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STABILITY OF NONLINEAR FILTERS IN
NONMIXING CASE

BY PAVEL CHIGANSKY AND ROBERT LIPTSER

University of Tel Aviv

The nonlinear filtering equation is said to be stable if it “forgets” the
initial condition. It is known that the filter might be unstable even if the
signal is an ergodic Markov chain. In general, the filteringstability requires
stronger signal ergodicityprovided by the, so called, mixing condition. The
latter is formulated in terms of the transition probability density of the signal.
The most restrictive requirement of the mixing condition is the uniform
positiveness of this density. We show that it might be relaxed regardless of
an observation process structure.

1. Introduction and the main result. This paper addresses the stability
problem of the nonlinear filtering equation with respect to its initial condition. We
consider a homogeneous ergodic Markov chain(Xn)n≥0 with values inS ⊆ Rd

regarded as a signal to be filtered from observation of(Yn)n≥1, Yn ∈ Rp.
DenoteM(dx), K(x;dy) and N(dx) the invariant measure, the transition

probability kernel and the distribution ofX0, respectively, and describe the
dependence of observation and signal processes via the conditional distribution
�(x;dy): for any Borel measurable setA from Rp andX[0,n], Y[1,n] theσ -algebras
generated by{X0, . . . ,Xn}, {Y1, . . . , Yn}

P
(
Yn ∈ A|X[0,n] ∨ Y[1,n−1]

) = P (Yn ∈ A|Xn) =
∫
A

�(Xn, dy) a.s.(1.1)

An example of such type dependence is

Yn = h(Xn, ξn),

with a bounded measurable functionh and i.i.d. sequence of random variables
(ξn)n≥1 independent of(Xn)n≥0.

We assume that there exist reference measuresψ(dy) on S andθ(dy) on Rp

such that

K(x;dy) = λ(x, y)ψ(dy),

N(dx) = ν(x)ψ(dx),

�(x;dy) = γ (x, y)θ(dy),
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where the densitiesλ(x, y) and γ (x, y) are measurable nonnegative functions.
Then, obviously,M(dx) = m(x)ψ(dx) and P (Xn ∈ dx|Y[1,n]) has (a.s.) a
densityπν

n (x) with respect toψ : for any Borel setA from S,

P
(
Xn ∈ A|Y[1,n]

) =
∫
A

πν
n (x)ψ(dx).

It is well known thatπn(x), n ≥ 1 solves the, so called, filtering equation
(recursive Bayes’ formula)

πν
n (x) = γ (x,Yn)

∫
S λ(z, x)πν

n−1(z)ψ(dz)∫
S

∫
S γ (u,Yn)λ(v,u)πν

n−1(v)ψ(dv)ψ(du)
(1.2)

subject toπν
0 (x) = ν(x).

If the densityν(x) is not completely known, in practice the filtering equation
is initialized by another densityβ(x) corresponding to some probability distribu-
tion B(dx) onS with respect toψ . Though this substitution seems natural, the frac-
tion in the right-hand side of (1.2) may not be well defined. Nevertheless, ifN � B

[henceforth,N � B is assumed anddN
dB

(x) =: ν
β
(x)], the recurrent equation (1.2)

subject toβ makes senseψ-a.s.
If ν is replaced byβ, we get “wrong” filtering densityπβν

n (x) defined as
follows: πβν

0 (x) = β(x) and

πβν
n (x) = γ (x,Yn)

∫
S λ(z, x)π

βν
n−1(z)ψ(dz)∫

S

∫
S γ (u,Yn)λ(v,u)π

βν
n−1(v)ψ(dv)ψ(du)

.

Since π
βν
n differs from πν

n , the use ofπβν
n 〈f 〉 := ∫

S f (x)π
βν
n (x)ψ(dx) as an

estimate forf (Xn), with boundedf or Ef 2(Xn) < ∞, does not guarantee the
mean square optimality, that is,

E
(
f (Xn) − πν

n 〈f 〉)2
< E

(
f (Xn) − πβν

n 〈f 〉)2

even asn ↗ ∞.
The filtering equation, or filter, is said to be stable, if for any bounded

measurable functionf ,

lim
n→∞E|πν

n 〈f 〉 − πβν
n 〈f 〉| = 0,(1.3)

so that, from the practical point of view, the use ofπ
βν
n for stable filters makes

sense.
Assume thatβ is chosen and consider a new pair of processes(X

β
n ,Y

β
n )

characterized by the same kernelsK and� andβ as the distribution density ofXβ
0 .

It can be shown (similar to Proposition 2.1, [2]) that (1.3) holds provided that

E

(
ν

β
(X

β
0 )

∣∣∣Yβ
[1,∞)

)
= lim

n→∞E

(
ν

β
(X

β
0 )

∣∣∣Xβ
n ,Y

β
[1,n]

)
a.s.(1.4)
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So, (1.3) follows fromY
β
[1,∞) = ⋂

n≥0{Yβ
[1,∞) ∨ X

β
[n,∞)}, since by the Markov

property and the martingales convergence theorem,

lim
n→∞E

(
ν

β
(X

β
0 )

∣∣∣Xn,Y
β
[1,n]

)
= E

(
ν

β
(X

β
0 )

∣∣∣∣ ⋂
n≥0

{
Y

β
[1,∞) ∨ X

β
[n,∞)

})
.

