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The fluid model has proven to be one of the most effective tools for
the analysis of stochastic queueing networks, specifically for the analysis of
stability. It is known that stability of a fluid model implies positive (Harris)
recurrence (stability) of a corresponding stochastic queueing network, and
weak stability implies rate stability of a corresponding stochastic network.
These results have been established both for cases of specific scheduling
policies and for the class of all nonidling policies.

However, only partial converse results have been established and in certain
cases converse statements do not hold. In this paper we close one of the
existing gaps. For the case of networks with two stations, we prove that if
the fluid model is not weakly stable under the class of all nonidling policies,
then a corresponding queueing network is not rate stable under the class of all
nonidling policies. We establish the result by building a particular nonidling
scheduling policy which makes the associated stochastic process transient.
An important corollary of our result is that the conditigri < 1, which
was proven in Qper. Res. 48 (2000) 721-744] to be the exact condition
for global weak stability of the fluid model, is also the exact global rate
stability condition for an associated queueing network. Herés a certain
computable parameter of the network involving virtual station and push start
conditions.

1. Introduction. In a series of papers, starting in the early 1990's, researchers
established a strong connection between the stability of a queueing network and
the stability of the corresponding fluid model. Initiated by Rybko and Stolyar [20]
and generalized by Dai [7], Stolyar [21] and Chen [4], among others, it has been
demonstrated that the stability of a fluid model implies stability of a corresponding
gueueing network. The stability results in the aforementioned papers were
established both for classes of policies, for example, the set of nonidling policies,
and specific policies, for example, First-In-First-Out (FIFO) (Dai [7] discusses
both types of results). The fluid model is a continuous, deterministic analog of
a discrete stochastic queueing network. It is defined through a set of equations
which nominally take as parameters only the mean values of the random variables
associated with the queueing network.

Received October 2003; revised September 2004.

1supported in part by NSF Grant DMI-01-32038.
AMS 2000 subject classifications. Primary 90B15; secondary 60K25, 60F10.
Key words and phrases. Rate stability, fluid models, large deviations.

1652



INSTABILITY IN QUEUEING NETWORKS 1653

Since the stability behavior of the fluid model is often significantly easier to
analyze than that of the stochastic model, the results above have led to sweeping
advances in understanding the stability of queueing networks via the fluid model.
A short list of such papers includes [1, 3, 5, 11, 12, 16]. However, a major element
needed for a satisfactory theory of stability via fluid models is a converse to the
aforementioned stability results. Specifically, if the fluid modehds stable in
some sense, does this imply instability of the corresponding queueing network?
Unfortunately, it turns out that formulating an appropriate converse is a delicate
matter. Partial converses which appear in the literature refer both to the fluid model
and the fluid limit model, which is the set of weak limits of the rescaled stochastic
process. Dai [8] introduces the notion of a weakly unstable fluid limit model.
Roughly speaking, the fluid limit model is weakly unstable if there exists a uniform
time at which all fluid limits which start at zero are strictly positive. If the fluid
limit model is weakly unstable, Dai provides a concise proof showing that in the
stochastic network, the queue length process diverges to infinity with probability
one. This result provides a partial converse to the stability results mentioned earlier.
Puhalskii and Rybko [19] use large deviations methods to prove another partial
converse to the stability theorems. Their result implies that if there exists an initial
fluid model state for which all fluid trajectories with “close” initial states satisfy
a uniform rate of divergence condition, then the queueing process is not positive
Harris recurrent. Under stronger conditions on the fluid trajectories they prove
transience of the queueing process. In two different papers, Meyn focuses on
networks which can be represented by countable state Markov chains. In [17],
Meyn uses martingale methods to show that if all fluid limits eventually diverge
at some uniform rate, then the state process associated with the queueing network
is transient. Meyn [18] uses Markov chain techniques to prove another transience
result. In that paper, if the fluid limits satisfy a uniform homogeneity condition
and a uniform lower bound for trajectories starting from some open set, this again
implies that the state process for the associated queueing network is transient. In
each of the papers [17] and [18], Meyn explains how the results can be extended
to networks with more general state spaces.

In all of the papers above which prove a converse result to the original stability
theorems in [4, 7, 21], some uniform requirement over a set of fluid trajectories
or, more precisely, a set of fluid limits (sometimes restricted to fluid limits starting
from a particular type of state), is needed for the result to be applicable. Recall that
the original stability results of Dai [7] and Chen [4] require thifluid trajectories
are stable in some sense. Hence, we use the term “partial converse” above because
there is some gap between the stability and instability results. To close the gap
between the stability and instability results, one might consider analyzing directly
the set of fluid limits. However, this approach presents certain difficulties, since the
fluid limits are defined in a nonconstructive way, as weak limits of the underlying
stochastic process. Moreover, it is shown in [15] that computing fluid limits of
a queueing system is an algorithmically undecidable problem for a certain class
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of scheduling policies. In contrast, the fluid trajectories are defined by the set
of solutions of a fluid model, a series of a fairly simple and reasonably tractable
differential equations. It is this latter notion of fluid model which we use herein.

In [4], it is shown that a multiclass queueing network is globally rate stable
if the corresponding fluid network is globally weakly stable (see Section 2.2.2
in this paper for definitions). In this paper we present a result which is a full
converse to Chen’s stability result. It is a full converse in that, for some networks,
in particular, two station networks, the result implies that the stochastic network
is globally, rate stable if and only if the corresponding fluid network is globally
weakly stable. In particular, this implies that if there is just one linearly divergent
fluid trajectory, then the stochastic network is not rate stable under some nonidling
policy. Combining our main result with the result of Dai and VandeVate [12], we
show that a certain computable condition of the fgsin< 1 is a necessary and
sufficient condition for rate stability in networks with two stations. This is the first
tight condition for stability for such a general class of networks. Our proof uses a
series of large deviations estimates to establish the result and the only restriction in
the stochastic network is that the estimates are applicable to the primitive stochastic
processes defining the network. For a comprehensive discussion of various stability
concepts in fluid and queueing networks, and gtie< 1 condition, we suggest
Dai [9].

It should be noted that a strength of the transience results in [8, 17-19] is that
they can be applied to networks under a class of policies or just one particular
policy (like FIFO or a static buffer priority policy), whereas our result only applies
to the class of nonidling policies. In other words, the advantage of the previous
transience results is that they can be used to determine if a given network is stable
under a particular scheduling policy. Our result can be used only to determine if
there exists one scheduling policy, within the class of nonidling policies, which
makes a network unstable. It should be noted though that, in general, it is more
difficult to apply the previous results because of more stringent requirements on
the behavior of the fluid model trajectories.

One is naturally led to ask if our result can be extended to apply to networks
operating under a particular policy rather than the class of all nonidling policies.
Unfortunately, a paper by Dai, Hasenbein and VandeVate [10] essentially rules out
the possibility of obtaining a full converse which can also be applied to particular
policies. In that paper, it is shown that the stability of a queueing network under a
fixed static buffer priority policy depends on more than just the mean value of the
service and interarrival times. Hence, no mean-value based fluid model can sharply
determine stability for the network considered, which implies that no general
stability converse can be formulated for a network operating under an arbitrary,
but specific policy.

Our paper is organized as follows, in Section 2 we introduce stochastic and
fluid multiclass networks and describe mathematical preliminaries. In Section 3
we present the main results of our paper and their implications. All of the proofs
are presented in Section 4.
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2. Preliminaries—model description and assumptions. We start by de-
scribing the model of interest—a multitype queueing network. In the following
section we describe a stochastic multitype queueing network and in Section 2.2
we introduce a fluid queueing network.

2.1. Sochastic multitype queueing networks.

2.1.1. Network description. An open stochastic multitype queueing network
is a network ofJ stationso1, o2, ..., 0, each processing one or multiple types
of jobs. For each type=1, 2, ..., I, there is an external stream of jobs arriving
to the network. The intervals between successive arrivals of jobs corresponding
to typei are given by the i.i.d. sequendg, X5, ..., Xi,.... If E[X}] exists, we
definex; = 1/E[X’i] to be the arrival rate for type More detailed assumptions
about the stochastic processés;'{{k =1,2,...} are provided later. We denote
by A; () the cumulative arrival process which counts the number of arrivals up to
timer. Thatis,A;(t) = maxk: Y, ., Xi <t}.

Each job of type has to be processed on a fixed ordered sequence of stations
0(i,1),0(,2),..., 0, J;), where eaclr (i, ]) is one of the stationsy, ..., oy.
We refer to(i, 1), (i, 2), ..., (i, J;) as stages corresponding to the typ&/e allow
the repetition of stations, that is,(i, j/) = o (i, j”) for j’ # j”, meaning some
jobs need to be processed on the same station multiple times (which is common in
some manufacturing environments). In particularcould be bigger thad. We
slightly abuse the notation sometimes by using also denote the set of classes
which are served at statien

Each stationo =0}, j < J, has one server and, in particular, can work on
only one job at a time. Other jobs awaiting processingcomaccumulate into
gueues. Type jobs in the queue corresponding to stagej) will be referred
to asclass (i, j) jobs. Once a job of clasg, j) is processed, it is moved into the
next queudi, j + 1) at the statiow (i, j + 1), or leaves the network if = J;. The
processing times for jobs of typeat stagej are random and are given by the i.i.d.
sequenc&;’, S;7, ..., S, ... If E[S)’] exists, we defing; ; = 1/E[S;’] to be
the service rate for jobs in clags j). Again, more detailed assumptions regarding
the stochastic processgs’, k =1, 2, ...} are provided later.

Letd =), J; denote the total number of classes in the network. We denote by
Q) =(Q; ;) e Zi the vector of queue lengths in our queueing network at time
¢t > 0. In order to completely specify the stochastic dynamic®@f, we need to
specify the vector of initial queue lengths= Q(0) and thescheduling policy U
which gives gives the protocol at each stattworior resolving the contention for
service, when several jobs are competing for the same station. Some common
policies include the First-In-First-Out (FIFO) policy which gives priority to jobs
which arrived earlier to the station, Last-In-First-Out (LIFO) defined analogously,
Global-FIFO (GFIFO) which gives priority to jobs which arrived earlier into the
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entire network [based on time stamps of a job’s arrival to clask)] and static
buffer priority policies which are based on a ranking of classes in each station and
give priority to jobs with the higher ranking, and so on. All of these policies are
examples ofnonidling policies, which are defined as policies that require each
stationo to work at full capacity as long as there are any jobs waiting to be
processed by

Throughout the paper we will be only considering head-of-the-line (HOL) type
nonidling scheduling policies. Under an HOL policy, at most, one job of each
class at a given station can receive service at a given time. Furthermore, under
the HOL assumption, jobs are served in FIFO order within a given class. FIFO,
GFIFO and static buffer priority are examples of HOL policies. Adopting the HOL
assumption in this paper is really not a restriction since the main goal of this paper
is to construct an unstable (in a sense to be defined) nonidling scheduling policy.
Indeed, we construct an unstable policy which happens to be of HOL type. In
addition to being HOL, the policy we use to prove the main resybréemptive
resume. Under such a policy, if the processing of a job of classinterrupted to
serve a job from another clags then the class job is ejected from service and
placed at the head of the line for processing at a later time. Wheniclasgain
chosen for service, the remaining processing time for the ejected job is the same
as it was at the moment it was ejected.

