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STABILITY OF NONLINEAR FILTERS IN
NONMIXING CASE

BY PAVEL CHIGANSKY AND ROBERTLIPTSER
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The nonlinear filtering equation is said to be stable if it “forgets” the
initial condition. It is known that the filter might be unstable even if the
signal is an ergodic Markov chain. Inmgeral, the filteringstability requires
stronger signal ergodicitgrovided by the, so called, mixing condition. The
latter is formulated in terms of the transition probability density of the signal.
The most restrictive requirement of the mixing condition is the uniform
positiveness of this density. We show that it might be relaxed regardless of
an observation process structure.

1. Introduction and the main result. This paper addresses the stability
problem of the nonlinear filtering equation with respect to its initial condition. We
consider a homogeneous ergodic Markov ch@ip), o with values inS € R?
regarded as a signal to be filtered from observatiotYpf,>1, ¥, € R”.

Denote M(dx), K(x;dy) and N(dx) the invariant measure, the transition
probability kernel and the distribution oKg, respectively, and describe the
dependence of observation and signal processes via the conditional distribution
I'(x; dy): for any Borel measurable satfrom R” andX|o, ,;, Y[1,,) theo -algebras
generated byXo, ..., X, }, {Y1,..., Y}

(1.1) P(Y,€AlXnV Yiin-1)=PY, € AlX,) = /A I'(Xy,,dy) a.s.

An example of such type dependence is
Yn = h(Xn’ ‘i:n),

with a bounded measurable functiénand i.i.d. sequence of random variables
(§n)n=1 independent 0€X ), 0.

We assume that there exist reference measiifds) on S andd(dy) on R”
such that

K(x;dy) = AMx, y)¥(dy),
N(dx)=v(x)¥(dx),
[(x;dy) =y (x,y)0(dy),
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where the densitied(x, y) and y (x, y) are measurable nonnegative functions.
Then, obviously, M (dx) = m(x)y(dx) and P(X, € dx|Y[1.,) has (a.s.) a
densityr,’ (x) with respect toy: for any Borel setA from S,

P(X, € AlY[1n) =/An;(x)1p(dx).

It is well known thatm,(x), n > 1 solves the, so called, filtering equation
(recursive Bayes’ formula)

_ )/(x7 Yn) fS)\(Z,x)T[;_l(Z)W(dZ)
JsJsy @, YA, w)m”_ 1 (0)¥ (dv)yr(du)

subject targ (x) = v(x).

If the densityv(x) is not completely known, in practice the filtering equation
is initialized by another densitg(x) corresponding to some probability distribu-
tion B(dx) onS with respect tay. Though this substitution seems natural, the frac-
tion in the right-hand side of (1.2) may not be well defined. NevertheleNsf B
[henceforth N « B is assumed an@%(x) =: %(x)], the recurrent equation (1.2)
subject to8 makes sensg¢-a.s.

If v is replaced bys, we get “wrong” filtering densityr,, " (x) defined as
follows: 7" (x) = B(x) and

1.2) " (x)

n

y(x, Ya) Js Mz, )P’ 1 ()Y (d2)
Js Js v, Y r, P L (0) g (dv)y (du)

Sincen, " differs from x?, the use ofr, " (f) = [ f(X)m, " (X)¥(dx) as an
estimate forf (X,), with boundedf or Ef2(X,) < oo, does not guarantee the
mean square optimality, that is,

E(f(Xp) — 7)) < E(f(X) — 7L ()

bV (x) =

evenas: / oo.
The filtering equation, or filter, is said to be stable, if for any bounded
measurable functioif,

(1.3) lim_ Ejm)(f) ==} ()| =0,

so that, from the practical point of view, the usen(;‘jU for stable filters makes
sense.

Assume thatg is chosen and consider a new pair of proces(s)é%, Y,’?)
characterized by the same kernglandI” andg as the distribution density dfg.
It can be shown (similar to Proposition 2.1, [2]) that (1.3) holds provided that

(1.4) E(%(xg)]y[ﬁyoo)) - nleooE<%(X§)

B
X8, Y[Ln]) a.s.
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So, (1.3) follows fromY[’i ) = ﬂnzo{Y[fi,oo) v x?

