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ASYMPTOTIC BEHAVIOR OF THE POISSON–DIRICHLET
DISTRIBUTION FOR LARGE MUTATION RATE1

BY DONALD A. DAWSON AND SHUI FENG

Carleton University and McMaster University

The large deviation principle is established for the Poisson–Dirichlet dis-
tribution when the parameter θ approaches infinity. The result is then used to
study the asymptotic behavior of the homozygosity and the Poisson–Dirichlet
distribution with selection. A phase transition occurs depending on the growth
rate of the selection intensity. If the selection intensity grows sublinearly in θ ,
then the large deviation rate function is the same as the neutral model; if the
selection intensity grows at a linear or greater rate in θ , then the large devi-
ation rate function includes an additional term coming from selection. The
application of these results to the heterozygote advantage model provides an
alternate proof of one of Gillespie’s conjectures in [Theoret. Popul. Biol. 55
145–156].

1. Introduction. Let

∇ =
{
(p1,p2, . . .) :p1 ≥ p2 ≥ · · · ≥ 0,

∞∑
k=1

pk = 1

}
.

The Poisson–Dirichlet distribution with parameter θ > 0 [henceforth denoted by
PD(θ)] is a probability measure on ∇ . It was introduced by Kingman [10] as
an asymptotic distribution of the order statistics of a symmetric Dirichlet dis-
tribution with parameters K,α when K → ∞ and α → 0 in a way such that
limK→∞ Kα = θ . The distribution coincides with the distribution of the normal-
ized jump sizes of a Gamma process over the interval (0, θ) ranked in descend-
ing order. We use P(θ) = (P1(θ),P2(θ), . . .) to denote the ∇-valued random vari-
able with distribution PD(θ). PD(θ) appears in many different contexts, including
Bayesian statistics, number theory, combinatorics and population genetics. In the
context of population genetics, the distribution describes the equilibrium propor-
tions of different alleles in the infinitely many neutral alleles model. The compo-
nent Pk(θ) represents the proportion of the kth most frequent allele. If u is the
individual mutation rate and N is the effective population size, then the parameter
θ = 4Nu is the population mutation rate. When θ is small, a large proportion of
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the population tends to concentrate on a small set of alleles, whereas for large θ ,
the population is fairly evenly spread. A more friendly way of describing the dis-
tribution PD(θ) is through the following size-biased sampling process. We first
let Uk, k = 1,2, . . . , be a sequence of independent, identically distributed random
variables with common distribution Beta(1, θ). We then generate a random proba-
bility vector representing allelic frequencies as follows:

X1 = U1, Xn = (1 − U1) · · · (1 − Un−1)Un, n ≥ 2.

In other words, the frequency of the first allele type is chosen at random, this is
removed and the relative frequency of the second allele is chosen in the same way.
This pattern is repeated to get all samples. Then the frequency of allelic type of
the kth selected sample will be Xk . It can be shown that X1,X2, . . . reordered
in descending order has distribution PD(θ). The sequence Xk, k = 1,2, . . . , cor-
responds to the size-biased permutation of PD(θ) and the representation through
Uk, k = 1,2, . . . , is called the GEM representation after R. C. Griffiths, S. Engen
and J. W. McCloskey.

Consider a population under the influence of mutation and selection. The role
of mutation is to bring in new types of alleles and reduce the proportion of existing
alleles, while the selection force favors certain genotypes and, thus, alters allele
proportions. It is interesting to understand how the mutation and selection forces
interact. The limiting procedure with θ approaching infinity is equivalent to let-
ting the population size go to infinity. By the study of the behavior of PD(θ) for
large θ , one would hope to get a better picture of interaction between mutation and
selection. For the over-dominance model, where the heterozygote has advantage
over homozygote, it is observed in [5] that, when both the mutation rate and the
selection rate are scaled by large θ , the model behaves the same as a neutral model.
This was confirmed later by Joyce, Krone and Kurtz [9] through the study of the
stationary distribution of the infinitely many alleles diffusion with heterozygote
advantage. A critical growth rate θ3/2 is identified such that selection will not be
detected if its rate grows more slowly than the critical rate.

Let ξk, k = 1, . . . , be a sequence of i.i.d. random variables with common diffu-
sive distribution ν on [0,1], that is, ν({x)} = 0 for every x in [0,1]. Set

� =
∞∑

k=1

Pk(θ)δξk
.

It is known that the law of � is the Dirichlet(ν) distribution, and is the stationary
distribution of the Fleming–Viot process with mutation operator

Af (x) = θ

2

∫ 1

0

(
f (y) − f (x)

)
ν(dx).

Dawson and Feng [1, 2] studied the asymptotic behavior of � for large θ and
established the large deviation principle (henceforth LDP) for the law of �. It is
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worth noting that there are fundamental differences between � and P(θ) even
though their laws are both called Poisson–Dirichlet distribution in the literature.
A detailed discussion is given in Section 4.

The main result of this article is the LDP for PD(θ) for large θ . When θ ap-
proaches infinity, Pk(θ) converges to zero for every k. Since

∑∞
k=1 Pk = 1, the

allele proportions are evenly spread out for large θ . We will see from the LDP that,
at the exponential scale, the differences between different allele proportions are
still significant.

Our first result is the LDP for the law of P1(θ). This is then used to de-
rive the LDP for finite marginal distributions of P(θ), namely, the law of
(P1(θ), . . . ,Pn(θ)) for every n. These eventually lead to the establishment of the
LDP for the law of P(θ). All rate functions have explicit forms.

In Section 2 we review several general results on LDP, and formulate a compar-
ison lemma. Some estimates on the Beta distribution are proved in Section 3. Our
main LDP results for PD(θ) are formulated and proved in Section 4. In Section 5
the LDP result for PD(θ) is used to derive the LDP of the homozygosity and the
PD(θ) with selection. Our result shows that a phase transition occurs with para-
meter given by the selection intensity. Let the selection be scaled by θγ . Then for
the selection to be detected at the large deviation scale, γ has to be greater than
or equal to 1. For the heterozygote advantage model, this provides a new proof of
a conjecture in [5]. In the LDP setting the critical scale turns out to be θ instead
of θ3/2 which was obtained in the case of Joyce, Krone and Kurtz [9].