For eachyq, z1, z2) € Zﬁ X S}tﬁfd, we say that the state of the stochastic process
attimer is (q, z1, z2) if at time ¢ the vector of queue lengtlid(z) is ¢, the vector
of residual interarrival times ig1 (hence, the dimensioh for this component
of the state) and the vector of residual service timegid~or many scheduling
policies, including the policy constructed in this paper, the state %oeé}tfd
is adequate to describe the underlying stochastic process of the network.

For each classi, j), let T; ;(z) denote the total amount of time station, ;)
spent processing class ;) jobs during the time intervdD, ¢]. LetD; ; () denote
the cumulative departure process for clasg) jobs, that isD; ;(¢) is the number
of class(i, j) jobs that station; ; processed during the time intervdl, ¢]. For
each statiow, let Q. (1) = Y ; jye, Qi (1) and letT, (1) = ;. jyeo Ti,j(1). The
following relations follow immediately from the definitions. Foralkli < 1,2 <
j <J;andr >0,

1) Qi 1(1) = Q;,1(0) + A; (1) — Dj 1(1),
(2 Qi,j(1)=Q; j(0)+D; j_1(t) — D; j (1),
©)) Dij()=maxtk:Y S/ <T;;(t){.
r<k
Also for every O< t1 < r» and every station,
4) > (Tijlt2) = Tij(r) <tz —11.

(i,j)eo
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Finally, if the scheduling policyu is nonidling, then for every & 71 < » and
every statioro, if Q,(¢r) >0 forallry <t <1, thenT,(r2) — To(r1) =12 — 11.

In other words, if the total queue in statierwas always positive during the time
interval[z1, 2], then the station was always working on jobs full time during this
interval.

Let
(5) Amax=max(2;, A h,
(6) Mmax = rTlJc’;_lX{Mi,j, M,_,l}
(7) Jmax= mia)qfi}-

For technical purposes, we introdu€e—a very large constant which exceeds all
the parameters of the network. Specifically,

(8) C > 130imax+ ma] Jr%ax-

For any statior, let |o| denote the number of classes in thesefFor any vector
g € R, we let||g|| = > 1<i<a lgi| denote theL; norm. For any nondecreasing
nonnegative functiorf (r) and anyry < ro, we let f(t1, r2) denotef (t2) — f(t1).

2.1.2. Sochastic assumptions. Below, we introduce some basic assumptions
on the sequences of random variables which represent the primitive data in our
stochastic networks, and an assumption on the behavior of the network process
itself.

DEFINITION 1. Consider a sequence of i.i.d. nonnegative random variables
Z1,2,...,2Z,,... with E[Z1] = @ < co. Such a sequence satisfies large devia-
tions (LD) bounds if for every > 0, there exist constanis=L(¢), V=V (¢) >0
such that, for any > 0,

(9) ]P’( ZZi—z—an

1<i<n

forall n > 1, and the counting procebKs) =maxX{n:Z1+--- +Z, <t} satisfies

> en ’21 Zz) < Ve ln,

t

(10) P(‘N(l‘-FZ)——'Egl‘)ZlZZ) <Ve M,
o

forall r > 0.

It is important that the constanis, V in the definition above do not depend
on z > 0. This uniformity will become useful when we analyze arrival and
service processes with the presence of some residual interarrival and service
times. For simplicity, we assume common constabts= L(eg),V = V(¢)
instead of individual constants corresponding to indicgs Our main stochastic
assumptions are as follows:
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ASSUMPTIONA. The sequencesXi, n=1,2,...} and{S;’,n=1,2,...)
arei.i.d.forevery ki<l and1l<j < J;.

ASsSUMPTION B. For eachi, j, the large deviation bound (9) holds for
the sequencesX ,n =1,2,...} and{S,’,n =1,2,...} and (10) holds for the
associated renewal processes.

AssumMPTION C. For every stateg, z1,z2), everyn > 0, we haver =
inf{z:|Q@®)|| > n | Q) = (g, z1,z2)} < oo with probability one, under any
scheduling policy.

One way to verify Assumption B is via the following sufficient condition for the
large deviations bounds to hold for i.i.d. sequences.

LEMMA 1. Suppose Z1,7Z3,...,Z,,..., IS @ nonnegative i.i.d. sequence
with E[Z1] = « such that there exists a function F(0),6 > 0, taking values in
M4 U {oo}, which isfinite on someinterval [0, 6g] and which satisfies
(11) SUPE[e? 179 | Z1 > 7] < F(6),

z>0

for every 6 > 0. Then this sequence satisfies the LD bounds (9) and (10).

The proof of Lemma 1 is provided in the Appendix. It is simple to check
that condition (11) is satisfied by many distributions including the exponential,
Erlang and any distribution with bounded support. Note that, by settirg,
condition (11) implies that the distribution &% has a moment generating function
for 6 € [0, 6g].

Assumption C is intentionally broad, in that it does not involve the stochastic
primitives directly. The assumption holds for a wide range of distributions, given
Assumptions A and B. For example, if at least one of the service time distributions
has unbounded support, then Assumption C holds. However, Assumption C holds
under even weaker conditions.

We adopt Assumptions A, B and C for the remainder of the paper. Whenever
we talk about the probabiliti{-} of any event, the probability is understood with

respect to the stochastic procesgss, S;’}. If the vector of initial queue®(0)
is a random vector itself, then the probability is also with respect to the probability
distribution ofQ(0).

2.1.3. Sability and rate stability. One of the main features one desires to
have in a multitype queueing network is stability. Various equivalent definitions of
stability have been used in the literature, among which positive Harris recurrence
is one of the most commonly used definitions. Under the condition that the
interarrival timeqX};} are unbounded and spread out (see [7]), then positive Harris
recurrence is defined as follows.
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DEFINITION 2. A multitype queueing network operating under a scheduling
policy U is defined to be Harris recurrent if there exists O such that for any
initial vector of queue length®(0), the timer = inf{r: || Q(¢)|| < b} is finite with
probability one. The network is defined to be positive Harris recurrent or stable, if,
in addition,E[t] < oo, where the expectation is conditioned on the initial vector
of queue length§(0). The network is defined to be globally stable if it is stable
for every nonidling scheduling policyl.

The positive Harris recurrence property, under some additional technical
assumptions, implies the existence of a unigue stationary distribution for the queue
length procesQ (7).

A somewhat weaker definition of stability is rate stability. This is the form of
stability we are primarily concerned with in this paper.

DEFINITION 3. A multitype queueing network operating under a scheduling

policy U is defined to be rate stable if for every typelim;_, o w = A,
a.s. The network is defined to be globally rate stable if it is rate stable for every

nonidling scheduling policyU.

In words, rate stability means with probability one the arrival rate is equal to

the departure rate. From (1) and (2), rate stability implies_lig M =; and

lim;_ o M =0 a.s. for alli, j. In other words, for a rate stable system, even if

the total queue lengthQ(z)|| diverges as goes to infinity, it grows, at most, at a
sub-linear rate a.s.

2.2. Fluid model.

2.2.1. Fluid equations. Fluid models are continuous deterministic counter-
parts of stochastic queueing networks, intended to capture the most essential dy-
namic properties of the queue length process. The term fluid model is sometimes
used interchangeably with the terms “fluid limits” and “functional law of large
numbers.” For many types of queueing networks (see, e.g., [2, 6, 7, 13, 20]), it has
been established that the rescaled queue length prQgesy/» for a large scal-
ing parametern converges weakly to a certain continuous deterministic process,
satisfying a series of functional equations, which we describe below. To avoid con-
fusion, we define théuid limit model to be the set of weak limits d@(nt)/n as
n — oo, and we define the fluid model to be the set of solutions of the system of
equations below (formal definition follows). Then the set of fluid limits is a subset
of the set of solutions to the fluid model.

Given a multitype queueing network with arrival ratgsand service rates; ;,
the corresponding HOL fluid model (or fluid network) is defined by the fol-
lowing system of equations and inequalities with time dependent variables
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Q:.j(t), A;(t), D; j(t), T; j(t),t > 0. We first provide the system of equations and
inequalities, and immediately after we give a physical explanation for each of
these equations. For eveiy=1,...,1,j=1,2,...,J;, 0 =01,...,05,t >0

and 0< #1 < 1,

(12) Qi1(1) = 0:.1(0) + A; (1) — D; 1(0),
(13) Qi.j(t)= Qi ;(0) + Dj j_1(t) — D; ; (1),
(14) Ai(t) = Ait,
(15) D; j(t) =i jTi j (1),
(16) > (Tij(t2) — Ti,j(10) < 12— 11,

(i.j)eo

A7) Qi (), Ai(t), Dy j(1), T j () € R

In addition, for alli, j, Ti,j(t) is a nondecreasing function of and Ai,j(O),
T,j(0=0.

The value ofQ; ;(¢) represents the total amount of fluid present in buffey)
attimer. We also refer to it as clags j) fluid. A; (¢) represents the total amount of
fluid corresponding to typg that arrived externally during the time interyal ¢].

The fluid arrival process is assumed to be linear with katbence, (14)51‘7]‘(1‘) is

the amount of clas§, j) fluid that was processed by statioti, j) during [0, ¢].
T,-,j(t) represents the portion of the time intery@l 7] that stationo (i, j) spent
processing clasg, j) fluid. Inequality (16) enforces the physical constraint that
any given station can spend at most 100% of its time processing fluid.

Equations (12) and (13) are simply flow conservation equations: all class
(i, j — 1) fluid becomes clas§, j) fluid after processing, for all < J;, and class
(i, J;) fluid leaves the network after processing. The last constraint (17) simply
says that all the variables involved are nonnegative real numbers. Note that only the
expectations ; = E[X’i] and Yu; ;= E[S’l’f] of interarrival and service times
appear in the fluid model. The higher-order moments of the network primitives are
not reflected in the model.

For each station, we let

(18) 0= Y 0i;),

@i,j)eo
that is, O, (¢) is the total fluid level in statios at timez. Also let
(19) T,()= > T ;@.

