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ON THE CONVERGENCE FROM DISCRETE TO CONTINUOUS
TIME IN AN OPTIMAL STOPPING PROBLEM!?

By PauL DupPuIs AND HUI WANG
Brown University

We consider the problem of optimal stopping for a one-dimensional
diffusion process. Two classes of admissible stopping times are considered.
The first class consists of all nonanticipating stopping times that take values
in [0, co], while the second class further restricts the set of allowed values
to the discrete gridnh:n =0,1,2,...,00} for some parametek > O.

The value functions for the two problems are denoted/tgy) and Vi),
respectively. We identify the rate of convergenceVdf(x) to V (x) and the

rate of convergence of the stopping regions, and provide simple formulas for
the rate coefficients.

1. Introduction. One of the classical formulations of stochastic optimal
control is that of optimal stopping, where the only decision to be made is when
to stop the process. Upon stopping, a benefit is received (or a cost is paid),
and the objective is to maximize the expected benefit (or minimize the expected
cost). Although the formulation is very simple, this optimization problem has
many practical applications. Examples include the pricing problems in investment
theory, the valuation of American options, the development of natural resources
andsoon[l,2,4,5,8,11, 12, 19-22].

The formulation of the optimal stopping problem requires the specification
of the class of allowed stopping times. Typically, one assumes these to be
nonanticipative in an appropriate sense, so that the control does not have
knowledge of the future. Another important restriction is with regard to the actual
time values at which one can stop, and here there are two important cases:
continuous time and discrete time. In the first case, the stopping time is allowed to
take values in the intervadD, oo], with co corresponding to the decision to never
stop. In the second case, there is a fixed discrete set of times, and the stopping
time must be selected from this set. Typically, this discrete set is a regular grid, for
example,D" = {nh:n € Ng U {oo}}, whereh > 0 is the grid spacing.

In the present paper we focus exclusively on the one-dimensional case.
Although a statement of precise assumptions is deferred to Section 2, a rough
description of the continuous and discrete time problems is as follows.
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Continuous time optimal stopping. We use the stochastic process model

% =b(S;)dt +0(S;)dB;,

t

whereb ando are bounded continuous functions fr@rio R, andB is a standard
Brownian motion. Although the results can be extended to cover other diffusion
models as well, we focus on this model because of its wide use in optimal stopping
problems that occur in economics and finance. We consider a payoff defined in
terms of a nondecreasing functign R — [0, co). The payoff from stopping at
time ¢ is ¢ (S;), and the decision maker wants to maximize the expected present
value by judiciously choosing the stopping time. This is modeled by the optimal
stopping problem with value function

V(x) =SupE[e™""¢(S;)|So = x1,
Ted
wherer > 0 is the discount rate andlis the set of all admissible stopping times.
The stopping times are allowed to take valueflimo]. Let

LV (x) = 302(x)x2V"(x) + b(x)x V' (x).
Then the dynamic programming equation for this problem is
max¢(x) — Vx), LVx) —rV(x)]=0.

If ¢ is convex and nondecreasing, it is often optimal to stop when the précess
first exceeds some fixed threshald In this case, the value functidn(x) equals
¢(x) for x > x,, and it satisfies the ordinary differential equatienV (x) +
LV (x) =0 forx < x,.

Discrete time optimal stopping. The process model is the same as before, but
the set of possible stopping times is restricted to those that take values in the
time grid D" = {nh:n € Ng U {oco}}. The optimal strategy is often similar to the
continuous time case: stop the first tinSg, exceeds some fixed thresho’tﬁ.

Let V(x) denote the value function. The paiv’” (x), x/*) satisfy the dynamic
programming equation [25]

¢ (x), x € [x], 00),

Vi) =
0 e T"E[VI(S))|So=x],  xe(0,x).

Closed-form solutions to this dynamic programming equation are not usually
available.

The aim of the present paper is to examine the connection between these two
optimal stopping problems ds— 0. There are two questions of main interest:

e What is the convergence rate of the optimal exercise boundatp x,, and
what is the rate coefficient?
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e What is the convergence rate of the value functidh(x) to V (x), and what is
the rate coefficient?

The goal is to use the more readily available solution to the continuous time
problem to approximate the solution in discrete time. As we will see in Section 2,
the optimal exercise boundaries converge with kdie while the value functions
converge with raté:. In both cases there is a well-defined rate coefficient. The
coefficient in the case of the exercise boundary is defined in terms of the expected
value of a functional of local time of Brownian motion, while the coefficient for
the value function involves both local time and excursions of Brownian motion.

Few existing results are concerned with the rate of convergence of approxima-
tions for this class of problems. Lamberton [17, 18] considers the binomial tree ap-
proximation for pricing American options and its generalizations in order to obtain
upper and lower bounds (though not a rate of convergence) for the value function.
The pricing of American options is equivalent to solving a finite-horizon optimal
stopping problem, and there is no closed form solution. The goal in [17, 18] is, in
fact, opposite that of the present paper, in that the discrete time problem is used to
approximate the continuous time problem.

As we have noted previously, the motivation for this study is to exploit situations
where the continuous time problem can be more or less solved explicitly (e.qg.,
the one-dimensional problems considered in the present work). Our results allow
one to explicitly compute accurate approximations for the discrete time problem,
and thus avoid numerical approximation. Whether or not one can find a precise
rate of convergence and rate coefficients for the analogous question in numerical
approximation (where both time and state are discretized) is an interesting open
guestion.

The outline of the paper is as follows. In Section 2 we introduce notation and
define the basic optimization problems. Two important universal constants are
introduced in Section 3. In Section 4 we state the main result, give an illustrative
example, and then lay out the main steps in the proof of the approximation
theorem. The proofs of two key approximations which are intimately connected
with the local time and excursions of Brownian motion are given in Section 5. The
paper concludes with an Appendix in which (i) a result on a conditional distribution
of the exit time is proved, and (ii) representations for the universal constants are
derived.

