportional to 1 = (1, . . . ,1)′. This space will be called projective
space and denoted by PR

d
max. Moreover, x will be the equivalence class of x.

The function x 	→ (xi − xj )i<j embeds PR
d
max onto a subspace of R

(d(d−1))/2

with dimension d −1. The infinity norm of R
(d(d−1))/2 therefore induces a distance

on PR
d
max which will be denoted by δ. A direct computation shows that δ(x, y) =∨

i (xi −yi)+∨
i (yi −xi). By a slight abuse, we will also write δ(x, y) for δ(x, y).

The projective norm of x will be |x|P = δ(x,0) = ∨
i xi − ∧

i xi .
Let us recall two well-known facts about topical operators. First, a topical

operator is nonexpanding with respect to the infinity norm (Crandall and Tar-
tar [13]). Second, the operator it defines from PR

d
max to itself is nonexpanding

for δ (Mairesse [26]).
The key property for our proofs is below:

DEFINITION 2.1 (MLP).

1. A topical operator A is said to have rank 1 if it defines a constant operator on
PR

d
max :Ax does not depend on x ∈ R

d .
2. A sequence (An)n∈N of Topd -valued random variables is said to have the mem-

ory loss property (MLP) if there exists an N such that AN · · ·A1 has rank 1
with positive probability.

This notion has been introduced by Mairesse [26], with the An’s as max-plus
operators. In this case, the denomination rank 1 is natural.

We have proved in [27] that this property is generic for i.i.d. max-plus opera-
tors: it is fulfilled when the support of the law of A1 is not included in the union
of finitely many affine hyperplanes, and in the discrete case the atoms of the prob-
ability measure are linearly related.

This result applied to Example 1.1 states that the sequence (An)n∈N has the
MLP provided that the support of (a1(2), a2(2), t1(2), t2(2), a3(1)) is not included
in a union of finitely many affine hyperplanes of R

5. This is not completely
straightforward because the matrix A(1) is defined by only 5 variables, but the
detailed result (see Remark 5.1 in [27]) shows that the linear forms on R

3×3 that
define the hyperplanes are not canceled by A(1), because of the −∞ entries.

In [28], we have proved that if the An’s are i.i.d. and the sequence has the MLP,
then (x(n,X0))n∈N satisfies the same limit theorem as a sum of i.i.d. real variables.



CLT FOR SRS OF TOPICAL OPERATORS 1351

Here we prove that it still satisfies the CLT if the An’s are mixing quick enough.
Quick enough means that the An’s satisfy the same integrability and mixing hy-
pothesis as the real variables in the CLT for the sum of stationary variables by
Billingsley [6] and Ibragimov [24]. Moreover, this proves the CLT under weaker
integrability condition than in [28].

2.2. Law of large numbers. There have been many papers about the law of
large numbers for products of random max-plus matrices since its introduction
by Cohen [12]. We can, for instance, cite Baccelli [1], the most recent paper by
Bousch and Mairesse [8] and Merlet [29] (in French). The latter article gives re-
sults for a larger class of topical operators, called uniformly topical.

Vincent [31] proved a law of large number for topical operators that will do in
our case. He noticed that (

∨
i xi(n,0))n∈N [resp. (

∧
i xi(n,0))n∈N] is subadditive

(resp. superadditive), which leads to the following:

THEOREM 2.1 (Vincent [31]). Let (An)n∈N be a stationary ergodic sequence
of topical operators and X0 an R

d -valued random variable. If A1.0 and X0 are
integrable, then there exist γ and γ in R such that

lim
n

∨
i xi(n,X0)

n
= γ a.s. and in L

1,

lim
n

∧
i xi(n,X0)

n
= γ a.s. and in L

1.

Baccelli and Mairesse give a condition to ensure γ = γ , hence, the convergence

of (x(n,X0)
n

)n∈N:

THEOREM 2.2 (Baccelli and Mairesse [5]). Let (An)n∈N be a stationary er-
godic sequence of topical operators and X0 an R

d -valued random variable such
that A1.0 and X0 are integrable. If there exists an N , such that AN · · ·A1 has a
bounded projective image with positive probability, then there exists γ in R such
that

lim
n

x(n,X0)

n
= γ 1 a.s. and in L

1.