Unfortunately, in general,Yβ
[1,∞) �

⋂
n≥0{Yβ

[1,∞) ∨ X
β
[n,∞)} even though the

ergodic property of the Markov chain implies
⋂

n≥0 X
β
[n,∞) = (∅,�) a.s.

In several publicationsYβ
[1,∞) = ⋂

n≥0{Yβ
[1,∞) ∨ X

β
[n,∞)} is implicitly declared

and then (1.3) is derived (for more details, see [2] and citations therein). Somewhat
contradicting the intuition, the filter does not automatically inherit (1.3) from the
ergodic property of signal. Corresponding counterexamples can be found in [2, 7,
8] (see also Example 5.1).

The validity of (1.3) sometimes crucially depends on the structure ofγ (x, y).
For instance, in order to have (1.3),γ (x, y) is required to be compactly supported
(see [4]), or to have tails with certain decay rate depending on the signal model
(see [1, 5, 9, 10, 16]).

In view of the aforementioned facts, it is interesting to determine the conditions
providing (1.3) regardless ofγ (x, y). One of them is themixing condition
introduced by Atar and Zeitouni [1] and Del Moral and Guionnet [6]:

0 < λ∗ ≤ λ(x, y) ≤ λ∗(1.5)

which provides

lim sup
n→∞

1

n
log‖πν

n − πβν
n ‖ ≤ −λ∗

λ∗ a.s.,(1.6)

where

‖πβν
n − πν

n‖ =
∫

S
|πβν

n (x) − πν
n (x)|ψ(dx)

is the total variation norm. Clearly (1.6) implies (1.3).
If after all the conditionλ∗ < ∞ is reasonable, the conditionλ∗ > 0 is quite

restrictive in many applications.
In this paper we replaceλ∗ by

λ� =
∫

S
ess inf

y∈S
λ(x, y)m(x)ψ(dx)(1.7)

(hereafter, ess inf and esssup are taken with respect toψ).

THEOREM 1.1. Assume 0 < λ� and λ∗ < ∞. Then, for any ν(x) and any
β(x) ≥ β∗ > 0, the relation (1.4)holds and

lim sup
n

1

n
log‖πβν

n − πν
n‖ ≤ −λ�

λ∗ a.s.(1.8)
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REMARK 1.1. In contrast toλ(x, y) ≥ λ∗ > 0, the assumptions of Theo-
rem 1.1 admitλ(x, y) to be zero on some region of the state space.

EXAMPLE 1.1. LetXn be the Markov chain with values inS = {1, . . . , d} and
� be its transition probability matrix with entries

λij = P (Xn = j |Xn−1 = i).

Hereλij is the transition probability density with respect to the Dirac measureψ

supported at pointsj = 1, . . . , d .
Assumeλ∗ = minij λij = 0, but there is an integerr > 1 such that all entries

of �r are positive. Then the Markov chain is ergodic (see, e.g., [14]) and its
invariant measure possesses densitym with respect toψ with positive atomsm(i),
i = 1, . . . , d . Then

λ� =
d∑

i=1

min
j

λijm(i) > 0,

if at least one row of� has positive entries.

REMARK 1.2. The relationm(y) = ∫
S λ(x, y)m(x)ψ(dx) implies

λ� ≤ m(x) ≤ λ∗.(1.9)

REMARK 1.3. The requirementβ ≥ β∗ > 0 is not restrictive, since the choice
of β is flexible.

Notice also thatβ ≥ β∗ impliesN � B with
dN

dB
(x) = ν(x)

β(x)
.

Our proof of (1.8) differs from these in [1] and [6]. Before getting into details,
we describe the main idea of the proof, where thebackward conditional density

ρn(u, x) = P (X0 ∈ du|Xn = x,Y[1,n])
ψ(du)

plays a crucial role.
We show in Section 4.3 that|ρn(u, x′) − ρn(u, x′′)| → 0, n → ∞, for anyx′,

x′′ which allows the claim that

lim
n→∞E

(
ν

β
(X

β
0 )

∣∣Xβ
n ∨ Y

β
[1,n]

)
is aY[1,∞)-measurable random variable and in turn the validity of (1.4).

The proof of the second statement of Theorem 1.1 uses an upper bound for
the rate, inn, of |ρn(u, x′) − ρn(u, x′′)| → 0. Whenλ∗ > 0, this rate isλ∗/λ∗,
while for λ� > 0 the rate is random (Lemma 3.2) and controlled byπn(x). The
upper bound in (1.8) follows from the law of large numbers for the conditional
expectations (Theorem 2.2), which is derived with the help of geometric ergodicity
(Theorem 2.1) being valid under the assumptions of Theorem 1.1.
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2. Geometric ergodicity and law of large numbers for conditional expecta-
tions.

2.1. Geometric ergodicity. Let λ(n)(u, x) be then-steps transition probability
density with respect toψ .

The Markov chain is geometrically ergodic, if there exist constantsC > 0 and
0 < r < 1 such that for anyu,∫

S

∣∣λ(n)(u, x) − m(x)
∣∣ψ(dx) ≤ Crn, n ≥ 1.

THEOREM 2.1. Assume 0 < λ� and λ∗ < ∞. Then the geometric ergodicity
holds with

C = (λ∗)2

λ�(λ∗ − λ�)
and r = 1− λ�

λ∗ .

