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EXACT SIMULATION OF DIFFUSIONS

BY ALEXANDROS BESKOSl AND GARETH O. ROBERTS
Lancaster University

We describe a new, surprisingly simple algorithm, that simulates exact
sample paths of a class of stochastic differential equations. It involves re-
jection sampling and, when applicable, returns the location of the path at a
random collection of time instances. The path can then be completed without
further reference to the dynamics of the target process.

1. Introduction. Exact simulation of stochastic differential equations (SDEs)
is a notorious problem within the applied probability community. The objective of
this paper is to present a first step toward the solution of this problem. We describe
a new algorithm we call the Exact Algorithm for simulating a class of SDEs. It
involves rejection sampling and, when applicable, returns exact draws from any
finite-dimensional distribution of the solution of the SDE.

Let B = {B;;0 <t < T} be a scalar Brownian motion. Consider the general
type of the one-dimensional It diffusion:

(1) dX,=b(X,)dt +o(X,)dB;, 0<t<T,Xo=xecR

for drift coefficient »:R — R and diffusion coefficient o : R — R. Under cer-
tain regularity conditions on b and o it can be shown that (1) has a solution
{X;;0 <t < T} weakly unique, that is, all the solutions have identical finite-
dimensional distributions. Weak uniqueness, relatively more general than pathwise
uniqueness, is sufficient for simulation purposes. For a formal definition of (1) see,
for instance, [7].

Mathematical models of this kind are used to describe the evolution of stochastic
phenomena in a wide range of disciplines and most times it is important to be
able to simulate them. In rare cases (1) has an explicit solution with identifiable
transition density. However, in most of the models used in practice it is necessary
to resort to a numerical solution of (1). This has traditionally implied the use of
some of the time discrete approximation methods (Euler, Taylor’s expansion, etc.)
which rely on small time approximate increment distributions for the diffusion
(for a detailed account of these methods see [5]). In many cases throughout this
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paper the results of our algorithm will be compared with the Euler scheme which
approximates (1) via the recursion

Xien =X +b(X)A+0(X;) - N0, A)

where we denote by N (u, ¥) the Gaussian distribution with mean p and vari-
ance X.

For a large class of processes the Exact Algorithm provides an alternative which
involves no approximation (apart from that inherent in any computer simulation)
and yet is computationally highly efficient. It returns skeletons of exact paths
which can be easily filled in without further reference to the diffusion dynamics.
Thus the method can be used to simulate the diffusion at a prescribed collection of
time points, or alternatively at times which occur to be interesting to the user, after
the completion of the algorithm.

We begin (Section 2) by stating the rejection sampling technique in a way that
serves our purposes. In Section 3 we present our method and in Section 4 give
some results related with its efficiency. In Section 5 we apply the algorithm to
a specific SDE and in Section 6 we take advantage of the properties of the Exact
Algorithm to simulate exactly extremes and hitting times for the same SDE. Finally
(Section 7), we present some ideas that could, in future research, overcome the
restrictions of the algorithm and give some general conclusions. We are going to
restrict the exposition of our algorithm to the case when o = 1. This is not by any
means restrictive since the SDE (1) can be transformed into one of unit diffusion
coefficient for the process ¥ = {Y;; 0 <t < T} defined as

X[ 1
Yt :/ du,
z o(u)

where z is an arbitrary element of the state space of X.

2. A general rejection sampling algorithm. Rejection sampling (RS) is a
widely used simulation technique. It is frequently presented as follows. Assume
that f, g are probability densities w.r.t. some measure on R? and that there exists
& > 0 such that 8% < 1. Then the iterative algorithm:

REJECTION SAMPLING

1. SAMPLEY ~g.

2. SAMPLE U ~ Unif(0, 1).
3. IFU<e§(Y) RETURN Y.
3. ELSEGOTO 1.

returns an observation distributed according to f.
This traditional rejection sampling algorithm seems to imply a fixed order in the
acquisition of the required random elements: specifically, the proposed variate Y
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precedes the decision variate U. However, such a prescribed order for the simu-
lation steps is not necessary. The algorithm to be presented in Section 3 is more
easily understood when imagining that the proposed variate actually succeeds the
decision variate. Moreover, this reordering of the random steps can be carried out
without adding any complexity to the algorithm. See [9] for a case where a sim-
ilar reordering of the random inputs is used to perform an otherwise impossible
MCMC algorithm for the Dirichlet mixture model.

Additionally, in some cases there are ways of constructing a condition for the
acceptance or the rejection of the current proposed element Y from minimal infor-
mation about it. This will be essential in the diffusion context where it will never
be possible to store a complete, continuous path. A similar idea appears in [4] on
a perfect simulation algorithm of point processes. In that case a probability re-
lated with a complicated surface is expressed as the probability of an appropriately
constructed event whose truth or otherwise is easy to verify.

We now present a formal definition of the RS algorithm in a way that incorpo-
rates the observations just described. Let (S, §) be a sufficiently regular measur-
able space and v, i probability measures on it such that u is absolutely continuous
w.r.t. v. Assume that there exists ¢ > 0 such that f := efl—’: <1 v-a.s. and that it
is easy to sample from v. The following proposition can be used to return draws
from L.

PROPOSITION 1 (Rejection sampling). Let (Yy, In)n>1 be a sequence of i.i.d.
random elements taking values in S x {0, 1} such that Y1 ~ v and P[I} = 1]Y| =
v]l= f(y)forally € S. Definet =min{i > 1:1; = 1}. Then P[Y; € dy] = u(dy).

For the proof see the Appendix.

This presentation of the RS scheme does not assume any order for the simulation
of Y and I and, besides the certain conditional property given in the proposition,
does not restrict in any other way the construction of the binary indicator /.

3. The Exact Algorithm. Consider the stochastic process X = {X;;0 <
t < T} determined as the unique solution of the SDE
2) dX;=oa(X;)dt +dB;, 0<t<T,Xo=0.