[n,00)1>

property and the martingales convergence theorem,

ﬂ {Y/ioo)vxfn oo)})

n>0

}, since by the Markov

i Y xP B Vo elXx?
nleooE(ﬂ(Xo)‘Xn, Y[Ln]) = E(ﬂ(XO)
Unfortunately, in generaI,Y[1 ) & ﬂn>0{ [Looy V [n =)} €even though the

n.00) = (&, €2) as.

In several publlcamons’[’s1 ) = ﬂn>o{ Loo) V Xﬁ )} Is implicitly declared
and then (1.3) is derived (for more details, see [2] and citations therein). Somewhat
contradicting the intuition, the filter does not automatically inherit (1.3) from the
ergodic property of signal. Corresponding counterexamples can be found in [2, 7,
8] (see also Example 5.1).

The validity of (1.3) sometimes crucially depends on the structune(ef y).
For instance, in order to have (1.3)x, y) is required to be compactly supported
(see [4]), or to have tails with certain decay rate depending on the signal model
(see 1, 5,9, 10, 16)).

In view of the aforementioned facts, it is interesting to determine the conditions
providing (1.3) regardless of (x, y). One of them is themixing condition
introduced by Atar and Zeitouni [1] and Del Moral and Guionnet [6]:

ergodic property of the Markov chain |mpllé$,,>oX

(1.5) 0<is <Alx,y)<A*

which provides
. 1 v by A

(1.6) limsup—log|r, — | <—— a.s,
n—oo N A*

where
Iz — 7l = /S B (x) — 7 (o) ¥ (d)

is the total variation norm. Clearly (1.6) implies (1.3).

If after all the condition\* < oo is reasonable, the condition. > 0 is quite
restrictive in many applications.

In this paper we replack, by

a7 Ao = / essinfL(x, y)m(x)y (dx)
S yeS
(hereafter, essinf and esssup are taken with respefc).to

THEOREM 1.1. Assume 0 < A, and A* < oco. Then, for any v(x) and any
B(x) > B, > 0,therelation (1.4) holds and
Ao

1
(1.8) lim sup-- log||zf" — =" < - as
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REMARK 1.1. In contrast toi(x,y) > A, > 0, the assumptions of Theo-
rem 1.1 admit.(x, y) to be zero on some region of the state space.

ExAMPLE 1.1. LetX, be the Markov chain with valuest= {1, ...,d} and

A be its transition probability matrix with entries

)Vij =P (X, = j|Xp-1=1).
Here);; is the transition probability density with respect to the Dirac meagure
supported at pointg=1,...,d.

Assumei, = min;; A;; = 0, but there is an integer> 1 such that all entries
of A" are positive. Then the Markov chain is ergodic (see, e.g., [14]) and its
invariant measure possesses densityith respect ta) with positive atomsn (i),
i=1,...,d. Then

d
Ao = Z m.ink,-jm(i) >0,
i=1 /
if at least one row oA has positive entries.

REMARK 1.2. The relatiom: (y) = [gA(x, y)m(x)¥ (dx) implies
(1.9) Ao <m(x) < A¥.

REMARK 1.3. Therequirememt > 8, > 0 is not restrictive, since the choice
of g is flexible.
Notice also thap > B, implies N <« B with

v(x)
Bx)

Our proof of (1.8) differs from these in [1] and [6]. Before getting into details,
we describe the main idea of the proof, wherelithekward conditional density
P(XoedulX, =x,Y1.))
¥ (du)

aN
dB =

pn(u, -x) =

plays a crucial role.
We show in Section 4.3 thap, (u, x") — p,(u, x”)| = 0, n — oo, for anyx’,
x”" which allows the claim that

. vV B B B

IS aY[1,00)-measurable random variable and in turn the validity of (1.4).

The proof of the second statement of Theorem 1.1 uses an upper bound for
the rate, inn, of |p,(u, x") — pu(u, x”)| — 0. Whenx, > 0, this rate isi,/A*,
while for A, > 0 the rate is random (Lemma 3.2) and controlledryyx). The
upper bound in (1.8) follows from the law of large numbers for the conditional
expectations (Theorem 2.2), which is derived with the help of geometric ergodicity
(Theorem 2.1) being valid under the assumptions of Theorem 1.1.
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2. Geometric ergodicity and law of large numbersfor conditional expecta-
tions.