(i,j)eo

So, T, (t) is the total amount of time statioa spent processing fluid during
the time interval0, ¢]. Equivalently,I, (r) =t — T, (¢) represents the cumulative
amount of idling experienced by statienduring the time intervalo, ¢].
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From (16), it follows that the funCtiOﬂ_}’j(I) is Lipschitz continuous. Using
(12)—(17), it can be checked that all &f; ;(¢), A;(t), D; j(t), T; ;(t) are also
Lipschitz continuous. Any solutiotQ; ; (1), A; (t), D; ;(t), T;, ;(t)) of the system
of equations and inequalities (12)—(17) is defined to be a fluid solution. For
simplicity, henceforth we useQ(t), T (t)) to denote a fluid solution, wher@(r)
and T(t) stand, respectively, for vector®); (@) and (T; .j (). A fluid solution
(0(1), T (1)) is defined to be nonidling if for every statien I, (r) increases only
at timest when Q, (r) = 0. Formally, the fluid solution is nonidling if for every
stationo,

(20) /0 0o (1) dIy (1) = 0.

The integral is well defined becaugg(r) is a Lipschitz continuous function and,
as a result, is almost everywhere differentiabl&inwith respect to the Lebesgue
measure o .

DEFINITION 4. The set of nonidling feasible solutions to the system of
equations (12)—(17) and (20) is defined to be the nonidlind model.

When a queueing network operates under a specific scheduling policy, for
example, under a fixed buffer priority policy, additional constraints can be added
to the fluid equations in order to reflect the policy. In this paper we are only
considering the case of all the nonidling policies, and thus the nonidling fluid
model defined is the one of interest. For the remainder of the paper, we drop the
modifier “nonidling” and simply refer to the “fluid model.”

The following lemmas are used later in the paper. The proofs of both lemmas
are straightforward and thus omitted (note that Lemma 3 appeared as Property 2

in [4]).

LEMMA 2. Suppose (Q(r), T(t)) is a fluid solution defined over a time
interval [0,0]. Then Q'(t) = Q(0) + 5(Q(©) — Q(0)), T'(t) = 5T (#) defined
over [0,6] is also a fluid solution. Moreover, suppose the solution (Q(z), T (1))
is nonidling and for every station o, either Q,(t) > 0 for all ¢ € [0, 0] or
05 (0) = 0, (8) = 0. Then the solution (Q'(r), T'(¢)) is also nonidling.

LEMMA 3. Suppose (Q(t), T (1)) isa nonidling fluid solution defined over a
timeinterval [0, 0]. Thenforany >0, Q'(r) = BO(B~ 1), T'(t) = BT (B~ 1t) is
a nonidling fluid solution defined over the interval [0, 86].

In the proofs in later sections, we need to define certain types of fluid models
with a finite decomposition property. We define this notion below.
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DerFINITION 5. A fluid model is defined to satisfy tHeinite Decomposition
Property (FDP) if there exist values, B > 0, with the following property. For
every nonidling fluid solutiodQ(r), T (¢)) defined over an intervd0, 8] such that
O(t) # 0 on this interval, there exist a nonidling fluid solutio@(r), T (r)) also
defined ovef0, 6] and a sequence of times instances@ < <tr <--- <ty =
6 such that:

1. M < v0SURy< <o 15057 T B and inb<i<o 10| = info, <o [|10O)]].

2. OQ(tw) = O(ty) forallm=0,1,..., M. i
3. For eachintervalt,, ,11),0 <r < M — 1 and each station eitherQ, () > 0
forallt € (¢,,1,4+1) Oor Qs (¢t) =0forallr € (¢, t,11).

The next proposition shows that the FDP requirement is not restrictive for fluid
models arising from two station networks.

PROPOSITIONL. Fluid networks with two stations (J = 2) satisfy FDP.

Although we only consider multitype fluid networks in this paper, the proposi-
tion actually holds for any two station fluid network, for example, networks with
proportional routing. This general form of Proposition 1 is proved in Section 4.2.
At this point we do not know whether FDP holds for general networks (i.e., with
J > 2).

2.2.2. Global stability and global weak stability. Just as for stochastic
gueueing networks, we can define stability and global stability for fluid networks.

DEFINITION 6. A fluid solution(Q(t), T (¢)) is defined to be stable if there
exists ar < oo such thatQ(¢r) = 0 for all ¢ > . A fluid model is defined to be
globally stable if there exists a < oo such that every nonidling fluid solution
(O(1), T (1)) satisfying| Q(0)|| = 1 also satisfie®(r) =0 for all r > 7.

REMARKS. 1. The conditior| Q(0)| = 1 in the definition above is a necessary
scaling condition. One cannot have a uniform emptying timmgthout a bound on
the initial state.

2. The definition of global stability is somewhat different from the perhaps more
natural: “network is defined to be globally stable if it is stable for all nonidling
policies.” While it is possible that both definitions are equivalent and it is known
to hold in many cases, it has not yet been established in general. Definition 6 is
used more often because it simplifies certain technical considerations.

Below, we define a stability notion for fluid networks which is the analogue of
the rate stability definition for stochastic networks.
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DEFINITION 7. A fluid model is defined to be globally weakly stable if for
any nonidling fluid solutioQ(¢), T (t)), Q(0) =0 impliesQ(¢) =0 forall > 0.

In words, a fluid model is weakly stable if one cannot construct a nonzero fluid
solution which starts from zero. We did not introduce the notion of a weakly stable
fluid solution, since this would just mean introducing a triviadr) = 0 solution
[also it is easy to check tha(r) = 0, for all r implies T; (1) = %t for all (i, j)].

2.3. The connections between stochastic and fluid queueing networks. The
most immediate connection between a stochastic network and the corresponding
fluid queueing network is provided by the results of Dai [7] and Stolyar [21].
Roughly speaking, they show that for a broad class of scheduling policies, if
a stochastic network is operating under a polidy each weak limitQ(r) =
lim, % and7 (¢) = lim,, @ of the stochastic queue length proc€xs) and
cumulative work process (¢), with a sequence of initial state3(0) = |ny |,
where y is a fixed positive constant, is a deterministic continuous function
(Q(t), T(1)) which is a fluid solution of the corresponding fluid model. If the
policy U is nonidling, then each obtained fluid solution is also nonidling. Thus,
the queue length process, after an appropriate rescaling using certain scaled initial
states, converges to a fluid solution.

This rescaling process provides the basic tool for connecting the stability of
stochastic and fluid networks. In fact, this connection was the primary motivation
for introducing fluid model techniques [20]. The following theorem establishes a
fundamental relationship between the stability of the stochastic and fluid models.

THEOREM 4 (Dai [7], Stolyar [21]). Consider a multitype queueing network.
If the corresponding fluid model is globally stable, then the stochastic network is
globally stable.

Theorem 4 actually holds for a broader class of networks and also for networks
operating under specific scheduling policies. If one is given a particular scheduling
policy U, one can sometimes identify additional constraints that the fluid limits
lim, Q(nr)/n must satisfy.

More relevant to the topic of the present paper is the following related result.

THEOREM 5 (Chen [4]). Consider a multitype queueing network. If the
corresponding fluid model is globally weakly stable, then the stochastic network is
globally rate stable.

Our understanding of global stability and global weak stability is fairly complete
for fluid models corresponding to queueing networks with two statigns @),
thanks to the results of Bertsimas, Gamarnik and Tsitsiklis [1] and Dai and
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VandeVate [12]. Both of these papers obtain necessary and sufficient conditions
for global stability of fluid networks for the casé = 2. Moreover, a certain
parametep™ is introduced in [12]. This parameter is called the maximum virtual
traffic intensity. It is shown that the fluid model is globally stableoiff< 1 and is
globally weakly stable iffp* < 1. The conditiono* < 1 then implies rate stability

of the underlying stochastic network by Theorem 5. One of the main results of
our paper is to establish a convergé:> 1 implies the stochastic network is not
globally rate stable. In particulap;* < 1 is the tight global rate stability condition

for multitype networks with two stations.

3. Mainresults. In this section we provide the main results and corollaries of
this paper. All proofs, along with the needed lemmas, are provided in Section 4.
Ouir first result concerns the structural properties of nonidling fluid solutions. The
result is introduced primarily because it is needed to prove the main result of the
paper, but we believe that it is interesting in its own right and thus state the result
in this section.

THEOREM 6. Suppose the fluid model of a multitype queueing network is
not weakly stable. Then there exists a positive constant y > 0 such that for any
initial state ¢ € %<, there exists a nonidling fluid solution (Q(), T (1)) satisfying
Q(0) =g and || Q(r)| > yt for all t > 0. Namely, the solutionislinearly divergent.
Moreover, this solution satisfies

gl

- (y
21) inf 100 = " min( Z.1).

where C is defined by (8).

Intuitively, the notion of a fluid model not being weakly stable seems weaker
than linear divergence. In particular, a fluid model is not weakly stable if there
exists a solution which “pops up from zero” at some point, after starting in the zero
state. Theorem 6 shows that if one solution pops up, then a different solution can
be constructed which diverges to infinity linearly, that is, we construct a stronger
fluid solution (in the sense of instability) from a seemingly weaker solution. This
stronger fluid solution can then be used to infer the instability of a class of
associated stochastic networks. Finally, we note that the divergent solution can
be constructed from any initial sta@(0) = ¢ € %<, including the zero state.

We are now prepared to state the main result of the paper, which connects the
instability of fluid models and stochastic networks.

THEOREM7. Consider a multitype stochastic network satisfying Assumptions
A, B and C. Suppose the associated fluid model is not globally weakly stable, and
satisfies FDP. Then, for any initial state (¢, z1, z2) € Z% x R+, there exists a
nonidling scheduling policy for which the resulting queue level process satisfies
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liminf,_ o 1201 > 0 with probability one. In particular, the stochastic process
associated with the queueing network is unstable, under some nonidling policy.

The rate of divergence to infinity implied by the theorem above will be explicit.
We will show that constructed policy results in

(22) liminf QM . maxy/C,1)
t—00 t 8maxl, 3/y)

with probability one. The import of Theorem 7 is more apparent from the
corollaries provided below.

COROLLARY 1. Consider a multitype stochastic network with J = 2. If the
associated fluid model is not globally weakly stable, then the queueing network is
unstable in the sense that liminf,_, ”Qtﬂ > 0 with probability one from each
initial state under some nonidling scheduling policy.

Corollary 1 follows from Theorem 7 and Proposition 1, which states that FDP
holds for fluid networks with two stations. Recall that one motivation for our work
is the stability Theorems 4 and 5. Thus, Corollary 1 provides a complete converse
of Theorem 5 for two station multitype networks. A missing piece in the theory
for general/ is to determine if all fluid models satisfy FDP. If such a result holds,
then Theorem 7 would imply a converse for networks with an arbitrary number of
stations.

We note also that Theorem 5 is valid when we consider fluid and queueing
networks under specific scheduling policies. However, for networks operating
under specific policies (rather than a class of policies), a general converse to the
theorems of Chen and Dai is not possible as demonstrated in [10].