2. Notation, assumptions and background. Consider a probability space
(R, F, P;F) with filtration F = (#;) satisfying the usual conditions: right-
continuity and completion byP-negligible sets. Thetate process S = (S;, %;)
is modeled by

ds;

T=b(St)dt+a(St)dBt» So=x.
t
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Here B = (B;, ;) is a standard Brownian motion.
Define the continuous time value function
V(x) =SUpE[e " ¢ (S:)|So = x1,
Ted

where the supremum is over all stopping times with respect to the filtr&tion
Define the discrete time value function

V(x) = sup E[e ™" $(S;)|So = x1,
redh

wheres” is the set of all stopping times that take valueih
The following assumptions will be used throughout the paper.

CONDITION 2.1.

1. The coefficientd:R — R ando :R — R are bounded and continuous, with
inf,cr o (x) > 0. Furthermorexb(x) andxo (x) are Lipschitz continuous.

2. ¢:R — [0,00) is nondecreasing, and both and its derivative¢p’ are of
polynomial growth. Furthermore,

supe "¢ (S;) e L, lim e7'¢(S;) =0  a.s.

>0 t—00

3. The “continuation” region for the continuous-time optimal stopping problem
takes the formx : V(x) > ¢(x)} = (0, x,).

4. The “continuation” region for the discrete-time optimal stopping problem takes
the form{x: V" (x) > ¢(x)} = (0, x/).

5. The payoff functionp is twice continuously differentiable in a neighborhood
of x.

6. The smooth-fit-principle holds, that is, the value functioris G! across the
optimal exercise boundany.

As noted in the Introductiori/ satisfies the dynamic programming equation
max¢(x) — Vx), LV(x) —rV(x)]=0.

Note that usuallyV is only once continuously differentiable across the optimal
exercise boundary = x,. Since¢ (x) = V(x) if x € [x4, 00) ando(x) < V(x) if

x € (0, x4), it follows that V" (x.—) > ¢” (x+), where the— denotes limit from the
left. Define

v N
A= (xx—) — @7 (xx) > 0.
@ (xs)
Although one can construct examples whare- 0, as the next remark shows, the
caseA > 0 is in a certain sense generic. We will assume this condition below, and

note that the rate of convergence of the optimal threshold does not dependton
all.

(2.1)
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REMARK 2.1. The change of variabie= — logx can be used to transform the
ordinary differential equation (ODEL f (x) — rf (x) = 0 on (0, co) into the ODE

To(e ™YW (t) + [30(e™) —be )W (1) —rW (1) =0

onR. Sinceo (x) > 0 for x > 0, the classical theory for solutions of ODESs [3] can
be used to show that the general solution¥ (x) — rV(x) = 0 can be written
in the formcy f1(x) + c2f2(x), where f1(x) is positive and bounded as| 0
and f2(x) is unbounded as | 0. Under Condition 2.1, the functiofy is twice
continuously differentiable o0, c0). V (x) is then equal ta1 f1(x) for x € (0, x,]
and equal t@ (x) for x € [x,, co), wherec; andx, are determined by the principle
of smooth fit, that is,

c1file) = (x) and c1fi(x.) =@ (xo).

REMARK 2.2. If § is a geometric Brownian motion with(x) = b and
o(x) =0, and¢(x) = (x — k)T for some constant, then Condition 2.1 holds
whenr > b [8]. For r < b, the value function for the optimal stopping problem
is +00, and there is no optimal stopping time. For the boundary easé, the
value functionV (x) = x and there is no optimal stopping time.

REMARK 2.3. Itis usually not a priori clear if parts 3 and 4 of Condition 2.1
hold for a general state process. Counterexamples can be found in [6, 10].
Interested readers may also find the results in [7] helpful.

Below we give a sufficient condition that is very easy to verify in the case
¢(x) = (x — k)*. Suppose parts 1 and 2 of Condition 2.1 hold, that derivatives
of b ando exist and are Holder continuous for some 0, and, in addition, that

r> sup {b(x)+xb'(x)}.

x€(0,00)

We claim that parts 3 and 4 of Condition 2.1 hold. We will show that part 3 holds
and omit the analogous proof for 4. Now fix> y. We have [15]

X
Z,ﬁs,x—s,yzf Didz,
v

whereD; = 3S; /9z satisfies the SDE

dD?
Dy

=[b(S?) + Sb'(S¥)]dt + [0 (SF) + Sta'(S7)1d By, D=1

Note thatD? and Z are both nonnegative processes. The conditiom onplies
{e”"' D} is a supermartingale, and, therefore, s¢eis’’ Z;}. Observe that > y
implies

P —p(MN=0x-H - - T <x—y.



1344 P. DUPUIS AND H. WANG

Thus, for any stopping time € [0, oc],
Ee™""[¢(S)) — (S < E[e " Z:] < Zo=x —y,

where the second inequality follows from the optional sampling theorem. It
follows immediately that, for alk > y,

V)=V =x—y.
This implies that
{x:V(x) =9 (x)} =[x, 00)

for some real number*. Indeed, ifV(y) = ¢(y) = (y — k)T, then sinceV > 0,
we must havey > k. It follows that, for allx > y,

V) =V +x—-n=0-b+x—-y=x—k=¢().
But V > ¢ trivially, whenceV (x) = ¢ (x) for all x > y. This completes the proof.

REMARK 2.4. |If § is a geometric Brownian motion with(x) = b, and
o(x)=o0,and¢(x) = (3; A;x% — k)* for some positive constants\;, «;) and
k > 0, then one can show th¥t(x) — ¢ (x) is decreasing, which in turn implies that
parts 3 and 4 of Condition 2.1 hold. A similar argument can be found in [11, 14].

REMARK 2.5. We wish to point out that part 6 of Condition 2.1 (i.e., the
principle of smooth fit) is not an ad hoc assumption. Much research has been
done on the validity of this principle under various conditions, especially for the
one-dimensional diffusion case. Interested readers may find the list of references
[6, 11, 14, 24] useful.

