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EXPLOSION PHENOMENA IN STOCHASTIC
COAGULATION–FRAGMENTATION MODELS

BY WOLFGANG WAGNER

Weierstrass Institute for Applied Analysis and Stochastics

First we establish explosion criteria for jump processes with an arbitrary
locally compact separable metric state space. Then these results are applied
to two stochastic coagulation–fragmentation models—the direct simulation
model and the mass flow model. In the pure coagulation case, there is
almost sure explosion in the mass flow model for arbitrary homogeneous
coagulation kernels with exponent bigger than 1. In the case of pure multiple
fragmentation with a continuous size space, explosion occurs in both models
provided the total fragmentation rate grows sufficiently fast at zero. However,
an example shows that the explosion properties of both models are not
equivalent.

1. Introduction. Coagulation–fragmentation models are used in different
application fields ranging from chemical engineering (reacting polymers, soot
formation) or aerosol technology to astrophysics (formation of stars and planets).
These models describe the behavior of a system of particles that are characterized
by their sizes and move in a certain medium. The size of a particle changes either
by coagulation (merging with another particle) or by fragmentation (breakage,
splitting into pieces). We refer to the survey paper [1] for more details and
references.

Deterministic coagulation–fragmentation models are nonlinear evolution equa-
tions governing the macroscopic behavior of the particle system. In the case of a
discrete size variable and spatial homogeneity, the coagulation equation takes the
form

∂

∂t
c(t, x) = 1

2

x−1∑
y=1

K(x − y, y)c(t, x − y)c(t, y)

(1.1)

−
∞∑

y=1

K(x, y)c(t, x)c(t, y),

where t ≥ 0 andx = 1,2, . . . . Equation (1.1) goes back to Smoluchowski [29]
and describes the time evolution of the particle number density (relative number of
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particles of a given size). The coagulation kernelK is determined by the physics
of the driving medium. It was observed that a certain kind of phase transition
occurs whenK grows sufficiently fast in its arguments. This phenomenon is
called gelation and corresponds to a loss of mass in the macroscopic equation.
The gelation point is defined as

tgel = inf{t ≥ 0 :m1(t) < m1(0)} wherem1(t) =
∞∑

x=1

xc(t, x).(1.2)

Gelation is interpreted as the formation of infinitely large clusters in finite time.
The presence of such clusters is not reflected in (1.1).

Stochastic coagulation models go back to [14, 20, 22]. They are based on
systems of particles

x
(n)
i (t), i = 1, . . . ,N(n)(t), N(n)(0) = n,(1.3)

which coagulate according to appropriate rates determined by the kernelK. These
systems approximate the solution of the coagulation equation (1.1) in the sense

∞∑
x=1

ϕ(x)c(t, x) = lim
n→∞

1

n

N(n)(t)∑
i=1

ϕ
(
x

(n)
i (t)

)
, t ≥ 0,(1.4)

for appropriate test functionsϕ (sequences in the discrete case). We refer
to [8, 16, 26, 27] concerning rigorous results. An alternative stochastic coagulation
model is related to the mass flow equation

∂

∂t
c̃(t, x) =

x−1∑
y=1

K(x − y, y)

y
c̃(t, x − y)c̃(t, y)

(1.5)

−
∞∑

y=1

K(x, y)

y
c̃(t, x)c̃(t, y),

wherec̃(t, x) = xc(t, x). Equation (1.5) describes the time evolution of the particle
mass density (relative mass of particles of a given size). A corresponding mass flow
process is represented by a system of particles

x̃
(n)
i (t), i = 1, . . . , Ñ (n)(t), Ñ (n)(0) = n,(1.6)

with an appropriately modified evolution rule so that the solution to equation (1.5)
is approximated. Due to the equivalence of the equations, the mass flow model
provides an alternative approximation to the solution of the original coagulation
equation (1.1), namely,

∞∑
x=1

ϕ(x)c(t, x) =
∞∑

x=1

ϕ(x)

x
c̃(t, x)

(1.7)

= lim
n→∞

1

n

Ñ(n)(t)∑
i=1

ϕ(x̃
(n)
i (t))

x̃
(n)
i

, t ≥ 0.
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We refer to [9] concerning a rigorous proof. A time-discrete version of the mass
flow process was introduced and studied in [2].

In the direct simulation model (1.3), the mass of the system is conserved so
that (1.4) implies

∞∑
x=1

xc(t, x) ∼ 1

n

N(n)(t)∑
i=1

x
(n)
i (t) = 1

n

n∑
i=1

x
(n)
i (0), t ≥ 0.

Thus, there is no way to approximate the gelation point following the defini-
tion (1.2). Instead, the gelation effect is related to the formation of a very big
cluster (order of the whole system) in finite time. In the mass flow model (1.6), the
situation is different. According to (1.7), one obtains

∞∑
x=1

xc(t, x) ∼ Ñ (n)(t)

n
, t ≥ 0,

that is, the mass of the solution to equation (1.1) is approximated by the normalized
number of particles in the mass flow system. Since the particles grow, there is
a chance that their number drops due to some explosion phenomenon (infinitely
many jumps in finite time). It was conjectured in [9] that, in case of gelling
kernels, the mass flow process explodes and that the gelation time (1.2) is the limit
(asn → ∞) of the (random) explosion times of the approximating finite particle
systems.

The paper contains three main results.First some rather general explosion
criteria for pure jump processes are obtained. Using ideas from [18, 19], previously
known results for one-dimensional processes are generalized to processes with a
locally compact state space. This allows one to treat many stochastic coagulation–
fragmentation models.Second we prove that the mass flow process explodes
almost surely for a very wide class of gelling kernels in the case of pure
coagulation. This result confirms the first part of the conjecture mentioned above.
Its simple proof illustrates the usefulness of the general explosion criteria.Third
we study the case of pure multiple fragmentation for a continuous size space.
Applying the general criteria, we prove explosion results for both the direct
simulation model and the mass flow model, when the fragmentation rate at
zero grows sufficiently fast. These results correspond to another kind of phase
transition—a loss of mass to zero (while gelation corresponds to a loss of
mass to infinity). This phenomenon was studied a long time ago in [12] and
named “transformation into dust.” Later it was called “shattering” in the physical
literature [23, 30].

The paper is organized as follows. In Section 2 we introduce the minimal jump
process with an arbitrary locally compact separable metric state space and prove
several sufficient criteria for explosion of this process. We give some examples
and reproduce the previously known conditions for the one-dimensional case. In
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Section 3 we define the direct simulation model and the mass flow model. These
models are extended to include both coagulation and multiple fragmentation, as
well as source and efflux terms, which are important in many applications. The
relation of the stochastic models to the corresponding macroscopic equations is
sketched heuristically, referring to convergence results available in the literature.
In Section 4 we apply the explosion criteria from Section 2 to the stochastic
coagulation–fragmentation models introduced in Section 3. First we consider
the direct simulation model and prove a simple nonexplosion criterion in the
general case, as well as an explosion result in the pure fragmentation case. Then
we consider the mass flow model. In the pure coagulation case, we prove that
there is almost sure explosion for arbitrary homogeneous coagulation kernels
with exponent bigger than 1. Finally, we derive an explosion result in the pure
fragmentation case and show that the explosion properties of both models are not
equivalent. Section 5 contains some concluding remarks.

2. Explosion criteria for jump processes.

2.1. The minimal jump process. Let E andE′ be separable metric spaces. The
sets of measurable and continuous functions onE are denoted byM(E) andC(E),
respectively. Furthermore,Mb(E) and P (E) are the sets of bounded Borel
measures and of probability measures on the Borel-σ -algebraB(E). Finally, let
1B denote the indicator function of a setB, andδξ be the Dirac measure onξ ∈ E.