Dai and VandeVate [12] derived explicit necessary and sufficient conditions
for global weak stability of fluid models of multitype networks in terms of a
certain parametes™ related to the so-called virtual traffic intensity and push start
conditions. They prove that such fluid networks are weakly stable*ifk 1.
Considering Theorem 5 along with Corollary 1, those results now yield complete
necessary and sufficient conditions for rate stability of two station stochastic
mutlitype networks.

COROLLARY 2. A stochastic two station multitype network is globally rate
stableif and only if p* < 1.

4. Proofs of main results. In this section we provide all of the proofs of our
main results. The first proof, of Theorem 6, shows that if the fluid is not globally
weakly stable, there exists a linearly divergent fluid solution.
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4.1. Linearly divergent fluid solutions.

PROOF OFTHEOREMG6. We assume in the theorem that a given fluid model is
not globally weakly stable. Hence, there exists a nonidling solution which satisfies
0(0) = 0 and Q(rp) # 0 for somerg > 0. First note that, without the loss of
generality, we may assume th@tr) # 0 for all 0 < ¢ < f9. Otherwise, we can
find 7 = sup0 <t < f9: Q(r) = O} and consider the fluid solution dn, 7o] only.
Note thatf < 1o by the continuity ofQ(r) and the fact thaQ (ro) # 0. Next, using
Lemma 3 with somg > 0, we can obtain a new solution defined[@njzo] with
Q' (0) =0 and|| Q' (Bro) | = BIIQ(10)|l. If we setf = 152, then we have a solution
defined or{0, 1] with Q’(0) = 0 and|| Q' (1)|| = || Q(t0) ||/ to. Hence, again without
loss of generality, we sab = 1, that is, we assume we are given a nonidling
solution withQ(0) = 0 andQ(1) # 0.

We now build a new fluid solution by constructing it iteratively over the intervals
[0,1),[1,2),[2,4),...,[2%,2"t1), .... We denote the solution that is constructed
in this manner by Q°(r), T°(¢)). For the initial interval0, 1), consider our initial
fluid solution Q(r) satisfying Q(0) = 0, Q(1) # 0. We first modify the solution
by settingQ(0) = ¢, whereg € %% Next, for everyr < 1 and every clas§, j),
on the interval[0, ] we spend exactl;’l_"i,j(t) time units processing clags, ;)
flow, plus whatever necessary additional amount is required to make the solution
nonidling. In other words, we can think of the flow “created” and “processed” by
the nonweakly stable solutio@(z) as high priority flow, and the remaining flow
as low priority flow. Note that the allocation of the additional processing effort
required is not necessarily uniquely determined by the original allocation In
any case, the resulting solution satisfi@%(0) = ¢ and sz(t) > Q; ;(t) for all
classegi, j) andr < 1. In particular,| Q°(1)| > |O(1)| > O.

Assume now the solution has been constructed over the time hgfiz&H for
n > 0. We now extend it ovel2", 2"*+1]. The idea of the construction is similar to
the first interval, except that we “stretch” the original solutiorr) by a factor
of 2" and then use this solution to extend our current solution by defining it
on [2", 2"*t1]. That is, consider the scaled solutiohQ (8~ 1r), BT (B~ 1t)) with
B = 2". This solution is defined overe [0, 2"). Next, for each € [2", 2"11], let
T°(r) be defined by °(r) — T°(2") = 2"T (27" (t — 2")), plus any extra processing
effort required to make the solution nonidling.

It can be easily checked that the resulting solut@(r) satisfiesQﬁ j(t) >
2"Q; j(27"(t — 2")) for all t € [2",2"+1] and alli, j which implies| Q° ()| >
21027t —2")|l. In particular,| 0°(2"*1)|| = 2" | Q(V)|I.

We have constructed a nonidling fluid soluti®q (r) which diverges to infinity
at time instances, =2",n =0, 1, .... To complete the proof of the theorem, we
show that, for some constapg > 0, || Q° (1) > y02" for all t € [2", 2"+1]. First
let us show that this implies the theorem. For any 0, find the largest integer
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such that 2 < ¢, that s, letr = [log, ¢ |. We have|| Q°(1)|| > y02" > y02/0%21-1 —
yot /2. Settingy = yp/2, we obtain the result.

To show the existence gfy, note that for any, < r» and any feasible fluid
solutionQ(-), we have

10 = 10Dl = Y i gtz —11)

1<i<I
> |0t — C(t2 — 10).
This implies that, for alt € [2", 2" + 2"~ 1| Q(1)||/(2C)1, Q°(¢) satisfies
1Q°M1l = 10°@"| — C(t —2")
> 2o - —2Y
> 2" 2| 0()II.

If 2" + 271101/ (2C) = 2**L, then we simply setyp = (1/4)[0D)|.
Otherwise, let

(23)

A 12D
n=minfjowi: 1S <r <1},
This minimum exists sinc@(z) is continuous and it is positive singe ()| > 0
for all 0 < < 1. Then, for all 2 + 2"~10(1)||/(2C) <t < 2"*1, we have
10°OI =2 Q27" (r —2")) || = 2"y1. We takeyo = min{(1/H [ QD y1} and
we have proven the first inequality in the theorem statement.

The last part of the proposition follows almost immediately. Using (23) with
t1=0andr, =1, we have| 0(1)| > llgll — Ct = llql/2 fort < |l¢]|/(2C). On the
other hand, by constructionQ(?)|| = vyt > y|i¢ll/(2C), whenever > |¢|/(2C).
This completes the proof of the theorent]

Theorem 6 will be used for proving our main result, Theorem 7. Specifically,
we will construct a nonidling scheduling policy for the discrete network which,
with high probability, results in a trajectory very close to the fluid trajectory built
in the proof of Theorem 6. We will use the large deviations bounds (9) and (10)
multiple times to obtain bounds on the deviation between the fluid and stochastic
trajectories.

4.2. FDP in fluid networks with two stations.

ProOF OFPrROPOSITIONL. Consider a network with two statiors, andoy,
and suppose we have a nonidling fluid soluti@n), 7 (¢)) which is nonzero over
time interval[0, 6]. By continuity, inb<;<¢ | Q(#)|| > 0. The next result follows
from Proposition 1 in [1]. There exists a nondecreasing sequensech that
sup #; = 6 and such that for all times less théarhe following hold:
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hd Qal(t4m+l) >0, Qaz_(t4m+l) =0and forr € [tam+1, tam+2], Qal(t) > O;_

o Qo (tamy2) > 0, Qo,(tam+2) = 0 and for t € (tami2,t4m+3), Qo (1),
QO’Z(Z) > 0; _ _

o Qo) (tam+3) > 0, Qo (tam+3) = 0 and fort € [tam+3, tam+4l, Qo (1) > 0;

o Qo (tam+a) > 0, Qo (tam+a) = 0 and for t € (tam+a, tam+s), Qo (1),
Qq,(t) > 0.

Moreover, one of;,i =1, 2, 3,4, is equal to zero. When, t3 or t4 is zero,¢;
with lower value ofi is not defined.

The characterization above essentially divides the trajectory of a fluid solution
into four different segments. On the segment of the trajectory betwgen and
tam+2, the trajectory is either on the boundary of the state space [whgre) = 0]
or in the interior of the state space. We next claim that such a segment can
be “linearized” such that it remains a nonidling solution, @Iz(t) =0 for all
t € [tam+1, tam+2]. 1N other words, the linearized solution is on the boundary for
the entire interval. To achieve the linearization, we define

~ = I —lam+1
Q1) = Q(tam+1) + —————[Q(tam+2) — Q(tam+1)]
I4m+2 — U4m+1
and
— lam+1

() = T(tams) + —— 2+t
I4m+2 — t4m+1
for all ¢ € [t4m+1, tam+2]. Using Lemma 2, it follows that the new solution
(O(1), T(1)) is both feasible and nonidling, given that the original solution was
also. In a similar manner, we linearize the fluid solutio@(z), T(¢)) on all
intervals of the form[z4,,+3, tan+al. Hence, in each interval the new solution
remains on one of the axes, unless it is crossing the interior, from one axis to
the other.
We now demonstrate th&Q(r), T (r)) has the properties described in Defini-
tion 5. First, we claim that for eaoh,

tams3 — tamy1 > _Inf [ Q0)I/C,
0<r<6

[T (t4m+2) -T (t4m+l>] ,

(24) ] _
tam+3 — tAm+1)+1 = ogie leml/C.

Indeed, by construction,

Oy (tam+1) > O, Qo (tams+1) =0
and

Qo (tam+3) > 0, Qo (tam+3) = 0.
In particular,

Qo (t4n+1) = 10 (tan+0)l| = Inf QW] = inf 0@ > 0.
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Note that total rate at which fluid can depart from a given station is bounded
above byZl-vj wi,j < C. Thus, sinceQal(t4m+3) =0, we havetg,+3 — t4m+1 >
info<;<a |1 Q(2)]]/C. An analogous argument demonstratesthats —tagn+1)+1 >
info<;<e |Q 1)/ C. Since the interval lengths are bounded strictly away from zero,
the total number of pointg in [0, 8] is at most20C/ info<,<¢ || Q(¢) ) + 2, where

the 42 accounts for the end points [, 6]. Settingv = 2C, B = 2 yields the first
FDP property (1). Properties (2) and (3) are automatically satisfied by our con-
struction of(Q(¢), T (1)) above. O

4.3. Transient pathsin the stochastic network. Most of this section is devoted
to the proof of Theorem 14 of Section 4.4, which, as we will show, implies the main
result of our paper, Theorem 7. In the proof we repeatedly use probabilistic bounds
of the form c1 exp(—con), wherecq, c2 > 0 are constants which depend on the
parameters of our queueing network anid a scaling parameter which takes on a
large value. In various expressionsjs usually related to the constahiappearing
in the large deviations bounds in (9) and (10) and the network parameters
Ais i, 111, C, as well as parameter introduced in Theorem 6. We will also be
considering finite sums of the bounds of the farfjexp(—c1n) + ¢, exp(—con) +
o+ ¢, exp(—cpn). In general, ther;, ¢/ take on different values ana is a
constant, independent of Such sums can be bounded above:lgxp(—cn) for
€ =MiNy<g<m cx @andc’ =" c;.

In our proofs, the actual values of the constants are not important, only the fact
that they are independentmof Therefore, to simplify the exposition, we simply use
the notationO (exp(—®(n))) and we write expressions lik@ (exp(—® (n))) +
O (exp(—0O(n))) = O(exp(—©O(n))), where the standard notatian(-) and ©(-)
hides the actual constant@ndc’.

4.3.1. Proof preliminaries and the scheduling policy U. In order to precisely
state the next series of detailed results, we need to define a nonidling fstlicy
The definition of this policy involves a number of preliminary observations and
definitions.