That being the case, γ is called the Lyapunov exponent of the sequence. Since
matrices with rank 1 have a bounded projective image, any ergodic sequence
(An)n∈N with the MLP fulfills the hypotheses of Theorem 2.2.

2.3. Statements of the results. Let us state the definitions of mixing to be used
in the sequel.
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DEFINITION 2.2 (Mixing). We denote by Fn the σ -algebra generated by the
Ak’s for k ≤ n and by F n the one generated by the Ak’s for k ≥ n. We define αn

and φn by the following:

1. φ(F ,G) = sup{ |P(A∩B)−P(A)P(B)|
P(A)

|A ∈ F ,B ∈ G} and φn = supk φ(Fk,F
k+n).

2. α(F ,G) = sup{|P(A ∩ B) − P(A)P(B)||A ∈ F ,B ∈ G} and αn = supk α(Fk,

F k+n).

THEOREM 2.3. If (An)n∈N has the MLP and satisfies one of the following
hypotheses:

A. A10 ∈ L
2 and

∑∞
n=1

√
φn < +∞,

B. A10 ∈ L
2+δ and

∑∞
n=1 α

δ/(2+δ)
n < +∞ for some δ > 0,

C. A10 ∈ L
∞ and

∑∞
n=1 αn < +∞,

then
1√
n

(
x(n,X0) − nγ 1

) L→ N 1,

where N is a random variable with zero-mean Gaussian law (or Dirac measure

in 0) whose variance does not depend on X0, and
L→ denotes the convergence in

law.
Moreover, if X0 is integrable, then the variance σ of N is given by

lim
n→+∞

1√
n

E

∣∣∣∣∨
i

xi(n,X0) − nγ

∣∣∣∣ =
(

2σ 2

π

)1/2

and σ = 0 if and only if the sequence (x(n,X0) − nγ 1)n∈N is tight.

REMARK 2.1 (I.i.d. case). When the An are i.i.d., I gave more precise results
about σ in [28]. In that case, if ψ is a topical function from R

d to R, such that
supx |ψ(A1x) − ψ(x)| has a second moment or if A1 0 has a (6 + ε)th moment
and X0 has a (3 + ε)th moment, then:

• σ 2 = lim 1
n
E(ψ(x(n,X0)) − nγ )2,

• σ = 0 iff there is a θ ∈ Topd with rank 1 such that, for any A in the support SA

of A1 and any θ ′ with rank 1 in the semi-group TA generated by SA, we have

θAθ ′ = θθ ′ + γ 1.

I also proved that if there is such a θ , then every θ ∈ TA with rank 1 has this
property.

Moreover, when the An are defined by matrices in the max-plus algebra, σ is
positive provided that the support of A1 is not included in a union of finitely many
hyperplanes of R

d×d .

In this paper’s framework it is not possible to express σ 2 as a limit like in the
i.i.d. case, because the stationary random variables in Ishitani’s proof of Theo-
rem 3.1 are not necessarily L

2 (see Section 3.8).
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3. Proofs.

3.1. Results of Ishitani. We use the results of Ishitani [25] for mixing subad-
ditive processes, which we state now:

Let (
,F , T ,P) be an ergodic measurable dynamical system, and (F b
a )a,b∈N

a family of sub σ -algebras of F , such that F b+1
a+1 = T −1F b

a , and for any a ≤
c ≤ d ≤ b, F d

c ⊂ F b
a . The family (xst )s<t of random variables is adapted if, for

any s, t , xst is F t
s -measurable. It is subadditive (resp. submultiplicative) for any

s < t < u, xsu ≤ xst + xtu (resp. xsu ≤ xst · xtu).

THEOREM 3.1 (Ishitani [25] and Hall and Heyde [19]). Assume (xst )s<t is
adapted and subadditive. We set Fn = F n

0 and F n = F +∞
n , and define αn and φn

like in Definition 2.2. We set (p, θ) as follows:

(a) (p, θ) = (2,2) if
∑∞

n=1
√

φn < +∞.

(b) (p, θ) = (2 + δ, δ
2+δ

) if
∑∞

n=1 α
δ/(2+δ)
n < +∞ for some δ > 0.

(c) (p, θ) = (+∞,1) if
∑∞

n=1 αn < +∞.