A kernel fromE to E′ (on E if E = E′) is a functionq :E × B(E′) → [0,∞)

such that

q(·,B) ∈ M(E) ∀B ∈ B(E′) and q(ξ, ·) ∈ Mb(E
′) ∀ ξ ∈ E.

A kernelq is called compactly bounded if

sup
ξ∈C

q(ξ,E′) < ∞ for any compactC ⊂ E.

Let q be a compactly bounded kernel on a locally compact separable metric
spaceE. Let ζ0, ζ1, . . . be a Markov chain inE with initial distributionν0 ∈ P (E)

and transition functionp :E × B(E) → [0,1] defined by

p(ξ,B) =



q(ξ,B)

λ(ξ)
:λ(ξ) > 0,

1B(ξ) :λ(ξ) = 0,

(2.1)

where

λ(ξ) = q(ξ,E), ξ ∈ E.(2.2)

Let T0, T1, . . . be independent and exponentially distributed random variables with
mean 1 that are also independent of(ζk), all defined on some probability space
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(	,F ,P). Introduce the jump times

τ0 = 0, τl =
l−1∑
k=0

Tk

λ(ζk)
, l = 1,2, . . . ,

whereTk/0 := ∞, and the explosion time

τ∞ = lim
l→∞ τl =

∞∑
k=0

Tk

λ(ζk)
.(2.3)

The minimal jump process, corresponding to the kernelq and the initial
distributionν0, is defined as (cf. [11], page 263 and [25], page 69)

ζ�(t) =
{

ζl : τl ≤ t < τl+1,

� : t ≥ τ∞,
t ≥ 0,(2.4)

where� /∈ E determines the one-point compactification ofE (cf. [3], page 205).
The process is calledregular, if

P(τ∞ = ∞) = 1.(2.5)

Otherwise, the process is calledexplosive. Concerning the history of the subject
we refer to [6], Prologue.

Regularity and explosion of the minimal jump process can be studied using the
properties (cf. [25], page 71)

∞∑
k=0

1

ak

< ∞ 
⇒ P

( ∞∑
k=0

Tk

ak

< ∞
)

= 1(2.6)

and
∞∑

k=0

1

ak

= ∞ 
⇒ P

( ∞∑
k=0

Tk

ak

= ∞
)

= 1,(2.7)

for any nonnegative sequence(ak). The independence of(Tk) and(ζk) allows one
to conclude from (2.6) and (2.7) that [cf. (2.3)]

P

(
τ∞ < ∞

∣∣∣ ∞∑
k=0

1

λ(ζk)
= ∞

)
= P

(
τ∞ = ∞

∣∣∣ ∞∑
k=0

1

λ(ζk)
< ∞

)
= 0,

which implies

{τ∞ < ∞} =
{ ∞∑

k=0

1

λ(ζk)
< ∞

}
almost surely.

In particular, a necessary and sufficient condition for regularity (2.5) is (cf. [5],
page 337)

P

( ∞∑
k=0

1

λ(ζk)
= ∞

)
= 1.



2086 W. WAGNER

Correspondingly, the process is explosive if and only if

P

( ∞∑
k=0

1

λ(ζk)
< ∞

)
> 0.(2.8)

Note that boundedness of the waiting time parameterλ implies regularity, and
that

∞∑
k=0

1

λ(ζk)
< ∞ 
⇒ lim

k→∞ ζk = �.(2.9)

Thus, a necessary condition for explosion is

P

(
lim

k→∞ ζk = �

)
> 0.(2.10)

2.2. Explosion criteria. First we formulate a general result concerning explo-
sion of the minimal jump process defined in the previous section.

THEOREM 2.1. Let q be a compactly bounded kernel on a locally compact
separable metric space E and (ζk) be the corresponding Markov chain [cf. (2.1)
and (2.2)]. Consider the sets

Eε(η) =
{
ξ ∈ E :

∫
E
[η(ξ1) − η(ξ)]q(ξ, dξ1) ≥ ε

}
(2.11)

and

	ε(η) = {ω ∈ 	 : ζk(ω) ∈ Eε(η), ∀ k ≥ k̄(ω), for some k̄(ω)},(2.12)

where η is a bounded measurable function on E and ε ≥ 0. Then
∞∑

k=0

1

λ(ζk)
< ∞ a.s. on 	ε(η), ∀ ε > 0,(2.13)

that is, the minimal jump process, corresponding to the kernel q, explodes almost
surely on the set of all trajectories staying in Eε(η) for sufficiently large k and
some ε > 0.

REMARK 2.2. According to Theorem 2.1, a sufficient condition for explosion
is the existence of some bounded measurable functionη such that

P
(
	ε(η)

)
> 0 for someε > 0.(2.14)

It follows from (2.9) and (2.13) that

lim
k→∞ ζk = � a.s. on	ε(η), ∀ ε > 0.

Thus, condition (2.14) puts some restriction on the possible structure of the
set (2.11). In particular, this set can not be contained in any compact.



EXPLOSION PHENOMENA 2087

Before proving Theorem 2.1, we derive several corollaries providing sufficient
conditions for explosion.

COROLLARY 2.3. Suppose that∫
E
[η(ξ1) − η(ξ)]q(ξ, dξ1) ≥ ε ∀ ξ ∈ E+,(2.15)

for some bounded measurable function η, some subset E+ ⊂ E and some ε > 0.

Then
∞∑

k=0

1

λ(ζk)
< ∞ a.s. on {ζk ∈ E+, ∀ k},

that is, the minimal jump process explodes almost surely on the set of all
trajectories living in E+.

PROOF. Assumption (2.15) impliesE+ ⊂ Eε(η) and{ζk ∈ E+, ∀ k} ⊂ 	ε(η)

so that the assertion follows from (2.13).�

A particularly simple criterion for explosion is obtained in the caseE+ = E.

COROLLARY 2.4. Suppose there exists some bounded measurable function η

such that ∫
E
[η(ξ1) − η(ξ)]q(ξ, dξ1) ≥ ε ∀ ξ ∈ E,(2.16)

for some ε > 0. Then

P

( ∞∑
k=0

1

λ(ζk)
< ∞

)
= 1,

that is, the minimal jump process explodes almost surely, for any initial distribu-
tion.

REMARK 2.5. Under the assumptions of Corollary 2.4, it follows from (2.9)
that

P

(
lim

k→∞ ζk = �

)
= 1.

COROLLARY 2.6. Suppose there exists a bounded measurable function η such
that ∫

E
[η(ξ1) − η(ξ)]q(ξ, dξ1) ≥ ε ∀ ξ /∈ C,(2.17)
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for some compact C ⊂ E and some ε > 0. Then

∞∑
k=0

1

λ(ζk)
< ∞ a.s. on

{
lim

k→∞ ζk = �

}
,(2.18)

that is, the minimal jump process explodes almost surely on the set of all
trajectories tending to the compactification point.

PROOF. Assumption (2.17) impliesE \ C ⊂ Eε(η) and{limk→∞ ζk = �} ⊂
	ε(η) so that the assertion follows from (2.13).�

REMARK 2.7. Under the assumptions of Corollary 2.6, it follows from (2.9)
and (2.18) that { ∞∑

k=0

1

λ(ζk)
< ∞

}
=

{
lim

k→∞ ζk = �

}
a.s.

so that the necessary condition (2.10) is also sufficient for explosion of the minimal
jump process. Note that trajectories may stay in the compact setC forever.

The proof of Theorem 2.1 is prepared by the following lemma.

LEMMA 2.8. Let η be a bounded measurable function on E. Then

∃
∞∑

k=0

[
E

(
η(ζk+1)|ζk

) − η(ζk)
]

finite a.s. on 	0(η),

that is, the infinite sum is finite for almost all ω ∈ 	0(η) [cf. (2.12)].