The study of the behavior of P(θ) = (P1(θ),P2(θ), . . .) for large θ has a long
history. In Waterson and Guess [17] E[P1(θ)] was shown to be asymptotically
log θ/θ . Griffiths [6] obtained the explicit weak limit of θP(θ) and a central limit
theorem for the homozygosity. A more detailed description of these results and
their relation to our results will be included in Section 4.

One may be able to generalize our result to the two-parameter Poisson–Dirichlet
distribution studied in [12]. The residual allocation model now involves two para-
meters θ +α > 0,0 ≤ α < 1, such that Uk is a Beta(1−α, θ +kα) random variable
for each k. Since the mutation force becomes stronger with the introduction of α,
one expects the speed of convergence will be higher than that of PD(θ). For a
more comprehensive discussion on PD(θ) and its two-parameter counterpart, we
recommend [13, 14] and the references therein.

2. Preliminaries. We include several known results on LDP in this section.
A comparison lemma will be formulated as a direct application of the Gärtner–Ellis
theorem. All results will be stated in the form that is sufficient for our purposes.
For the most general form, we refer to [3]. Let E be a complete separable metric
space with metric ρ.

DEFINITION 2.1. A family of probability measures {Qε : ε > 0} on E is said
to satisfy an LDP with speed 1/ε and rate function I (·) if, for any closed set F and
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open set G in E,

lim sup
ε→0

ε logQε{F } ≤ − inf
x∈F

I (x),

lim inf
ε→0

ε logQε{G} ≥ − inf
x∈G

I (x),

for any c > 0, {x : I (x) ≤ c} is compact.

DEFINITION 2.2. A family of probability measures {Qε : ε > 0} is said to
satisfy a partial LDP if, for every sequence εn converging to zero, there is a sub-
sequence ε′

n such that the family {Qε′
n

: ε′
n > 0} satisfies an LDP with speed 1/ε′

n

and rate function I ′.

REMARK. A partial LDP will become an LDP if all the rate functions I ′ are
the same. The following result is found in [15].

THEOREM 2.1 (Pukhalskii). (i) Assume that {Qε : ε > 0} satisfies a partial
LDP with speed 1/ε and for every x in E,

lim
δ→0

lim sup
ε→0

ε logQε{ρ(y, x) ≤ δ}
(1)

= lim
δ→0

lim inf
ε→0

ε logQε{ρ(y, x) < δ} = −I (x).

Then {Qε : ε > 0} satisfies an LDP with speed 1/ε and rate function I (·).
(ii) If E is compact, then the partial large deviation principle is automatically

satisfied.

THEOREM 2.2 (Varadhan). Assume that {Qε : ε > 0} satisfy an LDP with
speed 1/ε and a rate function I (·). Let Cb(E) denote the set of bounded con-
tinuous functions on E. Then for any φ(x) in Cb(E), one has

�φ = lim
ε→0

ε logEQε
[
eφ(x)/ε] = sup

x∈E

{φ(x) − I (x)}.(2)

THEOREM 2.3 (Gärtner–Ellis). Let E = R = (−∞,∞). Assume that

�(λ) = lim
ε→0

ε logEQε [eλx/ε] < ∞ for all λ,

and has the first-order derivative �′(λ). Then {Qε : ε > 0} satisfies an LDP with
speed 1/ε and rate function

I (x) = sup
λ∈E

{λx − �(λ)}.

As a direct application of Theorem 2.3, we get the following:
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LEMMA 2.4 (Comparison lemma). Let E = (−∞,∞). Assume that {Xε :
ε > 0}, {Yε : ε > 0}, {Zε : ε > 0} are three families of random variables on the same
probability space with respective laws {Q1

ε : ε > 0}, {Q2
ε : ε > 0}, {Q3

ε : ε > 0}.
If both {Q1

ε : ε > 0} and {Q3
ε : ε > 0} satisfy the assumptions in Theorem 2.3 with

the same �, and with probability one

Xε ≤ Yε ≤ Zε,

then {Q2
ε : ε > 0} satisfies an LDP with speed 1/ε and rate function

I (x) = sup
λ∈E

{λx − �(λ)}.

REMARK. Both Theorem 2.3 and Lemma 2.4 hold if E is only a closed subset
of R.

3. Some estimates for the beta distribution. Let U1,U2, . . . be a sequence
of i.i.d. random variables with common distribution Beta(1, θ). Let E = [0,1].
Then we have the following:

LEMMA 3.1. For any n ≥ 1, let Qn,θ be the law of Zn = max{U1, . . . ,Un}.
Then the family {Qn,θ : θ > 0} satisfies an LDP on E with speed θ and rate function

I (x) =

 log

1

1 − x
, x ∈ [0,1),

∞, else.
(3)

PROOF. Let

�(λ) = ess sup
y∈[0,1]

{λy + log(1 − y)}

(4) =
{

λ − 1 − logλ, λ > 1,

0, else.
Then clearly �(λ) is finite for all λ and is differentiable. By direct calculation, we
have

E[eθλZn] =
∫ 1

0
exp{θFθ (y)}dy,

where

Fθ(y) = λy + logn + log θ

θ
(5)

+ n − 1

θ
log[1 − (1 − y)θ ] + θ − 1

θ
log(1 − y).

Letting θ go to infinity, we get

lim
θ→∞ log{E[eθλZn]}1/θ = �(λ)

which, combined with Theorem 2.3 (with ε = 1/θ ), implies the lemma. �



ASYMPTOTICS OF THE POISSON–DIRICHLET DISTRIBUTION 567

LEMMA 3.2. For any k ≥ 1, let nk(θ) denote the integer part of θk . Then
the family {Qnk(θ),θ : θ > 0} satisfies an LDP with speed θ and rate function I (·)
defined in (3).

PROOF. Choosing n = nk(θ) in Lemma 3.1, we get

Fθ(y) = λy + (lognk(θ) + log θ)

θ

+ nk(θ) − 1

θ
log[1 − (1 − y)θ ] + θ − 1

θ
log(1 − y).