If the following hypotheses are satisfied:

1. limt
E(x0t )−tγ√

t
= 0, where γ = inf 1

t
E(x0t ),

2. ∀t ∈ N, |x0t − x1t | ≤ � , where � ∈ L
p ,

3.
∑

n supt ‖x0t − x1t − E(x0t − x1t |F n
0 )‖θ < ∞,

then

1√
n
(x0n − nγ )

L→ N ,

where N is a zero-mean Gaussian law (or a Dirac measure in 0).
Moreover, the variance σ of N is given by

lim
n→+∞

1√
n

E|x0n − nγ | =
(

2σ 2

π

)1/2

.

In the sequel we take 
 = TopZ

d , T the shift and P such that the law of (An)n∈N

is the image of P by the projection on the positive coordinates. From now on,
An is the projection on the nth coordinate, and we denote A0 by A, so that An =
A ◦ T n.

For any s < t , we set xst = ∨
i (At−1 · · ·As0)i , and F t

s = σ(As, . . . ,At−1), so
that (xst )s,t∈N is adapted to (F b

a )a,b∈N. Vincent has noticed in [31] that (xst )s,t∈N

is subadditive. From now on we check that it satisfies hypotheses 1–3 with
(p, θ) = (2,2) under hypothesis A, (p, θ) = (2 + δ, δ

2+δ
) under hypothesis B and

(p, θ) = (+∞,1) under hypothesis C.
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Since x 	→ ∨
i (At−1 · · ·A1x)i is topical,

∧
i (A0)i1 ≤ A0 ≤ ∨

i (A0)i1 implies∧
i

(A0)i ≤ x0t − x1t ≤ ∨
i

(A0)i .(2)

Therefore, we can take � = |A0|∞ and hypothesis 2 of Theorem 3.1 is checked.
In the sequel we check the other two hypotheses.

3.2. Bound on E(x0t ) − tγ . It is well known and easy to check that, for any
A ∈ Topd and x ∈ R

d , the quantity
∨

i (Ax)i − ∨
i xi only depends on A and x. We

denote it by ξ(A,x). With this notation, we have

∨
i

xi(n,X0) − ∨
i

(X0)i =
n−1∑
k=0

ξ(Ak, x(k,X0)).(3)

It follows from the main theorem of [26]—which can be extended without dif-
ficulty from max-plus to topical operators—that there is a choice Y of X0, such
that x(n,Y ) = Y ◦ T n. In this case, we see that ξ(Ak, x(k,Y )) = ξ(A,Y ) ◦ T k ,
therefore,

∨
i xi(n,Y ) − ∨

i Yi is the partial sum of the stationary sequence
(ξ(A,Y ) ◦ T k)k∈N.

Let us assume for a while that Y is integrable. Then, so is ξ(A,Y ), because
A0 + ∧

i Yi1 ≤ AY ≤ A0 + ∨
i Yi1 implies

|ξ(A,Y )| ≤
∣∣∣∣∣
∨
i

(A0)i

∣∣∣∣∣ + |Y |P .(4)

Therefore, it follows from equation (3) with X0 = Y that

E

(∨
i

xi(n,Y )

)
− E

(∨
i

Yi

)
= nE(ξ(A,Y )).

Since topical functions are nonexpanding, we have |∨i xi(n,Y ) − x0n| ≤ ‖Y‖∞,
therefore, |E(x0n) − nE(ξ(A,Y ))| ≤ 2E(‖Y‖∞). In that case γ = E(ξ(A,Y )) and
hypothesis 1 of Theorem 3.1 follows from the integrability of Y .

The end of the subsection is devoted to the proof of the bounds that will give
this integrability.

First, we recall from Mairesse’s proof that there is almost surely an n ∈ N such
that rk(A−1 · · ·A−n) = 1 and that, for such an n, Y = A−1 · · ·A−n0. In the sequel
we denote by N the smallest such n.