PROOF. The sequence

Wn =
n−1∑
k=0

[
E

(
η(ζk+1)|ζk

) − η(ζk)
] − η(ζn), n ≥ 1,W0 = −η(ζ0),(2.19)

is a martingale with respect to the filtration of(ζk). Representing it in the form

Wn = ∑
k=0,...,n−1 : ζk∈E0(η)

[
E

(
η(ζk+1)|ζk

) − η(ζk)
]

(2.20)
+ ∑

k=0,...,n−1 : ζk /∈E0(η)

[
E

(
η(ζk+1)|ζk

) − η(ζk)
] − η(ζn)

and introducing the sequence of stopping times

σN = inf{k > σN−1 : ζk /∈ E0(η)}, N ≥ 2,

σ1 = inf{k ≥ 0 :ζk /∈ E0(η)},
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one concludes that

Wmin(n,σN ) ≥ − sup
ξ∈E

|η(ξ)|[2#{k = 0, . . . ,min(n, σN) − 1 :ζk /∈ E0(η)} + 1]

≥ −(2N − 1) sup
ξ∈E

|η(ξ)| ∀n,N ≥ 1.

Since the stopped processWmin(n,σN ) is a martingale and bounded from below, it
has a.s. finite limits (cf., e.g., [28], Sections II.49 and 57), that is,

P

(
∃ lim

n→∞Wmin(n,σN ) finite
)

= 1 ∀N.

Consequently, one obtains

∃ lim
n→∞Wn finite a.s. on{σN = ∞} ∀N.(2.21)

Note that the first sum at the right-hand side of (2.20) increases, while the second
sum has at mostN − 1 elements (ifσN = ∞) and the last term is bounded. Thus,
(2.21) implies

∃ lim
n→∞η(ζn) finite a.s. on{σN = ∞} ∀N.(2.22)

Finally, one concludes from (2.19), (2.21) and (2.22) that

∃
∞∑

k=0

[
E

(
η(ζk+1)|ζk

) − η(ζk)
]

finite a.s. on{σN = ∞} ∀N,

and the assertion follows from the fact that	0(η) = ⋃
N {σN = ∞}. �

PROOF OFTHEOREM 2.1. Note that∫
E
[η(ξ1) − η(ξ)]q(ξ, dξ1) = λ(ξ)

[
E

(
η(ζk+1)|ζk = ξ

) − η(ξ)
]

and

1

λ(ζk)
≤ 1

ε

[
E

(
η(ζk+1)|ζk

) − η(ζk)
]

if ζk ∈ Eε(η).

Since

∞∑
k=0

1

λ(ζk)
≤

k̄−1∑
k=0

1

λ(ζk)
+ 1

ε

∞∑
k=k̄

[
E

(
η(ζk+1)|ζk

) − η(ζk)
]

on	ε(η),

the assertion follows from Lemma 2.8.�
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2.3. Examples.

EXAMPLE 2.9. Consider the case

E = {1,2, . . . }, q(ξ, dξ1) = λ(ξ)δξ+1(dξ1), ζ0 = 1.

The trajectory of the Markov chain is deterministic,ζk = k + 1, k ≥ 0, and the
necessary and sufficient condition for explosion (2.8) takes the form

∞∑
k=1

1

λ(k)
< ∞.(2.23)

First we show that the sufficient condition (2.16) of Corollary 2.4 can always be
satisfied. Indeed, choosing the function

η(ξ) =
ξ−1∑
k=1

1

λ(k)
, ξ ≥ 2, η(1) = 0,

which is bounded if (2.23) holds, one obtains

[η(ξ + 1) − η(ξ)]λ(ξ) = 1 ∀ ξ ∈ E.

Furthermore, forλ(ξ) = ξ and any strictly increasing bounded functionη, this
example illustrates that the condition∫

E
[η(ξ1) − η(ξ)]q(ξ, dξ1) > 0 ∀ ξ ∈ E,

instead of (2.16), would not be sufficient. Finally, forη(ξ) = ξ and constant
λ(ξ), this example illustrates that condition (2.16) for unboundedη would not
be sufficient.

EXAMPLE 2.10. Consider the one-dimensional caseE = [1,∞) and the
bounded measurable function

η(ξ) = −ξ−α, ξ ∈ E for someα > 0.

Condition (2.17) takes the form

λ(ξ)ξ−α
E

(
1−

(
ξ

ζ1

)α∣∣∣ζ0 = ξ

)
≥ ε for sufficiently largeξ.(2.24)

With the notation

n−α(ξ) = E

(
1−

(
ξ

ζ1

)α∣∣∣ζ0 = ξ

)
and f (ξ) = εξα+1,

condition (2.24) transforms into

λ(ξ)ξn−α(ξ) ≥ f (ξ) for sufficiently largeξ,

so that the result of [18], Theorem 3 is basically reproduced by Corollary 2.6.



EXPLOSION PHENOMENA 2091

3. Deterministic and stochastic coagulation–fragmentation models. In
this section we introduce two stochastic coagulation–fragmentation models that
are covered by the framework of Section 2. Explosion phenomena in these models
will be studied in Section 4.

The two models are related to each other in the sense of (1.4) and (1.7). In order
to demonstrate this, we let them depend on a parametern = 1,2, . . . and illustrate
heuristically their relation (whenn → ∞) to corresponding macroscopic equations
of the type (1.1) and (1.5). Rigorous convergence results and more references can
be found, for example, in [10]. The treatment of the macroscopic equations in the
general setting (including coagulation, multiple fragmentation, source and efflux
terms) is of independent interest, since many equations known from the literature
(weak and strong, discrete and continuous) are covered in a unified way.

We consider stochastic processes with the state space

E(n) =
{

1

n

N∑
i=1

δxi
:N ≥ 0, xi ∈ X, i = 1, . . . ,N

}
,(3.1)

whereX is a locally compact separable metric space. A stateξ ∈ E(n) is interpreted
as a system of particles with types fromX and weights1

n
. Standard examples are

X = {1,2, . . . } or X = (0,∞),(3.2)

corresponding to discrete and continuous particles sizes, respectively. However,
many of the constructions of this section are valid in the general setup, which
allows one to cover particles consisting of several species, and other cases of
practical interest.

REMARK 3.1. The spaceE(n), endowed with an appropriate metric of weak
convergence, is locally compact and separable (cf. Remark 2.10 and Lemma 5.1
in [10]). Note thatξk → � in E(n) if either Nk → ∞ or xk,i → �X for somei,

where�X denotes the compactification point ofX.

3.1. The direct simulation model. Consider the kernel

q(n)(ξ,B)

= n

∫
X

1B

(
JS(ξ, x)

)
S(dx)

(3.3)
+

N∑
i=1

1B

(
Je(ξ, i)

)
e(xi) +

N∑
i=1

∫
Z

1B

(
JF (ξ, i, z)

)
F(xi, dz)

+ 1

2n

∑
1≤i 
=j≤N

1B

(
JK(ξ, i, j)

)
K(xi, xj ), ξ ∈ E(n), B ∈ B

(
E(n)),
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with the jump transformations

JS(ξ, x) = ξ + 1

n
δx,

Je(ξ, i) = ξ − 1

n
δxi

,

(3.4)

JF (ξ, i, z) = ξ − 1

n
δxi

+ 1

n

[
δz1 + · · · + δzk

]
,

JK(ξ, i, j) = ξ − 1

n

[
δxi

+ δxj

] + 1

n
δxi+xj

.

Here S ∈ Mb(X) is some source measure. The nonnegative functione ∈ C(X)

denotes the efflux intensity. The compactly bounded fragmentation kernelF

from X to

Z =
∞⋃

k=2

Xk(3.5)

is assumed to satisfy the mass conservation property

F
(
x,Z \ Z(x)

) = 0 ∀x ∈ X,(3.6)

whereZ(x) = {z ∈ Z : z1+· · ·+zk = x}. The nonnegative functionK ∈ C(X×X)

denotes the coagulation kernel. Under the above assumptions, the kernel (3.3)
is compactly bounded (cf. [10], Lemma 5.1). The corresponding minimal jump
process is calleddirect simulation process.

