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We study a large family of competing spatial growth models. In these
models the vertices ii¢ can take on three possible statésl, 2}. Vertices
in states 1 and 2 remain in their states forever, while vertices in state 0,
which are adjacent to a vertex in state 1 (or state 2), can switch to state 1
(or state 2). We think of the vertices in states 1 and 2 as infected with one
of two infections, while the verticem state O are considered uninfected.
In this way these models are variants of the Richardson model. We start the
models with a single vertex in state 1 and a single vertex in state 2. We show
that with positive probability state 1 reaches an infinite number of vertices
and state 2 also reaches an infinite number of vertices. This extends results
and proves a conjecture of Haggstrom and PemadtlAdpl. Probab. 35
(1998) 683—692]. The key tool is applying the ergodic theorem to stationary
first passage percolation.

1. First passage percolation. In this paper we study a class of competing
spatial growth models by first studying stationary first passage percolation and
then applying our results to the spatial growth models. In first passage percolation
every edge in a graph is assigned a nonnegative number. This is interpreted as the
time it takes to move across the edge. This model was introduced by Hammersley
and Welsh [6]. See [7] for an overview of first passage percolation.

Let u be a stationary measure oo)Edgede) and letw be a realization ofi.

For anyx andy we define thgpassagetime fromx to y, t(x, y), by

T(x,y) =infY (v, vit1),

where the sum is taken over all of the edges in the path and the inf is taken over alll
paths connecting to y.

The most basic result from first passage percolation is the shape theorem. We
let0=(0,...,0)and1=(1,0,...,0). Define

S@)={x: r(0,x) =1}
and
S0y =80 +[-3. 31"
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The shape theorem says that there is a nonempt§ seth that@ converges
to S a.s.

THEOREM 1 (Boivin [1]). Let u be stationary and ergodic, and let the
distribution on any edge have finite d + ¢ moment for ¢ > 0. There exists a set S
which is nonempty, convex and symmetric about reflection through the origin such
that for every ¢ > O thereexistsa T such that for all r > T,

P((l—s)S<¥ <(1+8)S> >1-—e¢.

This theorem is a consequence of Kingman'’s subadditive ergodic theorem. It is
the only property of first passage percolation that we need. In general, little is
known about the shape 6fother than it is convex and symmetric. Cox and Durrett
showed that there are nontrivial product measures such that the boundsry of
contains a flat piece [2]. However, for any compact nonempty conveX gedre
exist a stationary measugesuch that the shape foris S [4].

Another widely studied aspect of first passage percolation is geodesics.
A geodesicis a pathG = {vg, v1, ...} such that

n—1
T(Um, Up) = Y @i, Vig1)
i=m
for anym < n. We let G®(x, y) = G(x, y) be the union of all geodesics that
connectr andy. Define

['(x)= | J {e:e e EdgesZ’) ande € G(x, y)}.
yezd

We refer to this as thi&ee of infection of x. We definek (I" (x)) to be the number
of topological ends ii" (x). This is also the number of infinite self-avoiding paths
in T'(x) that start afx.

Newman [8] conjectured that for a large class of |K(I'(0))] = ¢ a.s.
Haggstrém and Pemantle [5] proved that &= 2 andu is the i.i.d with exponential
distribution, then with positive probabilityk (I"(0))| > 1. Newman [8] proved that
if wisi.i.d.andS has certain properties, thék (I"(0))| = oo a.s. Although these
conditions are plausible, there are no known measuregh S that satisfy these
conditions.

Now we introduce some more notation which lets us list the conditions that
we place onu. We say that the configuratian hasunique geodesics if for all
x,y € Z% there exists a unique geodesic froimto y. If there exists a unique
geodesic between and y, we denote it byG(x, y). The configurationo has
unigue passagetimesfor all x andy = z:

t(x,y) #1(x,2).
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For anyw we let ug)’l) be the conditional distribution gk on the edgg0, 1)
given thatw' (v, w) = w (v, w) for all edges excep®, 1). We say thaj. hasfinite
energy if for any setA C R such thatu{w(0,1) € A} > 0 and almost everw,
p OV 1w/ (0,1) € A) > 0.
Whereasu is a stationary measure we can study its ergodic theoretical proper-
ties. For any e Z¢ define the shift ma@” : [0, 00)E498$Z) _, [0, 00)Ed9esZ?) py

T () (j)=o(j+v)

forall j € EdgesZ?). The measurg is totally ergodicif, for all v € Z¢, the action
(u, T?) is ergodic.