3. Two universal constants. In this section we introduce a pair of universal
constants that play an important role in determining the rate coefficients of the
convergence.

Let B be a standard one-dimensional Brownian motion. For a fixed constant
u € [0, 1), define the proces® = {W;,t > u} by

W;=B; — B,.

In other words,W is a Brownian motion starting at time= u with initial
condition 0. LetN = inf{n € N: W, > 0}. Note thatN is finite with probability
one. Define

(3.1) Hu)=EW?2 and M(u)=EWy.

In terms of these functions, we define the constants

1 1
3.2 @:/(; Hu)du and F:/O M(u)du.
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Note thatH (1) > M2(u), and, therefore,

1 1 1 2
) — 2 — 2
O—/O H(u)du>/0 M (u)duZ(/(; M(u)du) =TI~

Expressions (3.1) and (3.2) fér andI" are useful for purposes of approxima-
tion (e.g., Monte Carlo simulation). However, the next lemma connects them with
the quantities that will actually arise in the approximation of the optimal stopping
problem. The proof of the lemma is given in the Appendix.

LEMmA 3.1. Foreveryfixedu € [0, 1),
N
H(u) = E/ Liw,=0dt and M(u)=EL) y(0),
u
where LZ"’N(O) isthe local time of W on theinterval [u, N].

REMARK 3.1. We have employed Monte Carlo simulation to obtain the
approximation ~ 0.589 andl” ~ 0.582.

4. Theapproximation theorem. Our main result is the following.

THEOREM 4.1. Assume Condition 2.1, and define the constants A, ® and
I' by (2.1) and (3.2). Assume that A > 0. The following conclusions hold for all
x € (0, x4):
1.
Vi) -V 1

_ = 2 _2 2
Voo = Mo O =Tkt o).

Xt = x, — Txyo (x)Vh + 0(«/%).

ExAMPLE 4.1. Consider the special case wheérg) = b ando(x) =o.
Assumer > b and¢(x) = (x — k)™ for some constant > 0. It follows that the
value function for the continuous time optimal stopping problem is

Bx*, X < Xy,
V(x):{
x—k, X > Xy,
where
<1 b)+\/<1 b)2+2r g %k
dA=-——-= - — —F —5, =
2 o2 2 o2 o2 x¢
and
Xy = * k.
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According to the theorem,

ak

xi’:x*(l—f‘ax/ﬁ)—i-o(\/ﬁ):a_l

(1—FO’\/E)+0(\/Z)

and
_ V) =9 () Ba(e — 1)(x)* 2

xe — k xe — k

A

’

which, after some algebra, yields

Vi(x) = V(x)

1 2, 2
v = %@~ DO TH0%h +o(h.

4.1. Overview of the proof. In this section we outline and prove the main steps
in the proof of Theorem 4.1. The proofs of two key asymptotic expansions are
deferred to the next section.

To simplify the analysis, we first introduce a bounded modification of the
payoff function¢. This modification will not affect the asymptotics at all; see
Proposition 4.2.

Let ¢ < ¢ be an increasing function satisfying

d(x), if x <x.+a,

(4.1) o) = {k, if x> x4+ 2a.

Herea andk are two positive constants, whose specific values are not important.
Without loss of generality, we assume theis twice continuously differentiable in

the regionx,, 0o). Supposé ands are two positive constants, and igt= x, — 4.

We consider the quantities

Ws(x) = E*[e " ™¢(S,)] and Ws(x) = EX[e "% ¢(Ss,)],
where
s =inf{t > 0:8; > xs},

and E* denotes expectation conditioned §i= x. Note thatWs(x) = Ws(x) for
all x < xs. We also define

Wi = B e p(s,)] and Wi = Ee " g(s,)],
where
th =inf{nh > 0:8,;, > xs).

These are all cost functions for an a priori fixed (and possibly suboptimal) stopping
region.
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Main idea of the proof. The main idea for proving the rates of convergence is
as follows. Write

W3 (x) = V (x) = [W5 (x) = W3 ()] + [W5 (x) = Ws ()] + [Ws (x) — V (x)].
For each term, we will obtain approximations/aandsé tend to zero. It turns out
the leading term for the sum has the following form:
—1418% + a28v/h + ash + higher-order term

Herea1, a» andaz are constants with respectd@nd# (though some will depend
on x) and witha; > 0. Sincex” is the optimal exercise boundary for the discrete
problem, the mapping — W/ (x) attains its maximum at, = x, — x/*. Hence,
one would expect that, would approximately maximize the leading term, or

(4.2) 5 = 2Vh +o(Vh).
ai

Substituting this back in, one would further expect

2
VA(x) = Wi (x) = (—Z—Z +a3)h +o(h).
1

Thus, we obtain the precise asymptotic behavior of both the stopping regions and
the value functions once the quantities a2 andag are determined.

This is, in fact, how the argument will proceed. We begin with the estimation
of the first term, which turns out to be negligible for smialand §. Define the
quantity

(43)  Daa= W) — W) = B[ (¢(S) — $(S,)]-
We have the following result.
PROPOSITION4.2. Define A, by (4.3). There exist constants L < oo and
& > 0 such that
|Dsnl < Le/"
for all sufficiently small § and .

PROOF The proof is based on the following bound. Letbe as in the
characterization (4.1) af. Then for anyx < x,, y > x4 + a, andh > 0, we have

1 y 2
(4.4) P(Sh>y|S0:x)§exp{——[Iog——c1h] }
coh Xy
where the positive constantsg, ¢, depend only on the coefficientso. The proof
of this inequality is a standard application of exponential martingales [23], and
thus omitted.
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We now complete the proof of the proposition. To ease the exposition, we use
in lieu of 7' throughout the proof. We have

Ns=>_ e ""E*[(¢(Sun) — & (Sun))Lir=n)]
n=1

< Zle""h / OO = FOIP S >y T =m)dy.