First, let

(25) 0= max(l, ;)

The parametef depends only on parameters of the model sinaepends only
on the parameters of the model.

Consider any initial statey, z1, z2) € Z4 x .. Letn = ||q||. By Theorem 6,
there exists a nonidling fluid solutiorQ (¢), T (¢)) which satisfiesQ(0) = ¢ and
Q@] > yt for all t > 0. Since FDP is assumed then by Proposition 1, the
solution (Q(#), T(t)) can be modified to a solution which satisfies properties
described in Definition 5. Let

3
(26) 6o=0lqll = 4| max(l, ;),
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in which case we have

(27) 1)l = 3llgll.
By Theorem 6, the fluid solution is also such that

(28) |nf 10| > Mmm(g, 1).

Since FDP is satisfied, there exists another solu([@(t) T(r)) and a sequence
0=s0 <s1 < -+ < sy = 0o, such that ind<;<g, |l o) > |nfo<,<90 10| and,

for every interval[sr,s,H] and for each statiom, either O, (¢) is zero within

(sr, sr+1), Or it is strictly positive within(s,, s,+1). For simplicity, we assume that
(O(1), T (1)) is this modified solution. In such a modified solution we also note
that

M <vfy su

1 2 C
=< p — + B <vOg— max( 1) + B
0<r<6p | Q@) gl 14

<2v max(l, E) max(E 1) + B
14 14
where we used (26) and (28). In particular, we obtain a bound evhich depends
only on the parameters of the model (and is independefiy pf, sincev, y and
C depend only on the parameters of the model. Note, on the other hand, that the

partitions,,r =0,1,..., M, does depend on. Recalling the notatiotig| = n,
we rewrite (27) and (28) as

(29)

(30) 10 @6)] = 3llg] = 3n
and

YV
(31) |nf ||Q(t)|| > — mln(c 1)

Our next goal is to describe a nonidling scheduling polity: U (§) implemented

over the time horizof0, 6] = [0, On]. Recall that our starting state (8, z1, z2).

In particular,Q(0) = Q(0) = ¢. The policyU attempts to mimic the fluid solution
described above, over the same time interval. We parameterize the policy with a
constan® > 0, which is any constant satisfying

1 (Y
(32) § < ToCM T3 min (E’ 1).

Lett,, =mdn for m =0,1,...,[0/8]. We describe the policft on each time
interval I,,, = [t;s, tw+1). FOr each time interval,,, each statioro nominally
aIIocates’f,-,_,- (tm, tme1) time units to serving clasg, j), for every classi, j) € o.

To be precise, we first order all the classes at a station in a fixed, but arbitrary
manner. During the interval a clags j) is chosen for service, and we work on
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jobs from that class fof"i,j(tm, tm+1) time units or until we exhaust the jobs from
class(i, j). Note that we cannot reach the end of the inteiyalby the feasibility

of T(-) over this interval. When we are done processing jobs of typg), the

next class in the chosen order of service is picked for processing. Note that we
assume a preemptive resume mechanism when switching between classes. If after
going through all the classes, the time spent is strictly less#thain— ¢, and there

are still jobs at the station, the station works on any available jobs. If no jobs are
available, the station idles. Once the next time instapge occurs, the policy is
“reset,” in terms of the time allocations.

In other words, according to our scheduling policy, on each intekyatach
station tries to spend exactly the same amount of time on jobs in each class
(i, j) as the fluid solution(Q(r), T(¢)) does, while maintaining the nonidling
requirement. Our main goal is to show that, in general, the resulting stochastic
process stays fairly close to the fluid trajecté@(¢), T (¢)), when the stochastic
network operates under the disciplibe

From the fluid equatiori16) we havey; jyco Ti.j (tm: tmt1) < tmid — tm, fOT
eachm. As a result, any policyul is feasible. From the description above, it is
certainly nonidling. We now analyze the dynamics of our network when palicy
is implemented. For convenience, we introduce = sg = 0.

LEMMA 8. Under the policy U (in fact, under any scheduling policy), for
everym=0,1,..., 4],

(33) sup  [10(t) — Q(tw)| < Cén

I <t<tp4+1

and

(34) P{ sup Q) — Qi) > can} < 0(exp(—O(m)).

t <t<tm+1

PrROOF Applying (12), (13) and (16), we have
10(1) — Q(tm)l < (in + Zm,h) (t —tm) < C(tmy1— tm) = Cén,
which proves (33). We now prove (34). By Assumption B [specifically bound (10)],
for everyi and everyt € [t,, ty+11,
(35)  P{lAi(t) —Ai(tw)| > 21;0n} < P{A; (tm+1) — Ai(tm)| > 21;6n}
(36) < O(exp(—B(n))),
sincet,, 11 — t,, = én. Similarly, for alli andj andr € [, t;n11],

(37) P{ID;, (1) — Di,j (tm)| > 2u;, j6n} < O(exp(—O(n))).



1672 D. GAMARNIK AND J. J. HASENBEIN

Applying (1) and (2), we obtain

IP’{ sup |Qi,j<z>—Qi,j<tm>|>2(xl-+m,j_1+m,,->an}so(exp(—@)(n))).

Im<t=<lp+1

By summing these probabilities over &l j), we obtain

P{ sup  [1Q() — Qtw) |l > (2Zwi +4)° m,_/>5”l}
i i,j

Im <t=<tpm+1

<> 0(exp(—0(n))) = 0(exp(—O(n))),

iJ
implying

P{ sup  [|Q() — Qum)l > C(Sn} < 0(exp(—0(n)),

I <t<tp+1

whichis (34). O

A large part of the remainder of the paper is devoted to proving Proposition 2
below. The proof is quite lengthy and we split the argument into several sections.

PrROPOSITIONZ2. Under the policy U = U(S), for every r = —1,0,1,...,
M —1,every t, € [s,, sr+1] and every class (i, j),

(38) P{IQi.; (tm) — Q1. (tm)| < 8C" 30} > 1 — O(exp(—O(n))).

The proof is done by using various induction steps. The “outer” induction is
onr, which indexes the trajectory decomposition poistsThe “inner” induction
is done on the stagesof the classesi, j) classes in the network, and is outlined
in various lemmas below.

We start the outer induction with= —1. Then forz,, € [s_1, so] = {0}, we
simply haver,, = 0 and the bound in (38) holds trivially for all classgs;) since
Q(0) = Q(0) = ¢, with probability one. Next we suppose the bounds in (38) hold
for —1,0,1,...,r — 1. We then show that the bounds hold forThe necessary
bounds will be established by a sequence of lemmas. Our first lemma simply says
that assuming the bounds (38) hold fordlk r — 1 andt,, € [s,, 5,111, @ Similar
bound holds at the end poist.

LEMMA 9. If the bound (38) holdsfor all " < r — 1, then, for every i, j,

P{IQi,j(s7) — Qi j(s/)| > 8C"2n +25Cn} < O (exp(—O(n))).
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PROOF Find the largest,y < s,. Thent, 11 = t,y + dn > s, > t,y. By
Lemma 8, we haveQ; ;(s,) — Q; j(ty)| < Cén and

P{|Qi.;(s;) — Qi.j(tw)| = Cén} < O(exp(—O(n))).
Sincet,, € [sy—1, sr], then by the assumption of our inductionrin
P{Qij (tw) — Qi j(tw)| = C"28n} < O (eXp(—O (n))).
Combining the last three inequalities, we obtain the resuli.
In Section 4.3.2 we obtain probabilistic lower bounds on the number of jobs

processed during the time intervll,, t,,), for any ¢, € [s,,s,+1], under the
scheduling policyU(§).

4.3.2. Lower bounds on the departure process. The next lemma shows that,
with high probability, in the first stage in the route of each job type the total number
of jobs processed during the time interysgl, ¢,,] is not too far behind the amount
of fluid processed during the same time interval in the fluid solution. A subsequent
lemma establishes a similar bound for stages two and higher. Recall that we fixed
and we assume by induction that (38) holdsifox r — 1.

LEMMA 10. For everyi <1 and every m suchthat s, <, <s,41,

(39)  P{Dia(sr.tm) = Dia(sy. tm) — 25C"2n} > 1— O(exp(—O(n)))
and

(40)  P{T;1(srs tm) = T5.1(5r, tm) — 3umadC 20} > 1 — O (exp(—O(n))).

PrROOF We start with proving bound (39). Bound (40) will be an easy
corollary.

Part I. Fix a specific classi, 1), and timez,,,, s, < tp, < s,+1, and introduce
the event

(41) D(tmg) = {Di.1(5r tmg) < Di.1(5r» tmg) — 25C" 20},

Note then that (39) is equivalent to havii®f D (z,,)} < O(exp(—©(n))) for
everyi andz,, € [s,, s,+1]. Next, we introduce the events

(42) A=Yty €sr, Sr41] 1 Ai(Sr, ) = Ai(ty — 57) — 8Cn},
(43) Q@ ={Qia(sr) > Qi.1(sy) — 8C"T2n — 25Cn}.
From Lemma 9 and the inductive assumption, we have

(44) P{@} > 1— O(exp(—B(n))).
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Now fix anyt,, € [s;, s,+1] and consider

P{A; (sr, tm) = Xi(ty, — sr) — 6Cn}
8Cn

=P{Ai(sr,tm> > Al — 57) — (i —sr)},

where without loss of generality we may assugpe- s,. If ¢, — s, < én, then the
probability above is equal to one, since the right-hand side of the inequality inside
the probability is negative. Suppose ngw— s, > dn. We have

5Cn >8Cn_8C
tm—Sr _ 6On 6

m r

Settinge = %C and using the large deviations Assumption B with #hige obtain
that
P{A; (sr, tm) = Xi (tm — 5) —8Cn} = 1 — O(eXp(—O (1, — 57)))
(45)
>1— O0(exp(—O(n))),

wheret,, — s, > 8n is used in the last inequality. The number of differgptin

[sy, sr+1] is at mos®n/(6n) = 6/5. Summing over all such,, we conclude
(46) P{A} > 1— (0/8)0(exp(—O(n))) =1 — O(exp(—O(n))).
Hence,
P{D (tmp) } = P{D (tmp)|A N QJP{AN Q} + P{D(tn,)|A N Q}P{A N Q}
<P{D(tn,) NAN Q} + O(exp(—B(n))),
where in the inequality we usB{A N @} < O(exp(—O(n))), which holds by
(44) and (46). Thus, to show (39), it suffices to prove
(47) P{D(tm,) N AN Q} < O(exp(—O(n))).