Since (
∨

i xi(n,0))n∈N [resp. (
∧

i xi(n,0))n∈N] is subadditive (resp. superaddi-
tive), we have, for any n ∈ N and i ∈ [1, d],

n∑
k=1

∧
i

(A−k0)i ≤ (A−1 · · ·A−n0)i ≤
n∑

k=1

∨
i

(A−k0)i,
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therefore, |A−1 · · ·A−n0|P ≤ ∑n
k=1 |A−k0|P and

|Y |P ≤ ∑
n∈N

1{N=n}
n∑

k=1

|A−k0|P

= ∑
k∈N∗

1{N≥k}|A−k0|P

= ∑
k∈N∗

1{rk(A−1···A−k+1) �=1}|A−k0|P .

Finally, we get

‖Y‖1 ≤ ‖Y‖θ ≤ ∑
k

∥∥1{rk(Ak−1···A1) �=1}|A0|P
∥∥
θ .(5)

The finiteness of the right part of this inequality with 1 instead of θ would
be enough to check hypothesis 1, but the finiteness of this quantity also ensures
hypothesis 3, as will be shown in the next section. Finally, Sections 3.4 to 3.6 will
be devoted to the proof of the finiteness under each hypothesis of Theorem 2.3.

3.3. Bound on ‖x0t −x1t −E(x0t −x1t |F n
0 )‖θ . We denote by 
t

n the quantity
|x0t − x1t − E(x0t − x1t |A0, . . . ,An)|. If t ≤ n, then 
t

n = 0. From now on, we
assume t ≥ n.

First, it follows from equation (2) and the F n
0 -measurability of A0 that∧

i

(A0)i ≤ E(x0t − x1t |F n
0 ) ≤ ∨

i

(A0)i(6)

and 
t
n ≤ |(A0)|P .

Second, if rk(An−1 · · ·A1) = 1, then

x0t − x1t − (x0n − x1n) = ξ(At−1 · · ·An,An−1 · · ·A00)
(7)

− ξ(At−1 · · ·An,An−1 · · ·A10) = 0,

where ξ is the same function as in equation (3). Therefore, we have

1{rk(An−1···A1)=1}(x0t − x1t ) = 1{rk(An−1···A1)=1}(x0n − x1n)(8)

and

1{rk(An−1···A1)=1}E(x0t − x1t |F n
0 ) = E

(
1{rk(An−1···A1)=1}(x0t − x1t )|F n

0
)

= E
(
1{rk(An−1···A1)=1}(x0n − x1n)|F n

0
)

(9)

= 1{rk(An−1···A1)=1}(x0n − x1n).

Equations (8) and (9) together imply that 1{rk(An−1···A1)=1}
t
n = 0, and finally, we

have


t
n = 1{rk(An−1···A1) �=1}
t

n ≤ 1{rk(An−1···A1) �=1}|(A0)|P .(10)
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It follows from equations (5) and (10) that (xst ) satisfies hypotheses 1 and 3 of
Theorem 3.1, provided that

∞∑
n=1

∥∥1{rk(An−1···A1) �=1}|(A0)|P
∥∥
θ < ∞.(11)

The next three subsections will prove that relation (11) is satisfied, under each
of the hypotheses of Theorem 2.3.

3.4. Finiteness under hypothesis A. From the definition of φ, we see that,
for X ∈ L

1(F ) and Y ∈ L
∞(G), |E(XY) − E(X)E(Y )| ≤ φ(F ,G)‖X‖1‖Y‖∞.

We apply this inequality with X = |A0|2P and Y = 1{rk(An−1···An/2+1) �=1}, where
n/2 is the integer part of the half of n, and we take the square root. We
get

∥∥1{rk(An−1···A1) �=1}|A0|P
∥∥

2

≤ ∥∥1{rk(An−1···An/2+1) �=1}|A0|P
∥∥

2

≤
√

P(rk(An/2 · · ·A1) �= 1)
∥∥|A0|P

∥∥
2 +

√
φn/2

∥∥|A0|P
∥∥

2.

The
√

φn/2’s are summable by hypothesis A. Let us see that the√
P(rk(An/2 · · ·A1) �= 1)’s are too. For any integers n and n0, we have the fol-

lowing inequality:

P
(
rk(An+2n0 · · ·A1) �= 1

)
≤ E

(
1{rk(An···A1) �=1}1{rk(An+2n0 ···An+n0+1) �=1}

)
≤ (

φn0 + E
(
1{rk(An+2n0 ···An+n0+1) �=1}

))
E

(
1{rk(An···A1) �=1}

)
≤ (

φn0 + P
(
rk(An0 · · ·A1) �= 1

))
P

(
rk(An · · ·A1) �= 1

)
.