PROOF. Consider the stationary Markov chainXn, that is, whenX0 has
distribution densitym(x) with respect toψ .

By the Bayes formula, one verifies thatP (X0 ∈ du|Xn = x) has a density
qn(u, x) with respect toψ

q1(u, x) = λ(u, x)m(u)

m(x)
(2.1)

and

qn(u, x) =
∫
S λ(x′, x)qn−1(u, x′)m(x′)ψ(dx′)

m(x)
.(2.2)

Let us show now that

m(u)
[
λ(n)(u, x) − m(x)

]
(2.3)

=
∫

S
[qn(u, x) − qn(u, x′)]m(x)m(x′)ψ(dx′).

For arbitrary bounded and measurable functionsg andf , write

Eg(X0)f (Xn) − Eg(X0)Ef (Xn)

(2.4)
=

∫
S

∫
S
g(u)f (x)

[
λ(n)(u, x) − m(x)

]
m(u)ψ(du)ψ(dx)

and

Eg(X0)f (Xn) =
∫

S

∫
S
g(u)f (x)qn(u, x)m(x)ψ(du)ψ(dx)

(2.5)
=

∫
S

∫
S

∫
S
g(u)f (x)qn(u, x)m(x)m(x′)ψ(du)ψ(dx)ψ(dx′).
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Obviously, (2.5) provides

Eg(X0)f (Xn) − Eg(X0)Ef (Xn)

=
∫

S

∫
S

∫
S
g(u)f (x)[qn(u, x) − qn(u, x′)](2.6)

× m(x)m(x′)ψ(du)ψ(dx)ψ(dx′).
So, by arbitrariness ofg andf , (2.6) and (2.4) imply (2.3).

Owing to (1.9), the relation (2.3) provides∣∣λ(n)(u, x) − m(x)
∣∣

(2.7)
= 1

m(u)

∫
S
|qn(u, x) − qn(u, x′)|m(x)m(x′)ψ(dx′).

Introduceqn(u) = esssupr∈S qn(u, r), q
n
(u) = ess infr∈S qn(u, r) and set

�n(u) = qn(u) − q
n
(u).

By (2.7), ∫
S

∣∣λ(n)(u, x) − m(x)
∣∣ψ(dx) ≤ 1

m(u)
�n(u).(2.8)

We show now that

�n(u) ≤ m(u)
λ∗

λ�

(
1− λ�

λ∗
)n−1

, n ≥ 1.(2.9)

For n = 1, this estimate is obvious, whereasq1(u, x) ≤ m(u)λ∗/λ�, that is,
q1(u) ≤ m(u)λ∗/λ�, and�1(u) ≤ q1(u). In order to establish this estimate for
n ≥ 2, we derive at first a recurrent inequality

�n(u) ≤
(

1− λ�
λ∗

)
�n−1(u).(2.10)

For anyv′, v′′, we have

qn−1(u) =
∫
S m(x′)λ(x′, v′)qn−1(u)ψ(dx′)

m(v′) ,

q
n−1

(u) =
∫
S m(x′)λ(x′, v′′)q

n−1
(u)ψ(dx′)

m(v′′)
and, by (2.2),

qn(u, v′) − qn(u, v′′)

=
∫
S λ(x′, v′)qn−1(u, x′)m(x′)ψ(dx′)

m(v′)

−
∫
S λ(x′, v′′)qn−1(u, x′)m(x′)ψ(dx′)

m(v′′)
.
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Then

qn(u, v′) − qn(u, v′′)
= qn−1(u) − q

n−1
(u)

−
∫
S m(x′)λ(x′, v′)[qn−1(u) − qn−1(u, x′)]ψ(dx′)

m(v′)

−
∫
S m(x′)λ(x′, v′′)[qn−1(u, x′) − q

n−1
(u)]ψ(dx′)

m(v′′)
.

This equality, with (0/0= 0.5 is understood here)

αn(u, x′) := qn(u, x′) − q
n
(u)

�n(u)
and 1− αn(u, x′) := qn(u) − qn(u, x′)

�n(u)
,

is transformed to

qn(u, v′) − qn(u, v′′)

= �n−1(u)

(
1−

∫
S
m(x′)

{
λ(x′, v′)
m(v′)

[1− αn−1(u, x′)]

+ λ(x′, v′′)
m(v′′) αn−1(u, x′)

}
ψ(dx′)

)
.

Owing to 0≤ αn(u, x′) ≤ 1 andm(x) ≤ λ∗, we get∫
S
m(x′)

{
λ(x′, v′)
m(v′)

[1− αn−1(u, x′)] + λ(x′, v′′)
m(v′′)

αn−1(u, x′)
}
ψ(dx′)

≥
∫

S

m(x′)
λ∗ [λ(x′, v′) ∧ λ(x′, v′′)]ψ(dx′)

≥ 1

λ∗
∫

S
m(x′)ess inf

r
λ(x′, r)ψ(dx′) = λ�

λ∗ .

Thus,qn(u, v′) − qn(u, v′′) ≤ (1 − λ�/λ∗)�n−1(u), and (2.10) holds true by
arbitrariness ofv′ andv′′.