2.1. Geometric ergodicity. Let A (u, x) be then-steps transition probability
density with respect tgr.

The Markov chain is geometrically ergodic, if there exist constéhts 0 and
0 < r <1 such that for any,

/S|k(")(u, xX) —m@)|¥dx)<Cr*,  n>1

THEOREM 2.1. Assume 0 < A, and A* < oco. Then the geometric ergodicity
holdswith
Ao

)\‘*2
) I By
Ao(A* — As) A*

PrRoOOF Consider the stationary Markov chaixj,, that is, whenXg has
distribution densityn (x) with respect taj .

By the Bayes formula, one verifies th&(Xg € du|X,, = x) has a density
gn(u, x) with respect to

AMu, x)m(u

(2.1) g1(u, x) = 2o mE)

m(x)
and

(2.2) gn(u, x) = Js A, )gn-1(, XHm ()Y (dx")

m(x)

Let us show now that

m(u)[A" (u, x) — m(x)]
(2.3)
- /S [gn (11, %) — g (tt, XY ()m(x)r (dx).

For arbitrary bounded and measurable functigrsd f, write

Eg(Xo) f(Xn) — Eg(X0)Ef (Xy)

(2.4)
=_/S/Sg(”)f(x)[)\(”)(”’x)_m(x)]m(u)lﬁ(du)lﬁ(dx)

and

Eg(Xo) f(X,) = /S fS ) F (V) (s Ym0 (du) P (dx)
(2.5)
- / / / ¢() £ () s ym (X)m (2 (due)p (dox)p ().

SJSJS
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Obviously, (2.5) provides
Eg(Xo) f(Xn) — Eg(X0)Ef (Xn)

(2.6) - fS fS /S ) £ ) gt ) — g, 5]

x m)m )Y (duw)y (dx)y (dx').

So, by arbitrariness ¢f and £, (2.6) and (2.4) imply (2.3).
Owing to (1.9), the relation (2.3) provides

A @, x) — m(x))|
1

m(u)

Introduceg,, (1) = essSsup.g g, (u, r), q,(u)=ess infcs g, (u, r) and set

Do) = T, ) — g, ().

2.7)

/S 1, %) — g (1t ) Mm@ (dx),

By (2.7),
1
(2.8) L1205 = mo @) < —=a,G0).
S m(u)
We show now that
2.9) A, () <m( )’\_*(1_&)"_1 1
) () <m(u ~ e , n>1.

For n = 1, this estimate is obvious, whereag(u, x) < m(u)A*/1,, that is,
q1(u) <m)A*/re, and A1(u) <q41(u). In order to establish this estimate for
n > 2, we derive at first a recurrent inequality

(2.10) Bulut) < (1 _ %)An_m.

For anyv’, v”, we have
Jsm@xHA", v")g, 1 ()Y (dx")

qn-1(u) = 7 s
m(v’)

JsmGHAG  v)g, @)Y (dx)
gn—l(u) = 174
m(v”)

and, by (2.2),
qn (M, 'U/) - Qn(’/h U//)
_ Js A V) gn—a(u, xYm(x) Y (dx)
B m(v')

_ fS )\.(X/, v//)Qn—l(U, x/)m(-x/)w(dx/)
m(v//) '
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Then
Gn (u, V") — g (u, v")
=qu 1) —q, )
_ Jsm GG, V)G, 1) — gn—1(u, x)]P (dx')
m(v’)
JsmGOAE V) gn-1(u, x) —q ()] (dx’)
m©")

This equality, with (0= 0.5 is understood here)

D) =G0 e o T~ an(x)

Ap(u) A, () ’

o (u, x') =
is transformed to

gn(u, V') — qn(u,v")

)\’ /’ / ,
=An_1<u><1— fS m(x/>{ C0 V) 19 g, )]

m(v’)

A, ")

m(v”)

Owing to 0< a, (1, x') < 1 andm(x) < 1*, we get
/ m(x/){)h(x,’ v) [1—ap_1(u,x)]+ Mz, V)

S m(v’) m(v")
m(x")

AT

a3 @)

an—1(u, x) } ¥ (dx')

A ) AL, V)T (dx')

1 . Ao
> = /Sm(x’) esrsm’rk(x’, Y (dx) = e
Thus, g, (u,v') — g, (u,v") < (1 — Ae/A*)A,—1(u), and (2.10) holds true by
arbitrariness o’ andv”.
The iteration of (2.10) and the estimatg (1) < m(u)L*/Ar, give (2.9). So,
by (2.8) the result holds.d

2.2. The law of large numbers. The result of this section is valid for any
distribution of X, obeying density with respect .