Taking n0 big enough, we have (φn0 + P(rk(An0 · · ·A1) �= 1)) < 1, hence,
P(rk(An · · ·A1) �= 1) decreases exponentially fast and∑

n∈N

√
P(rk(An/2 · · ·A1) �= 1) < ∞. This concludes the proof of hypotheses

1 and 3 under hypothesis A.

3.5. Finiteness under hypothesis B. Let us take X = |A0|(2+δ)/(1+δ)
P , Y =

1{rk(An···An/2+1) �=1} and q = 1
1+δ

in the mixing inequality (see, e.g., [19]) which
states for any X ∈ L

1(F ) and Y ∈ L
∞(G)

|E(XY) − E(X)E(Y )| ≤ 6α1−1/q(F ,G)‖X‖q‖Y‖∞
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and let us elevate it to the power 1+δ
2+δ

. We get∥∥1{rk(An−1···A1) �=1}|A0|P
∥∥
(2+δ)/(1+δ)

≤ ∥∥1{rk(An−1···An/2+1) �=1}|A0|P
∥∥
(2+δ)/(1+δ)

≤ P
(
rk(An/2 · · ·A1) �= 1

)(1+δ)/(2+δ)∥∥|A0|P
∥∥
(2+δ)/(1+δ)

+ (6αn/2)
δ/(2+δ)

∥∥|A0|P
∥∥

2+δ.

The (6αn/2)
δ/(2+δ)’s are summable by hypothesis B. To see that the

P(rk(An/2 · · ·A1) �= 1)(1+δ)/(2+δ) too, we apply the following lemma from [23]
with λ = 2+δ

δ
and Mst = 1{rk(At ···As) �=1}.

LEMMA 3.1 (Hennion [23]). Let (Mst )s<t be submultiplicative and adapted
with values in [0,1] such that limn E(M0n) = 0. If

∑
n α

1/λ
n < ∞, then there exists

c ∈ R, such that

E(M0n) ≤ c

(
ln2 n

n

)λ

.

This concludes the proof of hypotheses 1 and 3 under hypothesis B.

3.6. Finiteness under hypothesis C. We notice that∑
k

∥∥1{rk(Ak−1···A1) �=1}|A0|P
∥∥

1 ≤ ∑
k

∥∥1{rk(Ak−1···A1) �=1}
∥∥

1

∥∥|A0|P
∥∥∞

= ∥∥|A0|P
∥∥∞

∑
k

P(R ≥ k)

= ∥∥|A0|P
∥∥∞E(R),

where R = min{n|rk(An−1 · · ·A1) = 1}. Moreover, if P(rk(An0 · · ·A1) �= 1) < 1,
then R − n0 is bounded from above by the hitting time of {rk(An0 · · ·A1) = 1}.
The integrability of R will follow from the next theorem due to Chazottes.

THEOREM 3.2 (Chazottes [10]). Let (
,F ,P, T ) be a measurable dynamical
system, B ∈ F a set with positive probability, and 1B its indicator function. If the
mixing coefficients αn of the sequence (1B ◦ T n)n∈N satisfy

∑
n αn < ∞, then the

hitting time of B is integrable.

To apply the theorem, we notice that, when B = {rk(An0 · · ·A1) = 1}, every αn

defined by (1B ◦ T n)n∈N is less than the αn−n0 defined by (An)n∈N. This ensures
the hypothesis of Theorem 3.2 and concludes the proof of hypotheses 1 and 3
under hypothesis C.
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3.7. Conclusion of the proof. In the last six subsections we have proved that,
under hypothesis A, B or C of Theorem 2.3, (

∨
i xi(n,0))n∈N satisfies the hypothe-

ses of Theorem 3.1. Therefore, we have

1√
n

(∨
i

xi(n,0) − nγ

)
L→ N .

Since topical functions are nonexpanding∣∣∣∣∣ 1√
n

∨
i

xi(n,X0) − 1√
n

∨
i

xi(n,0)

∣∣∣∣∣ ≤ 1√
n
‖X0‖∞

P→ 0,(12)

therefore, 1√
n
(
∨

i xi(n,X0) − nγ )
L→ N .