The iteration of (2.10) and the estimate�1(u) ≤ m(u)λ∗/λ� give (2.9). So,
by (2.8) the result holds.�

2.2. The law of large numbers. The result of this section is valid for any
distribution ofX0, obeying density with respect toψ .

THEOREM 2.2. Assume λ� > 0 and λ∗ < ∞. Then, for any bounded
measurable function f ,

lim
n→∞

1

n

n∑
k=1

πk−1〈f 〉 =
∫

S
f (x)m(x)ψ(dx) a.s.
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PROOF. Setf ◦(x) = f (x) − ∫
S f (z)m(z)ψ(dz) and notice that the desired

statement is valid if

lim
n→∞

1

n

n∑
k=1

πk−1〈f ◦〉 = 0 a.s.(2.11)

Let us introduce the Poisson equation

g(x) = f ◦(x) +
∫

S
g(y)λ(x, y)ψ(dy),

whose solution

g(x) = f ◦(x) +
∞∑

n=1

∫
S
f ◦(y)λ(n)(x, y)ψ(dy)

is well defined and bounded by virtue of the geometric ergodicity (see Theo-
rem 2.1).

Setξn = πn〈g〉 − πn−1〈g〉 + πn−1〈f ◦〉 and notice thatξn’s forms a bounded
martingale difference. The boundedness is obvious;E(ξn|Y[1,n−1]) = 0, a.s.,
n ≥ 1, is valid by the following Poisson equation:

E
(
ξn|Y[1,n−1]

) = E
(
g(Xn) − g(Xn−1) + f ◦(Xn−1)|Y[1,n−1]

)
= E

(∫
S
g(z)λ(Xn−1, z)ψ(dz) − g(Xn−1) + f ◦(Xn−1)

∣∣∣Y[1,n−1]
)

= 0.

So, with the martingaleMn = ∑n
k=1 ξk , we have

πn〈g〉 = π0〈g〉 −
n∑

k=1

πk−1〈f ◦〉 + Mn.

Consequently,

1

n

n∑
k=1

πk−1〈f ◦〉 = 1

n
Mn − 1

n
(πn〈g〉 − π0〈g〉).

With boundedg, πn〈g〉 can be chosen bounded too. Hence,

n−1(πn〈g〉 − π0〈g〉) →
n→∞0.

Also Mn/n → 0, a.s.n → ∞, since the increments of martingaleMn are bounded
(see Theorem 4, Chapter VII, Section 5 in [17]).

Thus, (2.11) holds. �

3. The backward distribution P(X0 ∈ du|Xn ≡ x,Y[1,n]). The results of
this section are valid for any distribution ofX0 obeying density with respect toψ ,
sayϑ , bounded below by a constantϑ∗ > 0.
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3.1. Recurrent equation for the density. We show that the backward distribu-
tion possesses densityρn(u, x) with respect toψ .

LEMMA 3.1. Under the assumptions of Theorem 1.1 ρn(u, x) exists and is
defined as

ρ1(u;x) = λ(u;x)ϑ(u)∫
S λ(v;x)ϑ(v)ψ(dv)

,

(3.1)
ρn(u;x) =

∫
S λ(x′;x)ρn−1(u;x′)πn−1(x

′)ψ(dx′)∫
S λ(x′;x)πn−1(x′)ψ(dx′)

, n ≥ 2.

PROOF. Forn = 1, the formula is obvious.
By (1.1),E(h(X0)|Xn,Y[1,n]) = E(h(X0)|Xn,Y[1,n−1]) for any bounded mea-

surableh andn ≥ 2. We apply the induction method. With bounded and measur-
able functionsg(x), f (x), x ∈ S, andH(y1, . . . , yn−1), yi ∈ Rp, write

Eg(X0)H(Y1, . . . , Yn−1)f (Xn)

= Eg(X0)H(Y1, . . . , Yn−1)

∫
S
f (x)λ(Xn−1, x)ψ(dx)

(3.2)
= EH(Y1, . . . , Yn−1)

∫
S

∫
S

∫
S
g(u)f (x)λ(x′, x)ρn−1(u;x′)

× πn−1(x
′)ψ(dx)ψ(dx′)ψ(du).

On the other hand,

Eg(X0)H(Y1, . . . , Yn−1)f (Xn)

= EH(Y1, . . . , Yn−1)f (Xn)

∫
S
g(u) dP

(
X0 ∈ du|Xn,Y[1,n−1]

)
(3.3)

= EH(Y1, . . . , Yn−1)

∫
S

∫
S

∫
S
f (x)g(u) dP

(
X0 ∈ du|Xn = x,Y[1,n−1]

)
× λ(v, x)πn−1(v)ψ(dx)ψ(dv).

By arbitrariness ofg,f,H we derive from (3.2) and (3.3) that(ψ × ψ)-a.s.

dP
(
X0 ∈ du|Xn,Y[1,n]

) ∫
S
λ(v;x)πn−1(v)ψ(dv)

(3.4)
= ψ(du)

∫
S
λ(x′, x)ρn−1(u;x′)πn−1(x

′)ψ(dx′)

and the proof is complete.�
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3.2. Upper bound for |ρn(u, v′) − ρn(u, v′′)|. Set

ρn(u) = esssup
x∈S

ρn(u, x) and ρ
n
(u) = ess inf

x∈S
ρn(u, x)(3.5)

and introduceδn(u) = ρn(u) − ρ
n
(u).