THEOREM 2.2. Assume A, > 0 and A* < oco. Then, for any bounded
measurable function f,

Jm s Ymeats = [wmovn  as

1
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PROOF Set f°(x) = f(x) — [s f(2)m(z)¥(dz) and notice that the desired
statement is valid if

1 .
(2.11) n[}mm;];nk_l(f):o a.s.

Let us introduce the Poisson equation
8() = 170+ [ g0 3wy,

whose solution
g)=fo)+ > /S FeAD (x, v (dy)
n=1

is well defined and bounded by virtue of the geometric ergodicity (see Theo-
rem2.1).

Set§, = m,(g) — m,—1(g) + m,—1(f°) and notice thag,’s forms a bounded
martingale difference. The boundedness is obviai&,|Y[1,-1)) = 0, a.s.,
n > 1, is valid by the following Poisson equation:

E(&lYn-1) = E(g(Xy) — 8(Xu—1) + f°(Xn—DI¥Y1,n-17)

_ E( /S ¢@A(Xn_1. )Y (d2) — g(Xn_1) + fo(xn_g\y[l,n_l])
=0.

So, with the martingal@s,, = Y "y_; &, we have
n
T (g) =molg) — > mk—1(f°) + M.
k=1

Consequently,
1 o 1 1
=3 malf°) = =My — = (1a(g) — mo(g))-
= n n

With boundedg, , (g) can be chosen bounded too. Hence,
n~ (o (g) —mo(g)) = 0.

Also M,,/n — 0, a.s.n — 00, since the increments of martingal§, are bounded
(see Theorem 4, Chapter VII, Section 5 in [17]).
Thus, (2.11) holds. O

3. The backward distribution P(Xo € du|X, =x,Y[1,,)). The results of
this section are valid for any distribution &f obeying density with respect b,
say®, bounded below by a constafit > 0.
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3.1. Recurrent equation for the density. We show that the backward distribu-
tion possesses densjby (u, x) with respect taj .

LEMMA 3.1. Under the assumptions of Theorem 1.1 p, (u, x) exists and is
defined as

Au; x)9(u)
JsA(v; X)F (V)Y (dv)’
s A5 x) pa—1(u; X1 (x) Y (dx”)

Y EAY O 77 I

p1(u; x) =
(3.1)

PrRooOE Forn =1, the formula is obvious.

By (1.1), E(h(X0)|Xn, Y[1.n) = E(h(X0)|Xn, Y[1.,—17) for any bounded mea-
surabler andn > 2. We apply the induction method. With bounded and measur-
able functiong (x), f(x),x € S,andH(y1, ..., yn—1), ¥i € R?, write

Eg(Xo)H(Y1, ..., Y1) f(Xn)

— Eg(Xo)H(Y1. ... Y1) fS FOA K1, 0V (dx)
(3.2)
—EH(Yy,..., Y1) /S /S /S @) FOOMGE' s X) (s 2)

X 71 (XY (dx) Y (dx" ) (du).
On the other hand,

=FEH(I,..., Yn—l)f(Xn)/Sg(u) dP(Xoedu|X,, Y1n-1))
(3.3)
=FEH(4,..., Yn_l)/S/S/Sf(x)g(u)dP(Xo €dulX, =x,Y[1n-1)

X A(v, X)1, -1 (V)Y (dx) P (dv).

By arbitrariness op, f, H we derive from (3.2) and (3.3) that x ¢)-a.s.

dP(Xo € du|Xp, Y[l,n])/sk(v; X)1—1(v) ¥ (dv)
(3.4)
= ¥ (du) fS A, 3) on1 (0 XY T2 (2 (d)

and the proof is complete.[]
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3.2. Upper bound for |p, (1, v") — p,(u,v”)|. Set

(3.5) Pn(u) =esssup,(u,x) and p, W) :esssinfpn(u,x)
xeS - Xe

and introducé, (u) = p,, (u) — P, ).

LEMMA 3.2. Under the assumptions of Theorem 1.1,

*\2
5100 < 2 9 w),
2 2 1 2 . , ,
6,(u) < ;*;Oﬁ(u) eXp{—F ,;fﬂk_l(X/) eS§Inﬂ(x , Y (dx") ¢, n>2.