The drift function « : R — R is presumed to satisfy the regularity properties that
guarantee the existence of a global, weakly unique solution for (2). In particular,
it suffices that « is locally Lipschitz; that is, for each M > 0 there exists Ky > 0
such that

la(y) —a(x)| < Kply — xl; IX|=M,|yl=M
with a linear growth bound; there exists K > 0 such that

(x> <K*’(1+x%), xeR.
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See Chapter 4 of [5] for a detailed presentation of weaker conditions.

Since we are going to carry out rejection sampling it is convenient to think of
the stochastic processes involved as measures induced on the space C of contin-
uous functions from [0, '] to R. We denote by w a typical element of this space.
Consider the coordinate functions B;(w) = w(t), t € [0, T'], and the o-field C =
o ({B;; 0 <t < T}). To avoid confusion between the coordinate functions and the
Brownian motion process, we use the generic notation BM = {BM;;0 <t < T}
for a Brownian motion (BM) started at 0. Let W be the Wiener measure on (C, C)
sothat B={B;;0 <t <T}isaBM.

3.1. Rejection sampling for SDEs. We explain how a rejection sampling al-
gorithm can be set up for the case of the SDE given in (2). The analysis begins
with the Girsanov transformation of measures. Let Q be the probability measure
inducedon (C,C) by X ={X,;;0<t <T}.

PROPOSITION 2 (Girsanov transformation). Assume that the drift coefficient o
satisfies Novikov’s condition:

T
EW[CXP{%/O otz(Bt)dt” < 00.

It is then true that

d T L7
(3) ﬁ(w) = exp{/o o(B;)dB; — 5/0 az(Bt)dt} =:G(B).

PROOF. See, for instance, [8], Chapter 8. [J

Our goal is to implement a rejection sampling algorithm using (3) to construct
an accept-reject mechanism. The difficulty is that exact evaluation of G(B) is
impossible. We can simplify G (B) using Itd’s formula to remove the Itd integral

term and we shall see that this allows us to carry out the rejection scheme indirectly.
We now need our first assumption.

CONDITION 1. The drift coefficient « is everywhere differentiable.

Under Condition 1, G(B) admits the following simplification: let A(u) =
Jo () dy, u € R. 1td’s formula then gives that

T 1 T
| aBras =amn - ado -4 [« Boar,
0 0

We can now write G(B) as

T
G(B) = exp{A(Bm — A(By) — 1 /0 (*(By) +o/(B,>)dz}.



2426 A. BESKOS AND G. O. ROBERTS

Rejection sampling using Brownian candidates is only conceivably possible if
G (B) is almost surely bounded and this is likely to require A to be bounded. To
remove this requirement we introduce a third probability measure which will be
used to construct the candidates for the rejection sampling scheme.

Consider the biased Brownian motion BM = {BM,;0 < t < T} heuristically
defined as (BM|BMt = p) with p distributed according to some density function
h:R [0, o) w.r.t. the Lebesgue measure.

PROPOSITION 3 (Biased Brownian motion). Let Z be the probability measure
induced by BM on (C, Q). If the support of h is the real line, then Z is equivalent
to W and

dZ h(BT)

aw' = (1/v/2nT ) exp(— B2/ (2T))

For the proof see the Appendix.
It is now trivial that

dQ _ dQ dW
d—Zw)) = md—z(w)
Bz 1 (T )
x exp{A(BT) — ﬁ — 5/(; (ocz(B,) 4+« (B,))dt}/h(BT),

where o implies that we omitted some factors not depending on w.
CONDITION 2.  [gpexp{A(u) — u?/2TYdu =: ¢ < 0.

Under Condition 2 and after choosing 4 (1) = exp{A(u) — u*/2T}/c,

4) Z%(w) x exp{— /OT(%(XZ(B,) + %o/(BQ) dt}.

Assume now that the functional involved in the above integral is bounded:

CONDITION 3. There exist constants ki, %y € R such that k1 < %az(u) +
%a/(u) <k for any u € R.

We can then write (4) as
dQ T
5) D xexn|= [ o

for a function ¢ > 0 defined as ¢ (u) = %ozz(u) + %a/(u) — k1, u € R. This creates
the possibility of performing rejection sampling with candidates from Z in order
to sample from Q, which is the objective. We can choose the length T > 0 of the
time interval under consideration so that

(6) 0<¢pw)<T~' foranyueR.
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Just consider any T < 1/(ko — k1) = 1/R where R is the identifiable range of
(@ + o) /2 in the sense that the lower (upper) bound we can actually obtain for
(% +a) /2 can be less (greater) than its maximum (minimum) value. From this
point on it is assumed that 7" has been fixed so that (6) is true.

We remark that Condition 3 is trivially implied by

CONDITION 3'. There exist constants k{,k, € R such that k] < a(u),
o' (u) < k), for any u € R.

Furthermore, Condition 3" implies that Condition 2 holds and moreover the con-
stants k| and k5 point the way to implementing simple rejection sampling algo-
rithms for simulating the endpoint of the biased Brownian motion.

3.2. Constructing the Exact Algorithm. We set H(w) = fOT ¢ (B;)dt. We as-
sume from now on that we have access to paths w ~ Z of the biased Brownian
motion BM. Note that we can realize such a path at any finite collection of time
instances by drawing first its ending point w7 ~ h and then the rest of the skeleton
according to the dynamics of a Brownian bridge. Drawing from the univariate dis-
tribution 4 cannot be a big problem; [1] gives many algorithms for drawing from
densities on R that could be used as envelopes for a rejection sampling scheme
on h.