We denote the eventD (7,,,) N A N Q) by D.(t,,). We first show that given
D (tmy), there exists, with probability one, a time instangewith s, <1, < t,,,
such that the following events occur:

(48) F (tm) ={Qi,1(tm) = 6Cn}
and
, 252C
(49) G(tn) = {Di,l(tm, tmt1) < i1 Ty 1(tm, tng1) — 5 & }
That is, we claim
(50) ]P){ U (?(tm) N g(tm)) | °(Dc(l‘mo)} =1
{

m:sp=tm Stmo}
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On the other hand, we also claim that, for eagke [s;, 5,411,

(51) P{G(tm) | F (tm)} < O(eXp(—O(n))),

which implies thatP(F (¢,,) N G.(¢,)) < O(exp(—®(n))). Together with (50), this
would imply

_ Pz T 00 NG00

— PUs, < <t & (tm) 0 G (tm) | D (tmg) }

)3 P{F (tm) 0 §(tm)}
PUs, <t <ty F (tm) NG (tm) | Dee(tmo)}

P{Dc (tmo)}

tm€lsr,sr+1]
< O(exp(—0(n))),

where again, for the last inequality, we use the fact that the number iof the
interval [s,, s,41] is at mostd /8 and6/8 exp(—® (n)) = exp(—®(n)). We could

then conclude that (47) holds and we would be done. Thus, we need to show
(50) and (51). We start by proving (51). Note that during the time intefyal
policy U(S) either allocates at IeaQE,l(tm,tm+1) time units to process class

(i, 1) jobs, or all theQ; 1(#,) > §Cn jobs initially present are processed. In the
second casg(1,,) does not hold sincéCn > ,in,lf}’l(tm, tm+1)- In the first case,

if T;1(tm, tma1) < Zjizfgn , then4.(z,,) obviously does not hold, since the right-hand

side in the inequality in (49) is negative. Otherwigg; (t,, t,,+1) > ©(n). In this
case, we can apply the large deviations bound (10) which holds by Assumption B.
Settinge = 28°Cn /(T;. 1(tm, tw+1)0) > 25C /6 in the bound, we obtain

252Cn

P{Di,l(zm, tm1) < winTi1(tm, tms1) — } < 0(exp(—O(T; 1(tm, tm+1))))

= 0(exp(—O(n))),

where in the last equation we uigl(tm, tm+1) > ©(n) and as usualj, C and6d
are hidden in thé (-) notation. We conclude that (51) holds.

We now prove (50). Note that if,, — s, < én, then the right-hand side of the
inequality in the eventD(z,,) is negative and, therefore, the evemstz,,,) and
D, (tnmy) cannot occur. Thus, we assume there exists at least,oaés,, ,,). We

haveD; 1(sy, tmg) = > i $r <t <t 1) D;.1(tm, tm+1) @and

Di,l(sra tmo) = Z Di,l(tm, tm+1)

{m:sp—dn<ty Stmofl}

= Z Di,l(tm,tm—l—l)‘i‘(scn.

{m sy <ty ftmo—l}
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The eventD(z,,,) implies that there existsz, € [s,, t,,—1] such that

25C" 20 — §Cn
r(tmo —sp)/én]

25C™ 2 — 8Cn

Di,l(tm, tmy1) < Mi,lTi,l(tma tny1) —

52 < wi1Ti1(ty, t -~

( ) = Mil 1,1( m> tm1) 6/8) + 1
_ 252C7 20 — 52C
_ 252Cn

where we used,, — s, < 6n in (52) and we use in (53) the fact that- 1 by (25),
8 <1by(32)and, asaresult+§ < 20 and(2C"2—C)/2> (2C?—C)/2 > 2C.
Amongt,, € [s,, tmy), select the largest such thaD; 1(#, tm+1) < wi1Ti1 %

(tms tms1) — 2‘320# and denote it byiz. By the derivation above, the set of sugh

is nonempty. Thus,

_ 282Cn
(54) Di1(ti, tir1) < miaTia(ta, tis1) — I
Moreover, ifm < mg — 1, then for allm <m <mg — 1, we have

_ 282Cn

Di1(tm, tmr1) = i AT 1t 1) — R
or
- (mg — m)28%Cn
Di,1(tii+1s tmo) = 10,175, 1(t3415 tmg) — 5

(55)

= Mi,lTi,l(tnaJrl, tmo) — 26Cn,

wheremg — m < 6/§ is used. Note, that the bound (55) holds triviallysif =
mo — 1. Next, note that the evem® (¢,,,) jointly with (55) implies

Di.1(8rs tir1) = Di 1(Sr, tmg) — Di1(tii415 tmo)
(56) < Mi,lfi,l(sr’ tmg) — 25C™ % — (;L,',lfi,l(t,h+1, tmo) — 28Cn)
= wi1Tia(sr, tar1) — 25C"%n 4 25Cn.
Thus,
Di1(srs t3) < Dia(sr, tipg1)
(57) < Mi,lfi,l(sr, Lht1) — 25C™ %0 + 28Cn
< winTia(sr, 1) — 25C"2n +35Cn,
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wherew; 1T;.1(tp, tig1) < ii18n < 8Cn is used. Now recall from (1) that
(58) Qiata) = Qia(sr) +Ailsr, i) — Dialsr, 15)-
Then conditioned oD, (#,,) = D (tn,) N A N Q and using (57), we obtain
Qi1(ti) = Qia(sy) + Ailty — s7) — iaTia (s 1)
—8C™2n —25Cn — 8Cn +28C"2n — 35Cn.
Recall from (12) tha; 1(s,) + i (6, —s7) — i1 Ti.1(sr. ) = Qi 1(5) = 0. Then
(59) Qi1(ty) = Qi1(ty) +8C 20 —65Cn > 5Cn.

We have established that if the eveBt(,,,) holds, then (54) and (59) hold for
somet,;, < t;,. In other words, (50) holds. This completes the proof of (39).

Part Il. We now prove (40). Fix &, € [s,, sr+1]. Note that the bound (40) is
trivial if Ti,l(s,, tw) < 3umaxdC’2n. So, suppose the previous inequality does
not hold. Let

where we use; 1/tmax> 1. Let
6Cn &6
E=—2>—,
A T 0

where we useA < u;17;.1(s,,tn) < COn. We condition on the evenD(t,,),
which by (39) holds with probability at least-1 exp(—®(n)), and use large
deviations Assumption B with theabove to obtain

P{Tia(sr, tm) > i1 (101751055, tm) — 25C"20) — 8Cn | D (tm))
=P(T;.2(5r. tm) > 14; 1 A — eA|D (s, tm) > A}
>1— 0(exp(—O(A)))
>1— 0(exp(—O(n))),
where the last inequality follows from the last inequality in (60). To finish the

argument, we observe thﬂ{llZ(SC”rz +8Cn < 3umadC’ 2n. O

We now establish a similar lower bound for classes corresponding to stages two
and higher.
LEMMA 11. Foreveryi <1, j < J; andm suchthat s, <t, <s,4+1,
(61) P(Dy.j (5. tm) > Di j (¢, twm) — 25jC"2n} > 1 — exp(—O (n))
and
(62)  P(Tij(srtm) = T, j(srs tm) — Bumadj € 2n} = 1 — exp(=©(n)).
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PrROOE The proof is very similar to the one for Lemma 10. We only highlight
the differences. The proof is done by inductioryirthe base casg= 1 is covered
by Lemma 10. So let us fix & > 1 and assume that the assertion holds for all
(i, j) with j < j — 1. We again define an event related to the inequality inBide
in (61). For a clasgi, j) and any tim&,,, with s, < t,,, < 5,41, let

(63) o{D(tmO) = {Di,j(sr, lm) < Di,j(sr, tm) _ 25jcr+2n}‘

We need to shoWP{D (#,,,)} < O(exp(—O(n))) for everyt,,, € [sr, s,+1]. As in
Lemma 10, we introduce the event

(64) Q@ =1{Qi j(s,) = Qi (s;) —8C"?n — 25Cn},
but instead of the evet defined by (42), consider
(65) D ={Vty sy, Sr+1] : Di,j—l(sr’ tm) > Di,j—l(sh tm) — 25(] - 1)Cr+2n}-

Again using Lemma 9 (and the “outer” inductive assumption), we obtain
P{@} > 1 — exp(—®(n)) and by the inductive assumption gh P{D} > 1 —

O (exp(—®(n))) [where, as before, we sum several expressions of the order
O (exp(—®(n))) over t, € [s,,s,+1] to get againO (exp(—O(n)))]. Next, let
De(tmg) = D(tmy) N Q N D. We need to ShoWP{D, (1)} < O(eXp(—O(n))).

For everyt,, € [s, o], we introduce the ever (z,,) as in (48), excepQ; ; is

used instead a®; 1. Finally, we introduce}(z,,), defined as follows:

252Cn j}
5 .
Arguing as in the proof of Lemma 10, we claim that (50) and (51) hold with the

new event definitions. The proof of (51) is identical to the one of Lemma 10.
For (50), we repeat the argument until we get to (57), instead of which we get

G(tm) = {Di,j(tm, tmt1) < i j T, j(tms tmr1) —

(66) Di.j(sr. 1) < i1y (sr. 1) — 2j8C" 20 4 35Cn.
Then we obtain
(67) Qi j(ty) =Qi j(sr) +Dij_a(sr, t,z) — Dj j(sr, 1)
> Qi j(s) + wi,j—1Ti, j—1(sr, ) — i j Ti, j (v 1)

(68) —8C™2n —25Cn — 28(j — 1)C" 20 4+ 25jC" 20 — 38Cn
(69) = Qi (ty) + §C™ % —58Cn
>6Cn,

where (2) is used for (67), conditioning &x.(1,,,) is used in (68), and (13) is used
in (69). This proves (50) and completes the proof of (61). The proof of the lower
bound forT; ;(-) follows the proof of Lemma 10, almost line for line[]
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4.3.3. Upper bounds on the departure processes. In this section we obtain
upper bounds, similar to the bounds in Lemmas 10 and 11, on the cumulative
departure®; ; (s, t,,), for values ofn such thats, <1, <s,11.

For every stations, by construction of the sequeneg s1, ..., sy, we have
either 0, (r) > 0 for all s, <t < 5,41 Of Qx () =0 for all s, <t < s,41. We
consider these cases separately.

LEMMA 12. Given any station o, suppose the interval (s, s-+1) is such
that Q, () > 0 for all s, <t < s,41. Then, for every class (i, j) € o and every
Im €[5y, Sr—i—l]a

P{Ti i (Srs tm) < Tij(Srs tm) + 3]0 | tmaxmaxC" F2n)

(70)
>1-— 0(exp(—®(n)))
and
P(D;.; (5, tm) < Dy j (5, tm) + 480|112 gy maxC" +2n)
(71)

>1— 0(exp(—O(n))).