For any ε in (0,1/2), and λ ≥ 0, we have

�(λ) = lim
θ→∞

1

θ
logE[eθλU1]

≤ lim sup
θ→∞

1

θ
logE[eθλZnk(θ)]

≤ max
{
λε, ess sup

y≥ε
[λy + log(1 − y)]

}
,

where the last inequality follows from the fact that, for y in [ε,1], limθ→∞ θ l ×
log[1 − (1 − y)θ ] = 0 for any l ≥ 1. Letting ε go to zero, it follows that

�(λ) = lim
θ→∞

1

θ
logE[eθλZnk(θ)].

For negative λ, we have

lim sup
θ→∞

1

θ
logE[eθλZnk(θ)] ≥ lim

δ→0
ess sup

y≥δ

{λy + log(1 − y)} = 0 = �(λ).

The lemma follows from Theorem 2.3. �

LEMMA 3.3. For any n ≥ 1, let Wn = (1−U1)(1−U2) · · · (1−Un). Then for
any δ > 0,

lim sup
θ→∞

1

θ
logP

{
Wn2(θ) ≥ δ

} = −∞.(6)

PROOF. By direct calculation,

P
{
Wn2(θ) ≥ δ

} = P

{
θ

n2(θ)∑
j=1

log(1 − Uj) ≥ θ log δ

}

≤ eθ log 1/δ(E[
eθ log(1−U1)

])n2(θ)
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= eθ log 1/δ

(
1

2

)n2(θ)

= exp
[
θ log

1

δ
− (θ2 − 1) log 2

]
.

(6) follows by letting θ go to infinity. �

4. LDP for the Poisson–Dirichlet distribution. Let X(θ) = (X1,X2, . . .) be
the GEM, that is,

X1 = U1, Xk = (1 − U1) · · · (1 − Uk−1)Uk, k ≥ 2,(7)

and

P(θ) = (
P1(θ),P2(θ), . . .

)
,(8)

with Pk(θ) the kth largest component of X(θ). The law of P(θ) is thus PD(θ).
In this section we will establish the LDP for PD(θ) when θ becomes large.

To help motivate this result, some earlier works on the asymptotic behavior of
PD(θ) are included and their relations to our result are discussed.

4.1. Scaling limits. Recall that the parameter θ is the population mutation rate.
In the infinite neutral allele models all mutations produce new alleles. It is thus
reasonable to expect that the higher the mutation rate, the smaller the proportion
of most frequent allele will be.

In [17], the exact expression and asymptotic expression were obtained for
E[P1(θ)]. In particular, they showed that

lim
θ→∞

E[P1(θ)]
(log θ/θ)

= 1,(9)

which implies that limθ→∞ Pk(θ) = 0 for each k. Since
∑∞

k=1 Pk(θ) = 1, it follows
that the differences between the proportions {Pk(θ) :k ≥ 1} become smaller when
θ becomes large.

Griffiths [6] generalized the result in [17], and obtained expressions for the ex-
pectations and variances of Pk(θ) for each k. The moments of Pk(θ) for any k ≥ 1
were given by the following:

E[P n
k (θ)] = θk
(θ)


(θ + n)

∫ ∞
0

un−1 [J (u)]k−1

(k − 1)! e−u−θJ (u) du,(10)

where J (u) = ∫ ∞
u

e−x

x
dx. In particular, one has, for any k ≥ 1,

E[Pk(θ)] =
∫ ∞

0
e−u

[
(θJ (u))k−1

(k − 1)! e−θJ (u)

]
du → 0 as θ → ∞.
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Perman [11] obtained generalizations of (10) to normalized jump sizes of sub-
ordinators. A scaling limit, to be described below, was also obtained in [6].

For each r ≥ 1, let ∞ > Y1 > Y2 > · · · > Yr > −∞ have a joint distribution
with density

exp{−(y1 + · · · + yr) − e−yr }.(11)

It is clear that the marginal density of Yk is

1

(k − 1)! exp{−(ky + e−y)}.(12)

For k = 1, . . . , r , set

β(θ) = log θ + log log θ, Yk(θ) = θPk(θ) − β(θ).(13)

THEOREM 4.1 (Griffiths). For each r ≥ 1, (Y1(θ), . . . , Yr(θ)) converges
weakly to (Y1, . . . , Yr) when θ goes to infinity.

The result (9) can be viewed as a kind of law of large numbers and Theorem 4.1
as a “central limit” type theorem. This brings us naturally to the study of large
deviations in the next subsection.

4.2. Large deviations. There are two different versions of the infinitely-many-
neutral-alleles model: one is a special Fleming–Viot process with parent indepen-
dent mutation operator with mutation rate θ and mutation probability ν, and the
other is an infinite-dimensional diffusion process with state space ∇ and generator

L = 1

2

∞∑
i,j=1

pi(δij − pj )
∂2

∂pi ∂pj

− θ

2

∞∑
i=1

∂

∂pi

defined on an appropriate domain. The Fleming–Viot version is called the labeled
version and the second version is called unlabeled. Fundamental differences exist
between the two versions. For example, the labeled version does not have a tran-
sition density, while the unlabeled version does; the unlabeled version has one
less eigenvalue than the labeled version (see [4]). But both models are reversible
with respective reversible measures Dirichlet(ν) and PD(θ). Let M1([0,1]) be
the set of all probability measures on [0,1]. If we introduce the map � between
M1([0,1]) and the closure of ∇ in R∞ such that �(µ) is the descending se-
quence of masses of the atoms of µ, then the unlabeled model is just the image
of the labeled Fleming–Viot model under �. Thus, many properties of the unla-
beled version can be derived from the labeled one. Since the LDP for Dirichlet(ν)

has been established in [1, 2], one would hope to get the LDP for PD(θ) from
the LDP for Dirichlet(ν) through �. Unfortunately, � is not continuous as the
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following example shows. Let µn = 1
n

∑n
k=1 δk/n2 . Then µn converges weakly

to δ0, while �(µn) = ( 1
n
, . . . , 1

n
,0,0 . . .) converges to (0, . . .0, . . .) rather than

(1,0, . . .) = �(δ0). To use the contraction principle in large deviation theory, one
has to prove some exponential approximation to � by a sequence of continuous
maps. We choose to prove the LDP for PD(θ) directly.