Now we are ready to define the class of measures that we work with. We say
thatu is good if:

w is totally ergodic;

w has all the symmetries &<;

the distribution ofu on any edge has finii¢ + ¢ moment for some > 0;
u has finite energy;

uf,?’l) is an absolutely continuous measure with supfardo) a.s.;

wu produces a shapewhich is bounded.

o0 s~LNE

Note that conditions 2, 4 and 5 imply that has unique geodesics and unique
passage times. These conditions were chosen to make the arguments as easy as
possible and could be made more general. All that is essential for the argument to
show that there are at least two disjoint infinite geodesics igitligtotally ergodic

and that Lemma 1 and Corollary 1 below are satisfied. Conditions 2, 4 and 5 are
used to show that coexistence occurs with positive probability. Throughout the rest

of the paper we assume thais good. Unfortunately there is no general necessary

and sufficient condition to determine when the sh&ps bounded. See [4] for
examples.

2. Spatial growth models. Now we explain the relationship between first
passage percolation and our competing growth models. Fas &, oo)Edge$Zd)
with unique passage times and amy# y € Z¢ we can project it towy, y €
({0,1, 2710 by

2, if t(x,z) <trandt(x,z) <t(y,2),
Wy y(z, 1) =11, if t(y,2) <tandt(x,z)>t(y,2),
0, else.

If w has unigue passage times a.s., thenprojects onto a measure on

({0, 1, Z}Zd)[o*"o). It is clear that the models start with a single vertex state 1 and
a single vertex in state 2. Vertices in states 1 and 2 remain in their states forever,
while vertices in state 0, which are adjacent to a vertex in state 1 (or state 2), can
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switch to state 1 (or state 2). We think of the vertices in states 1 and 2 as infected
with one of two infections, while the vertices in state O are considered uninfected.
In this way these models are variants of the Richardson model.

Whereas each € Z¢ eventually changes to state 1 or 2 and then stays in that
state for the rest of time, we can speak of the limiting configuration. There are
two possible outcomes. The first is coexistence or mutual unbounded growth. If
this occurs, then the limiting configuration has infinitely manin state 1 and
infinitely manyz in state 2. The other outcome is domination. If this happens, then
in the limiting configuration there are only finitely many vertices in that state and
all but finitely many vertices are in the other state.

For many measurgs (e.g., if u is i.i.d. with nontrivial marginals), it is easy to
prove that domination occurs with positive probability, but it is much more difficult
to show that coexistence occurs with positive probability. More precisely we define
C(x, y) to be the event that

{Z:tﬁmoocbx’y(z) = 1” = {z:tir‘gocbx’y(z) = 2” = 00.

We refer to this event amexistence or mutual unbounded growth. Our main result
is that, with positive probability, coexistence occurs.

THEOREM 2. If uisgood, then

P(C(0,1)) > 0.

This proves a conjecture of Haggstrom and Pemantle [5]. They proved this
theorem in the case thdt= 2 andyu is i.i.d. with exponential distribution. Garet
and Marchand [3] gave a different proof of Theorem 2. Their method follows more
closely the approach taken by Haggstrém and Pemantle [5].

3. Outline. In this section we outline the proof of our main result. For any
x, y € Z¢ and infinite geodesiG = (vg, v1, vy, ...) We can define

B&(x,y) =Bg(x,y) = nli_)moot(x, V) — T(y, vp).
To see that the limit exists, first note that
Bg(x,y) =n“—>moor(x’ Vp) — T(y, Uy)
= n”—>moor(x’ Vp) — T (0, vy) + T(vo, Vp) — T(y, Uy)
= nli_)moo(r(x, vp) — 7(vo, Un)) + nli_)moo(r(vo, Un) — 7(y, vp))-

WhereagsG is a geodesic, the two sequences in the right-hand side of the last line
are bounded and monotonic so they converge. Bwi&, y) is well defined. For
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a givenw and allx, y € Z¢, if the function B (x, y) is independent of the choice
of infinite geodesi&, then we can define the Busemann function

B(x,y)=B®(x,y) = B&(x, y).

The main step in our proof is Lemma 4, which states that the probability that
{B(x, )}y yeza is well defined is 0.

We work by contradiction to prove Lemma 4. In Lemmas 2 and 3 we assume
that {B(x, y)}, yez« is well defined a.s. and then apply the ergodic theorem to
{B(x,¥)}; yeze- Then in Lemma 4 we show that the conclusions of Lemma 3
generate a contradiction with the shape theorem. Thus with positive probability
there are vertices andy and distinct geodesioSg = Go(w) and G = G1(w)
such that

BGo(x7 y) ?é BGl(X, y)

From this point a short argument allows us to conclude that coexistence is possible
with positive probability.