Note that

λ(n)(ξ) = q(n)(ξ,E(n))
= n

[
S(X) +

∫
X

e(x)ξ(dx)(3.7)

+
∫
X

F(x,Z)ξ(dx) + 1

2n2

∑
1≤i 
=j≤N

K(xi, xj )

]

and ∫
E(n)

[∫
X

ϕ(x)ξ1(dx) −
∫
X

ϕ(x)ξ(dx)

]
q(n)(ξ, dξ1)

=
∫
X

ϕ(x)S(dx) −
∫
X

ϕ(x)e(x)ξ(dx)

(3.8)
+

∫
X

∫
Z
[ϕ(z1) + · · · + ϕ(zk) − ϕ(x)]F(x, dz)ξ(dx)

+ 1

2n2

∑
1≤i 
=j≤N

[ϕ(xi + xj ) − ϕ(xi) − ϕ(xj )]K(xi, xj ),
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for any ξ ∈ E(n) and appropriate test functionsϕ. Dynkin’s formula and (3.8)
suggest that the direct simulation process corresponds (forn → ∞) to the
macroscopiccoagulation–fragmentation equation

d

dt

∫
X

ϕ(x)µ(t, dx)

=
∫
X

ϕ(x)S(dx) −
∫
X

ϕ(x)e(x)µ(t, dx)

+
∫
X

∫
Z
[ϕ(z1) + · · · + ϕ(zk) − ϕ(x)]F(x, dz)µ(t, dx)(3.9)

+ 1

2

∫
X

∫
X
[ϕ(x + y) − ϕ(x) − ϕ(y)]
× K(x, y)µ(t, dx)µ(t, dy), t > 0,

with the initial conditionµ(0, dx) = µ0(dx), whereµ0 is the limit of the initial
state of the process.

Let F (k) denote the restrictions of the fragmentation kernelF to the setsXk

[cf. (3.5)]. Define thesymmetrized fragmentation kernel Fsym by its corresponding
restrictions

F (k)
sym(x, dz1, . . . , dzk)

(3.10) = 1

k!
∑
π

F (k)(x, dzπ(1), . . . , dzπ(k)

)
, k = 2,3, . . . ,

where the sum is taken over all permutations of{1, . . . , k}. Introduce the
1-marginals of the kernels (3.10)

F (k|1)
sym (x, dy) = F (k)

sym(x, dy,X, . . . ,X)(3.11)

and the kernel

F (1)
sym(x, dy) =

∞∑
k=2

kF (k|1)
sym (x, dy).(3.12)

Then one obtains∫
Z
[ϕ(z1) + · · · + ϕ(zk)]F(x, dz)

=
∞∑

k=2

∫
Xk

[ϕ(z1) + · · · + ϕ(zk)]F (k)
sym(x, dz1, . . . , dzk)(3.13)

=
∞∑

k=2

k

∫
X

ϕ(y)F (k|1)
sym (x, dy) =

∫
X

ϕ(y)F (1)
sym(x, dy).
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Using thesymmetrized coagulation kernel

Ksym(x, y) = 1
2[K(x, y) + K(y, x)],(3.14)

one obtains

1
2

∫
X

∫
X
[ϕ(x + y) − ϕ(x) − ϕ(y)]K(x, y)µ(t, dx)µ(t, dy)

= 1
2

∫
X

∫
X
[ϕ(x + y) − ϕ(x) − ϕ(y)]Ksym(x, y)µ(t, dx)µ(t, dy)(3.15)

=
∫
X

∫
X

[1
2ϕ(x + y) − ϕ(x)

]
Ksym(x, y)µ(t, dx)µ(t, dy).

REMARK 3.2. According to (3.13) and (3.15), the macroscopic equation (3.9)
does not change if the fragmentation and coagulation kernels of the direct
simulation process are replaced by their symmetrizations.

Preparing the transition from (3.9) to an equation for the densities

µ(t, dx) = c(t, x) dx,

we assume in the continuous caseX = (0,∞) that

S(dx) = s(x) dx(3.16)

and [cf. (3.12)]

F (1)
sym(x, dy) = f (1)

sym(x, y) dy.(3.17)

Note the identity∫ ∞
0

∫ ∞
0

ψ(x, y) dy dx =
∫ ∞

0

∫ x

0
ψ(x − y, y) dy dx,(3.18)

where ψ is an appropriate test function. Using (3.13), (3.15) and (3.18), one
obtains thecontinuous coagulation–fragmentation equation with source and efflux
terms

∂

∂t
c(t, x) = s(x) − e(x)c(t, x)

+
∫ ∞

0
f (1)

sym(x + y, x)c(t, x + y)dy − c(t, x)F (x,Z)

(3.19)

+ 1

2

∫ x

0
Ksym(x − y, y)c(t, x − y)c(t, y) dy

−
∫ ∞

0
Ksym(x, y)c(t, x)c(t, y) dy.

In the discrete caseX = {1,2, . . . }, an equation analogous to (3.19) is obtained,
with integrals replaced by sums.
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REMARK 3.3. According to (3.13), the kernel (3.12) can be expressed in the
form

F (1)
sym(x, dy) =

∫
Z

[
δz1(dy) + · · · + δzk

(dy)
]
F(x, dz).(3.20)

Thus, the quantity

1

F(x,Z)
F (1)

sym
(
x, (0, y)

) = Ex

k∑
i=1

1(0,y)(zi) = Ex

∑
i : zi<y

1

represents the average number of fragments with size less thany, resulting from
the fragmentation of a particle of sizex. In particular, the average number of
fragments is expressed as

1

F(x,Z)
F (1)

sym(x,X).(3.21)

Note thatF (1)
sym(x, [ε, x)) < ∞,∀ ε ∈ (0, x), due to mass conservation (3.6). Thus,

for test functionsϕ with compact support, the corresponding term in (3.9) is finite
even if the average number of fragments is infinite. Finally, we mention that mass
conservation implies

xF (k)(x,Xk) =
∫
Xk

(z1 + · · · + zk)F
(k)(x, dz1, . . . , dzk) = k

∫
X

yF (k|1)
sym (x, dy)

and

F(x,Z) = 1

x

∫
X

yF (1)
sym(x, dy).(3.22)

EXAMPLE 3.4. Consider thebinary fragmentation case

F(x, dz) = F (2)(x, dz1, dz2) = 1
2F (1)(x, dz1)δx−z1(dz2),(3.23)

whereF (1) is a kernel onX such that

F (1)(x,X \ (0, x)
) = 0 ∀x ∈ X.

One obtains [cf. (3.10)–(3.12)]

F (2)
sym(x, dz1, dz2) = 1

4

[
F (1)(x, dz1)δx−z1(dz2) + F (1)(x, dz2)δx−z2(dz1)

]
so that

F (2|1)
sym (x, dy) = 1

4

[
F (1)(x, dy) +

∫
X

F (1)(x, dx1)δx−x1(dy)

]

and

F (1)
sym(x, dy) = 1

2

[
F (1)(x, dy) +

∫
X

F (1)(x, dx1)δx−x1(dy)

]
.(3.24)
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Assuming

F (1)(x, dy) = 1(0,x)(y)f (1)(x, y) dy,

one obtains from (3.17) and (3.24) that

f (1)
sym(x, y) = 1

2

[
f (1)(x, y) + f (1)(x, x − y)

]
.

Since

F(x,Z) = 1
2

∫ x

0
f (1)(x, y) dy = 1

2

∫ x

0
f (1)

sym(x, y) dy,

the fragmentation term in (3.19) takes the usual form. Note that (3.22) implies

1

2
F (1)(x,X) = 1

x

∫
X

yF (1)
sym(x, dy) ∀x ∈ X.