PROOF  Given any statiom, suppose thaP, (r) > O foralls, <t < s,41. By
the nonidling constraint (20), we have that

(72) Z Ti,j(sr’ Sr41) = Sr41 — 8.
(i,j)eo

Fix any,, € [s,, sr+1] and fix any classi, j) € o. Applying Lemmas 10 and 11
to s, andtz,,, we have that with probability at least10 (exp(—® (n))), for every
class(i’, j') e o,

Ti’,j’(sra tm) = Ti’,j’(sr’ tm) — %jlﬂmaxcr+2n
= Ti’,j’(sr’ tm) — 35Mmax-]maxcr+2n,

where we use (7) in the second inequality. Applying (72) and the feasibility
inequality (4), we obtain that with probability at least-10 (exp(—© (n))),

Ti,j(Sh tm) <tm — S — Z Ti/,j’(sr, tm)
@, )#0,j)eo
(73) <tm— S — > (Tyr, (51 tm) — 38 pemaxJmaxC”2n)
i, )#0,j)eo

< ﬁ,j(srs tm) + 3810 | tmaxJmaxC" 0.
Let us define the event as follows:

T ={Tij(sr tm) < Ti,_;(sr, tm) + 35|U|Mmax1maxC’+2n},
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thatis,P{7} > 1 — O(exp(—®(n))) per (73). Next, consider
PADi (57 tm) > i, i Ty, j (57 tm) + 4810 | 1tfnamaxC"2n | T)
<P{D; (s, tm) > i j(Ti,j (r tm) + 38| | maxJmaxC’%n)
+ 8|0 | 2 axdmaxC 2 | T).
Applying the large deviation bound (10) with

o 8|0 | iaxImaxC" Hon __ SlolufadmaC 2
Ti i (s, tm) + 38|0 | wmaxJmaxC™t2n — 6 4 38|0 | tmax/maxC"+2

[WhereTi,J-(s,, tn) < 6n is used], we obtain

P(D;  (5rs tm) > i Tr.j (5rs tm) 4 48]0 | e ImaxC 20 | T}
< exp(—O(T;. j (sr, tm) + 3810 | tmaxJmaxC' T2n)) < exp(—O (),

where the constard is hidden in®(-). Taking this together witlP {7} > 1 —
O (exp(—®(n))), we have proven the lemmall

We now analyze stations for which the fluid amount stays zero during the
interval [s,, s,+1]. In the following lemma we obtain an analogue of Lemma 12
for this second case.

LEMMA 13. Given any station o, suppose the interval (s;, s,+1) is such
that Q,(t) =0, for all s, <t < s,4+1. Then for every (i, j) € o and every
tm € [sr, Sr—i—l]’

P{D; (7, tm) < Dy j(sr, tm) + 58] timaxd JinaxC'2n)

(74)
>1— O(exp(—O(n))).

PROOF Consider any station such thatQ, (r) = 0, for all s, <1 < s,11.
Applying fluid equations (12) and (13), we obtain that, for every clasg) € o
and everyt,, € [s, Sr+1],

(75) Di,j—l(sr,tm) =l—)i,j(5r7tm),

where for the cas¢ = 1, D; j_1(-) is understood ag; (-).
The proof now proceeds by induction jn We start with the base step~= 1.
So, consider any class, 1) € o. Applying (75), we have

(76) Di,l(sr, Im) = Ai(sh Im).
Applying (1), we have
(77) Qi,l(tm) = Qi,l(sr) + A (sr, tm) — Di,l(sr, tm) > 0.
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Next, lets,, = max{m 1, <s}. In particular, O< s, — 1, < 8n. We then have
P{A; (sy, ) > A; (sr, ) + 28Cn}

(78) _

<P{Ai(ty, tm) > Ai (s, ) + 26Cn}
(79) <P{A; (ty'+ tm) > Ai(tyy + 81, 1) + 25Cn}
(80) = ]P){Al (tm’, tm) > Ai (tm’s tm) + 6Cl’l},

where A; (t,y, tyy + én) < A;8n < Cén is used in (80). Note that whep, = t,,,

the probability in (80) is zero since the left-hand side is negative. Thus, we
assumer,,s > t,,. Lete =686Cn/(t,, — t,y) > 8Cn/(On) = 8C/0 > 0. Using the
large deviations Assumption B with this we obtain

P{Al (tm” tm) > Ai (tm’s tm) + (SCn} = I[-D{Al (tm/v [m) > Ai (tm” tm) + E(Im - [m/)}
< 0(eXp(—O(ty — tw)))
< 0(exp(—0(n))),

wherer,, — t,,» > dn is used in the last inequality. Combining this bound with (80),
we obtain

(81) P{A; (sr, tm) > Ai(5y, tm) +28Cn} < O(eXp(—O(n))).
Applying Lemma 9, we have
P{Qi1(s,) < Qi1(s,) +8C 20 +25Cn} > 1 — O(exp(—O(n))).

By our assumption thad,, (r) = 0 for all s, < ¢ < s,1 and by continuity, we have
Q. (s;) = 0. Using this fact, we now have

(82) P{Qi.1(s,) <8C"%n 4+ 25Cn} = 1 — O(exp(—O(n))).
Now, from (77), we have
Dia(sr, tm) = Qi1(sr) + Ai (srs tm) — Qi 1(tm)
< Qi 1(sr) +Ai(sr, t).
Applying (81) and (82), we obtain that, with probability at least—1
O (exp(—0(n))),
Di1(sy, tm) < Ai(Sr, tm) +25Cn +8C" 20 4 25Cn

< Ai(Srs tm) + 5812 0l 2 .

Combining this with (76), we obtain the required bound. This completes the proof
of the base step.

We now prove the inductive step. So, fix> 1 and suppose that the assertion
holds for 1 2,..., j — 1. We now consider a particular clagsj) € o. We have,
from (2),

(83) Qi,j(tm) = Qi j(sr) + D j—1(sr, ) — Dj j (s, ) = 0.
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Again, by Lemma 9, we have
P(Q;.;(s;) < Qi j(sy) +8C" 20 +25Cn} > 1 — O(exp(—BO(n))),
which implies
(84) P{Q;.;(s,) <8C" 2 +25Cn} > 1— O(exp—O(n))),

again sinced, (s,) = 0. i
Consider the statios,, containing(i, j — 1). If o,/ is also such tha@,/ (1) =0
forall s, <t <s,41 (e.9., when' =v), then by the inductive assumption ¢n

P{Di,j—l(srv tm) < Di,j—l(sra tm) + 58(] - 1)Mr2naxl']r$1axcr+2n}
>1— O0(exp(—O(n))).

Otherwise,o,/ is such thatQaU/ (t) > 0 for all s, <t < s;,41. Then Lemma 12
becomes applicable, and applying (71)dtp, we have that, with probability at
least 1— O (exp(—®(n))),

Di j—1(S tm) < Di j—1(Sr, tm) + 4810y | 12 0 JmaxC” 20
< Dj j-1(sr, tm) +5(j — DSpbad Jaal 0,

where we usdo,/| <Y, J; < IJmaxandj > 1. Hence, in either case we have
a probabilistic bound om; ;_1(s,, ). Combining this with (83) and (84), we
obtain that, with probability at least-2 O (exp(—© (n))),

Dy (Srstm) < Di j—1(sy, tm) +8C 20 4+ 25Cn 458 (j — D)pad J20C o0
< Dij_1(5r,tm) + 8845 — Do J20C 20
< Dij—1(5r, ty) 4 58j 2 and J20xC 0.
Finally, recalling (75), we obtain the desired bound. This completes the proof of
the inductive step. [

With the lemmas above in hand, we are now ready to finish the proof of
Proposition 2, by completing the outer inductive step-on
PROOF OFPROPOSITION2. Fix anyt, € [s;, s,+1]. By Lemma 9,
P{IQi.j(sr) — Qi (s,)| <8C™2n +25Cn} = 1— O (exp(—O(n))).
Next, for any classi, j), recall that we have
(85) Qi,j(tm) = Qi j(sr) + Di j—1(sr, tm) — Di j (sr, tm),

with D; j_1(-) replaced byA;(-) when j = 1. Combining Lemmas 10, 11,
12 and 13, we obtain that

P{ID;; (57, tm) — Di j(5r, tm)] < 578112 gl J20C 20}
>1— 0(exp(—On))).
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Recalling (45) and (81), we have that
P{IAi (s, tm) — Ai(sr, tm)| < 28Cn} > 1— O(exp(—O(n))).

Combining the previous two bounds with (85) and the fluid analogs (12)
and (13), we obtain that, with probability at least 10 (exp(—© (n))),

Qi (tm) — O ()| < 8C" 20 4+ 28Cn + 108 12 ol J 2o C'2n < 8C"3n,
where the bound (8) is used. This completes the proof of Propositionl2.

4.4. Proof of the main theorem. In this section we present the final two proofs.
The next theorem is the last result needed before proving Theorem 7.

THEOREM 14. Suppose the fluid model of a stochastic multitype network is
not globally weakly stable and satisfies the FDP property. Then for any initial
state Q(0) = (g, z1, z2) € Z%4 x R.F, under the nonidling scheduling policy U,
we have

(86) P{|Q@IlgID| = 2lqll} = 1— O(exp(—O(llg]1)))
and
. gl
(87) IP’{ nf Q= 1! max(E 1)}21—0(exp<—®(||q||)>).

PrRoOOF We first prove (87). Fix any, and find thes, such that,, € [s;, s, 11].
We have

P{ sup Q) — (r)||>scr+4<sn}

tm Stftm+l

< P{ sup Q) — Qi) > CSn}

i <t<tm+1

+P{IQ(twm) — Q) > C"45n)

+P{ sup ||Q(rm>—Q<r>||>can}

I <1 <lw+1
< 0(exp(—O(n))).

In fact, observe that the last probability in the right-hand side above is equal to
zero by (33) of Lemma 8. The first probability in the right-hand side is at most
O (exp(—®(n))) by (34) of Lemma 8, and the second probability is also at most
O (exp(—®(n))) by (38) of Proposition 2 and the fact thatJ; < C.

Combining the inequality above with (31), we obtain

IP’{ inf ||Q(t)||< mln(— 1) 3CV+45n}50(exp(—®(n))).

iy <t <ty C
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From (32) and since < M — 1, we have

% min (Z, 1) —3c"sn > S min <Z, 1).
2 C 4 C
Thus,

IP{ inf Q)| < %min <% 1)} < 0(exp(—O(n))).