4. Proof. The heart of the proof is applying the ergodic theorem to the
Busemann function. This is done in Lemmas 2 and 3. We start by showing that
the symmetry ofx implies that the expected value of the Busemann function is O.

LEMMA 1. If {B(x, )}, ,ez¢ iswell defined a.s., then for all v € 74,
E(B(0, v)) =0.

PROOFE By symmetry ofu we have thaE(B(0, 1)) = E(B(1, 0)). Combining
this with the fact thaB (0, 1) + B(1, 0) = 0 proves the lemma.[]

Now we apply the ergodic theorem RO, v).

LEMMA 2. If {B(x, y)}, yez« is Well defined a.s., then for all v e 74 and
& > O thereexists M such that

P(|B(O,mv)| <emforalm>M)>1—¢.
PROOF.  First rewriteB(0, mv) as
B(0,mv) = B(0,v) + B(v, 2v) + - -- + B((m — v, mv),
(1) BO.mv)=B"0,v)+ BT @O )+ + BT @0, v),

m—1 )
B(O,mv)= Y BT"@(0,v).
j=0
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Whereasu is good, it is totally ergodic and the acti@”, «) is ergodic. Thus
by (1) and Lemma 1 the claim is a consequence of the ergodic theofem.

We now strengthen this lemma by using the following corollary of the shape
theorem. For € Z4 we let|x| = |x1| + |x2| + - - - + |xg].

COROLLARY 1. Thereexist 0 < k1 < ko2 < oo such that for every ¢ > 0 there
existsan N such that

0
P<kl - 7(0, x)
x|

PROOFE The existence of; is due to the fact that the s&t(from Theorem 1)
is nonempty. The existence &f follows because one of the requirementsuof
being good is tha$ is bounded. [J

< ko for all x suchthat |x| > N) >1-—c¢.

LEMMA 3. If {B(x, y)}, yeze is Well defined a.s., then for any e > O there
exists N suchthat if n > N, then

B(0,
P( (| |x) < ¢ for all x suchthat |x]| =n) >1—e¢.
X
PrROOF  Givene > 0, pick vectorsug, vp, ..., vj such thafvy| = [vp| =--- =

lv;| and for allx sufficiently large there existse {1,2, ..., j} andm € N such
that

Ix —mu;| <elx| and mlv;| < |x|.
For allx andy, we have that
B(0,x) = B(0, y) + B(y, x).
This implies that for any andy,
B(0,x) = B(0,y) + (y, x).

For anyn let m be the largest integer such thatv;| < n. (This is independent
of i.) Thus if there exists with |x| = n and B(lg*‘x) > ¢, then there exists such
that one of the following statements holds:

1. B(O,mv;) > en/2=c¢|x|/2;
2. |x —muv;| < ¢g|x|/2ko andt (x, mv;) > g|x|/2.

(The constank; is from Corollary 1.)
By Lemma 2 there exist& such that

P (there existsn > M andi € {1,2, ..., j}
such thatB (0, mv;) > 2em|v;|/3 > en/2) < 2¢/3.
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Thus the probability of the first event is less than 2if n is sufficiently large.
By Corollary 1 there exist& such that for any > L,

P (there existg with |z| <7 andz (0, z) > kal) < &/3;.

Applying this with eachn; in place of0 anden/2ks in place ofl we get that the
probability of the second event is less thaf3 if n is sufficiently large. Thus for
anye > 0 we getV, so thatifn > N, we get that

_ B(O0,
P(there exists such thafx| =n and (| IX) > e) <e,
X

which proves the lemma.[]
Next we show that this generates a contradiction with the shape theorem.
LEMMA 4. P({B(x, y)}, yeze iswell defined) = 0.

PrRoOOF We work by contradiction. Suppose that with positive probability,
{B(x, )}y yeze 1s well defined. The Busemann function being well defined is a
shift invariant event which, by the ergodicity pf, implies that{ B(x, y)}, ez«
is well defined a.s. and the conclusions of Lemma 3 apply. Piek% min(ky, 1),
wherek; comes from Corollary 1. By the choice ofand Corollary 1 we have that
there existsV such that for alk > N,

0, 2
2 P<r(| lx) > 2¢ for all x such thafx| = n) >3
X
By Lemma 3 there exists > N such that
B(0
3) P( (I ’|x) < ¢ for all x such thax| =n) > 5
X

However, there exists at least one infinite geode&sie- (0, vy, v2,...) which
begins at0. (The choice ofG is immaterial.) For allz there existsk such that
|vg| = n. For anyk we have thatB(0, v;) = 7(0, vx). This shows that (2) and (3)
cannot both be true. Thus the lemma is proven.