LEMMA 3.2. Under the assumptions of Theorem 1.1,

δ1(u) ≤ (λ∗)2

ϑ∗λ�
ϑ(u),

δn(u) ≤ (λ∗)2

ϑ∗λ�
ϑ(u)exp

{
− 1

λ∗
n∑

k=2

∫
πk−1(x

′)ess inf
r

λ(x′, r)ψ(dx′)
}
, n ≥ 2.

PROOF. Obviously,

ρ1(u, x) ≤ (λ∗)2ϑ(u)

ϑ∗
∫
S λ(v, x)m(v)ψ(dv)

≤ (λ∗)2

ϑ∗λ�
ϑ(u)

and, whereasδ1(u) ≤ ρ1(u, x), the first statement is valid. Further, by (3.1) we
have

ρn(u, v′) − ρn(u, v′′)

=
∫

πn−1(x
′)λ(x′, v′)ρn−1(u, x′)ψ(dx′)∫
πn−1(v)λ(v, v′)ψ(dv)

(3.6)

−
∫

πn−1(x
′)λ(x′, v′′)ρn−1(u, x′)ψ(dx′)∫
πn−1(v)λ(v, v′′)ψ(dv)

.

Using the identities

ρn−1(u) =
∫

πn−1(x
′)λ(x′, v′)ρn−1(u)ψ(dx′)∫

πn−1(v)λ(v, v′)ψ(dv)
,

ρ
n−1

(u) =
∫

πn−1(x
′)λ(x′, v′)ρ

n−1
(u)ψ(dx′)∫

πn−1(v)λ(v, v′)ψ(dv)
,

rewrite (3.6) as

ρn(u, v′) − ρn(u, v′′)
= ρn−1(u) − ρ

n−1
(u)

(3.7)
−

∫
πn−1(x

′)λ(x′, v′)[ρn−1(u) − ρn−1(u, x′)]ψ(dx′)∫
πn−1(v)λ(v, v′)ψ(dv)

−
∫

πn−1(x
′)λ(x′, v′′)[ρn−1(u, x′) − ρ

n−1
(u)]ψ(dx′)∫

πn−1(v)λ(v, v′′)ψ(dv)
.
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Now, following the proof of Theorem 2.1, introduce

αn(u, x′) := ρn(u, x′) − ρ
n
(u)

δn(u)
and 1− αn(u, x′) := ρn(u) − ρn(u, x′)

δn(u)

and rewrite (3.7) into

ρn(u, v′) − ρn(u, v′′)

= δn−1(u)

(
1−

∫
πn−1(x

′)λ(x′, v′)[1− αn−1(u, x′)]ψ(dx′)∫
πn−1(v)λ(v, v′)ψ(dv)

−
∫

πn−1(x
′)λ(x′, v′′)αn−1(u, x′)ψ(dx′)∫
πn−1(v)λ(v, v′′)ψ(dv)

)
.

Since 0≤ αn(u, x′) ≤ 1, we have∫
πn−1(x

′)λ(x′, v′)[1− αn−1(u, x′)]ψ(dx′)∫
πn−1(v)λ(v, v′)ψ(dv)

+
∫

πn−1(x
′)λ(x′, v′′)αn−1(u, x′)ψ(dx′)∫
πn−1(v)λ(v, v′′)ψ(dv)

≥
∫

πn−1(x
′)λ(x′, v′)

λ∗ [1− αn−1(u, x′)]ψ(dx′)

+
∫

πn−1(x
′)λ(x′, v′′)

λ∗ αn−1(u, x′)ψ(dx′)

≥ 1

λ∗
∫

πn−1(x
′)[λ(x′, v′) ∧ λ(x′, v′′)]ψ(dx′)

≥ 1

λ∗
∫

πn−1(x
′)ess inf

r∈S
λ(x′, r)ψ(dx′),

where the last inequality is valid(ψ × ψ)-a.s. Hence,

ρn(u, v′) − ρn(u, v′′)

≤ δn−1(u)

(
1− 1

λ∗
∫

πn−1(x
′)ess inf

r
λ(x′, r)ψ(dx′)

)

and, by arbitrariness ofv′ andv′′,

δn(u) ≤ δn−1(u)

(
1− 1

λ∗
∫

πn−1(x
′)ess inf

r
λ(x′, r)ψ(dx′)

)
.(3.8)

The iteration of (3.8) and log(1 − x) ≤ −x, 0 ≤ x < 1 provides the second
statement. �
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4. Proof of Theorem 1.1.

4.1. Notation. Let (Xν,Y ν) and (Xβ,Y β) be copies of(X,Y ) when the
distribution density ofX0 is ν or β andQν andQβ be probability distributions

of (Xν,Y ν) and(Xβ,Y β). Also letQ
ν

andQ
β

be the distributions ofY ν andYβ

andQ
ν

n andQ
β

n be the restrictions ofQ
ν

andQ
β

on theσ -algebrasY ν[1,n] and

Y
β
[1,n]. Without loss of generality, we may assume that both copies are defined on

the same probability space.

Set π
β
n 〈f 〉 = E(f (X

β
n )|Yβ

[1,n]) and let πβ
n (x) be the corresponding filtering

density.