Im=t=tpy

By summing over allin =0, 1, ..., [0/5], we obtain

. _ 6
IP’{ oinf QW) < %mln (% 1)} < {ﬂ O (exp(—O(n))) = O(exp(—O (1)),

where the last equality follows since by (25) and (32), the valugogh] is
bounded above by a constant. Recall, finally, that = n. This completes the
proof of (87).
We now prove (86). Find the largest < 6n. In particular,6n — t,, < én.
Applying (34) witht = 6n, we obtain
(88) P{IQ(On) — Q(tw)|l > Cdn} < O(exp(—O(n))).
Applying (33) atr = 6n, we obtain
(89) 106n) — Q(tw)|l < Cén.
Applying (38) to ther,, chosen above, we obtain
(90) P{IQi.j (tm) — Qi (tm)| > 8CMF2n} < O(exp(—O(n))).
Next, we note that

P(IQ(tm) — Qtm) |l > CM+3n)

B CM+3I’l
<P UIQi,j(tm)—Qi,j(tm)|> 77 }
i,j max
_ 5CM+3
=P UJIQuj () = Qi) > = ”}
i,J
=P JI1Qi.;tm) — Qi (tm)| > 8CM+2n}

i,J

<> "P{IQi,j(tm) — Oi.j(tm)| > 6CM*2n)
i,J

< O(exp(—0(n))).

In the last step, we employ (90) and then sum ovet ahd j to obtain a new
exponential bound. Combining (88), (89) and the last bound, we obtain

P{Q(0n) — Q(n)| > 35CY 3} < O (exp(—O (n))).
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Sinces < 1/(3CM+3), we obtain

P{|Q(n8) — Q(n6)|| > n} < O(exp(—O(n))).
Recalling from (30) thajl O (n6)|| > 3n and recalling|g| = n, we obtain

P{IQMO)I < 2llgll} < O(exp(—B(n))),
which implies (86). This completes the proof of Theorem 14l

It should be noted that the constant “2” which appears in (86) is completely
arbitrary. In all of the proofs in which the constant appears, it can be replaced by
any constant greater than unity. We are now ready to prove our main result.

PrROOF OF THEOREM 7. We fix a large valueig (the actual value will be
specified later). Consider any initial state, z1, z2) with |lg|| > no. We apply
the policy U for the time interval[0, 6p], wherefy = 0|g||. If at time 6y the
resulting stat&(6p) is such that|Q(6p) || > 2no, then we apply the policil again
with ¢ reset toQ(6p), till the corresponding timé, = 6g + 6]Q(6p)||. If again
1QOD I = 2||Q(B0) |l = 4ng, we continue with policyU until the corresponding
time 92 and check whethelfQ(62)] > 2||Q(61)|| > 8rno, and so on. Either this
process continues indefinitely or for some time instaficeve get||Q(6;)| <
2||Q(6;—1)|l. Setb_1 = 0 by convention. Le€,,,m =0, 1, ..., denote the event

QM) = 2[Q(#;—1)Il and

. 1IQ@i-vIl (v
(O1) 1Rl = R0 max(Z 1),
for all i < m. In particular, the event impliegQ(6,,)|| = 2"t1ng > no. Let
et =, &, thatis,&! implies that the process of exceeding the bounds continues
indefinitely. We now show thaP{¢'} > « > 0, wherea depends only on the
parameters of the model and efpjandy (and is independent for example from the
componentg, z2). By (86) and (87) of Theorem 14, the probability of the event
el=Nr, & is at least

1-2> 0(exp(—0(2"[Igl) > 1= Y O(exp(—O((m + D ql))))
m=0 m=0
_ Oexp=0(lglN)
1-0(exp(=6(lglN))

>1— 0(e ®m0),

We takeng sufficiently large so thatr = 1 — 0(e~®"0)) > 0. The parameters
hidden in®(-) depend only on the parameters of the model (including the large
deviations parametefg, L) andy. Thus, the probability o&? is positive (and, in
fact, is close to unity), provided thay is sufficiently large.
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Next, we show that the evest implies

IRMI _ maxy/C,1)
> >0
t 8max, 3/y)

(92) liminf

We first show by induction inz that evente® implies |Q(6,,) /6, > 1/6 for
all m > 1. Whenm = 1, the ratio is at least|Z||/(©@]lql) > 1/0. Suppose the
assertion holds for=1,2,...,m — 1. Note that,, =6,,_1 + 0||Q(6,,—1)| and
by &%, 1Q0m)1l = 2IQ(Bm-1)l. Therefore,

1RGN 21Q0m-1l
On " Om—1+0[1QOm-2)I
_ 21QOm-DII/Om—1
14 01QOn-D/On-1
But by the inductive assumption|Q(6,,—1)|/6m—-1 = 1/6. This immediately
implies that the expression above is also at legst, land the induction is

completed. Now for every > 6g = 6||q||, we find6,, such thatd,,_1 <t < 6,,.
Using (91), we obtain

QM) . 1QEm-Il max(g’l)
t 46,, C

; (&)
= max| =,
4(0m-1/1QOn-1 ) + 40 C

- maxy/C, 1)
- 80
where the last inequality follows sing€ (6,,—1)|l/6m—1 > 1/6. This shows (92).

Now, suppose the everj; fails to occur at some;, and thus€! does not
occur. We then “restart” the process of attempting to obtain an infinite sequence
of points#; with the properties outlined above. Let us c&fl the event that the
sequence is obtained after restarting the process again as follows. At that time
at which g; fails, we switch to any nonidling nonpreemptive scheduling policy.
Applying Assumption C, with probability one, there exists a timefor which
IQ(t1)| = no. Note that it is possible that = 6;. We apply the policyU starting
from time 7;. Repeating the argument f&, with probability greater tham,
we obtain a new infinite sequence of time instanéesuch that||Q(0./+l)|| >

1

2[Q@)|l, that is, 62 occurs. 1f€2 does not occur, we again restart the process.
Finally, the probability of eventually obtaining a sequence of paptwith the
stated properties is given (&) = P(U2, &%), where thegk are defined as
above in the natural way. Since the probability of each egéris bounded below

by «, and this lower bound on probability does not depend on whether or not the
other events occur, the probability &fis one.

> 0,
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Finally, we show below that the eve@timplies (22), that is,

1RO _ maxy/C,1)
~ 8maxl, 3/y)

Let k£ be the smallest integer for whick; occurs. Denote byl the time

corresponding to the beginning of this event. Fix any state1, zo) andz > 0

and condition o1y, = tp, Q(tp) = ¢g. Applying (92) to the eveng, we obtain

1RO _ maxy/C,1) -

o+t — 8maxl,3/y)

Sincery is fixed, the lower bound (93) holds as well. Integrating over the choices

of (g, z1, z2) andtg, we complete the proof of the theoreni

> 0.

(93) lim inf

(94) liminf

5. Conclusionsand further work. The present work leaves many interesting
guestions open. The most immediate one is whether the result connecting global
weak stability and rate stability holds for networks with any number of stations.
One way to prove this conjecture would be to establish the Finite Decomposition
Property for fluid networks with more than two stations. Of course, the question
of whether (strong) global stability of the fluid model is equivalent to positive
Harris recurrence remains open even for networks with two stations. There the
difficulty lies in being able to analyze the dynamics of the stochastic network at
the critical regimep™ = 1. Finally, we mention that our assumption that interarrival
and service times are i.i.d. is used to simplify the exposition and our result should
hold for networks with more general primitives as long as the associated processes
satisfy appropriate large deviations bounds.

APPENDIX

PROOF OFLEMMA 1. We begin by proving (9). The proof of (10) is then
derived using (9). Our method uses the standard derivation of LD upper bounds on
i.i.d. sequences.

Part I. Let us fix arbitrarye > 0 andf > 0. Then we note the following hold for
alln>1:

[P): Z Z;>na+ne+z ‘ Z1 EZ} :P{69215i§n Zi > e@(na+ns+z) | 71 ZZ}

1<i<n

_ El"A79 | 2y > 2) (B2
— en@(a+8)

F(0)(E[e?%2])"
= en@ (a+e¢) ’

where we use > 0 andE[¢?%2] > 1. It is a standard result in large deviations
theory [14] thatE[¢?42] /0@ 18) = ¢ L) < 1 for some value of = 0 (¢) € [0, o]
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as long asE[e?#2] is finite on [0, 8g]. Thus, our tail probability is at most
F(6(g))e LEn We fix a suitable® and takeV = F(6).
We now prove a complimentary bound. Again fix arbitrary 0 andé > O,

P Z Zi <noe—ne—+z ‘ 71> Z} :]P){e—GZEisn Zi > e—@na+9ns—9z | 71> Z}

1<i<n

Ele 79 | Zy > 2] (Ble 72"~
= e—nba+nbe

—0Z -1
(E[e 2])n Oa—0¢
- e—(n—l)@(oe—e) ’

where we usé[e~?(“179) | 7, > 7] < 1. Again we use a standard result in large
deviations theory [14] stating tha[e ?%2]/e~02—0%) = ¢~L() < 1 for some
value ofé = 0 (e) € [0, 6p]. We takeV = eL&)+92=02 Thjs proves (9).

Part Il. We now prove (10). Consider a fixed, but arbitrary 0.

We first obtain a bound which is valid for al>> 1. Note that (9) easily implies
two one-sided versions of the LD inequality. Applying one such one-sided version
of (9) with n = [t/a + ] > 1 andé = as/(1 + as + «) > 0, then there exist
L, Vi > 0 such that

[t/o+et] _
IP’{ Y Zi—z<alt/a+et] —&t/a +et] ‘ 71> z} < Vye Llt/ater]
i=1

for all r > 0. Next since[t/a + et] > t/a + et and fort > 1, [t/a + ef] <
t/a + et +t, we have

[t/o+et] .
IP’{ > Z,-—zSa[t/a—i-et]—?:[t/oz—i—et—i—t]‘lez}SVle_LWOH'm,
i=1

for all + > 1. Multiplying through inside the probability yields

[t/o+er] .
P{ Y. Zi—z<t+acet—ast ‘ Z1> z} < Vye  Llt/eter],
i=1

Further simplification gives

[t fa-ter) )
P{ > Zi§f+Z‘ZlEZ}fvle_Lrt/aH—gﬂa
i=1

for all # > 1. Using the duality relationship between a counting process and its
increments, the above implies

(95) P(N(t +2) > 1/a + et | Z1 > 2} < Vye Llt/ater]
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Finally, settingLy = L(1/a + ¢), we have

Vle—ift/a—i-st] < Vle—th

’

for all # > 1. Hence, we can rewrite (95) as
(96) P{N(t +z)>t/a+et | Zy >z} < Vie FY,

forall r > 1.
Fort < 1andany, > 1, note that/> - exp(—Lot) > 1ifwe setLo =In V5 > 0.
Hence,

(97) P{N(t+2) > t/a+et|Z1>z} < Voe L

holds trivially for all t+ < 1 with such aV, and Ly. Finally, setting V3 =
max V1, Vo} andL3 = min{L1, L2}, then combining with (96) and (97), we obtain

P{N(t +z)>t/a+ et | Zy >z} < Vae L3,

forall r > 0.

This proves one side of the inequality in (10). The other direction is proved by
an exactly analogous argument. The final result is then obtained by combining the
two directions, applying Boole’s inequality and again using appropriate constants
BandL. O
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