Fix ann € N. Define the stopping time = inf{r > (n — Dk : S; > x5}. Then
P*(Sun > ylt =n)

h
=/ P*(Spn > ylo =nh —t, Syn = x5, Su—1)h < Xs, ..., S0 < X5)
0

X P*(o € nh —dt|o <nh, Spp > x5, Su—1)h < X5, - .., S0 < X5).

However, the strong Markov property implies, for a [0, #], that
P*(Spn > ylo =nh —t, Syp > X5, S(—1)h < X5, .., S0 < Xs)
= P(S > y|So=xs, 8t > xs)
= P (S > y|So=xs)/P(S; = x5S0 = x5).

The denominator in this display is uniformly bounded from below away from zero,
forall r € [0, 1]:

P(S; > xs|So=x5) > a > 0.

(See the proof of Lemma 5.5 for the detailed calculations in an analogous setting.)
Using (4.4), for all smalk > 0 andr € (0, i),

1 2
P(S; > y|So=x5) < exp{——[log— — cltj| }

1 2
< exp{——[log Y _ clh] }
coh Xy
Now sinceg’ is of polynomial growth an@’(x) is zero for largex, it follows
that there are finite constanksandm such that
6'(») —¢' (M <Ry"*  forally >x, +a.
Hence, for all smals > 0, the change of variable=log(y/x.) — c1h gives

RN onn o 1 1 y ?
Ag,hs—Ze_r” P (t=n) Yy exp{——[log——clh] }dy
o= atx, coh X

R s 00 ,
= _(x*)memclh Z e—rnh px (‘L' — I’l) Mx—X /(c2h) dx.
o n=1 log(1+a/x.)—c1h
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Let @ be the cumulative distribution function for the standard normal distribution.
For i small enough, there exists positive numher€, ¢ such that

-_ o0 m _
Nsp<CY e pX(r = n)/ o=/ g
| I0g(1-+a/x.)

- 1 a s
= c- Pl ———1| 1+ — . —rnh PY(1 =
CN2nc [ N Og( + X*>i| «/ﬁr;e (t=n)
- 1 a
et o] iog(1+ 2)] v
¢ ch g X
We complete the proof of the proposition by using the asymptotic relation

d>(—x) ~ —X2/2

1
N2
asx —oo. U

The bound just proved shows tr[azvgqx) — W({‘ (x)] is exponentially small as
h — 0, uniformly for all smalls > 0. We now consider the terni#’}’ (x) — W (x)]
and[Ws(x) — V(x)]. When considering the asymptotic behavior of these terms, it
is often convenient to scalewith 2 ash — 0 in the manner suggested by (4.2).

For the remainder of this proof, unless explicitly stated otherwise, we will assume
that

(4.5) §=cvh+o(vh) ash—0

for a nonnegative parameter With an abuse of notation, the quantitig (x)
and W;(x) will be denoted byWC” (x) andW,(x) when the relation (4.5) holds.
We next estimatéW,(x) — V(x)] ash — 0.

PrROPOSITION4.3. Assume Condition 2.1 and define A by (2.1). Assume also
that A > 0. Then

We(x) — V(x) = [-3Ac?h + o()]V (x).

PrRoOOF Recall thatV(x) can be characterized, far< x,, as a multiple of
the bounded (in a neighborhood of zero) solutigrto £ f (x) — rf (x) = 0; see
Remark 2.1W.(x) can be likewise characterized, with the constant determined by
the boundary conditiofV..(xs) = ¢(xs). Thus,

P (xs)
Vi(xs)
We now apply Taylor's theorem for small> 0, and usexs = x, — 8, V(xy) =
d(xy), V' (x4) = ¢’ (x,), and the definition ofA to obtain

Wex)—Vx) 1

Y 2
e 5487+ 0(8%).

We(x) = V(x) for all x € (0, x;].
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The proof is completed by using (4.5)

In the next proposition we state the expansion [ﬂzifrgl(x) — Ws(x)]. This
estimate deals with the critical comparison between the discrete and continuous
time problems. The proof of this expansion is detailed, and therefore deferred to
the next section.

PROPOSITION 4.4. Assume Condition 2.1 and define A, ® and I" by
(2.1)and (3.2).Assume also that A > 0. Then

W (x) — We(x) = [Txwo (x) Ach — A0x202(x,)h + o(W)]V (x).

PROOF OF THEOREM 4.1. Recall thatx” is the optimal boundary for the
stopping problem with value functiov. On the stopping region, we always have
Vi (x) = ¢(x). Also, sinceV’ (x) is defined by supremizing over a subset of the
stopping times allowed in the definition &f(x), it follows that V" (x) < V (x).
SinceV (x) > ¢ (x) for all x, it follows thatx” < x,.

According to Propositions 4.2, 4.3 and 4.4, for each fixed 0, co),

Whix)—v 1 1
Wex) —vix) [——Aczh + x40 (x4) Ach — ZAOx2652(x,)h + o(h)].
Vi(x) 2 2
This suggests that the choieg= I'x,0 (x,) should define the maximizer and also
(at least approximately) the boundary of the optimal stopping region. Inserting this
into the last display gives
W) -V [1
V(x) L2
and sinceV" (x) > W (x), it follows that

A2 — ©)x%0 (x,)%h + o(h)],

Vi(x) — V(x)
V(x)h

Now definec by x" = x, — ¢"/h. Sincex! < x,, we know that" € [0, c0).
By taking a convergent subsequence, we can assume’thatc < [0, oo]. Using
an elementary weak convergence argument, one can show/that x,. First
assume that € (0, 00). If ¢ # I'x.o(x4), then by Propositions 4.2, 4.3 and 4.4,
we have

(4.6) |II’}Tl’I$I(I)’lf > EA(F — O)xfo (x4)°.