Our first theorem gives the large deviations of P1(θ).

LEMMA 4.2. The family of the laws of P1(θ) satisfies an LDP on [0,1] with
speed θ and rate function I (·) [given by (3)].

PROOF. Let P̂1(θ) = max{X1, . . . ,Xn2(θ)}. Then clearly P1(θ) ≥ P̂1(θ). By
Lemma 3.3, for any δ > 0, one has

lim sup
θ→∞

1

θ
logP {P1(θ) − P̂1(θ) > δ} ≤ lim sup

θ→∞
1

θ
logP

{
Wn2(θ) > δ

} = −∞.

In other words, P1(θ) and P̂1(θ) are exponentially equivalent and, thus, have the
same LDPs. By definition, we have

U1 = X1 ≤ P̂1(θ) ≤ Zn2(θ).

Applying Lemmas 3.1, 3.2 and 2.4, we conclude that the law of P̂1(θ) satisfies an
LDP with speed θ and rate function I (·). �

Let

∇n =
{
(p1, . . . , pn) : 0 ≤ pn ≤ · · · ≤ p1,

n∑
k=1

pk ≤ 1

}
(14)

and

�n,θ is the law of
(
P1(θ), . . . ,Pn(θ)

)
on space ∇n, n ≥ 1.(15)

THEOREM 4.3. For fixed n ≥ 2, the family {�n,θ : θ > 0} satisfies an LDP
with speed θ and rate function

Sn(p1, . . . , pn) =




log
1

1 − ∑n
k=1 pk

, (p1, . . . , pn) ∈ ∇n,

n∑
k=1

pk < 1,

∞, else.

(16)

PROOF. Since ∇n is compact, by Theorem 2.1(ii), the family {�n,θ : θ > 0}
satisfies a partial LDP. Let gθ

1 denote the density function of P1(θ). Then for any
p ∈ (0,1),

gθ
1 (p)p(1 − p)1−θ = θ

∫ (p/(1−p))∧1

0
gθ

1 (x) dx,(17)
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and the joint density function gθ
n of (P1(θ), . . . ,Pn(θ)) obtained in Watterson [16]

is given by

gθ
n(p1, . . . , pn) = θn−1(1 − ∑n−1

k=1 pk)
θ−2

p1 · · ·pn−1
gθ

1

(
pn

1 − ∑n−1
k=1 pk

)
,(18)

for (p1, . . . , pn) ∈ ∇◦
n = {(p1, . . . , pn) ∈ ∇n : 0 < pn < · · · < p1 < 1,

∑n
k=1 pk <

1}, and is zero otherwise. In other words, for any fixed (p1, . . . , pn) ∈ ∇◦
n , we have

gθ
n(p1, . . . , pn) = θn(1 − ∑n

k=1 pk)
θ−1

p1 · · ·pn

∫ (pn/(1−∑n
k=1 pk))∧1

0
gθ

1 (u) du.(19)

Clearly, ∇n is the closure of ∇◦
n . Now for any (p1, . . . , pn) ∈ ∇n, let

V
(
(p1, . . . , pn); δ) = {(q1, . . . , qn) ∈ ∇n : |qk − pk| < δ, k = 1, . . . , n},

U
(
(p1, . . . , pn); δ) = {(q1, . . . , qn) ∈ ∇n : |qk − pk| ≤ δ, k = 1, . . . , n}.

Then the family {V ((p1, . . . , pn); δ) : δ > 0, (p1, . . . , pn) ∈ ∇n} is a base for the
topology of ∇n. Now assume that pn > 0 and δ is smaller that pn. By (19), we
have that, for any (q1, . . . , qn) in V ((p1, . . . , pn), δ),

gθ
n(q1, . . . , qn) ≤ θn(1 − ∑n

k=1(pk − δ))θ−1

(p1 − δ) · · · (pn − δ)
,

which implies

lim sup
θ→∞

1

θ
log�n,θ

{
U

(
(p1, . . . , pn); δ)} ≤ − log

1

1 − ∑n
k=1(pk − δ)

.(20)

Letting δ go to zero, we get

lim sup
δ→0

lim sup
θ

1

θ
log�n,θ

{
U

(
(p1, . . . , pn); δ)} ≤ −Sn(p1, . . . , pn).(21)

Next we turn to lower bound. First noting that, if
∑n

k=1 pk = 1, the lower bound
is trivially true since Sn(p1, . . . , pn) = ∞. Hence, we assume that

∑n
k=1 pk < 1,

pn > 0. We also assume that 0 < δ < (1 − ∑n
k=1 pk)/n. Using (19) again, one has

that, for any (q1, . . . , qn) in V ((p1, . . . , pn), δ) ∩ ∇◦
n ,

gθ
n(q1, . . . , qn) ≥ θn

(
1 −

n∑
k=1

(pk + δ)

)θ−1 ∫ ((pn−δ)/(1−∑n
k=1(pk−δ)))∧1

0
gθ

1 (u) du,

which implies

lim inf
θ

1

θ
log�n,θ

{
V

(
(p1, . . . , pn); δ)}

≥ − log
1

1 − ∑n
k=1(pk + δ)

− inf
{
I (p) :p <

(
(pn − δ)

(1 − ∑n
k=1(pk − δ))

)
∧ 1

}

= − log
1

1 − ∑n
k=1(pk + δ)

,
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where in the second line we used the LDP of the law P1(θ) obtained in Lemma 4.2.
Letting δ go to zero, we get

lim inf
δ→0

lim inf
θ→∞

1

θ
log�n,θ

{
V

(
(p1, . . . , pn); δ)} ≥ −Sn(p1, . . . , pn).(22)

Finally, we turn to the case when there is 1 ≤ k ≤ n such that pi > 0 for
i = 1, . . . k and pi = 0 for i ≥ k + 1. Because of lower semi-continuity of all
rate functions in the partial LDP and the continuity of Sn(p1, . . . , pn), (22) holds
in this case. On the other hand, noting that Sn(p1, . . . , pn) = Sk(p1, . . . , pk) and
�n,θ {U((p1, . . . , pn); δ)} ≤ �k,θ {U((p1, . . . , pk); δ)}, it follows that the upper
bound also holds. By Theorem 2.1(i), (21) and (22) combined with the partial
LDP imply the result. �

COROLLARY 4.1. For k ≥ 2, the family of the laws of Pk(θ) satisfies an LDP
on [0,1] with speed θ and rate function

Ik(x) =

 log

1

1 − kx
, x ∈ [0,1/k],

∞, else.
(23)

PROOF. For any k ≥ 2, define

φk :∇k −→ [0,1], (p1,p2, . . . , pk) → pk.