The preliminaries of Section 3.1 together with the general rejection sampling
protocol of Proposition 1 ensure that the following algorithm (were it imple-
mentable in practice) would output realizations of the diffusion X that solves the
SDE (2):

IMPOSSIBLE ALGORITHM

1. SAMPLE A COMPLETE, CONTINUOUS PATH OF BM, w ~ Z.

2. COMPUTE H (w).

3. PRODUCE A BINARY INDICATOR / SUCH THAT P[] = 1|w] = exp{—H (»)}.
4. IFI=0GOTO 1.

5. OUTPUT w.

The indicator [ is easily constructed with the use of some U ~ Unif(0, 1). In prac-
tice, we can only simulate the path w at any given finite collection of instances
0<t,t,...,t, <T so evaluating the integral H(w) is impossible. However,
given that Conditions 1-3 are satisfied, we can produce an algorithm which man-
ages to circumvent steps 1 and 2 and still carry out steps 3 and 4 exactly given only
a finite but random skeleton of instances of w.

The idea builds on the simple observation that for a bounded function
0 < ¢u) < T~ events of probability f0T¢(u)du can be constructed simply
by drawing a random point (V, W) ~ Unif[(0, T) x (O, T—1)]. Then the event
{¢ (V) > W} will have the required probability.
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To extend this idea to an event of probability exp(—H) we exploit a Taylor se-
ries expansion construction which gives us an event of probability exp(—H) as
an event which depends upon a countable sequence of events of probability H.
Furthermore, it turns out to be possible to express this event both as the count-
able union of a sequence of increasing events and as the countable intersection of
another sequence of decreasing events. Crucially, for each event in either of the
two sequences its truth or otherwise can be confirmed by a finite skeleton of a
path w ~ Z and, consequently, the truth or otherwise of the event of probability
exp{— H (w)} can also be determined after finite computations.

All the above ideas are presented in a rigorous way in Theorem 1 that follows.
The construction to be described is similar in spirit, though in a different context,
with Von Neumann’s comparison method for the simulation of exponential ran-
dom variables; see [2] for a detailed review. We have denoted by (€2, #, Prob) the
underlying probability space that generates all the random elements involved in
the theorem.

THEOREM 1. Let w ~ Z be a path of the biased Brownian motion BM on
[0, T]. Let T = (V;, W;)i>1 be a sequence of i.i.d. points uniformly distributed on
(0, T) x (0,1/T). Consider also some U ~ Unif(0, 1). Assume that w, T and U
are independent. Define the following events:

1
[o=1, Iy = {(b(BVl(w)) >Wi,...,¢(By,(®) = W,,U < ;},
(7) )
n=1,2,....

Consider the sequence of events (E,),>1 defined as

Eyii=To—-T)+T2—=T3)+-- 4+ T2n — Topg1),

n=0,1,...,
(8)
Eypp=To—T1)+T2—=13)+---+ T2 — T2pg1) + Tongo,
n=0,1,...,

where (+) implies union of disjoint sets and D — F = D N F€ for any sets F C D.
Then:

1) (E2i4+1)n>0, (E2n42)n=0 are sequences of increasing and decreasing
events, respectively, with Ey.y1 C Ezyo for any k,) € {0,1,...} and
Prob[N§° E2nt+2 — U5 E2nt+11=0.

(i) Let E = Ug° Eant1- If I is a binary indicator such that I = 1 when E

occurs and O otherwise, then

T
Prob[] = 1|w] = exp{—/o ¢ (B (w)) dt}.
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See the proof in the Appendix.

Recall that B; is the coordinate mapping B;(w) = w(t), t € [0, T]. We will
from now on write w(¢) instead of B;(w). In practice, we can simply iden-
tify Mg° E2nt2 — Ug” E2n+1 with the null event @ so that E = | Jg® E2pq1 =
ﬂ(o)o E>,40. Figure 1 illustrates the decomposition of €2 over the sets E;, i > 1.

Theorem 1 does not impose any restriction on the order of the realization
of the random elements when rejection sampling will take place. To transform
the theorem into a feasible rejection sampling algorithm it is necessary that
we draw U and then generate the path w ~ Z and the sequence t in parallel.
We follow an iterative process that involves drawing (V;, W;) uniformly from
(0,T) x (0,1/T) and then simulating w(V;) conditionally on the already ob-
tained w(V1), o (V2), ..., w(V;_1), for i > 1. Recall that this recursive construc-
tion of the path of BM is straightforward as long as someone begins by simulating
its ending point w(7T) ~ h (the choice for 4 is given after Condition 2 of Sec-
tion 3.1). Then, the rest of the path is a Brownian bridge; given that the locations
{w(V1),...,w(Vi—1), w(T)} have been constructed the path can be realized at the
instance V; just by drawing

R AL LSRR LA

Vi—-V_ Vi—-V_
where we have defined V_ =max{0,V;,j=1,...,i —1:V; <V;} and V_ =
min{7,V;,j=1,...,i — 1:V; > V;}. See, for instance, page 360 of [3] for
the representation of a Brownian bridge as a transformation of an unconditional
Brownian motion which implies the above formula.

From the definition of (E;);>; it is clear that after j iterations are carried out
we have the necessary information to decide if any of the events Ey, E3, ..., E;

F1G. 1. An illustration of the sets E;,i > 1. When some even-numbered E; does not occur or an
odd-numbered E; occurs, E does not occur or occurs, respectively.
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occurred or not. We perform iterations until the first time that an odd-numbered
E; occurs or an even-numbered E; does not occur. It is then clear from Theorem 1
that the former case gives I = 1 and the latter / = 0. Further realization of the
random elements will not change the decision about /. If needed, we can continue
simulating an accepted path of BM so that the resulted path of X is constructed at
any time instances requested.

The recursive definition of (E;);>1 allows for a simple way of carrying out the
successive steps of the iterative method described above. Assume for instance that
2n iterations have taken place without a decision about /, that is, E;, happened
and E»,_1 did not happen. From (7) and (8) it is clear that

Ezy = Ez,—1 + T2, and
Ezpi1=Eo —Topq1=Ep—1+ (T2 — T2pg1).