: Vi) -V 1
lim supM < ZA(T? — ©)x20 (x,)2,
hl0 V(x)h 2
which contradicts (4.6). I§ = oo, then Propositions 4.2 and 4.4 and an argument
analogous to the one used in Proposition 4.3 shows that

h _
% — _ AL+ o(D)].
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Since (¢")?2 — +o0, this again contradicts (4.6), and, thus= [x,o (x,). We
extend to the original sequence by the standard argument by contradiction, and
Theorem 4.1 follows. [

5. Approximations and expansions in terms of local time and excursions
of Brownian motion. In this section we prove Proposition 4.4, which is
the expansionwgl(x) — Ws(x) for small 2 > 0. Throughout this section we

assume (4.5), which we repeat here for convenieheecv/h + o(+v/h ) ash — 0.
Recall also that subscripts efand § may be used interchangeably under this
condition. Define the error term

e(x) = EX[e " Ws(S)) — Ws(x)]  Vx <uxs.
Observe thaVs has the representation
P (x), for x > x;,
—e(x) + e ""E[Ws(Sp)|So=x],  forx < x;.
It follows from the generalized It6 formula that

e M W5 (Sy) — Ws(x)

Wa(x)I{

h _ _
(5.1) _ fo e [—rd(S)) + L(S)IL(s,2x5) dt

_ h h _
—i—AWé(Xs)/O e_”de(xg)+/o e "TW(S) S0 (S)dW;.

Here LS is the local time for the process and
AW (xs) = Wy (xs+) — Wy(xs—).

It is straightforward to prove that the stochastic integral has expectation zero, and
we arrive at the following result.

LEMMA 5.1. For every x € (0, xs),
h _ i}
e(x) = Exfo eT=re(S)) + LO(SHIL(s,2x5) dt
_ h
+EXAWg(x5)/ e " dL5 (x5).
0

Let rah = inf{nh: Sy, > x5}. Then the discounting and the lemma just stated
imply the formula

h
wh/h—1
i} - o
Ws(x) = —E* EO: e M (Su) + E'e "5 G (S 1)
n=
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ol i _
_ _E* /0 e [—r$(Sp) + LPS)ILi5, 51y} di

.[h

— Awg(x(g)EX/o ' e " dL? (x5) + Exe_”ﬁhq_ﬁ(STg)

for all x < xs. Observe that the last term is precisel{ (x) by definition. It
follows that

‘Eh _ _
W] (x) — Ws(x) = E /O " e —r@(S) + LB(S) LS,y I

h
_ T
+Awg(x5)EX/O e dLS (xs).

The proof of Proposition 4.4 is thereby reduced to proving the following two
results.

PrRoOPOSITION 5.2. Assume Condition 2.1 and define A and ® by (2.1)
and (3.2). Assume also that A > 0. Then

124 _ _
E* /o e [=rd(S1) + LP(S) (5,25 dt = [~ 3AOxZ0(x.)h + 0()]V ().

PrROPOSITION 5.3. Assume Condition 2.1 and define A and T' by (2.1)
and (3.2). Assume also that A > 0. Then

h
_ T
(5.2) AW;(xs)E™ f ’ e ! de(x(g) =[Txso(x)Ach +o(h)]V (x).
0
The proofs of Propositions 5.2 and 5.3 use estimates on the excursions and local
time of Brownian motion, respectively, and are given in Sections 5.1 and 5.2.
5.1. Proof of Proposition 5.2. We recall Lemma 3.1, which states that

N
H(u)iEW]%,=E/ 1yw,>0) dt,
u

for arbitraryu € [0, 1). HereW = (B, — B,,t > u) is a Brownian motion starting
at timer = u with initial condition W,, =0, andN =inf{n ¢ N: W,, > 0}.

LEMMA 5.4. H(u) iscontinuous and bounded on theinterval [0, 1).

ProoFr Define

N
Z, i/ Lyw,>0) dt.
u



CONVERGENCE OF OPTIMAL STOPPING 1353

We first show that the family{Z,,u € [0, 1)} is uniformly integrable [and, in
particular, thatf (1) is bounded]. Indeed, define

1 j+1
Coi/ 1iw,>0 dt, Cj i/_ Liw,>0 dt, jeN.
u J

The key observation is that if; > 0, thenW must spend some time during the
interval[j, j + 1] to the right of zero, therefore, the probability tHét 1 > 0 is
at least half. Thus, for all € N,

P(N=j+1N>j,c;>0) > 3.
Let X, = Zj.\'z_oljl{cj>o}. Clearly, X, dominatesZ,. Furthermore, the strong
Markov property implies that
P(Xy>j+1X,>2))<1-3=3.
This, in turn, implies thaP (X, > n + 1) < 27", and, thus,

o0 oo
E(Z)<EXD=3 2P(Xyzn) <} 5 <00
n=1 n=1

Therefore{Z,, u € [0, 1)} is uniformly integrable.
As for the continuity, we write

N
H(u)=E/ 1{,—B,>01dt =EZ,.
u

Fix anyu € [0,1) and let{u,} be an arbitrary sequence {6, 1) with u, — u.
Since for P(B, — B, = 0) = 0 for every fixedn, we haveZ,, — Z, with
probability one. Since the&,, are uniformly integrableH (u,) — H(u). This
completes the proof.[J

Now for anyu € [0, 1) andi > 0, define the function
h

1 N"h —r(t—u _ _
F(hiu) = E / eI G(S) + LPSHLs,xy) I

u
where

ds,
Tt =b(S)dt +0(S)dB;,  Sun=xs

t
and

N =inf{n e N: S,5 > xs}.

Let |a| denote the integer part af It follows from strong Markov property that
h
T5 _ _
E* [ 7 e @50 + LB s 5 dr

cwefens(u-[2)]

(5.3)
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Consider the change of variable> th and the transformation

y® = Sth — Xs
t «/E .

We can rewrite

N - -
F(h;u) = Ef e M=+ LENVRY + x5)1, dt,

r"'>0)
whereY ™ follows the dynamics
dy" = (VhY™ 4 x5)[Vhb(VRY ™ + x5) dt + o (VRY" + x5)d B,]

with initial condition ¥\ = 0.
We have the following result regarding(; «). Although part of the proof is
similar to that of Lemma 5.4, we provide the details for completeness.