Clearly, φk is continuous, and Theorem 4.3 combined with the contraction princi-
ple implies that the law of Pk(θ) satisfies an LDP on [0,1] with speed θ and rate
function

I ′(p) = inf{Sk(p1, . . . , pk) :p1 ≥ · · · ≥ pk = p}.
For p > 1/k, the infimum is over empty set and is thus infinity. For p in [0,1/k],
the infimum is achieved at the point p1 = p2 = · · · = pk = p. Hence, I ′(p) =
Ik(p) and the result follows. �

The result of this corollary indicates that, for any k ≥ 1, the law of kPk(θ) has
the same LDP as the law of P1(θ). More precisely, for any p ∈ [0,1], one has

lim
δ→0

lim
θ→∞

P {|P1(θ) − p| ≤ δ}
P {|Pk(θ) − p/k| ≤ δ} = 1.(24)

Hence, when θ becomes large, Pk(θ) behaves like 1
k
P1(θ) at the large deviation

scale. In other words, under a large deviation, the proportion of the most likely
alleles is k times of the proportion of the kth most likely alleles.
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This relation is also reflected somewhat in Theorem 4.1 and (12). We illustrate
this through the following nonrigorous derivation with β(θ) defined in (13):

P {P1(θ) ∈ dx} = P {Y1(θ) + β(θ) ∈ θ dx}
≈ P {Y1 + β(θ) ∈ θ dx}(25)

≈ exp
{
−θ

[
x + β(θ)

θ
+ 1

θ
e−θ(x+β(θ)/θ)

]}
dx

and

P {Pk(θ) ∈ dy} = P {Yk(θ) + β(θ) ∈ θ dy}
≈ P

{
k
(
Yk + β(θ)

) ∈ θ d(ky)
}

(26)

≈ exp
{
−θ

[
x + β(θ)

kθ
+ 1

kθ
e−θ/k(x+β(θ)/θ)

]}
dx, x = ky.

Comparing the last terms in (25) and (26), we can see that at the exponential
scale kPk(θ) is like P1(θ).

Now we turn to the LDP of PD(θ). Let

∇̄ =
{
(p1,p2, . . .) :p1 ≥ p2 ≥ · · · ≥ 0,

∞∑
k=1

pk ≤ 1

}
(27)

be the closure of ∇ equipped with the subspace topology of R∞. Let

�θ be the law of P(θ) on space ∇̄.(28)

THEOREM 4.4. The family {�θ : θ > 0} satisfies an LDP with speed θ and
rate function

S(p) =




log
1

1 − ∑∞
k=1 pk

, (p1,p2, . . .) ∈ ∇̄,

∞∑
k=1

pk < 1,

∞, else.

(29)

PROOF. Because ∇̄ is compact, by Theorem 2.1, it suffices to verify (1) for the
family {�θ : θ > 0}. The topology on ∇̄ can be generated by the following metric:

d(p,q) =
∞∑

k=1

|pk − qk|
2k

,

where p = (p1,p2, . . .),q = (q1, q2, . . .). For any fixed δ > 0, let B(p, δ) and
B̄(p, δ) denote the respective open and closed balls centered at p with radius δ > 0.
Set nδ = 1 + [log2(1/δ)], where [x] denotes the integer part of x. Set

Vnδ (p; δ/2) = {(q1, q2, . . .) ∈ ∇̄ : |qk − pk| < δ/2, k = 1, . . . , nδ}.
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Then we have

Vnδ (p; δ/2) ⊂ B(p, δ)

By Theorem 4.3 and the fact that

�θ

{
Vnδ (p; δ/2)

} = �nδ,θ

{
V

((
p1, . . . , pnδ

); δ/2
)}

,

we get that

lim inf
θ→∞

1

θ
log�θ {B(p, δ)}

≥ lim inf
θ→∞

1

θ
log�nδ,θ

{
V

((
p1, . . . , pnδ

); δ/2
)}

(30)

≥ −Snδ

(
p1, . . . , pnδ

) ≥ −S(p).

On the other hand, for any fixed n ≥ 1, δ1 > 0, let

Un(p; δ1) = {(q1, q2, . . .) ∈ ∇̄ : |qk − pk| ≤ δ1, k = 1, . . . , n}.
Then we have

�θ {Un(p; δ1)} = �n,θ

{
U

(
(p1, . . . , pn); δ1

)}
,

and, for δ small enough,

B̄(p, δ) ⊂ Un(p; δ1),

which implies that

lim
δ→0

lim sup
θ→∞

1

θ
log�θ {B̄(p, δ)}

≤ lim sup
θ→∞

1

θ
log�n,θ

{
U

((
p1, . . . , pn

)
, δ1

)}
(31)

≤ − inf
{
Sn(q1, . . . , qn) : (q1, . . . , qn) ∈ U

((
p1, . . . , pn

)
, δ1

)}
.

Letting δ1 go to zero, and then n go to infinity, we get

lim
δ→0

lim sup
θ→∞

1

θ
log�θ {B̄(p, δ)} ≤ −S(p),(32)

which combined with (30) implies the result. �

REMARK. Note that the effective domain is

{p ∈ ∇̄ :S(p) < ∞} =
{

p ∈ ∇̄ :
∞∑

k=1

pk < 1

}
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and

lim
δ→0

inf
{p : |∑∞

k=1 pk−1|≤δ}
S(p) = ∞.