PROOF  Obviously,

()20 (u) ()2
p1(u, x) < < 0 (u)
Dy Js (v, X)m)Y (dv) T Dyho
and, whereas:(u) < p1(u, x), the first statement is valid. Further, by (3.1) we
have

on(u, ") — pn(u, V")
_ S GDAES, V) pua (, X) i (d)
[ a—1()A (v, V)Y (dv)
a1 GDAG, V) pa—a (e, XY (dX)
S p—1()A (v, v") ¢ (dv) '

(3.6)

Using the identities
S a1 (DA, V)P, 1 ()Y (dx”)
S n—1()A(v, V)Y (dv)
J -1 (A VN p () (dx')
e Oy YORT VAP TS

ﬁn—l(u) =

rewrite (3.6) as
o, V") — pu(u, v")
=Pn-2W) —p, ()
(3.7) 1 GOA, V) Bt () — puma(u, )Y (dX)
J Tu—1(0)A (v, v) Y (dv)
J Tt OAG V) e, x") — p, ()] (dx”)
B J -1 (0)A (v, V)Y (dv) '
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Now, following the proof of Theorem 2.1, introduce

o, (u, x') = Pl X) = p, () and 1—a,(u,x'):= Pn () = puut, X')

8n (1) o 8n (1)
and rewrite (3.7) into

IOVL (M, 'U/) - pn(ua U”)
S -1 (XA, VYL — a1 (u, x") W (dx")
[ 1 (V)A(v, V)Y (dv)

e GA 0 e (. X’)Iﬁ(dX’)>
[ Tn—1(W)A (v, v") Y (dv) '

_ sn_lw)(l—

Since 0< a,, (1, x") < 1, we have
1 (A, V)L — o1 (u, x") ] (dx")
[ 1A (v, V)Y (dv)

S 1A, v a1 (u, X" )P (dx”)
S 1A (v, v (dv)

_.l_

A /’ / , ,
= [0 0 s )

k(x v”)

+fnn 1) o1 (ut, X'V (dx')

1 /!
> % [ mma GRG0 ARG V)

)\ Ty— 1(x)essmfk(x MY (dx),

where the last inequality is valids x y)-a.s. Hence,
Pn (1, V') — pp(u, v")
<6,_ 1(u)<l— i/nn 1(x’ )essm’rk(x )Y (dx ))
and, by arbitrariness af andv”,
(3.8) Sn(u) < Sn_l(u)<l — k_i/”"—l(x/) es§inﬂ(x’, r)l//(a’x/)>.

The iteration of (3.8) and lad — x) < —x, 0 < x < 1 provides the second
statement. [
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4. Proof of Theorem 1.1.

4.1. Notation. Let (X", Y") and (X?,Y#) be copies of(X,Y) when the
distribution density ofXq is v or 8 and Q¥ and Q# be probability distributions

of (X¥,Y") and(X”, Y?). Also let Q" and@ be the distributions of ¥ andY”
and Q and Qﬁ be the restrictions o’ and Q on theo- algebras ] and

Y’i )+ Without loss of generality, we may assume that both copies are defined on
the same probability space.

Set n,’?(f = E(f(Xﬁ)lYln]) and Ietn,’f(x) be the corresponding filtering
density.

4.2. Absolute continuity Q¥ <« Qf. Since both Markov chaingX”, Y") and
(X#, YP) have the same transition probability kernel, by the assumpNicg B
we have

. dQ’ v
v B B yBy_ L yB
0"'<K0 with dQﬂ(X Y )—ﬂ(XO)’

—v =B dQ" 8 ( ) B B
0 K0 Wlth—(Y)_ )YOQ Yooy = Yl
dQ /3 ’ 1,00) [1,00) \/ [1,n]

n>1
_E<}3 )‘Yln]), n>1
4.3. Proof of (1.4). It suffices to show that
Vo B B B
E(B(XO) Q{Y[l 00) v X[n oo)}>
n>
is aYﬁ’oo)—measurable random variable. Indeed, then we have a.s.