LEMMA 5.5. 1.F(h;u) isuniformly bounded for small # and u € [0, 1).

lim F(h; u) = [=r¢ + L] (x:) H (w),
and the convergence is uniform on any compact subset of [0, 1).

PrRooOF Consider the family of random variablesZ, ,:u € [0,1),h €
(0, 1)}, where

h

N L
Zhu= / e "0 _r 4 £ (VRY + XS)]l{y[<h>>0} dt.
. >

We first show this family is uniformly integrable. Sin¢er¢ + £L¢) is bounded,
it is sufficient to show that

Nh
(5.4) Xnu i/; ﬂ{Y;(h)ZO} dt

are uniformly integrable. Define
1 j+1
(h) - () ;
o _/1; ]l{Y,(h)ZO}dt’ c; —//_ ]l{Y,(h)zO}dt’ jeN.

As in the proof of Lemma 5.4, irfﬁ.h) >0, thenY,(h) spends some time to the right

of zero in the intervalj, j + 1]. We claim that the probability oY}@l >0is
bounded from below by a positive constant:

P(Nh:j+l|Nh>j,c§»h)>O)zoe>0 Yue[0,1),he(0,1).
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To this end, it suffices to show that, for some- O,
pn=PY"=0v’>0>a>0 Vre[01]
However, it is easy to see that

Pi.h = P(Sin > x5S0 > xs5)
th th
1.2
> P(exp{/o [b(Su) 50 (Su)] du—i—/(; O'(Su)dBu} > 1)

th
> P(/ o(S,)dB, > clth>,
0

where ¢1 = ||blloo + ll0?]leo/2. We can view the stochastic integral, =
féo(Su)dBu a time-changed Brownian motion. Indeed, there exists a Brownian
motion W such that [13]

Q: =W,
Let
o =info(x), 0 =supo (x)
X
Then
o?h <(Q); <5°h

It follows that

Dih > P( min Wy > clth> = P( min W, > cNth),

o2th<s<&2th 02<5<52
where the last equality follows sinceW;,s/+~/th,s > 0} is still a standard
Brownian motion. For € (0, 1) andt € [0, 1], we can choose

a:P( min Wszc1)>0,

02<s<62

which will serve as a lower bound.
Now define

which clearly dominateX ,. By the strong Markov property,
PMpy>j+1Mpy>j)<l—a,
and, thus,
P(Mpy>j)<(d—a)/ 7t
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This implies that

e oo
E(M}?u) = ZZjP(Mh,u > < sz(l—a)-l_l < 00,
j=0 j:O

which implies the uniform integrability ofZj, ,,u € [0,1),h € (0,1)}. In
particular,F (i; u) is uniformly bounded for € [0, 1) andh € (0, 1).

For the uniform convergence, it suffices to show that, foram{0, 1) and any
sequence” € [0, 1) converging ta:,

F(h;u"y=EZ; = [—r$ + LO1(x:) H (u).
Let Y™ be the process witb(u(f) =0. Ash — 0, we have that ™ converges
weakly toY, whereY is defined as
Y, = x40 (x4)(B; — By).

By the Skorohod representation, we can asswifié — Y with probability one.
Using the uniform integrability, it suffices to show that

_ _ N
Zyus = Z = 1r$+ L6100 [ Lizo)ds

with probability one. Note tha¥ is almost surely finite, and tha{" — N with
probability one. The almost sure convergencepf . to Z then follows from the
dominated convergence theorem, which completes the praof.
Returning to the proof of Proposition 5.2, we claim that
Ts

; x| ,—rts BB — QOl—rd b X[~ T
(5.5) iIIIDJOE [e F(h, h LhJ)}—®[ r¢ + LOI(xx) E e ],

To ease notation, let

It suffices to show that
lim E*[e™ ™ F (h; Up)] = O[-r¢ + LN (x.) E*[e™"™].

In Proposition A.3 in the Appendix we show the following (not very surprising)
result. Ash ands tend to zero(ts, Uy) converges in distribution tér,, U), where
U is uniformly distributed and independent@f More precisely, we have

1
EX[e""H(U)] — E’C[e_”*]/0 Hw)du =0OE [e”"™].

Therefore, to prove (5.5), we must show that
A= E e F(hy Up)l = [—rd + LON(x) E*[e™" ™ H(Up)] — 0.
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Due to the uniform boundedness Bfand H, there existR e (0, co) such that
|F(h,w)| + |[=r¢ + LI Hw)| <R Vuel0,1),
whenh is small enough. SincE, = U, for h small enough,
PUp>1—¢) <2s.
Also, by Lemma 5.5 foh small enough,

sup |F(h,u) —[—r¢ + LO|(x,) H(u)| <e.
uel0,1—¢]

It follows that, forh small enough,
A<ePUp,<1l—¢e)+RPWU,>1—¢)<(2R+ 1,

which completes the proof of (5.5).
It follows directly from the definitions of/ (x) andz, that

(5.6) E*[e™" ™) = V(x)/$(xs).

Also, the definition ofA in (2.1) and the fact that—rV + LV )(x,—) = 0 imply
that

(=r¢ + L&)(xs)
= (—rV 4+ LV)(5) + 3076226 (5) — V' (x.-)]
= 307 ()X 19" (k) — V" (r0)]
= 302 (x)XFAP(x.).
Proposition 5.2 follows by combining the last display with (5.3), (5.5) and (5.6).
5.2. Proof of Proposition 5.3. We recall the notation; = x, — §, where

8 = cv/h + o(v/h). It follows from the definition (2.1) ofA and Taylor’'s theorem
that

P (xs)
V(xs)

=[V"(xx—) — ¢" (x:)15 + 0(3)
= cAp(x)Vh +o(Vh).

As a consequence, the main difficulty in proving (5.2) lies with the term

h

T
Ex/O[S ef”dL,S(xlg).

As in Section 5.1, we consider the transformation

AW (xs) = @' (xs) — V' (xs)

y® = Sth — Xs
t \/ﬁ .
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ThenY® satisfies the SDE
dY® = (VRY® + x5)[Vhb (VY + x5) dt + o (VhY," + x5)d B.].