On the other hand, since

�θ

{
p ∈ ∇̄ :

∣∣∣∣∣
∞∑

k=1

pk − 1

∣∣∣∣∣ < δ

}
= �θ

{
p ∈ ∇̄ :

∣∣∣∣∣
∞∑

k=1

pk − 1

∣∣∣∣∣ ≤ δ

}
= 1,

one has

lim
δ→0

lim inf
θ→∞

1

θ
log�θ

{
p ∈ ∇̄ :

∣∣∣∣∣
∞∑

k=1

pk − 1

∣∣∣∣∣ < δ

}

= lim
δ→0

lim sup
θ→∞

1

θ
log�θ

{
p ∈ ∇̄ :

∣∣∣∣∣
∞∑

k=1

pk − 1

∣∣∣∣∣ ≤ δ

}
= 0.

This might at first sight appear to be a contradiction. However, since the function∑∞
k=1 pk is not continuous on ∇̄ , the set {p : |∑∞

k=1 pk − 1| ≤ δ} is not closed and
there is no inconsistency.

5. Applications. In this section we will discuss two applications of Theo-
rem 4.4. The first one is the LDP for the homozygosity.

A random sample of size m > 1 is selected from a population whose allelic
types have distribution PD(θ). The probability that all samples are of the same
type is called the mth order population homozygosity and is given by

Hm(θ) =
∞∑
i=1

P m
i (θ) =

∞∑
i=1

Xm
i .(33)

Since Hm(θ) ≤ P m−1
1 (θ), it follows that Hm(θ) converges to zero as θ approaches

to infinity. In [8] it is shown that θm−1


(m)
Hm(θ) converges to 1 in probability, that is,

Hm(θ) goes to zero at a magnitude of 
(m)

θm−1 . Our next theorem describes the large
deviations of Hm(θ) from zero.

THEOREM 5.1. The law of Hm(θ) for m > 1 satisfies an LDP on [0,1] with
speed θ and rate function I (y1/m), where I (·) is given by (3).

PROOF. For m > 1 the map

φm : ∇̄ −→ [0,1], p →
∞∑

k=1

pm
k

is continuous. By Theorem 4.4 and the contraction principle, it follows that the law
of Hm(θ) satisfies an LDP with speed θ and rate function

Ī (y) = inf{S(p) : p ∈ ∇̄, φm(p) = y}.
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Since for any p in ∇̄ , we have

∞∑
k=1

pk ≥ (φm(p))1/m = y1/m,

it follows that S(p) ≥ I (y1/m) and, thus, Ī (y) ≥ I (y1/m). On the other hand,
choosing p = (y1/m,0, . . .), one gets that Ī (y) ≤ I (y1/m). Hence, Ī (y) =
I (y1/m), and the result follows. �

The study of fluctuations of homozygosity goes back to Griffiths [6]. It was
shown in [6] that

θ3/2
√

2
[H2(θ) − E(H2(θ))] → Z,(34)

where Z is the standard normal random variable.

REMARK. It is interesting to note that the relation between the large deviation
Theorem 5.1 and the “central limit theorem” (34) is qualitatively different from
the corresponding relation in the classical case of partial sums of i.i.d. random
variables. In the latter case the speed in the large deviation result is the same as that
for the normal approximation and only the rate functions are different. In contrast,
for the case of H2(θ), the speed in the large deviation result is θ whereas for the

normal approximation, E(H2(θ)) +
√

2Z
θ3/2 it would be θ3.

Joyce, Krone and Kurtz [8] obtained the following generalization of (34) to the
mth order homozygosity:

√
θ

(
θm−1


(m)
Hm(θ) − 1

)
→ Z(m),(35)

where Z(m) is a normal random variable with mean zero and variance 
(2m)


2(m)
−m2.

One can rewrite (35) as

θm−1/2


(m)

(
Hm(θ) − E[Hm(θ)]) → Z(m),(36)

which includes (34) as a special case. Thus, we have two different laws of large
numbers and two different central limit theorems: the convergence of Hm(θ) to

zero and the fluctuations around the mean, and the convergence of θm−1


(m)
Hm(θ) to

one and the associated fluctuations. One can easily go from one to the other by
a simple algebraic transformation.

The LDP obtained in Theorem 5.1 is associated with the convergence of Hm(θ)

to zero. It is thus natural to expect obtaining an LDP result for convergence of
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θm−1


(m)
Hm(θ) to one from Theorem 5.1. Unfortunately, we are unable to verify this,

but have the following partial information about the possible candidate for the LDP
speed if there is one.

Assume that an LDP with speed α(θ) and rate function I (·) holds for the con-

vergence of θm−1


(m)
Hm(θ) to one. Then for any constant c > 0,

P

{
θm−1


(m)
Hm(θ) ≥ 1 + c

}
≥ P

{
θm−1


(m)
Xm

1 ≥ 1 + c

}

= P

{
X1 ≥

(

(m)(1 + c)

θm−1

)1/m}
(37)

=
[(

1 − (
(m)(1 + c))1/m

θ(m−1)/m

)θ(m−1)/m]θ1/m

,

which implies that

inf
x≥1+c

I (x) = 0 if lim
θ→∞

α(θ)

θ1/m
= ∞.(38)

Since c is arbitrary, I (·) is zero over a sequence that goes to infinity, which contra-
dicts the fact that {x : I (x) ≤ M} is compact for every positive M . Hence, the LDP
speed cannot grow faster than θ1/m.

Our second application involves the Poisson–Dirichlet distribution with selec-
tion.