The first equation indicates that I'5, occurred and the second that we only need to
check if the subevent of I'y,

1
Fop —Topp1 =T2, N {¢>(w(V2n+1)) < WapqrorU > m}

occurred [i.e., ¢ (w0 (Vap41)) < Wopyq or U > M] or not to reach to a similar
conclusion about E5, 1. The same convenient interpretation appears for the case
when an even-numbered iteration, say the 2nth, is carried out. Given that [ is
not determined before that step we can conclude that E, did not take place if
U>1/2n)! or ¢p(w(Va,)) < Way,.

We can now present the pseudocode that implements Theorem 1 to carry out

rejection sampling:

EXACT ALGORITHM
INITIATE A PATH OF BM: SET w(0) =0 AND DRAW w(T) ~ h.
DRAW U ~ Unif(0, 1). SETi =0.
DrRAW (V, W) ~ Unif[(0, T) x (0,1/T)]. SETi =i+ 1.
CONSTRUCT w (V) GIVEN THE CURRENTLY SIMULATED INSTANCES
OF w.
51. IF¢(w(V)) < WORU > 1/i! THEN
IFi IS EVEN SET I =0 AND GO TO 1.
IFi 1S ODD SET I =1 AND GO TO 6.
5,. ELSE GO TO 3.
6. OUTPUT THE CURRENTLY SIMULATED INSTANCES OF .

el Y

As already mentioned, we can interpose a step that constructs the proposed path
at any time instances we require. It is now clear that the algorithm returns exact
skeletons of the target process X at any given finite collection of time instances.
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3.3. A factorization for Q. From a probabilistic point of view, the Exact Al-
gorithm manages to decompose the target measure Q in terms of a product of
Brownian bridges after appropriately extending the underlying probability space.

Analytically, let S be the random skeleton produced by the Exact Algorithm [we
do not include in S the starting point (0, 0)]. If Sk is the space of the possible con-
figurations of k points {x1, x3,...,xx} € [0,T] x R, k > 1, then S takes values in
Uk Sk- We denote by s = {(u1, y1), (u2, y2), ..., (ux, yx)} a typical element of this
state space. We avoid details about the o -algebra construction on |J,, S,;, and sim-
ply denote by Lg the distribution of S. Let BB(s, x;¢, y),for0<s <, x,y € R,
be the probability measure corresponding to a Brownian bridge starting at the time
instance s from x and finishing at the time instance ¢ at y. In terms of probability
measures, the Exact Algorithm manages to factorize @ in the following way:

k
) Q= Q) BBui—1, yi—1: i, i) ® Ls(ds),
i=1

where (19, yo) = (0, 0). Critically, the rejection sampling construction of the Exact
Algorithm allows for the simulation of Lg, so drawing from Q is then straightfor-
ward. Figure 2 gives a graphical illustration of the factorization (9). Because of this
decomposition of QQ it is possible to identify characteristics of the target process X
after considering the properties of the Brownian bridges that fill in its skeletons.
Thus, it is possible to simulate exactly hitting times, extremes (we present these
applications analytically in Section 6) and any other random elements for which
there are explicit results for the case of Brownian paths.

Another simple example when we can exploit (9) is at the Monte Carlo evalua-
tion of the expected value of functionals of X, for some time instance ¢ € [0, T'].
Assume that {X f, Si}lsisn are n draws for the skeleton S and X; produced by

wi x Skeleton S
(u3,¥3) : <----= Brownian Bridges
x .
(v1,y1) BN
X /
7 N /!
7’ \ 7
N :
AN /
v S K t
0 N K T
\ /
W/ %
\ / p
" (24,y4)
X :
(u2,y2) :

FIG. 2. The factorization of Q: drawing from Q is achieved after simulating the skeleton
S={(u1,y1), w2, y),..., Uk, yi)} (in the case of the figure, k = 4) and then filling in the rest
of the path with independent Brownian bridges.
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the Exact Algorithm. An estimator of E[ f (X;)], for some function f, can be the
mean of the f(X ;), 1 <i < n. Using the simple conditional expectation property
Var[ f (X;)] > Var[[E[ f (X;)|S]] we can produce an unbiased estimator of smaller
variance after considering the mean of the E[ f (X DS, 1<i<n. Conditionally
on the skeleton, X; follows a normal distribution, so for reasonable functions f
finding the E[ f (X;)|S] will be straightforward.

4. Efficiency of the Exact Algorithm. Two aspects of the Exact Algorithm
need to be examined. The first involves the probability of accepting a proposed
path of BM as a path of X. The second has to do with the number of points in
(0, T) x (0,1/T) required to reach a decision about a proposed path.

We can rewrite (5) as

s(T)Z%(a)) =exp{—/0Tq>(Bt)dt}

for some appropriate (7). Note that Q and Z are both probability measures so
&(T) equals precisely the probability that a path w ~ Z is accepted as a path from Q
(see the proof of Proposition 1). Equivalently, ¢(7) = Prob[/ = 1] for the binary
indicator / defined in Theorem 1.

PROPOSITION 4. For any appropriate T, the probability €(T) of the event
{I = 1} for I defined in Theorem 1 is at least e~' and is decreasing in T with
limg oe(T) = 1.

For the proof see the Appendix.

As expected, the probability of accepting the proposed paths of BM increases
when we decrease the length of the time period under consideration.

It is important that we give a result for the number of points uniformly drawn
in (0,T) x (0,1/T) required to accept or reject a proposed path. Recall that
(2, F, Prob) is the underlying probability space that generates all the random
elements involved in Theorem 1.

PROPOSITION 5. Define the random variable N : Q2+ {1,2,...} as
min{n =2,4,...:w ¢ E,}, ifwe E°,
Ny ={" .
min{n =1,3,...:w € E,}, ifweekE.
Then E[N] <e.