We have the following lemma, whose proof is trivial from the definition of the
local time and thus omitted.

LEMMA 5.6. Suppose X is a semimartingale, and Y; = aXj, + v, where
a>0,b>0,v areconstants. Let LY and L* denotethelocal timesfor ¥ and X,
respectively. Then, for all r > 0,

Lf(ax +v)= aLfft(x).

It follows from the lemma that
h

X T‘? —rt S X N —rth y®
E/O e dL,(xS):«/EE/O e ar’™ o).

For anyu € [0, 1), define the process

Y = x.0(x4) By, Y*=0.

u

Also define
Qw)=ELY (0  whereN =inf{n e N:Y; > 0}.

We have the following result.

PROPOSITIONS.7.
h

; N rh gy ® - !
lim Ex/ e ""dL; " (0) = E"[e ”*]/ Q) du.
h—0 0 0

Before giving the proof, we show how the desired Proposition 5.3 will follow
from Proposition 5.7. We hav&*e "™ = V(x)/¢(x4), and the definitions of
Q and M, and Lemma 3.1 implyfolQ(u)du = x*o(x*)folM(u)du. When
combined with the expansion given above foW;(xs), the left-hand side of (5.2)
is equal to

1
hcAdB(m%x*o(x*) fo M) du + o(h),

Xx

which is exactly the right-hand side of (5.2).

PROOF OFPROPOSITIONS.7. We consider the test function
0, if x <O,
f(x)=1x, ifo<x<1,
k, if x> 2.



CONVERGENCE OF OPTIMAL STOPPING 1359

We require f(x) to be increasing and smooth, except at the paiat 0 (the
specific choice ok is not important). It follows from the generalized 1t6 formula
and the integration by parts formula that

d[ —rthf(Y(h))] —rhe —rthf(Yt(h)) dt +e—rthD—f(Yt(h)) dYt(h)
+ %e_rthf,/(yt(h))dYt(h) ) dY,(h) +e_rth dLl:X(h) 0).

Without loss of generality, we lef”(0) = 0. Now we integrate both sides from 0
to N and take expected value.
The first term on the right-hand side will contribute

N* Nt
~rhE* /O e f(vM)dt = —rhE* fr /he*”h "),
)

since f(x) = 0 for x < 0. We recall the definition (5.4) ok}, ,,. It follows from
the strong Markov property that

Nh (h) Nh
X —rth X . .
E /mh f(Y;")dt <kE fm/h I].{yt(h)zo}dt—kE G(h,Up),

where

and
G(h,u) = EXp,.

By the uniform integrability ofX}, , for small# andu € [0, 1), EX*G(h, Up) is
uniformly bounded for smalk. Therefore, the expectation of the first term in the
right-hand side goes to zero as— 0.
The second term in the right-hand side contributes (observe that the stochastic
integral has expectation zero)
Nh

i [ e D= () (R s b (VYD ) dr.

Note that the integrand is bounded h’}W) g UP to a proportional constant. It

follows exactly as in the case of the first term that the contribution of the second
term goes to zero.
The third term in the right-hand side contributes

Nh
0

Since f”(x) =0 for x < 0, the expected value equals

N
Ex//h Lo=rth 1y OV (JRYD 4 x5)202(VRY® + x5) dt.
s
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It follows from strong Markov property that the expectation can also be written
E*[e”" F(h; Up)l,

where

dt

Nh
. . 1 _—r(t—u)h (h) (h) 2 2 (h)
F(h, M) -~ E‘/I; 28 r(l u) f//(Yt )(\/ZYI +X5) o (\/EYT +X8)]1{Y1(h)20}

and wherer ™ satisfies the same dynamics with’”) = 0. Since the integrand is
bounded due to the fact th#t’ (x) = 0 for all x > 2, it follows from an analogous
argument to the one given in the proof of Lemma 5.5 that:

1. F(h;u) is uniformly bounded for smalt and all« < [0, 1);
2.

N
J () = lim F(h;u) = %E/ f(¥)x20?(x,) dt

and the convergence is uniform on any compact subgé @j.

The uniform convergence (on compact sets)Fofand Proposition A.3 in the
Appendix imply that the expectation of the third term converges to

1
E* [e_”*]/o J(u)du.

We omit the details here since an analogous argument is used in the proof of
Proposition 5.2.
It remains to calculate the contribution from the term

EX[e% (Y] = EX[e™ ™ K (h, Up)],
where
K(h;u) = E[e7"V"=0h p(y!)y)]
with Yu(h) = 0. However, the boundedness and continuity fofensure the
following:

1. K(h;u) is uniformly bounded for alk and allu € [0, 1).
2.

1G0) = lim K (h;w) = ELf (Y)Y, = 0]

and the convergence is uniform on any compact subgé @j.

Indeed, the first claim is trivial. As for the second claim, #t— u. Then as
h — 0, Y™ = y* By the Skorohod representation theorem, we can assume
Y™ — y* with probability one, which also implies that” — N with probability
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one. Thereforng;L) — Yy with probability one. The claim now follows from the
dominated convergence theorem. Similarly,

E* [ef”glf(Yg;L))] — Ef[e7"™] /Oll(u) du
ash — 0. It is now sulfficient to prove
I(w)—Jw)=0®w) Yuel01).
This is the same showing
E[f(Yi(,) -3 f Y oty di - LZ,*N<0>} =0,
where
Y =x.0 (x) Wy, Yy =0.

But this is a direct consequence from the generalized Itd6 formula and we complete
the proof. [

APPENDIX

A.l. Weak convergence of (ts, Up). For an arbitraryy > 0, define the
function

PV (x,t) = P( max S, > y|So :x).
O<u<t
We have the following lemma.

LEMMA A.1. For every fixed y > 0, function P¥ € C12((0, y) x (0, 00)) N
C((0, y) x [0, 00)) and satisfies the parabolic equation

apY
—W(x,t)+£Py(x,t):0, (x,1) € (0,y) x (0, 00).