Let Cb(∇̄) be the set of all bounded continuous functions on ∇̄ . Assume that
α(θ) satisfy either limθ→∞ α(θ)

θ
= 0 or limθ→∞ α(θ)

θ
= c for some c > 0. For every

H in Cb(∇̄), define a new probability �H
α,θ on ∇̄ as

�H
α,θ (dp) = eα(θ)H(p)

E�θ [eα(θ)H(q)]�θ(dp).(39)

Then we have the following:

THEOREM 5.2. The family {�H
α,θ } satisfies an LDP with speed θ and rate

function

Sα(p) =




S(p), if lim
θ→∞

α(θ)

θ
= 0,

Sc(p), if lim
θ→∞

α(θ)

θ
= c > 0,

(40)

where

Sc(p) = sup
q

{cH(q) − S(q)} − (
cH(p) − S(p)

)
.(41)
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PROOF. By Theorem 2.2 and Theorem 4.4,

lim
θ→∞

1

θ
logE�θ

[
eα(θ)H(p)]

= lim
θ→∞

1

θ
logE�θ

[
eθ(α(θ)/θ)H(p)]

=




0, if lim
θ→∞

α(θ)

θ
= 0,

sup
q

{cH(q) − S(q)}, if lim
θ→∞

α(θ)

θ
= c > 0.

This, combined with the continuity of H , implies that, for any p in ∇̄ ,

lim inf
δ→0

lim inf
θ→∞

1

θ
log�H

α,θ {d(p,q) < δ}

≥ lim inf
δ→0

lim inf
θ→∞

{
α(θ)

θ

(
H(p) − δ′) + 1

θ
log�θ {d(p,q) < δ}

}

−




0, if lim
θ→∞

α(θ)

θ
= 0,

sup
q

{cH(q) − S(q)}, if lim
θ→∞

α(θ)

θ
= c > 0,

≥



−S(p), if lim
θ→∞

α(θ)

θ
= 0,

−Sc(p), if α(θ) = cθ > 0,

where δ′ converges to zero as δ goes to zero. Similarly, we have

lim sup
δ→0

lim sup
θ→∞

1

θ
log�H

α,θ {d(p,q) ≤ δ}

≤ lim sup
δ→0

lim sup
θ→∞

{
α(θ)

θ

(
H(p) + δ′) + 1

θ
log�θ {d(p,q) ≤ δ}

}

−




0, if lim
θ→∞

α(θ)

θ
= 0,

sup
q

{cH(q) − S(q)}, if lim
θ→∞

α(θ)

θ
= c > 0,

≤



−S(p), if lim
θ→∞

α(θ)

θ
= 0,

−Sc(p), if α(θ) = cθ > 0.

Since ∇̄ is compact, the result follows by an application of Theorem 2.1. �
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THEOREM 5.3. Assume that

lim
θ→∞

α(θ)

θ
= ∞(42)

and the maximum of H is achieved at a single point p0. Then the family {�H
α,θ }

satisfies an LDP with speed θ and rate function

S∞(p) =
{

0, if p = p0,

∞, else.
(43)

PROOF. Without loss of generality, we assume that supp∈∇̄ H(p) = 0. Other-

wise we can multiply both the numerator and the denominator by e−α(θ)H(p0) in
the definition of �H

α,θ .
For any p �= p0, choose δ small enough such that

d1 = sup
d(p,q)≤δ

H(q) < 2d2 = 2 inf
d(p0,q)≤δ

H(q) < 0.

Then by direct calculation, we get

lim sup
θ→∞

1

θ
log�H

α,θ {d(p,q) ≤ δ}

= lim sup
θ→∞

1

θ
log

∫
{d(p,q)≤δ} eα(θ)H(q)�θ (dq)

E�θ [eα(θ)H(q)]
≤ lim sup

θ→∞
1

θ
log

[
eα(θ)(d1−d2)

�θ {d(p,q) ≤ δ}
�θ {d(p0,q) ≤ δ}

]

= −∞
and

lim inf
θ→∞

1

θ
log�H

α,θ {d(p0,q) < δ}

= lim inf
θ→∞

1

θ
log

∫
{d(p0,q)<δ} eα(θ)H(q)�θ (dq)

E�θ [eα(θ)H(q)]

= lim inf
θ→∞

1

θ
log

[
1 −

∫
{d(p0,q)≥δ} eα(θ)H(q)�θ (dq)

E�θ [eα(θ)H(q)]
]

≥ lim inf
θ→∞

1

θ
log

[
1 −

∫
{d(p0,q)≥δ} eα(θ)H(q)�θ (dq)∫
{d(p0,q)≤δ1} eα(θ)H(q)�θ (dq)

]

≥ lim inf
θ→∞

1

θ
log

[
1 − exp{α(θ)[a(δ) − b(δ1)]}

�θ {d(p0,q) ≤ δ}
]

= 0 by choosing small enough δ1,
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where

a(δ) = sup
d(p0,q)≥δ

H(q), b(δ1) = inf
d(p0,q)≤δ1

H(q).

This, combined with the compactness of ∇̄ and Theorem 2.1, implies the result.
�

In [5], simulations were done for several models to study the role of population
size in population genetical models of molecular evolution. One of the models is
an infinite-alleles model with selective overdominance or heterozygote advantage.
It was observed and conjectured that, if the selection intensity and the mutation
rate get large at the same speed, the behavior looks like that of a neutral model.
A rigorous proof of this conjecture was included in [9]. Using our notation with
φm(p) = ∑∞

k=1 pm
k , their result can be stated as follows.

THEOREM 5.4 (Joyce, Krone and Kurtz). Choosing α(θ) = cθ3/2+γ and
H(p) = −φ2(p) in (39), then, under �θ , as θ → ∞,

eα(θ)H(p)

E�θ [eα(θ)H(p)] ⇒



1, if γ < 0,

exp
(
cZ(2) − c2)

, if γ = 0,

0, if γ > 0,

(44)

where ⇒ denotes the weak convergence and Z(2) is a normal random variable
with mean zero and variance 2.

Now choosing H(p) = −φ2(p) in Theorem 5.2 and Theorem 5.3, the next
corollary gives an alternate proof of Gilliespie’s conjecture.

COROLLARY 5.1. The family �H
α,θ satisfies an LDP with speed θ and rate

function

Sα(p) =




S(p), if lim
θ→∞

α(θ)

θ
= 0,

Sc(p), if lim
θ→∞

α(θ)

θ
= c > 0,

S∞(p), if lim
θ→∞

α(θ)

θ
= ∞.