4.2. Absolute continuity Qν � Qβ . Since both Markov chains(Xν,Y ν) and
(Xβ,Y β) have the same transition probability kernel, by the assumptionN � B

we have

Qν � Qβ with
dQν

dQβ
(Xβ,Y β) = ν

β
(X

β
0 ),

Q
ν � Q

β
with

dQ
ν

dQ
β
(Y β) = E

(
ν

β
(X

β
0 )

∣∣∣Yβ
[1,∞)

)
, Y

β
[1,∞) = ∨

n≥1

Y
β
[1,n],

Q
ν

n � Q
β

n with
dQ

ν

n

dQ
β

n

(Y β) = E

(
ν

β
(X

β
0 )

∣∣∣Yβ
[1,n]

)
, n ≥ 1.

4.3. Proof of (1.4). It suffices to show that

E

(
ν

β
(X

β
0 )

∣∣∣∣ ⋂
n≥0

{
Y

β
[1,∞) ∨ X

β
[n,∞)

})

is aY
β
[1,∞)-measurable random variable. Indeed, then we have a.s.

E

(
ν

β
(X

β
0 )

∣∣∣∣ ⋂
n≥0

{
Y

β
[1,∞) ∨ X

β
[n,∞)

})

= E

(
E

(
ν

β
(X

β
0 )

∣∣∣∣ ⋂
n≥0

{
Y

β
[1,∞) ∨ X

β
[n,∞)

})∣∣∣∣Yβ
[1,∞)

)

= E

(
ν

β
(X

β
0 )

∣∣∣Yβ
[1,∞)

)
.

In order to verify the requiredYβ
[1,∞)-measurability, notice first that by the reverse

martingale convergence theorem,

E

(
ν

β
(X

β
0 )

∣∣∣∣ ⋂
n≥0

{
Y

β
[1,∞) ∨ X

β
[n,∞)

}) = lim
n→∞E

(
ν

β
(X

β
0 )

∣∣∣Yβ
[1,∞) ∨ X

β
[n,∞)

)
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and by the Markov property,

E

(
ν

β
(X

β
0 )

∣∣∣Yβ
[1,∞) ∨ X

β
[n,∞)

)
= E

(
ν

β
(X

β
0 )

∣∣∣Yβ
[1,n] ∨ Xβ

n

)

≡
∫

S

ν

β
(u)ρn(u,Xβ

n )ψ(du).

So by the aforementioned martingale convergence theorem,

lim
n→∞

∫
S

ν

β
(u)ρn(u,Xβ

n )ψ(du) exists a.s.

On the other hand, since withρn(u) andρ
n
(u) defined in (3.5) we have∫

S

ν

β
(u)ρ

n
(u)ψ(du) ≤

∫
S

ν

β
(u)ρn(u,Xβ

n )ψ(du) ≤
∫

S

ν

β
(u)ρn(u)ψ(du)

and, by Lemma 3.2 withϑ(x) ≡ β(x), for n ≥ 2,∫
S

ν

β
(u)[ρ n(u) − ρ

n
(u)]ψ(du)

≤ (λ∗)2

β∗λ�
exp

{
− 1

λ∗
n∑

k=2

∫
S
π

β
k−1(x

′)ess inf
r

λ(x′, r)ψ(dx′)
}
.

By Theorem 2.2, limn→∞ n−1 ∑n
k=2

∫
π

β
k−1(x

′)ess infr λ(x′, r)ψ(dx′) = λ� (> 0),

a.s. Consequently, limn→∞
∫
S[ρ n(u) − ρ

n
(u)]ν(u)/β(u)ψ(du) = 0, a.s. and,

therefore,

E

(
ν

β
(X

β
0 )

∣∣∣∣ ⋂
n≥0

{
Y

β
[1,∞) ∨ X

β
[n,∞)

}) = lim
n→∞

∫
S

ν

β
(u)ρn(u)ψ(du).

The desired statement holds since
∫
S ρn(u)ν(u)/β(u)ψ(du) is a Y[1,∞)-

measurable random variable for anyn.

4.4. Proof of (1.8). For fixedn, let φν(y[1,n]) andφβ(y[1,n]) be measurable
functions of the argumentsy1, . . . , yn, yi ∈ Rp, such that for fixed bounded and
measurable functionf ,

φν(
Y ν[1,n]

) = πν
n 〈f 〉 and φβ(

Y
β
[1,n]

) = πβ
n 〈f 〉.

Recall thatN � B providesQν � Qβ . So we may defineπβν
n 〈f 〉 = φβ(Y ν[1,n]).

SinceQβ � Qν is not assumed, we set

πνβ
n 〈f 〉 = φν

(
Y

β
[1,n]

)
I

(
dQ

ν

n

dQ
β

n

(
Y

β
[1,n]

)
> 0

)
.
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LEMMA 4.1. Under the assumptions of Theorem 1.1,for n ≥ 2,

dQ
ν

n

dQ
β
n

(Y β)‖πνβ
n − πβ

n ‖
(4.1)

≤ (λ∗)2

β∗λ�
exp

{
− 1

λ∗
n∑

k=2

∫
π

β
k−1(x

′)ess inf
r

λ(x′, r)ψ(dx′)
}
.