PROOF. Just note that Prob[N > n] < Prob[U < %], so it is straightfor-

n—1)!
ward that
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The random variable N counts the number of events E, we have to consider
before deciding if w belongs to E or E€ (equivalently, if the corresponding real-
izations of the random elements involved in Theorem 1 make E happen or not).
It is a perhaps surprising result that for any eligible 7 and any drift coefficient «
we are expecting on average less than three of the points drawn uniformly from
(0,T) x (0,1/T) before we decide for the acceptance or the rejection of a pro-
posed path.

Note that the Exact Algorithm can take advantage of the Markov property of
the process X and produce skeletons of any requested length / > 0 after merging
skeletons of lengths acceptable by the algorithm. The choice of the length of the
merged skeletons and, subsequently, the efficiency of the Exact Algorithm depend
on the identifiable range of the functional (> + ) /2 of the drift function. Recall
that we can identify analytically which satisfies

sup(a? + o) (x)/2 — inf (@ +a')(x)/2 < R.
xeR xeR

The following proposition gives a result for the case when the Exact Algorithm
merges skeletons of the maximum eligible length 7 = 1/R to obtain a skeleton of
length /. [u] is the minimum integer not smaller than u € R.

PROPOSITION 6. If R is the identifiable range of the functional (o> + a')/2
of the drift a and Nj is the total number of the uniformly drawn points needed for
the Exact Algorithm to return a skeleton of length | > 0, then

E[N;] < [l-R] x €.

For the proof see the Appendix.

In total, the Exact Algorithm requires elementary computational skills. Except
for the appealing characteristic of being exact it seems to compete with conven-
tional approximation techniques even in terms of time efficiency. The example that
follows favors this assertion.

S. Applying the Exact Algorithm. We apply the Exact Algorithm to the
SDE:

(10) dX; =sin(X;)dt +dB;, 0<t<T,Xp=0.

Conventional methods can only approximate sample paths for the solution X
of (10) after resorting to one of the suggested time discretization techniques; the
Exact Algorithm returns exact skeletons of X.

The drift coefficient « = sin satisfies Conditions 1 and 2. It is also easy to
check that —1/2 < %sinz(u) + %cos(u) < 5/8 for any u € R, so Condition 3 is
satisfied for k; = —1/2 and k» = 5/8. In the present context ¢ (1) = % sin®(u) +
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%cos(u) + % We can now choose T = 1/(kp — k1) = 8/9; for this ending time
instance, 0 < ¢ (u) < 7! for any real u. The BM process is defined w.r.t. a BM
via the rule BM = (BM|BMt = p) with p ~ h o exp{—cos(u) — u®/2T}. We
can draw efficiently from this univariate distribution using rejection sampling with
Gaussian proposals.

Everything is now set up for applying the Exact Algorithm. We run the algo-
rithm until we generate 5000 exact skeletons of X. We had to propose 12,320
paths of BM to get the exact paths so we can estimate that Prob[/ = 1] for the
indicator of Theorem 1 is close to 0.41. In 58% of the proposed paths the deci-
sion about accepting or rejecting a path was taken after simulating 1 and 2 points
respectively uniformly from (0, T') x (0, T—1). The maximum number of points
needed for the acceptance or the rejection of a path was 7 and 6, respectively.

Figure 3 shows on the left an exact skeleton of X and on the right the same
skeleton after considering the transformation x — ¢ (x) for each of its joints. In
the case of the ¢-path the square encloses the area (0, 7') x (0, 7T—") and the black
spots show the location of three points uniformly drawn from this rectangle. The
numbers next to each circle show the order with which they were obtained. At
the top right corner we have written the draw U ~ Unif(0, 1) needed by the Exact
Algorithm. The third point exceeded the graph of ¢ so the algorithm decided that
the event E3 of Theorem 1 occurred after realizing the proposed path w only at
three time instances. The rest of the path of X involves the time instances 0.01i for
all i =1,2,... such that 0.01i < T and is produced after filling in the proposed
path.

Figure 4 shows similar graphs for the case when a proposed path is rejected.
The graph that involves ¢ indicates that the proposed path was rejected because
the event E4 did not occur.

Figure 5 shows the estimated density for the distribution of X from samples
of size 1,000,000 obtained after using the Exact Algorithm and the Euler ap-

B(w(t))

U=0.12

T T
0.2 04 0.6 08 T

FIG. 3. A case when the Exact Algorithm accepts the proposed path w ~ 7.
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#(w(t)
w(t) 71

U=0.004

FIG. 4. A case when the Exact Algorithm rejects a proposed path w ~ 7.

proximation method for different time discretizations. For the case of the Exact
Algorithm, to draw from X; we had to merge skeletons on the time intervals
[0, 8/9] and [8/9, 1]. Table 1 presents the times in seconds needed to get these
samples and the p-values of the Kolmogorov—Smirnov test that compares the ap-
proximate draws of the Euler method with the exact ones of our algorithm. All
programs were written in C-language and executed on a Athlon PC, running at

0.20

0.15

Estimated Densities
0.10

0.05
I

0.00
|
]

T T T T T
-4 -2 0 2 4 6

FI1G. 5. The estimated density for the distribution X from samples of size 1,000,000 generated
by the Euler approximation (four cases for time increments 272,273,274 275) and the Exact
Algorithm.
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TABLE 1
Times in seconds needed for the Exact Algorithm and the Euler approximation
to produce 1,000,000 draws from the distribution of X

Euler
Exact (forinc. A=2""n=2,3,...,98 KS test
5 sec 0
11 sec 0
15 sec 0
35 sec 24 sec 0
45 sec 0.002
87 sec 0.261
174 sec 0.412

The last column shows the p-values for the Kolmogorov—Smirnov test with null
hypothesis that the exact and the corresponding approximate draws come from
the same distribution.

1500 MHz. It is clear, at least for the case of the SDE given in (10), that the Exact
Algorithm is superior to the Euler approximation even in terms of computational
time.