B3] N 0 v X

n>0
Vv B B B B
= E<E<E(X0) ﬂ {Y[l,OO) M X[n,OO)}> ‘Y[l’oo)>
n>0

- E(ﬂ(xg)\ f OO))

In order to verify the requwed’[’i ~)-Measurability, notice first that by the reverse
martingale convergence theorem,

Vv
E(E(xg) N h v xb Oo)})_ lim E(ﬁ(xg)‘ylm)\/X’f1 Oo))

n>0

[

do,
o’
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and by the Markov property,

( )‘ [lOO)VX{iLOO)> (ﬂ(Xﬁ)‘ [1n]VX1}18>

= [ 5 @eute. XDy aw.
So by the aforementioned martingale convergence theorem,
nll_)moO N () pn(u, X)) (du) exists a.s.

On the other hand, since wif), (u) andp () defined in (3.5) we have
[ Swp, @@ < [ 2o X[ < [ 2 w@p,epdo
sp T —Jsp T —Jsp "
and, by Lemma 3.2 witl# (x) = B(x), forn > 2,
f—(u)[p W) — p ()Y (du)

*\2
< (;/\) p{ Z/nk L(x") essinfi(x’, r)lﬁ(dx)}

By Theorem 2.2, limoon 237, f nk_l(x/) essinf A(x’, )Y (dx’) = ro (> 0),

a.s. Consequently, lim, o fs[0,@) — p, )Iv(w)/Bu)y(du) =0, a.s. and,
therefore,

v
E(E(Xg)

The desired statement holds singep, (u)v(u)/Bw)y(du) is a Y1 c0)-
measurable random variable for any

M {Hhoo v X, oo>}> = Jim_|. %(M)ﬁn(u)l//(du)-

n>0

4.4. Proof of (1.8). For fixedn, let ¢"(y1.,)) and¢? (y1.,)) be measurable
functions of the argumentg, ..., y,, y; € R?, such that for fixed bounded and
measurable functioif,

# ) =501 and 0l =)

Recall thatV < B providesQ” « 0f. Sowe may defing, " (f) = ¢# (Y} ).
SinceQ? « QV is not assumed, we set
dQ, g
—C@g e o).

n

2P f) =" (Y]] (
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LEMMA 4.1. Under the assumptions of Theorem1.1,for n > 2,

v

@(Yﬂ)ﬂn;ﬂ — P
(4.1) n . .
= Bsho eXp{_F é/ﬂf_l(x’) esrsinfk(x/,r)lp(dx’) ]

PRoOOE We show first that

-
L9 iy () — f ()
a0

v

4.2) —n%)[ / Y ) o (s ) (d)

/ f Y W onu, X)nﬁ(XW(dx)l//(du)}

Let ¢ and f be bounded measurable functions of arguments. ., y,, y; € R?
andx € S. Then,

B[ £ (G 0D ¥ )n 0 - B( 506

=E ﬂ<x De(Yh P f) — X))

Vo) Je ()

= Eg(Y[1 ), (f) = fF(X)]
=0

provides

(4.3)

do, B vB v
Y —(X
= LOLUE (ﬂ< ;

n

[Ln])'

Further, by (4.3),

d_l)

DO v by pf ) = i)

dQ,
= 5(3 )~ E(GOD i EU XN
=E<f(X5)[E{%(X0 [ln]} {%(Xg)‘yﬁ,n]”‘yﬁ,no

and so, due to arbitrariness ¢f (4.2) holds true.
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The right-hand side of (4.2) is evaluated from above as follows:

nf(x)[/1§<un%<u,x>w<du>

/ /—%unMutx)nﬁu»¢«dx)wano”

ﬂu{/f—meum m@x)ﬂ@wwwwwﬂ]

Snﬂmégwmﬂwwwm
and the desired result follows by Lemma 3.2 with= 8. O

By (4.1)

av

Vl

Io

W=l

()\‘*)2
—_ 0 —
T n g Biho
and, since by Theorem 2.2,

B ’ infL(x’ dx’
Snk_l(x)efgsln ', r)Y(dx’)

lim —Z/rrk () essinb(x’, 1)y (dx')

n—-oon

_ fS m(x')essinfu(x’, 1)y (dx') = o,

we get
—U

<I|msup Iog{ O (Yﬁ)||n”ﬂ—nﬁ||}<—)”—°):l.
dol

n—oo N A*
n

On the other hand, owing i8" <« 0”,

o .
(Ilmsup log Qﬁ(Y”)Hn —nﬁ”||<——>_1
do, o

Then, the statement of Theorem 1.1 is valid, provided that

(4.4) lim 1 log ng Y")=0.
n—-oon dQn

Notice that

o, %
o = (Gl
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that is, jg" (Y#) is a nonnegative uniformly integrable martingale with the limit

n

point %(Yﬁ) such that O< %(Yﬂ) < 00, a.s. Again taking into account

0" « 0", we conclude that

p(im, L= 2
n— 00 dQn dQ

v

() =1

with
—V
P(O < dgg P < oo) =1
d

n

Moreover, on account of

P(Z5om=0)=£1(“Zrh) =0) Z %) =
40 40 40
we have that? (0 < ‘@; (YV) <00)=1.