PROOF. We show first that

dQ
ν

n

dQ
β
n

(Y β)
(
πνβ

n (x) − πβ
n (x)

)

= πβ
n (x)

[∫
S

ν

β
(u)ρn(u, x)ψ(du)(4.2)

−
∫

S

∫
S

ν

β
(u)ρn(u, x′)πβ

n (x′)ψ(dx′)ψ(du)

]
.

Let g andf be bounded measurable functions of argumentsy1, . . . , yn, yi ∈ Rd

andx ∈ S. Then,

E

[
E

(
ν

β
(X

β
0 )

∣∣∣Yβ
[1,n]

)
πνβ

n 〈f 〉 − E

(
ν

β
(X

β
0 )f (Xβ

n )
∣∣∣Yβ

[1,n]
)]

g
(
Y

β
[1,n]

)

= E
ν

β
(X

β
0 )g

(
Y

β
[1,n]

)[πνβ
n 〈f 〉 − f (Xβ

n )]

= Eg
(
Y ν[1,n]

)[πν
n 〈f 〉 − f (Xν

n)]
= 0

provides

dQ
ν

n

dQ
β

n

(Y β)πνβ
n 〈f 〉 = E

(
ν

β
(X

β
0 )f (Xβ

n )
∣∣∣Yβ

[1,n]
)
.(4.3)

Further, by (4.3),

dQ
ν

n

dQ
β
n

(Y β)(πνβ
n 〈f 〉 − πβ

n 〈f 〉)

= E

(
ν

β
(X

β
0 )f (Xβ

n )
∣∣∣Yβ

[1,n]
)

− E

(
ν

β
(X

β
0 )

∣∣∣Yβ
[1,n]

)
E

(
f (Xβ

n )|Yβ
[1,n]

)

= E

(
f (Xβ

n )

[
E

{
ν

β
(X

β
0 )

∣∣∣Xβ
n ,Y

β
[1,n]

}
− E

{
ν

β
(X

β
0 )

∣∣∣Yβ
[1,n]

}]∣∣∣Yβ
[1,n]

)

and so, due to arbitrariness off , (4.2) holds true.
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The right-hand side of (4.2) is evaluated from above as follows:∣∣∣∣πβ
n (x)

[∫
S

ν

β
(u)ρn(u, x)ψ(du)

−
∫

S

∫
S

ν

β
(u)ρn(u, x′)πβ

n (x′)ψ(dx′)ψ(du)

]∣∣∣∣
=

∣∣∣∣πβ
n (x)

[∫
S

∫
S

ν

β
(u)[ρn(u, x) − ρn(u, x′)]πβ

n (x′)ψ(du)ψ(dx′)
]∣∣∣∣

≤ πβ
n (x)

∫
S

ν

β
(u)δn(u)ψ(du)

and the desired result follows by Lemma 3.2 withϑ = β. �

By (4.1),

1

n
log

dQ
ν

n

dQ
β

n

(Y β)‖πνβ
n − πβ

n ‖

≤ 1

n
log

(λ∗)2

β∗λ�
− 1

λ∗n

n∑
k=2

∫
S
π

β
k−1(x

′)ess inf
r∈S

λ(x′, r)ψ(dx′)

and, since by Theorem 2.2,

lim
n→∞

1

n

n∑
k=2

∫
S
π

β
k−1(x

′)ess inf
r

λ(x′, r)ψ(dx′)

=
∫

S
m(x′)ess inf

r
λ(x′, r)ψ(dx′) = λ�,

we get

P

(
lim sup
n→∞

1

n
log

{
dQ

ν

n

dQ
β

n

(Y β)‖πνβ
n − πβ

n ‖
}

≤ −λ�
λ∗

)
= 1.

On the other hand, owing toQ
ν � Q

β
,

P

(
lim sup

n

1

n
log

dQ
ν

n

dQ
β
n

(Y ν)‖πν
n − πβν

n ‖ ≤ −λ�
λ∗

)
= 1.

Then, the statement of Theorem 1.1 is valid, provided that

lim
n→∞

1

n
log

dQ
ν

n

dQ
β

n

(Y ν) = 0.(4.4)

Notice that

dQ
ν
n

dQ
β

n

(Y β) = E

(
dQ

ν

dQ
β
(Y β)

∣∣∣Yβ
[1,n]

)
,
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that is, dQ
ν
n

dQ
β
n

(Y β) is a nonnegative uniformly integrable martingale with the limit

point dQ
ν

dQ
β (Y β) such that 0≤ dQ

ν

dQ
β (Y β) < ∞, a.s. Again taking into account

Q
ν � Q

β
, we conclude that

P

(
lim

n→∞
dQ

ν
n

dQ
β

n

(Y ν) = dQ
ν

dQ
β
(Y ν)

)
= 1

with

P

(
0 ≤ dQ

ν

n

dQ
β

n

(Y β) < ∞
)

= 1.

Moreover, on account of

P

(
dQ

ν

dQ
β
(Y ν) = 0

)
= EI

(
dQ

ν

dQ
β
(Y β) = 0

)
dQ

ν

dQ
β
(Y β) = 0,

we have thatP (0< dQ
ν

dQ
β (Y ν) < ∞) = 1.

Thus, (4.4) is valid.