Note also that, as implied in Proposition 6, the time needed to draw from Xj,
[ > 0, increases linearly in / for the Exact Algorithm. In contrast, the Euler method
needs thinner approximation to produce reliable results as / increases because of
the accumulating errors.

6. Exact simulation of extremes and hitting times. We take advantage of
the properties of the Exact Algorithm to simulate exactly the maximum and the
hitting time of a horizontal line boundary for one-dimensional diffusions deter-
mined by SDEs of the type (2) under the Conditions 1-3 given in Section 3.1.

As explained in Section 3.3, the Exact Algorithm reduces the problem of
detecting characteristics for a path of the process X to the much more straight-
forward task of carrying out the certain detection process for its Brownian sub-
paths. To simplify the presentation of the algorithms that follow we denote
by &{x;t1,t,...,1,} a skeleton of the target process X at the time instances
0<t; <th <--- <t, =1 starting at x.

For the case of the maximum value of X over the time interval [0, ], [ > 0, we
apply the Exact Algorithm, if necessary after dividing [0, /] in smaller pieces of
length at most the maximum length 7" permitted by the Exact Algorithm and deal-
ing with each piece separately, and locate the maximum value of the accepted pro-
posed paths of BM after drawing the maximum of all the Brownian bridges (BBs)
that intervene between the successive unveiled instances of these paths. Drawing
the maximum of a BB is straightforward.
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Let BMY = {BMsy; 0 < s <t} be a Brownian motion over the interval [0, ¢]
started at y. If M; = sup{BMsy; s € [0, t]}, then it is a known result that
(2b—y —a)?

P[Mtedb|BM,y=a]oc(2b—y—a)exp{— 5

}db,

b > max{y, a}.

For a proof, see, for instance, [3], page 95. This is just a linear transformation of a
Rayleigh distribution and it is easy to verify that

[MBM] =al £ L(V2AE() + (@ —y) > +a+y),

where E (1) denotes an exponential random variable with unit mean. This formula
generates the maximum of a BB of length ¢ starting at y and finishing at a (for
arbitrary ¢, y and a) and will be applied for all the BBs that fill in the exact skele-
ton of X. Thus, the complete algorithm for drawing the maximum of X = {X;;
0 <t <1} is as follows:

EXACT SIMULATION OF THE MAXIMUM
1. CALL ON THE EXACT ALGORITHM AND DRAW A SKELETON
81{0; 11,82, ...,t,).
2. SIMULATE THE MAXIMA M!, M2, ..., M" OF THE BBS THAT FILL IN 4;.
3. OUTPUT sup{M‘;i =1,2,...,n)}.

A similar procedure is carried out for the simulation of first passage times. We
now have to check if each of the BBs that fill in the skeleton of X produced by the
Exact Algorithm hit some arbitrary boundary y or not and for the first bridge that
hits y to find the precise time instance when that occurs. Assume for simplicity
that y > 0 is greater than the starting point 0 of X.

The hitting time of a horizontal boundary for a BB is closely related with the
first passage of an unconditional Brownian motion over a linear boundary. It is a
known result that if BM () = {BM;(8); 0 <s <t} is a BB of length ¢ started at 0
and finishing at § and BM = {BM,; s > 0} is an unconditional Brownian motion
started at O, then

11 BM,3) L5+ " Bm 0<s<

(11) s ( )_t + i s/(t—s)» =s=t.

Let 7,(8) = inf{s € [0,7]: BM;(§) > y} and 7, = inf{s > 0: BMy; > n + {s}
with the convention that inf & = oco. Then for any s € [0, ¢] it is true that

P[t,(8) > s]=P[BM, () <y, forall 0 <u <]

[ u t—u
=P|-6+—BM, ;- , forallO<u < ]
N \/; u/(t—u) <Y SU=S
[ Y ]/—5 * * S :|
=P|BM,» < — + u*, forall0 <u™ <
L “ \/? \/Z r—s
i s
=P 'L’n’é-> ]
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for n =y /1, ¢ = (y — 8)/+/t. It is now clear that for these values of 7, ¢:

(12) Ty(5)ig(‘1:n,;) for g(u) = {t”/(”+ D), 0<u<oo,

00, U = 00.

The density of 1, ; is given by the Bachelier-Lévy formula:

Inl 2
13 18 (u) = ——— exp{—(Cu + 2u}, u>0.
(13) pe(u) NG p{—(Cu+n)"/2u}
A proof can be found in [6], Chapter 1. If we denote by IG(u, 1), © > 0, A > 0,
the inverse Gaussian distribution with density:

IG(u, A, u) = u>0,

Au— p)?
2mul P ’

2u2u

then, when ¢ < 0 the density (13) is easily identified as an IG(—n/¢, n?) and inte-
grates to 1, that is, the Brownian path hits the linear boundary »n + ¢t with probabil-
ity 1, as expected. When n¢ > 0, (13) can be written as exp(—2¢n)IG(n/¢, 0%, u),
which means that the Brownian path hits the linear boundary w.p. exp(—2¢n) and
when it does the distribution of the hitting time is just the IG(n/¢, n?). Draws from
the inverse Gaussian distribution can be generated in a very efficient way; see the
algorithm described in [1], Chapter IV. Thus, simulating 7, ; and, via (12), 7, ()
for any values of the involved parameters is straightforward.

We now have all that is needed to carry out the algorithm for the exact simulation
of the hitting time of a horizontal boundary for the solution X of (2). Since it is not
possible to know a priori the length of the path of X we need to construct before
we locate the time instance when X hits the boundary, we merge as many exact
skeletons of X of eligible length 7 as necessary before some intervening BB hits
the boundary.

EXACT SIMULATION OF HITTING TIME
1. SETi=1,y=0.
2. CALL ON THE EXACT ALGORITHM AND GENERATE
Sr{ystin, tin, s tin )
31. IF THE INTERVENING BBS HIT y, SAVE THE FIRST TIME T WHEN
THAT OCCURS.
3. ELSE,SETy=Xr,i=1i+1AND GO TO 2.
4. RETURN (i — )T + .