ProoF It follows from a standard weak convergence argument thais
a continuous function; see, for example, [16]. (&3, 70) € (0, y) x (0, 00) and
define the region

D = (x0—¢&,x0+¢€) x (to — &, 19).

Consider the parabolic equation

au
—E(x,t)—}—lfu(x,t)zo, (x,t) e D,
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with boundary conditioru = PY on its parabolic boundary. It follows from
standard PDE theory that there exists a classical solut{®h It remains to show
thatu = PY in the domainD. Define the stopping time

t=inf{t >0:(p—1,S,) ¢ D}.
It follows that the process(S;, to — ¢) is a (bounded) martingale. In particular,
u(xo, to) = E™u(S;, to — v) = E**PY(S;, 10 — ©) = PY (x0, t0).

Here the last equality follows from the strong Markov propertyl

For fixed O< x <y, the density of the hitting time, is defined as

=2 o n
x,1)=——(x,1).
P ot

According to the preceding lemmga’ is continuous in the domaii®, y) x (0, o).

LEMMA A.2. SUpposey, — y.«,then PYn(x,t) — PY*(x,t) and p>n(x,t) —
py* (x, t) uniformly on any compact subset of (0, y,) x (0, c0).

PROOF It suffices to show thaP> (x, 1) — P (x, r) uniformly on any com-
pact subset. The uniform convergencepdf then follows from [9], Section 3.6.
SupposeD = [xg, x1] X [fo, 1] C (0, y4) x (0, c0) is a compact subset. In the fol-
lowing, we will denoteP”» and P+ by P, and P, respectively. Also, we assume
v <y, for all n, which implies that

P,(x,t) > P(x,t).

An analogous argument can be used for the gase y..
For anye > 0, we want to show that, for large enough

O<P,(x,t)— P(x,t)<e¢ V(x,t) e D.
Define
T=inf{t >0:S; > y.}; T, =inf{r >0:5; > y,}.

Since P is continuous, it is uniformly continuous on the compact sulizett
follows that there exists a numbkrsuch that

P(t<t§t+h|So=x)=P(x,t+h)—P(x,t)§g V(x,t)eD,
and, thus, for allx,r) € D,
Pa(x, 1) — P(r, 1) = P (tp <t,7>1) < P*(ta <1,T > 1 +h) + 2.

2
However, it follows from strong Markov property that, for agw; ¢) € D,

P(ty<1,7> 1 +h|So=x) < P( max S, sy*|So=yn).
O<u<h
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Note that the right-hand side is independentafs) € D. A proof analogous to
that of Lemma 5.5 yields that the right-hand side is dominated by

P( max [—ﬂt + B,} < Iog&).
0<t<6?hlL O Yn

For n big enough, this probability is, at most/2 sincey, — y.. This completes
the proof. O

PROPOSITIONA.3. Suppose f:[0, c0) — R is a bounded continuous func-
tion with
Jm_f()=0.

and g:[0, 1) — R a continuous, bounded function. Then

H X E o E — X . !
im e pag(T - 3 |)] = e [ swan.
for all x € (0, xy).
PROOF Fix x € (0,x*). Let ps and p denote the density of; and t,,

respectively. We can assume that allare close tor,, in the sense that < §g
for somedg, andx < x;. Sincef (x) — 0 asx — oo, we have

o o3 D] [0 e

For anys > 0, there exists & a < M < oo such that

. f(s)g(% _ L%J)ps(S)ds <11 los - IgllooP(zs < @)

=1 flloo - l1glloo P (T5 < @)

<e¢

and

[y 7O5(5 = | 1] poras < mats - el e

Note that such choices ¢f, M) also make the above inequalities hold whsris
replaced byp. Also, sinceps — p uniformly on the compact intervak, M], we

have
fo(s>g(i - H)m (s) = p(s)|ds <&
; noLnl)'Pe =

for § small enough. It remains to show that, fosmall enough,

M M 1
/ f(s)g(%—m)pmds— [ repe s [ g au

<e.
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We omit the rather straightforward proof, which follows easily from the uniform
continuity of f, p, and f - p on compact intervals. [

A.2. Proof of Lemma 3.1. We first prove the representation fd (u).
Consider the continuously differentiable convex function

0, if x <O,
x2/2, if x> 0.
It follows from the generalized Ité formula [13] that

r =32 =|

NAn

Wiliw, >0 dW; + :—ZL/ Liw, >0y dt

u

N An

Wy = [

u

for all integers: € N. This yields
NAn
E(Wy )= E/ 1w,s0di  VneN.
u

Lettingn — oo, the right-hand side convergesﬁ?ofbfV 1¢w,>0y dt by the monotone
convergence theorem. Sind&y ., < Wy, the result will follow by dominated
convergence if one can show thaw? is finite.

To this end, we observe that

00
EWI% = Z E(Wj%,ﬂ{lv:n})
n=1

s 00
=Ef 2xP(Wy >x,N =n)dx
0
n=1

Ses
= E / 2xP(Wy =>x|N=n)P(N =n)dx.
0
n=1

However, on the setN = n}, the Brownian motion sample path must cross zero
during time intervakn — 1, n]. Let ® denote the cumulative distribution function
for the standard normal distribution. For every [0, 1], we have the inequality

P(W, > x|W; >0, Wo=0) =2&(—x/+/t) <2&(—x)  Vx>0.
Then the strong Markov property easily implies that
PWy=xIN=n)=P(W,>x|W, >0,W,_1<0,..., W, <0)
<2®(—x).

SinceN is finite with probability one, it follows that

o0
EW]%, 5/ Axd(—x)dx < 0.
0
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It remains to show the representation fbf(u). It follows from Tanaka's
formula that

N
WN:W+:/ 1{W,ZO}th+LI?,/N(O)'

u

However, since the preceding proof already implies tEaLN Liw,>0ydt < 00
(and, hence, that the stochastic integral has zero mean), we have

EWy =EL) () =M().

This completes the proof.
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