5. Discussion and one counterexample. In this paper the exponential stabil-
ity of the filtering equation is verified for a class of ergodic Markov signals whose
transition probability densitymay vanish on a part of the state space.

To the best of our knowledge, the assumption of Theorem 1.1 is the weakest
currently known one, when the filter is stable regardless of the observations.

The obtained result, as well as the result based on the mixing conditions, is
ideally compatible with compact spaceS. Except for several known examples
(see, e.g., Example 1 in [6]) withS = R, these conditions are not applicable in
many practical filtering schemes with noncompactS. Particularly, the Kalman–
Bucy filter is out of their scope, though its stability is well known (see [3, 7, 12,
13, 15] and [11], Sections 14.6 and 16.2).

Since both types of conditions imply the geometric ergodicity of the signal, it
may seem that it provides the filtering stability. Example 5.1 demonstrates that this
is false in general.

EXAMPLE 5.1. Following [8], we consider Markov chainXν
n, with values in

S = {1,2,3,4} and the transition probability matrix

� =




0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5

0.5 0 0 0.5


 .
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Owing toλ∗ = 0 andλ� = 0, neither mixing nor our conditions are not applicable.
On the other hand, since 1 is the simple eigenvalue, the geometric ergodicity holds
for the unique invariant distribution(0.25;0.25;0.25;0.25).

Suppose that

Y ν
n = I (Xν

n = 1) + I (Xν
n = 3), n ≥ 1.

In the context of our setting, the measureψ is defined in an obvious way (see
Example 1.1) andν = (ν1; ν2; ν3; ν4) andβ = (β1;β2;β3;β4) are corresponding
densities with respect toψ .

In [8], Kaijser notes that the vector processπn with the entriesπn(i) = P (Xn =
i|Y[1,n]), i = 1,2,3,4 is not ergodic. We show also that

‖πβν
n − πν

n‖ =
4∑

k=1

|πβν
n (k) − πν

n (k)|

remains strictly positive for anyn ≥ 1.
In this case, the recursion (1.2) reads (n ≥ 1),

πν
n (1) = [πν

n−1(1) + πν
n−1(4)]Y ν

n ,

πν
n (2) = [πν

n−1(2) + πν
n−1(1)](1− Y ν

n ),

πν
n (3) = [πν

n−1(3) + πν
n−1(2)]Y ν

n ,

πν
n (4) = [πν

n−1(4) + πν
n−1(3)](1− Y ν

n )

subject toπν
0 (k) = νk , k = 1, . . . ,4. Similarly,

πβν
n (1) = [πβν

n−1(1) + π
βν
n−1(4)]Y ν

n ,

πβν
n (2) = [πβν

n−1(2) + π
βν
n−1(1)](1− Y ν

n ),

πβν
n (3) = [πβν

n−1(3) + π
βν
n−1(2)]Y ν

n ,

πβν
n (4) = [πβν

n−1(4) + π
βν
n−1(3)](1− Y ν

n )

subject toπβν
0 (k) = βk, k = 1, . . . ,4.

By virtue of the obvious identities,

πν
n (k)Y ν

n = πν
n (k) and πβν

n (k)Y ν
n = πβν

n (k), k = 1,3,

πν
n (k)(1− Y ν

n ) = πν
n (k) and πβν

n (k)(1− Y ν
n ) = πβν

n (k), k = 2,4,

we find

|πν
n (1) − πβν

n (1)| = |πν
n−1(1) − π

βν
n−1(1) + πν

n−1(4) − π
βν
n−1(4)|Y ν

n

= |πν
n−1(1) − π

βν
n−1(1)|Y ν

n−1Y
ν
n

+ |πν
n−1(4) − π

βν
n−1(4)|(1− Y ν

n−1)Y
ν
n .
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Similarly,

|πν
n (2) − πβν

n (2)| = |πν
n−1(2) − π

βν
n−1(2)|(1− Y ν

n−1)(1− Y ν
n )

+ |πν
n−1(1) − π

βν
n−1(1)]Y ν

n−1(1− Y ν
n ),

|πν
n (3) − πβν

n (3)| = |πν
n−1(3) − π

βν
n−1(3)|Y ν

n−1Y
ν
n

+ |πν
n−1(2) − π

βν
n−1(2)|(1− Y ν

n−1)Y
ν
n ,(5.1)

|πν
n (4) − πβν

n (4)| = |πν
n−1(4) − π

βν
n−1(4)|(1− Y ν

n−1)(1− Y ν
n )

+ |πν
n−1(3) − π

βν
n−1(3)]Y ν

n−1(1− Y ν
n ).

Now, (5.1) provides‖πν
n − π

βν
n ‖ ≡ ‖πν

n−1 − π
βν
n−1‖, n ≥ 2.

Hence,‖πν
n − π

βν
n ‖ ≡ ‖πν

1 − π
βν
1 ‖. Set

c1 = |ν1 − β1 + ν4 − β4| + |ν3 − β3 + ν2 − β2|,
c2 = |ν2 − β2 + ν1 − β1| + |ν4 − β4 + ν3 − β3|

and assume thatc1 ∧ c2 > 0. Since

‖πν
1 − π

βν
1 ‖ = c1Y

ν
1 + c2(1− Y ν

1 ) ≥ c1 ∧ c2,

we have‖πν
n − π

βν
n ‖ ≥ c1 ∧ c2.
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