(45)

From Corollary 5.1, it follows that the selection cannot be detected at large
deviation level for α(θ) = o(θ). In other words, a phase transition occurs at the
critical scale θ which is different from the critical scale in (44).
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In a recent paper, Joyce and Gao [7] studied the infinite-alleles model with ho-
mozygote advantage. This corresponds to choosing H(p) = φ2(p) in (39). A crit-
ical phenomenon is shown to exist in this case. They even obtained the following
corollary to Theorem 5.2.

COROLLARY 5.2. Choosing H(p) = φ2(p) in (39), then the family �H
α,θ sat-

isfies an LDP with speed θ and rate function

Sα(p) =




S(p), if lim
θ→∞

α(θ)

θ
= 0,

−cH(p) + S(p), if lim
θ→∞

α(θ)

θ
= c ≤ c0,

log
(

1 − √
1 − 2/c

2

)

+ c

(
1 + √

1 − 2/c

2

)2

− cH(p) + S(p), if lim
θ→∞

α(θ)

θ
= c > c0,

(46)

where c0 > 2 solves the equation

log
(

1 − √
1 − 2/c

2

)
+ c

(
1 + √

1 − 2/c

2

)2

= 0.

Acknowledgments. We thank the referees for their comments and sugges-
tions, and for explaining the historical development of the study of the asymptotic
behavior of the Poisson–Dirichlet distribution for large θ . We also thank Paul Joyce
for informing us of the result in Corollary 5.2.

REFERENCES

[1] DAWSON, D. and FENG, S. (1998). Large deviations for the Fleming–Viot process with neutral
mutation and selection. Stochastic Process. Appl. 77 207–232. MR1649005

[2] DAWSON, D. and FENG, S. (2001). Large deviations for the Fleming–Viot process with neutral
mutation and selection, II. Stochastic Process. Appl. 92 131–162. MR1815182

[3] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd
ed. Springer, New York. MR1619036

[4] ETHIER, S. N. and GRIFFITHS, R. C. (1993). The transition function of a Fleming–Viot
process. Ann. Probab. 21 1571–1590. MR1235429

[5] GILLESPIE, J. H. (1999). The role of population size in molecular evolution. Theoret. Popul.
Biol. 55 145–156.

[6] GRIFFITHS, R. C. (1979). On the distribution of allele frequencies in a diffusion model. Theo-
ret. Popul. Biol. 15 140–158. MR0528914

[7] JOYCE, P. and GAO, F. (2005). An irrational constant separates selective under dominance
from neutrality in the infinite alleles model. To appear.

http://www.ams.org/mathscinet-getitem?mr=1649005
http://www.ams.org/mathscinet-getitem?mr=1815182
http://www.ams.org/mathscinet-getitem?mr=1619036
http://www.ams.org/mathscinet-getitem?mr=1235429
http://www.ams.org/mathscinet-getitem?mr=0528914


582 D. A. DAWSON AND S. FENG

[8] JOYCE, P., KRONE, S. M. and KURTZ, T. G. (2002). Gaussian limits associated with the
Poisson–Dirichlet distribution and the Ewens sampling formula. Ann. Appl. Probab. 12
101–124. MR1890058

[9] JOYCE, P., KRONE, S. M. and KURTZ, T. G. (2003). When can one detect overdominant
selection in the infinite-alleles model? Ann. Appl. Probab. 13 181–212. MR1951997

[10] KINGMAN, J. C. F. (1975). Random discrete distributions. J. Roy. Statist. Soc. Ser. B 37 1–22.
MR0368264

[11] PERMAN, M. (1993). Order statistics for jumps of normalised subordinators. Stochastic
Process. Appl. 46 267–281. MR1226412

[12] PITMAN, J. (1996). Random discrete distributions invariant under size-biased permutation.
Adv. in Appl. Probab. 28 525–539. MR1387889

[13] PITMAN, J. (1996). Some developments of the Blackwell–MacQueen urn scheme. Statistics,
Probability, and Game Theory. Papers in Honor of David Blackwell (T. S. Ferguson,
L. S. Shapley and J. B. MacQueen, eds.) 245–267. IMS, Hayward, CA. MR1481784

[14] PITMAN, J. and YOR, M. (1997). The two-parameter Poisson–Dirichlet distribution derived
from a stable subordinator. Ann. Probab. 25 855–900. MR1434129

[15] PUKHALSKII, A. A. (1991). On functional principle of large deviations. In New Trends in Prob-
ability and Statistics 1 (V. Sazonov and T. Shervashidze, eds.) 198–218. VSP Mokslas,
Vilnius. MR1200917

[16] WATTERSON, G. A. (1976). The stationary distribution of the infinitely-many neutral alleles
diffusion model. J. Appl. Probab. 13 639–651. MR0504014

[17] WATTERSON, G. A. and GUESS, H. A. (1977). Is the most frequent allele the oldest? Theor.
Popul. Biol. 11 141–160.

SCHOOL OF MATHEMATICS AND STATISTICS

CARLETON UNIVERSITY

OTTAWA, ONTARIO

CANADA K1S 5B6
E-MAIL: ddawson@math.carleton.ca

DEPARTMENT OF MATHEMATICS AND STATISTICS

MCMASTER UNIVERSITY

HAMILTON, ONTARIO

CANADA L8S 4K1
E-MAIL: shuifeng@univmail.cis.mcmaster.ca

http://www.ams.org/mathscinet-getitem?mr=1890058
http://www.ams.org/mathscinet-getitem?mr=1951997
http://www.ams.org/mathscinet-getitem?mr=0368264
http://www.ams.org/mathscinet-getitem?mr=1226412
http://www.ams.org/mathscinet-getitem?mr=1387889
http://www.ams.org/mathscinet-getitem?mr=1481784
http://www.ams.org/mathscinet-getitem?mr=1434129
http://www.ams.org/mathscinet-getitem?mr=1200917
http://www.ams.org/mathscinet-getitem?mr=0504014
mailto:ddawson@math.carleton.ca
mailto:shuifeng@univmail.cis.mcmaster.ca

	Introduction
	Preliminaries
	Some estimates for the beta distribution
	LDP for the Poisson-Dirichlet distribution
	Scaling limits
	Large deviations

	Applications
	Acknowledgments
	References
	Author's Addresses