3.2. The mass flow model. The solutionµ(t, dx) of equation (3.9) represents
the flow of concentration in the size spaceX. Since the total mass of the system is
determined as

∫
X xµ(t, dx), we call the function

µ̃(t, dx) = xµ(t, dx), t ≥ 0,

the mass flow. Considering test functions of the formϕ(x) = xψ(x), one obtains
[cf. (3.9) and (3.13)]∫

X

∫
X

yψ(y)F (1)
sym(x, dy)µ(t, dx) =

∫
X

∫
X

ψ(y)F̃ (x, dy)µ̃(t, dx),

where

F̃ (x, dy) = y

x
F (1)

sym(x, dy),(3.25)

and [cf. (3.15)]∫
X

∫
X

[
1

2
(x + y)ψ(x + y) − xψ(x)

]
Ksym(x, y)µ(t, dx)µ(t, dy)

=
∫
X

∫
X
[xψ(x + y) − xψ(x)]Ksym(x, y)µ(t, dx)µ(t, dy)

=
∫
X

∫
X
[ψ(x + y) − ψ(x)]Ksym(x, y)

y
µ̃(t, dx)µ̃(t, dy).

Since, according to (3.22),

F̃ (x,X) = F(x,Z),(3.26)
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equation (3.9) takes the form of themass flow equation

d

dt

∫
X

ψ(x)µ̃(t, dx)

=
∫
X

ψ(x)xS(dx)

(3.27)
−

∫
X

ψ(x)e(x)µ̃(t, dx) +
∫
X

∫
X
[ψ(y) − ψ(x)]F̃ (x, dy)µ̃(t, dx)

+
∫
X

∫
X
[ψ(x + y) − ψ(x)]Ksym(x, y)

y
µ̃(t, dy)µ̃(t, dx), t > 0,

for appropriate test functionsψ and some initial condition.
In the continuous caseX = (0,∞), we assume (3.16) and (3.17). It follows

from (3.25) thatF̃ (x, dy) = f̃ (x, y) dy, where

f̃ (x, y) = y

x
f (1)

sym(x, y).

Using (3.18), one obtains from (3.27) an equation for the densities

µ̃(t, dx) = c̃(t, x) dx,

namely, thecontinuous mass flow equation with source and efflux terms

∂

∂t
c̃(t, x) = xs(x) − e(x)c̃(t, x)

+
∫ x

0

Ksym(x − y, y)

y
c̃(t, x − y)c̃(t, y) dy

−
∫ ∞

0

Ksym(x, y)

y
c̃(t, x)c̃(t, y) dy

+
∫ ∞

0
f̃ (x + y, x)c̃(t, x + y)dy −

∫ x

0
f̃ (x, y)c̃(t, x) dy.

This equation is equivalent to (3.19).
We assume ∫

X
xS(dx) < ∞(3.28)

and introduce the modified kernel [cf. (3.3)]

q̃(n)(ξ,B) = n

∫
X

1B

(
JS(ξ, x)

)
xS(dx)

+
N∑

i=1

1B

(
Je(ξ, i)

)
e(xi) +

N∑
i=1

∫
X

1B

(
J̃F (ξ, i, y)

)
F̃ (xi, dy)(3.29)

+ 1

n

N∑
i,j=1

1B

(
J̃K(ξ, i, j)

)Ksym(xi, xj )

xj

, B ∈ B
(
E(n)),
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with the modified jump transformations [cf. (3.4)]

J̃F (ξ, i, y) = ξ − 1

n
δxi

+ 1

n
δy,

(3.30)

J̃K(ξ, i, j) = ξ − 1

n
δxi

+ 1

n
δxi+xj

.

The minimal jump process, corresponding to the kernel (3.29), is calledmass flow
process.

Following (3.20), the mass flow fragmentation kernel (3.25) can be represented
in the form

F̃ (x, dy) =
∫
Z

[
z1

x
δz1(dy) + · · · + zk

x
δzk

(dy)

]
F(x, dz).(3.31)

Since the total fragmentation rate does not change [cf. (3.26)], the “fragment”
(next state) in the mass flow process is chosen as follows: first fragmentsz1, . . . , zk

are generated according to the normalized direct simulation fragmentation kernel
F(x, dz); then one of them is chosen with probabilities proportional to their
individual masses.

Note that [cf. (3.7), (3.8) and (3.28)–(3.30)]

λ̃(n)(ξ) = q̃(n)(ξ,E(n))
= n

[∫
X

xS(dx) +
∫
X

e(x)ξ(dx)(3.32)

+
∫
X

F̃ (x,X)ξ(dx) +
∫
X

∫
X

Ksym(x, y)

y
ξ(dx)ξ(dy)

]

and ∫
E(n)

[∫
X

ψ(x)ξ1(dx) −
∫
X

ψ(x)ξ(dx)

]
q̃(n)(ξ, dξ1)

=
∫
X

ψ(x)xS(dx) −
∫
X

ψ(x)e(x)ξ(dx)

(3.33)
+

∫
X

∫
X
[ψ(y) − ψ(x)]F̃ (x, dy)ξ(dx)

+
∫
X

∫
X
[ψ(x + y) − ψ(x)]Ksym(x, y)

y
ξ(dx)ξ(dy),

for anyξ ∈ E(n) and appropriate test functionsψ. The corresponding macroscopic
equation (obtained forn → ∞) is (3.27).

3.3. Comments. The study of the coagulation–fragmentation equation (3.19)
(with s = e = 0 and binary fragmentation) goes back to [24].
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In the pure fragmentation caseS = 0, e = 0,K = 0, the mass flow equa-
tion (3.27) with test functionsψ(y) = 1(0,x)(y) implies

∂

∂t
µ̃

(
t, (0, x)

) =
∫
X

∫
X

[
1(0,x)(y1) − 1(0,x)(y)

]
F̃ (y, dy1)µ̃(t, dy)

=
∫ ∞
x

∫ x

0
F̃ (y, dy1)µ̃(t, dy)(3.34)

=
∫ ∞
x

F̃
(
y, (0, x)

)
dyµ̃

(
t, (0, y)

)
.

According to (3.31), one obtains

F̃
(
y, (0, x)

) =
∫
Z

[
z1

y
δz1

(
(0, x)

) + · · · + zk

y
δzk

(
(0, x)

)]
F(y, dz)

= F(y,Z)Ey

[
1

y

∑
i : zi<x

zi

]

so that equation (3.34) is identical with equation (2) in [12]. Note thatµ̃(t, (0, x))

is the average sum of masses of particles of mass smaller thanx at time t. Since
[cf. (3.26)]

Ey

[
1

y

∑
i : zi<x

zi

]
= F̃ (y, (0, x))

F̃ (y,X)
,(3.35)

the one-dimensional Markov process introduced in [12], page 279, is just the mass
flow process.

4. Explosion in stochastic coagulation–fragmentation models. Here we
apply the criteria from Section 2 to the models introduced in Section 3. The
trajectories of the underlying Markov chain take values in the space (3.1). The state
space of single particles is (3.2). The jump kernels and waiting time parameters are
determined by (3.3), (3.7) and (3.29), (3.32), respectively. We fix the parametern

and skip the corresponding superscripts.

REMARK 4.1. Condition

P

( ∞∑
k=0

1

λ(ζk)
< ∞

∣∣∣ζ0 = ξ

)
= 1 ∀ ξ ∈ Ê ⊂ E,(4.1)

implies

P

( ∞∑
k=0

1

λ(ζk)
< ∞

)
=

∫
Ê

P

( ∞∑
k=0

1

λ(ζk)
< ∞

∣∣∣ζ0 = ξ

)
ν0(dξ) = 1,

that is, explosion with probability one [cf. (2.8)], for any initial distributionν0
on Ê.
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It is often easier to prove (4.1), since trajectories starting at a givenξ remain
in a certain part of the state space, where some of the sufficient conditions can
be checked. Note that, according to (2.10) and Remark 3.1, explosion implies that
(with positive probability) either the number of particles in the system reaches∞
or some of the particles reach 0 or∞.