δn = (x(n,X0) − ∨
i xi(n,X0)1) is a function of x(n,X0), which is converg-

ing in law (and even in total variation) by the main theorem of [26], therefore,
1√
n
δn

P→ 0 and 1√
n
(x(n,X0) − nγ 1)

L→ N 1, which concludes the proof of the
convergence in law.

Inequality (12) also implies that

1√
n

E

∣∣∣∣∣
∨
i

xi(n,X0) − ∨
i

xi(n,0)

∣∣∣∣∣ ≤ 1√
n

E‖X0‖∞ → 0,

so that

lim
n→+∞

1√
n

E

∣∣∣∣∣
∨
i

xi(n,X0) − nγ

∣∣∣∣∣ =
(

2σ 2

π

)1/2

follows from limn→+∞ 1√
n
E|x0n − nγ | = (2σ 2

π
)1/2.

3.8. Tightness. Without loss of generality, we assume γ = 0. (Otherwise, just
replace An by An − γ .) One part of the equivalence is obvious. To prove the other
part, we have to go into the proof of Theorem 3.1. Ishitani constructs a random
variable Z (named y01 in [25]) and approximates x0n by the Birkhof sum Sn =∑n−1

k=0 Z ◦ T k (y0n in [25]). Then he shows that (Sn)n∈N fulfills the hypotheses of
Billingsley–Ibragimov’s CLT.

In Billingsley–Ibragimov’s CLT, the asymptotic variance is zero if and only if
Z is a coboundary, that is, if there is a random variable f such that Z = f ◦T −f .
(See, e.g., [19].)

Let us assume we are in this situation and identify Z. It is built as a kind of
Cesaro type limit of the sequence (x0n − x1n)n∈N. But in our situation equation (7)
says that this sequence is ultimately constant and that Xn is equal to the limit as
soon as rk(An · · ·A1) = 1.
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Let us denote by R the smallest such n and by ψ the topical function that maps
x ∈ R

d to
∨

i xi . The random variable R is almost surely finite because of ergod-
icity and MLP. With notation, we have

Z = x0R − x1R = ψ(AR · · ·A00) − ψ(AR · · ·A10) a.s.

and, for any integer n such that rk(An · · ·A1) = 1,

f ◦ T − f = ψ(An · · ·A00) − ψ(An · · ·A10).(13)

In the sequel we deduce the tightness from equation (13). As a first and
main step, let us show that (ψ(AR · · ·A−n0))n∈N is tight. For any k ∈ N, since
rk(AR · · ·A1) = 1, rk(AR · · ·A−k) = 1 and equation (13) holds for n = R◦T k +k.
Compounded by T −k , it becomes

f ◦ T −k+1 − f ◦ T −k = ψ(AR · · ·A−k0) − ψ(AR · · ·A−k+10).

Summing over k, we get

f ◦ T − f ◦ T −n = ψ(AR · · ·A−n0) − ψ(AR · · ·A00),

from which the tightness of (ψ(AR · · ·A−n0))n∈N is obvious.
The tightness of (A−1 · · ·A−n0)n∈N is obvious too, because the sequence con-

verges in law.
From those two tightnesses, we successively deduce the tightness of the follow-

ing sequences:

- (ψ(A−1 · · ·A−n0))n∈N, because equation (4) implies that

|ψ(AR · · ·A−n0) − ψ(A−1 · · ·A−n0)| = |ξ(AR · · ·A0,A−1 · · ·A−n0)|
≤ |ψ(AR · · ·A00)| + |A−1 · · ·A−n0|P .

- ((ψ(A−1 · · ·A−n0,A−1 · · ·A−n0)))n∈N, again because (A−1 · · ·A−n0)n∈N is
tight.

- (A−1 · · ·A−n0)n∈N, because x 	→ (ψ(x), x) is a bi-Lipschitz homeomorphism
from R

d to R × PR
d
max (see [28]).

- (x(n,0))n∈N, because, for any n ∈ N, the random variables (A−1 · · ·A−n0) and
x(n,0) have the same law.

- Eventually (x(n,X0))n∈N, because the An are nonexpanding and, therefore, we
have ‖x(n,X0) − x(n,0)‖∞ ≤ ‖X0‖∞.
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