Note that the lack of a well defined Busemann function implies that there exist
at least two disjoint infinite geodesics. Now we show that the lack of a well
defined Busemann function also implies that coexistence has positive probability.
Coexistence is implied if there exist two infinite geodesits= (vo, v1, v2,...)
andG1 = (wg, w1, wo, ...) such that

BGO(O, 1) <0< BGl(O, 1)

We show coexistence is possible by showing that we have two such geodesics with
positive probability.
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PROOF OF THEOREM 2. By Lemma 4 we get an evet of positive
probability andx, y € Z¢ such that for allw € A we have two geodesiaSg =
Go(w) = (vg, v1, v2,...) andG1 = G1(w) = (wo, w1, wa, ...) With

Bgo(x,y) < Bg,(x,y).

(If there is more than one pair of geodesics which satisfy this equation, we can
chooseGgp andG1 in any measurable manner.) It causes no loss of generality to
assume thaftx — y| = 1. Thus by the symmetry gf we can assume that=0

andy = 1. WhereasBg, (0, 1) and Bg, (0, 1) do not depend on any finite number

of edges in the geodesics, it causes no loss of generality to assurfelilaae not
endpoints of any of the edgesdr or G1. By restricting to a smaller evert c A

of positive probability we get a nonrandom- 0 such that for allo € A,

(4) BGO(O, 1) <r< BGl(O, 1)

By the symmetry ofx we can assume> 0. From the definition oBg, (0, 1) we
getthatBg,(0,1) < (0, 1).
Now we form a new evert’. Givenw € A definew’ by
w@,w)+r, if 1e{v,w},
w(v, w), else.

a)/(v,w):{

The eventA’ consists of alk’ that can be formed in this way from sorec A.
By conditions 2, 4 and 5 of the definition af being good, the evemt’ also has
positive measure. We let indicate the passage timesdn and letz indicate the
passage times im. It is easy to check that for ary:~ 1,

7A,7)=11,2)+r.
Also if 1is not an endpoint of any of the edges in the geodésic0, z), then
7/(0,2) =1(0, 2).

WhereasBg,(0,1) < Bg,(0,1) < 7(0,1), we have that for all large: the
vertex 1 is not an endpoint of any of the edges in the geodési¢0, v,,). Thus
7/(0,v,) = (0, v,) for all large n. Also note that since neithé) nor 1 is an
endpoint of any of the edgeSg(w) or G1(w), we have thaGo(w) and G1(w)
are both geodesics far .

Thus for anyw’ € A” we have that

Bgo(w) 0.1 = lim 7'(0,v,) — 7'(L, vy)
- n”—>moo (0, v,) — (l’(l, v,) + ,»)

<0.
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The last step follows from (4). We also get that
B,y (0. D = lim 7'(0, wy) — 7'(L, wy)

> nli_)moor(O, wy) — (t(1, wy) +7)

v

> 0.

The last step follows from (4). Thus we have coexistence favadl A’. [

Acknowledgments. | thank Itai Benjamini, Yuval Peres and Oded Schramm
for helpful conversations. | also thank an anonymous referee for pointing out an
error in a previous version.

REFERENCES

[1] Bolvin, D. (1990). First passage percolation: The stationary dasghab. Theory Related
Fields 86 491-499.

[2] DURRETT, R. and LGGETT, T. M. (1981). The shape of the limit set in Richardson’s growth
model.Ann. Probab. 9 186-193.

[3] GARET, O. and MARCHAND, R. (2005). Coexistence in two-type first-passage percolation
models.Ann. Appl. Probab. 15 298-330.

[4] HAGGSTROM, O. and MEESTER R. (1995). Asymptotic shapes for stationary first passage
percolation Ann. Probab. 23 1511-1522.

[5] HAGGSTROM, O. and EMANTLE, R. (1998). First passage percolation and a model for
competing spatial growtt. Appl. Probab. 35 683—-692.

[6] HAMMERSLEY, J. M. and WELSH, D. J. A. (1965). First-passage percolation, subadditive
processes, stochastic networks, and generalized renewal thed?yodeedings of the
International Research Seminar 61-110. Springer, New York.

[7] KESTEN, H. (1993). On the speed of convergence in first-passage percolaion.Appl.
Probab. 3 296-338.

[8] NEwMAN, C. M. (1995). A surface view of first-passage percolationPtoceedings of the
International Congress of Mathematicians (S. D. Chatterji, ed.2 1017—-1023. Birkh&user,
Basel.

DEPARTMENT OFMATHEMATICS
UNIVERSITY OF WASHINGTON

Box 354350

SEATTLE, WASHINGTON98195

USA

E-mAIL : hoffman@math.washington.edu
URL: www.math.washington.edu/ hoffman/