4.1. Explosion of the direct simulation process. We consider the process with
the kernel (3.3). In the pure coagulation case the waiting time parameter (3.7) takes
the form

λ(ξ) = 1

2n

∑
1≤i 
=j≤N

K(xi, xj ).

Particle sizes increase so that they cannot reach zero. Both the growth of
individual particles and the number of particles in the system are bounded due
to mass conservation. So there is no explosion provided the coagulation kernel
is bounded on compacts. Analogous arguments apply to the discrete coagulation–
fragmentation case (without source term). Thus, all interesting cases in the sense of
explosion should include continuous fragmentation. First, we study the situation,
when the total fragmentation rate is bounded at zero, and provide some sufficient
conditions for regularity. Finally, Theorem 4.3 gives a sufficient condition for
explosion in the case of pure fragmentation.

THEOREM 4.2. Consider the direct simulation kernel (3.3),where

F (k)(x,Xk) = 0 ∀x ∈ X,k ≥ kF ,(4.2)

F(x,Z) ≤ CF (1+ x) ∀x ∈ X,(4.3)

K(x, y) ≤ CK(x + y + xy) ∀x, y ∈ X,(4.4)

e(x) ≤ Ce(1+ x) ∀x ∈ X,(4.5)

and

S
(
X ∩ (CS,∞)

) = 0,(4.6)

for some constants kF ,CF ,CK,Ce and CS. If there is no source term (CS = 0) or
no coagulation term (CK = 0), then the direct simulation process is regular.

PROOF. According to (4.3)–(4.6), the waiting time parameter (3.7) satisfies

λ(ξ) ≤ n

{
S
(
X ∩ (0,CS]) + (Ce + CF )[M0(ξ) + M1(ξ)]

(4.7)

+ CK

2
[2M0(ξ)M1(ξ) + M1(ξ)2]

}
,
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where the notations:

M0(ξ) = ξ(X), M1(ξ) =
∫
X

xξ(dx), ξ ∈ E,

are used. Consider trajectories(ζ0, ζ1, . . . ). According to assumption (4.2), the
number of particles in the system grows at most linearly, that is,

P
(
M0(ζk) ≤ M0(ζ0) + kkF , ∀ k ≥ 0

) = 1.(4.8)

According to assumption (4.6), the mass of the system grows at most linearly,
that is,

P
(
M1(ζk) ≤ M1(ζ0) + kCS, ∀ k ≥ 0

) = 1.(4.9)

If there is no coagulation term, then (4.7)–(4.9) imply (a.s.)

λ(ζk) ≤ n{S(X) + (Ce + CF )[M0(ζ0) + kkF + M1(ζ0) + kCS]}
(4.10) ∀ k ≥ 0.

If there is no source term, then the mass of the system does not grow, that is,

P
(
M1(ζk) ≤ M1(ζ0), ∀ k ≥ 0

) = 1,(4.11)

and (4.7), (4.8), (4.11) imply (a.s.)

λ(ζk) ≤ n

{
(Ce + CF )[M0(ζ0) + kkF + M1(ζ0)]

(4.12)

+ CK

2

[
2[M0(ζ0) + kkF ]M1(ζ0) + M1(ζ0)

2]} ∀ k ≥ 0.

In both cases (4.10) and (4.12), one obtains (a.s.)
∞∑

k=0

1

λ(ζk)
≥

∞∑
k=0

1

C0 + kC1
whereC0,C1 < ∞,

so that regularity follows. �

THEOREM 4.3. Consider the direct simulation kernel (3.3) in the pure
fragmentation case (S = 0, e = 0,K = 0). If

F(x,Z) ≥ CF

xα
∀x ∈ X, for some CF > 0, α > 0,(4.13)

then the direct simulation process explodes almost surely, for any initial distribu-
tion on the set Ê = {ξ ∈ E :N ≥ 1}.

PROOF. In order to make use of Corollary 2.3, we introduce the sets

E+(C) =
{
ξ ∈ E :

1

n

N∑
i=1

xi ≤ C,N ≥ 1

}
, C > 0,(4.14)
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and the functionη(ξ) = g(ξ(X)), ξ ∈ E, where

g(x) = xβ

1+ xβ
, x ≥ 0, 0< β ≤ min(α,1),

is an increasing bounded function. The derivative

g′(x) = βxβ−1

(1+ xβ)2(4.15)

is decreasing so that

g(y) − g(x) ≥ g′(y)(y − x) ∀y ≥ x ≥ 0.(4.16)

Furthermore, we note that Jensen’s inequality implies (the convex function isx−α,

and the random variable is uniformly distributed overN different points)

1

N

N∑
i=1

x−α
i ≥

(
1

N

N∑
i=1

xi

)−α

∀xi > 0, i = 1, . . . ,N,N = 1,2, . . . .(4.17)

According to (3.3), (3.4), (4.13) and (4.15)–(4.17), one obtains [cf. (4.14)]∫
E
[η(ξ1) − η(ξ)]q(ξ, dξ1)

=
N∑

i=1

∫
Z

[
η
(
JF (ξ, i, z)

) − η(ξ)
]
F(xi, dz)

≥
N∑

i=1

∫
Z

[
g
(
(N + 1)/n

) − g(N/n)
]
F(xi, dz)

(4.18)

≥ CF

n
g′((N + 1)/n

) N∑
i=1

x−α
i

≥ CF

n
g′((N + 1)/n

)
N1+α

(
N∑

i=1

xi

)−α

≥ CF

n

β[(N + 1)/n]β−1

(1+ [(N + 1)/n]β)2N1+α(Cn)−α ∀ ξ ∈ E+(C).

The order ofN satisfiesβ − 1 − 2β + 1 + α = α − β ≥ 0, which makes the
right-hand side of (4.18) bounded from below by someε > 0. Thus, condition
(2.15) is fulfilled and Corollary 2.3 implies almost sure explosion on the set of all
trajectories(ζ0, ζ1, . . . ) living in E+(C). Note that anyξ ∈ Ê satisfiesξ ∈ E+(C)
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for sufficiently largeC, and

ζ0 ∈ E+(C) 
⇒ ζk ∈ E+(C) ∀ k a.s.,

since mass is conserved and the number of particles increases. Thus, the assertion
follows from Remark 4.1. �

4.2. Explosion of the mass flow process. We consider the process with the
kernel (3.29). In this model the growth of the size of individual particles is not
bounded so that explosion is possible in the pure coagulation case. Theorem 4.4
gives a surprisingly easy and rather complete solution to this problem. As to
pure fragmentation, again only the continuous case is of interest in the sense of
explosion. Fragmentation in the mass flow process does not lead to a blow-up of
the number of particles, but only to a decrease of their sizes. Theorem 4.7 provides
sufficient conditions for explosion in the pure fragmentation case.

THEOREM 4.4. Consider the mass flow kernel (3.29)in the pure coagulation
case (S = 0, e = 0,F = 0). Assume

K(x, y) ≥ K̄(x, y),(4.19)

where K̄ is homogeneous with exponent α > 1, that is,

K̄(cx, cy) = cαK̄(x, y) ∀ c > 0, x, y ∈ X,(4.20)

and such that K̄(1,1) > 0. Then the mass flow process explodes almost surely, for
any initial distribution on the set Ê = {ξ ∈ E :N ≥ 1}.

PROOF. In order to make use of Corollary 2.3, we introduce the sets

E+(C,L) =
{
ξ ∈ E : min

i=1,...,N
xi ≥ C,N = L

}
, C > 0,L = 1,2, . . . ,

and the bounded measurable function

η(ξ) =



∫
X

H(x)ξ(dx), if ξ ∈ E+(C,L),

0, otherwise,
ξ ∈ E,(4.21)

where

H(x) = −x−β for some 0< β ≤ α − 1.