Assume that N7 is the total number of the uniformly drawn points needed for
finding 7, = inf{r > 0: X; = y} and that N; is the number of these points needed
for accepting a proposed path from (i —1)7 toi7T,i > 1. Let §; be the information
for the obtained exact path of X until the time i T, i > 0. Proposition 6 is true for
any given starting point of the target process, so E[N;|G;_1] < [T - R] for all
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i > 1, for R as defined in Proposition 6. We set 7 := [,/ T']; T is the total number
of the exact skeletons we have to merge before we find 7, . Clearly,

E[N”] =) E[N; -I{r = i}] =) E[E[N; - I{r = i}|§i-1]]
i=1

i=1
=Y E[l{t =i} -EINi|§i—11] < €*[T - R1 ) _Plr = i]
i=1

i=1
<2[T- R}(E[;V] n 1),

where we have used the fact that {r > i} is §;_j-measurable. So the expected
time for the termination of the algorithm, in terms of the uniformly drawn points
needed, is finite when E[7, ] is finite.

6.1. Anapplication. We applied the above Exact Algorithms to the solution X
of the SDE (10) considered in Section 5. We compare the exact draws of our al-
gorithms with the approximate ones of the simple Euler scheme that considers the
continuous time process Y = {Y;};>0, Yo = 0, defined on the instances {i/};>1, for
some chosen increment /4 > 0, via the recursion

Yin = Yi—nyn +sin(Yi—nn)h + Zin,

where Z; ,, i > 1, are i.i.d. draws from the normal distribution with mean 0 and
variance h. The paths of ¥ become continuous after considering the linear inter-
polations between the successive instances of the grid {ih};>1.

On the left of Figure 6, we show a gg-plot comparing two samples each of size
50,000 from the distribution of sz = sup{X;; 0 <t <2} generated by the Exact

] y Euler Exact

° h Times KS T Times
h 24 12s 0
g, P 245 0 025 27s
&) 26 50s 0
1 27 79s 0 0.50 33s
-1 28 174s 0
] 279 327s 0 1.00 3.1s

S 2710 7215 0.013

Exact 211 12525 0.017

2712 24595 0.006

FIG. 6. Results from the simulation of the maximum Méx = sup{X;; 0 <t <2} of the solution
of (10).
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10

Euler Exact
= h Times KS T Times
5] 273 52s 0
5« 276 114s 0 0.25 9.1s

7 223s 0.00001
8 4385 0.00308 0.50 59s
J 84.1s 0.01404
101706 051623 89 5.1s
1134545 0.92642

5
.
5
5
.

Exact

F1G. 7. Similar results to those of Figure 6 for the case of the simulation of min{ty, 10} for
7 =inf{t > 0: X; =2}.

Algorithm and the Euler approximation. For the Euler scheme we used increments
h =272, On the right of the same figure, we show the times in seconds needed to
get 50,000 draws from MZX for the Exact Algorithm and the Euler scheme for dif-
ferent increments /. We have also included the results of a Kolmogorov—Smirnov
test that compares the approximate samples of the Euler scheme with the exact
sample as an indication of how small & has to be for the Euler scheme to give
correct results.

In Figure 7 we present similar results for the case of the simulation of the first
passage time 1 = inf{t > 0: X; = 2}. Actually we tune the algorithm to obtain
draws from the min{t,, 10} since it can be shown that E[12] = 0o so the expected
number of the uniformly drawn points for the completion of the algorithm for
drawing from 17 is infinite.

It is remarkable that in both cases the Exact Algorithm appears much more
efficient than the Euler approximation.

7. Extensions and conclusions. In this paper we have introduced a simple
but computationally effective way of simulating exactly from a family of diffusion
processes. The algorithm outputs a skeleton which can be readily “filled in”” as and
when necessary using simple Gaussian random variables, and crucially indepen-
dently of the diffusion we are attempting to simulate from.

We have not carried out an extensive simulations study. However, in the exam-
ples considered, our method performs very favorably in comparison to the obvi-
ous numerical approximation alternative using the Euler scheme. In Section 4 we
also give results which show that the method can be robust to the length of the
time-series, and computing time is at worst linear in the degree of nonlinearity (as
measured by the range of o> + o).

The convenient form of the output allows the algorithm to be used in a number
of ways including the construction of reduced variance Monte Carlo estimation. In
Section 5 we discuss unbiased estimation of boundary hitting times and diffusion
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maxima. We envisage future application in inference for stochastic processes and
finance.

The most demanding of the Conditions 1-3 (detailed in Section 3.1) required for
the algorithm to work, is that the functional o> 4o’ of the drift be bounded. In most
cases a2+’ is bounded from below but not from above so we can still produce (5)
for some ¢ > 0 and hope for a valid rejection sampling scheme. Ongoing work is
investigating such an approach.

It is worth remarking that the approach outlined in this paper extends routinely
to SDEs for non-Markov processes absolutely continuous with respect to appro-
priate martingales, and our focus on diffusions has been purely for simplicity. Fur-
thermore, it is easy to extend these results some way toward considering jump
diffusions.

APPENDIX

PROOF OF PROPOSITION 1 (Rejection sampling). Note that for any i =
1,2,... we get

PU; = 11= [ Pl = 1% = ylody) = [ fvidy) = [ entay) =s.
Trivially, for any F' € 8 we have the property
(14) PlY; e F1=P[Y; € F, I, =1]+P[Y; € F|I, =0]-P[I; =0].