0"
Thus, (4.4) is valid.

5. Discussion and one counterexample. In this paper the exponential stabil-
ity of the filtering equation is verified for a class of ergodic Markov signals whose
transition probhility densitymay vanish on a part of the state space.

To the best of our knowledge, the assumption of Theorem 1.1 is the weakest
currently known one, when the filter is stable regardless of the observations.

The obtained result, as well as the result based on the mixing conditions, is
ideally compatible with compact spa&e Except for several known examples
(see, e.g., Example 1 in [6]) with = R, these conditions are not applicable in
many practical filtering schemes with noncomp&ctarticularly, the Kalman—
Bucy filter is out of their scope, though its stability is well known (see [3, 7, 12,
13, 15] and [11], Sections 14.6 and 16.2).

Since both types of conditions imply the geometric ergodicity of the signal, it
may seem that it provides the filtering stability. Example 5.1 demonstrates that this
is false in general.

ExAmMPLE 5.1. Following [8], we consider Markov chaiXi;, with values in
S ={1, 2, 3, 4} and the transition probability matrix

05 05 0 O
0O 05 05 O
0O O 05 05
05 0 0 05

A=
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Owing tox, = 0 andi, = 0, neither mixing nor our conditions are not applicable.
On the other hand, since 1 is the simple eigenvalue, the geometric ergodicity holds
for the unique invariant distributio(0.25; 0.25; 0.25; 0.25).

Suppose that

Y =1X'=1)+1(X'=3), n>L1

In the context of our setting, the measurds defined in an obvious way (see
Example 1.1) and = (v1; vo; v3; v4) and B = (B1; B2; B3; B4) are corresponding
densities with respect tg.

In [8], Kaijser notes that the vector processwith the entriesr,, (i) = P(X, =
ilY1.0)), i =1,2,3,4is not ergodic. We show also that

4
I — il =" | Y k) — 7 (k)
k=1

remains strictly positive for any > 1.
In this case, the recursion (1.2) reads<1),

70 (1) = [72_1 (1) + 72 (DY,

72(2) = [1)_1(2) +7)_1(DIL - YY),
70 (3) =[m)_1(3) + 7)1 (217,

m, (4 =[r, (4 +m,_1IL-Y)

subject tary (k) = v, k =1,..., 4. Similarly,

af' () = [ D) + 7 @YY,
72 =[x 1@+ 7 W1 - 1),
2@ =[x (3 + 7" @1,
7@ =[x @ + 73—

subjecttor) (k) =B, k=1,...,4.
By virtue of the obvious identities,

n' (k)Y =x"(k) and 7P'(k)Y) =nP"(k), k=13,
YL —-Y)=nr'(k) and 7P U)A-Y")==P"k), k=24,
we find
Ty @) — 7 (D)) = )4 (D) — 7l (D) + 7y @) — 7l @)Y
= | () — 7 (DY, Y,

TR TG\ LNV TTE R A ) 4
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Similarly,
mY (@) — 1 @) = )12 — 7 @I~ YA - YY)
ity (D) -7 1Y A -,
Y3 = )| = |y _1(3) — 7l (B, Yy
(5.1) Finl 12— 1A - Y)Yy,
7y (4) — 2B (@) = 7y (@) — 7 @I Y)_ A - YY)
iy 13 — 7 BNY) A - YY),
Now, (5.1) providegz? — 7" || = |7}, — " |, n > 2.
Hence |} — 7f"| = | — =f||. Set

c1=|v1— p1+va— fal +[v3— B3+ v2— B2l
c2=|v2— f2+v1— Bi1l + [va— Ba+ vz — B3
and assume that A ¢» > 0. Since
Iy — 7"l = ¥y + e2A - ¥P) 2 1 Ao,

we have||r) — 7 > c1 A e
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