Consider trajectories(ζ0, ζ1, . . . ). Note that

ζ0 ∈ E+(C,L) 
⇒ ζk ∈ E+(C,L) ∀ k a.s.,(4.22)
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since the sizes of individual particles increase and the number of particles is
conserved. According to (3.33), (3.14), (4.19) and (4.20), one obtains∫

E
[η(ξ1) − η(ξ)]q̃(ξ, dξ1)

= 1

n2

L∑
i,j=1

[x−β
i − (xi + xj )

−β]Ksym(xi, xj )

xj

≥ 1

n2

L∑
i=1

[x−β
i − (2xi)

−β]xα−1
i K̄(1,1)

= 1− 2−β

n2 K̄(1,1)

L∑
i=1

x
α−1−β
i

≥ 1− 2−β

n2 K̄(1,1)LCα−1−β > 0 ∀ ξ ∈ E+(C,L).

Thus, condition (2.15) is fulfilled and Corollary 2.3 implies almost sure explosion
on the set of all trajectories living inE+(C,L). Note that anyξ ∈ Ê satisfies
ξ ∈ E+(C,L) for sufficiently smallC and someL. Taking into account (4.22), the
assertion follows from Remark 4.1.�

EXAMPLE 4.5. Consider the mass flow coagulation process MF(1) starting
with one particle of size one, that is,ζ0 = δ1, n = 1. In this case the Markov chain
is deterministic,

ζk = δxk
, xk = 2k, k = 0,1, . . . ,

and the sequence of waiting time parameters takes the form [cf. (3.32)]

λ̃(ζk) = K(2k,2k)

2k
.

AssumingK = K̄ and using (4.20), one obtainsλ̃(ζk) = 2k(α−1), k = 0,1, . . . , so
that

∞∑
k=0

1

λ̃(ζk)
< ∞ ⇐⇒ α > 1.

EXAMPLE 4.6. Consider the mass flow coagulation process MF(2) starting
with two particles of size one, that is,ζ0 = δ1, n = 2. In this case the Markov chain
takes the form

ζk = 1
2

[
δxk

+ δyk

]
, k = 0,1, . . . , x0 = y0 = 1,
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and the sequence of waiting time parameters is [cf. (3.32)]

λ̃(ζk) = 1

2

[
K(xk, xk)

xk

+ K(yk, yk)

yk

+ K(xk, yk)

yk

+ K(xk, yk)

xk

]
.(4.23)

If

K(x, y) ≥ (xy)β ∀x, y ∈ X, for someβ,(4.24)

then one obtains

λ̃(ζk) ≥ 1
2[x2β−1

k + y
2β−1
k + x

β
k y

β−1
k + x

β−1
k y

β
k ].(4.25)

We consider several special trajectories, for which the explosion property can be
checked explicitly.

First there is a trajectory of “fastest growth,”

xk = 2k, yk = 1, k = 0,1, . . . ,(4.26)

when each jump consists in doubling the first particle. If the coagulation kernel
satisfies (4.24), then one obtains from (4.25)

λ̃(ζk) ≥ 1
2x

β
k(4.27)

and
∞∑

k=0

1

λ̃(ζk)
≤

∞∑
k=0

2

2βk
< ∞ if β > 0.

Thus, there is explosion on the trajectory (4.26) even for many nongelling kernels.
Next we consider a trajectory of “second fastest growth,”

(1,1) → (1,2) → (3,2) → (3,5) → (8,5) → (8,13) → ·· · ,(4.28)

when self-interaction is avoided and alternatingly either the first particle is added
to the second or vice versa. This trajectory is related to the Fibonacci numbers

(1+ √
5)k − (1− √

5)k

2k
√

5
= Integer

[
1√
5

(
1+ √

5

2

)k]
, k = 1,2, . . . ,

where Integer[a] denotes the nearest integer of the numbera. Here both parti-
clesxk, yk grow asCk for someC > 1. If the coagulation kernel satisfies (4.24),
then (4.25) impliesλ̃(ζk) ≥ C(2β−1)k so that there is explosion on the trajec-
tory (4.28) in the gelling caseβ > 1/2.

Finally, we consider a trajectory of “slowest growth,”

xk = 1+ k, yk = 1, k = 0,1, . . . ,(4.29)

when each jump consists in adding the second particle to the first one. If the
coagulation kernel satisfies (4.24), then the estimate [cf. (4.27)]

∞∑
k=0

1

λ̃(ζk)
≤

∞∑
k=0

2

(1+ k)β
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implies explosion in the caseβ > 1. If, however,K(x, y) ≤ xy, ∀x, y ∈ X, then
one obtains [cf. (4.23)]̃λ(ζk) ≤ xk + yk = k + 2 and

∞∑
k=0

1

λ̃(ζk)
≥

∞∑
k=0

1

k + 2
= ∞.

Thus, there is no explosion on the trajectory (4.29) even for many gelling kernels.

THEOREM 4.7. Consider the mass flow kernel (3.29) in the pure fragmenta-
tion case (S = 0, e = 0,K = 0). Assume

F̃ (x,X) ≥ CF

xα
∀x ∈ X, for some CF > 0, α > 0,(4.30)

and

1

F̃ (x,X)

∫
X

(
y

x

)α

F̃ (x, dy) ≤ γ < 1 ∀x ∈ X.(4.31)

Then the mass flow process explodes almost surely, for any initial distribution on
the set Ê = {ξ ∈ E :N ≥ 1}.

PROOF. In order to make use of Corollary 2.3, we consider the sets

E+(C,L) =
{
ξ ∈ E : max

i=1,...,N
xi ≤ C,N = L

}
, C > 0,L = 1,2, . . . ,

and the bounded measurable function (4.21) withH(x) = −xα. Consider
trajectories(ζ0, ζ1, . . . ). Note that

ζ0 ∈ E+(C,L) 
⇒ ζk ∈ E+(C,L) ∀ k a.s.,(4.32)

since the sizes of individual particles decrease and the number of particles is
conserved. According to (3.33), (4.30) and (4.31), one obtains∫

E
[η(ξ1) − η(ξ)]q̃(ξ, dξ1)

= 1

n

L∑
i=1

∫
X
[xα

i − yα]F̃ (xi, dy)

= 1

n

L∑
i=1

xα
i F̃ (xi,X)

[
1− 1

F̃ (xi,X)

∫
X

(
y

xi

)α

F̃ (xi, dy)

]

≥ CF (1− γ )L

n
> 0 ∀ ξ ∈ E+(C,L).

Thus, condition (2.15) is fulfilled and Corollary 2.3 implies almost sure explosion
on the set of all trajectories living inE+(C,L). Note that anyξ ∈ Ê satisfies
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ξ ∈ E+(C,L) for sufficiently largeC and someL. Taking into account (4.32), the
assertion follows from Remark 4.1.�

In terms of the direct simulation fragmentation kernelF [cf. (3.25) and (3.26)],
assumption (4.30) takes the form (4.13), while assumption (4.31) takes the form

F
(1)
sym(x,X)

F (x,Z)

1

F
(1)
sym(x,X)

∫
X

(
y

x

)α+1

F (1)
sym(x, dy) ≤ γ < 1 ∀x ∈ X,(4.33)

where the first factor represents the average number of fragments [cf. (3.21)]. The
following examples illustrate assumption (4.33).

EXAMPLE 4.8. Consider the case of uniform binary fragmentation [cf. (3.23)]

F (1)(x, dy) = F (1)
sym(x, dy) = F̄ (x)

1

x
1(0,x)(y) dy, x ∈ X = (0,∞),

where the functionF̄ determines the waiting time parameter. Assumption (4.33)
is fulfilled, since

2

xα+2

∫ x

0
yα+1 dy = 2

α + 2
< 1 ∀α > 0.