From the independence among the members of the sequence (Y, I,),>1 itis clear
that

(15) PlY; € F|I; =0]=P[Y; € F].
We can easily find the P[Y; € F, I} = 1] in the following way:

(16) P[Yr e F, 11 =1] Z/FP[Il = 1Y) =ylv(dy) = fF Fvdy) =en(F).
From (14) using (15) and (16) we get
PlY: € Fl=¢eu(F)+ (1 —e)P[Y; € F],
which yields that P[Y; € F] = u(F). U
PROOF OF PROPOSITION 3 (Biased Brownian motion). Choose any F € C.
We will show that Ez[Ir] = Ew[lF f] where we have set

Fl@) = h(Br)v2n T
" exp(—B2/Q2T))’

eC.

Note that f is o (B7)-measurable. From the definition of BM it is clear that
ZIF|o(Br)]=WI[F|o(Br)l=:g(Br)  W-as.
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for some Borel-measurable function g : R — R. Clearly,
EwllF f1=Ew[Ewllr flo (Br)]] = Bw[ fWF|o (Br)]]
3 ] hu)v2rT  exp(—u?/(2T))
— Jrexp(—u?/(2T)) 2T

since w.r.t. W the random variable Br is distributed according to the normal dis-
tribution with mean 0 and variance 7'. It is straightforward that

g(u) du = fR h(u)g () du

EzllF] = Ez[Ezllr|o (Br)]] = fR hu)g(u) du

since under Z we know that By ~ h. It is clear that Ez[lr] = Ew[lr f]. O

PROOF OF THEOREM 1. (i) From (8) it is straightforward that E; C E3 C
-+ C Eopy1 € Eppyp forany n € {0, 1, .. .}. From the definition of (E2,+42)n>0 We
can conclude that £z, = Eopi2 + (Fopt1 — T2n42), 80 Eopy2 © Eop © -+ C En.
Clearly, Eoc+1 € Epp4o forany x, A € {0, 1,...}.

The definition of (I',),>0 implies that for any n > 0 it is true that I, € 'y,
(), T'» is a set of zero probability and I'2,4+2 = E2,+2 — E2y41. Therefore:

(ﬂ E2n+2> - (U E2n+1> =(\(E2nt2 — Eznt1) =[ |Tans2.

Trivially, U, Ean+1 S (), E2n+2 and their difference (), E2n4+2 — U,, E2n+1 has
zero probability.
(i1) Since Ej,41 1 E itis true that

(17) Prob[/ = 1|w] =Prob[E|w] = lim Prob[Es,41|w].
n—oo

Recall that Ey, 1 = 7 _o(Fox — I'ax41). We can now get that

n
Prob[Egy41|w] = ) (Prob[ 'y ] — Prob[ M1 w])
k=0
2n+1

= > (=¥ Prob[Tk|o].
k=0

(18)

From the fact that t = (V,;, W,,),;>1 are i.i.d. and 7, U and w are independent we
conclude that

k
(19) Prob[ [k |w] = Prob[U < %‘a}] [ Prob[¢(By; (@) = W;|w].
: i=1

The Prob[¢ (By,(w)) > W;|w] is the probability that given a path @ ~ Z a point
uniformly selected from the rectangle (0, T) x (0, 1/T) is found below the graph
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{(t, ¢ (Bi(w))):t € [0, T]}. Recall that B; is just the coordinate mapping B; =
w(t), t €0, T]. From (6) and elementary probability theory we get

T
Prob[¢(By, (@) > Wi|w] =/(; ¢ (B (w)) dt.

It is clear that Prob[U < fj|o] = 7, so (19) yields

(T k
(20) Prob[Tk|w] = E{/o ¢ (B (w)) dt} .
Starting from (17) and using (18), (20) we get
2n+1 k k
Prob[/ = I|w] = lim ; (_kl!) {/OT & (B, (w)) dt}
T
=exp{—f0 ¢><B,(w>>dz}. -

PROOF OF PROPOSITION 4. Since 0 < ¢ < T~!, the probability of accepting
an arbitrary path @ ~ Z will be exp{— fOT ¢ (By)dt} > exp(—1).

Recall that T is restricted not to be bigger than some constant Ty (= ﬁ); see
Condition 3 for the definition of k1, k>. To emphasize the involvement of the time
variable in what follows we define p: [0, Ty] x C — [0, 1] with

T
p.o)=exp| - [ o(Binar].
0
From result (ii) of Theorem 1 it is clear that
(21 e(T) = / p(T, w)Z(dw)
c

for all eligible 7. Recall that 0 < ¢ < T~! for any T < Tp. Trivially, p is de-
creasing in T and limy o p(T, w) = 1, both properties being true Z-a.s. The
first property yields, after using (21), that &(T) is decreasing in 7. Also, since
lim,— o p(1/n,w) =1and p(%, w) < p(#, ) for any n > 1 the monotone con-
vergence theorem gives

Jim e(1/m = lim [ p(1/n.0)2d0) = [ | lim p(1/n.0) |26 =1.
From the monotonicity of £(7") we conclude that lim7 o&(T) =1. U

PROOF OF PROPOSITION 6. For the time interval [0, T'], for T = 1/R, the
algorithm uses N1 := N1+ N2+ - - -+ N points, where N; is the number of points
needed to decide about the ith proposed path and J is the number of the proposed
paths until one is accepted, J =1,2,...and i =1,2,..., J. We denote by N the
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expected number of points for deciding (in general) about a path w ~ Z and by
E[N|A] and E[N|A€] the expected number of points for deciding about a path
w ~ Z given that the path is accepted and rejected, respectively. Let & = Prob[A]
be the probability of accepting a path. Then

J-1
E[N7]=E[E[N7|J]] = E[Z E[N;i|J]+ E[NJIJ]]

i=1

=E[(J — 1) - E[N|A°] + E[N|A]] = (1/& — DE[N|A] + E[N|A]
1

= - -E[N].
&

From Proposition 4 we have that 1/¢ < e and from Proposition 5 that E[N] < e,
so E[N7] < e2. The same result can be obtained for any [/ - R] skeletons of length
T = 1/R (or less, for the case of the last skeleton when 1/R does not divide /) that
will merge to construct the complete skeleton of length /. [
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