EXAMPLE 4.9. Consider the case of deterministic binary fragmentation
[cf. (3.23)]

F (1)(x, dy) = F̄ (x)δκ(x)(dy),(4.34)

where

κ(x) ∈ (0, x) ∀x ∈ X = (0,∞),

and the functionF̄ determines the waiting time parameter. Note that [cf. (3.24)]

F (1)
sym(x, dy) = F̄ (x)

2

[
δκ(x)(dy) +

∫
X

δκ(x)(dx1)δx−x1(dy)

]
(4.35)

= F̄ (x)

2

[
δκ(x)(dy) + δx−κ(x)(dy)

]
.

Thus, assumption (4.33) takes the form
(

κ(x)

x

)α+1

+
(

x − κ(x)

x

)α+1

≤ γ < 1 ∀x ∈ X,(4.36)

and is fulfilled, if

γ1x ≤ κ(x) ≤ γ2x ∀x ∈ X, for some 0< γ1 ≤ γ2 < 1,
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since (
κ(x)

x

)α+1

+
(

x − κ(x)

x

)α+1

≤ κ(x)

x
γ α

2 + x − κ(x)

x
(1− γ1)

α

≤ max
(
γ α

2 , (1− γ1)
α)

< 1.

In the last two examples we consider the case of deterministic binary
fragmentation (4.34) and the mass flow fragmentation process withn = 1 and one
initial particle of sizex0. Note that [cf. (3.25) and (4.35)]

F̃ (x, dy) = F̄ (x)

2x

[
yδκ(x)(dy) + yδx−κ(x)(dy)

]

= F̄ (x)

2x

[
κ(x)δκ(x)(dy) + [x − κ(x)]δx−κ(x)(dy)

]
and

1

F̃ (x,X)
F̃ (x, dy) = κ(x)

x
δκ(x)(dy) +

[
1− κ(x)

x

]
δx−κ(x)(dy).

Thus, the Markov chain takes the formζk = δxk
, k = 0,1, . . . , where

xk+1 =




κ(xk), with probability
κ(xk)

xk

,

xk − κ(xk), with probability 1− κ(xk)

xk

.
(4.37)

The sequence of waiting time parameters is [cf. (3.32)]

λ̃(ζk) = F̃ (xk,X) = 1
2F̄ (xk).(4.38)

EXAMPLE 4.10. Consider the case (4.34) with the function

κ(x) =




x

2
+ 1

4
, if x > 1

2,

x

2
, otherwise.

(4.39)

Note that assumption (4.33) [cf. (4.36)] is violated, since limε→0 κ(1
2 + ε) = 1

2. If
x0 > 1

2, then the sequence

ηk = 2x0 + 2k − 1

2k+1 , k = 0,1, . . . ,

satisfies

κ(ηk) = 2x0 + 2k − 1

2k+2 + 1

4
= ηk+1
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and corresponds to the trajectory of “slowest decrease” [cf. (4.37)]. There is no
explosion on this trajectory, since it does not reach zero. However, it has a nonzero
probability, namely,

lim
k→∞

κ(η0)

η0

κ(η1)

η1
· · · κ(ηk)

ηk

= 1

x0
lim

k→∞κ(ηk) = 1

2x0
.(4.40)

This example illustrates that some additional restriction like assumption (4.31) in
Theorem 4.7 cannot be avoided.

EXAMPLE 4.11. Consider the case (4.34) with the functionκ(x) = x
2 and

x0 = 1. According to (4.37), the trajectory of the Markov chain is deterministic,
with

xk = 2−k, k = 0,1, . . . .

For the choiceF̄ (x) = − logx + 1, one obtains [cf. (4.38)]
∞∑

k=0

1

λ̃(ζk)
=

∞∑
k=0

2

F̄ (xk)
= 2

log 2

∞∑
k=1

1

k
= ∞

so that there is no explosion. This example illustrates that assumption (4.30) in
Theorem 4.7 cannot be replaced by some arbitrarily slow growth at zero.

4.3. Comments. In the pure coagulation case there is no explosion in the direct
simulation model. According to Theorem 4.4, there is explosion in the mass flow
model for a rather wide class of gelling coagulation kernels.

In the pure fragmentation case there is explosion in both models. Theorems
4.3 and 4.7 cover wide classes of unbounded (at zero) fragmentation kernels. The
sufficient conditions for the mass flow model are stronger than those for the direct
simulation model. Example 4.10 shows that there are fragmentation kernels for
which the direct simulation model explodes almost surely, while the mass flow
model does not. Indeed, choose the kernel (4.34) withF̄ (x) = x−α,α > 0, andκ

given in (4.39). Then the direct simulation process explodes almost surely for any
initial valuex0, according to Theorem 4.3. The mass flow process explodes with
probability 1− 1

2x0
for anyx0 > 1

2, according to (4.40).
In the direct simulation fragmentation model explosion implies that the number

of particles in the system reaches infinity in finite time (each jump increases
this number). Due to mass conservation, this means that (at the explosion time)
infinitely many particles are below any given sizeε, creating “dust.” In the mass
flow fragmentation model explosion occurs due to a fast approach to zero of a
single particle. This explains what is going on in the example described above.
In the direct simulation case each jump creates two fragments and some of them
reach the interval(0, 1

2] leading to explosion. Fragments staying bigger than1
2 do

not avoid the fact of explosion. In the mass flow model there is only one particle,
which stays above12 with positive probability.
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Recently the interest in fragmentation processes has considerably increased (cf.,
e.g., [4, 15]). In this context the occurrence of small particles (dust) has been
studied using different models.

5. Concluding remarks. In this paper explosion criteria for jump processes
with an arbitrary locally compact separable metric state space were established.
These results are of independent interest. As an illustration, the general criteria
were applied to stochastic coagulation–fragmentation models. The corresponding
results (Theorems 4.3, 4.4 and 4.7) cover a wide range of coagulation and
fragmentation kernels, for which phase transitions to infinitely large (gel) or
infinitely small (dust) particles are known in the context of macroscopic equations.
The proofs of these theorems are rather short, which illustrates the efficiency of
the general explosion criteria. In particular, the results of Theorems 4.3 and 4.4
would hardly be available on the basis of the previously known criteria for one-
dimensional processes. It might be of interest to extend the explosion results,
which were obtained either for pure coagulation or for pure fragmentation, to more
general situations combining both processes and including source and efflux terms.
For this purpose, perhaps more sophisticated choices of the test functionη in the
criteria will be required.

A challenging problem for future research is the study of the limiting behavior
(n → ∞) of the stochastic coagulation–fragmentation models with explosion.
In particular, the second (more difficult) part of the conjecture mentioned in
Section 1 is still open. Convergence of a truncated mass flow model (particles
exceeding a certain level are removed from the system) to the solution of the
Smoluchowski equation has been studied in [9]. In general, the continuation of
jump processes after the explosion point is a delicate problem. In the context of
the coagulation–fragmentation models based on particles, there is a natural way
of continuation—particles reaching 0 or∞ are simply removed from the system,
while the others continue their evolution according to the previous rules.

The conservation property of the mass flow equation [cf. (3.27) without source
and efflux terms and for a constant test function] allows one to interpret its solution
as a probability measure and to construct a related nonlinear Markov process.
Such a process is determined by some stochastic equation with coefficients
depending on the law of the solution. This approach has been carried out in [7]
(pure coagulation), [17] (including discrete fragmentation) and [13] (including
continuous fragmentation). It would be of interest to clarify how the explosion
phenomena observed in finite particle systems are represented in these limiting
processes.

It is remarkable that some explosion phenomenon is probably recovered also in
the direct simulation coagulation model in the limitn → ∞. A result concerning
explosion of an appropriately scaled tagged particle in the discrete caseK(x, y) =
(xy)α for 1/2 < α ≤ 1 was announced in [21], but unfortunately has not been
published so far.
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