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This work concerns controlled Markov chains with finite state and action
spaces. The transition law satisfies the simultaneous Doeblin condition,
and the performance of a control policy is measured by the (long-run)
risk-sensitive average cost criterion associated to a positive, but otherwise
arbitrary, risk sensitivity coefficient. Within this context, the optimal risk-
sensitive average cost is characterized via a minimization problem in a finite-
dimensional Euclidean space.

1. Introduction. This work concerns discrete-time Markov decision pro-
cesses (MDPs), where the controller selects actions from a finite set, and the
corresponding controlled process takes values on a finite setS. The decision maker
is supposed to be risk-averse with constant risk sensitivity coefficientλ > 0, and
the performance index of a control policy is measured by the (long-run) risk-
sensitive average cost criterion. Under the simultaneous Doeblin condition in
Assumption 2.1, the main result of the paper, stated as Theorem 3.5, provides
a characterization of the optimal value functionJ ∗(λ, ·) for arbitrary λ > 0.
Roughly, this theorem shows that the optimal value function is the infimum of
a family G of functions on the state space, a conclusion that, as described in the
following section, is similar to results already available for classical risk-neutral
criteria. However, at the same time this characterization reflects an interesting and
important contrast with the risk-neutral average cost index which is illustrated in
Example 2.2, namely, whenλ is large enough, the costs incurred while the system
stays at transient states, which can be visited only at “early stages” of the decision
process, have a definite impact in the risk-sensitive average performance criterion.
This feature implies that, even when the Markov chain associated with each
stationary policy has a single recurrent class, the risk-sensitive optimal average
cost is not necessarily constant, and that in this case the optimality equation may
have no solution at all. Such a potentially complex behavior ofJ ∗(λ, ·) whenλ > 0
is unrestricted is actually covered by the characterization in Theorem 3.5, and
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highlights the main difference between the results in this paper and those already
available, which concern the case in whichλ is small enough to guarantee that
J ∗(λ, ·) is constant and its value is determined via the optimality equation; see, for
instance, [3] or [14] for the discrete case, or [8] for MDPs over Borel spaces.

The study of MDPs endowed with the risk-sensitive average criterion can be
traced back, at least, to the seminal work of Howard and Matheson [17], where
models with finite state and action spaces were studied assuming the following
condition (C): Under each stationary policy the whole state space is an aperiodic
communicating class. In this context, the Perron–Frobenius theory of positive
matrices [7] was used to show that, for everyλ > 0, the λ-sensitive average
cost associated to each stationary policy is a constant function, and its value
γ can be characterized via the corresponding Poisson equation; see also [11].
The Perron–Frobenius theory provides also a link between risk-sensitive control
and the Donsker–Varadhan theory of large deviations [9]. It is well known that,
under suitable recurrence conditions, the occupation measure of a Markov process
satisfies the large deviation principle, with rate function given by the convex
conjugate of a long-run expected rate of exponential growth function. It is also
worth mention that some optimal investment models can be formulated as risk-
sensitive control problems, for assets dynamics models affected by economic
factors, where the goal is to maximize the growth rate of the expected utility of
wealth [1, 2, 12]. This kind of problems are also linked with the deterministic
model of optimal economic development proposed by Gale and Neumann [10, 13].

The organization of the paper is as follows. In Section 2 a formal description
of the model is presented, the potentially complex dependence ofJ ∗(λ, ·) on
λ > 0 is explicitly shown and, after describing the main theorem, an outline of
the strategy that will be used to prove the characterization result is given. In
Section 3 a fundamental min–max equation satisfied by the optimal value function
is established, and such an equality is used as one of the conditions in the definition
of the family G in terms of whichJ ∗(λ, ·) is characterized in Theorem 3.5.
After identifying the difficulties in proving this result, the necessary technical
preliminaries are established in Sections 4–6 and, finally, the main theorem is
proved in Section 7.

NOTATION. Throughout the remainderR and N stand for the set of real
numbers and nonnegative integers, respectively. Given a finite setS, the space of
all real-valued functions defined onS is denoted byB(S), and for eachC ∈ B(S)

‖C‖ := max
w∈S

|C(w)|
is the corresponding maximum norm. The indicator function associated to an event
W is denoted byI [W ] and, even without explicit reference, all relations involving
conditional expectations are supposed to hold almost surely with respect to the
underlying probability measure.
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2. Decision model and outline of the work. Let an MDP be specified by
M = 〈S,A, {A(x)},C,P 〉 where the state spaceS and the action setA are finite
sets endowed with the discrete topology and, for eachx ∈ S, A(x) ⊂ A is the
nonempty subset of admissible actions at statex; the setK of admissible pairs
is defined byK := {(x, a)|a ∈ A(x), x ∈ S} and is considered as a topological
subspace ofS × A. On the other hand,C :K → R is the one-step cost function,
andP = [pxy(·)] is the controlled transition law. The interpretation ofM is as
follows: At each timet ∈ N the state of a dynamical system is observed, say
Xt = x ∈ S, and an actionAt = a ∈ A(x) is chosen. Then a costC(x, a) is incurred
and, regardless of the previous states and actions, the state of the system at time
t + 1 will be Xt+1 = y ∈ S with probabilitypxy(a); this is the Markov property of
the decision model.

Policies. For eacht ∈ N the spaceHt of admissible histories up to timet is
recursively defined byH0 := S, andHt := K × Ht−1 for t ≥ 1. A generic element
of Ht is denoted byht = (x0, a0, x1, ai, . . . , xt−1, at−1, xt ), wherexn ∈ S for n ≤ t ,
andai ∈ A(xi) for i < t . A policy π = {πt } is a special sequence of stochastic
kernels: For eacht ∈ N and ht ∈ Ht , πt (·|ht ) is a probability measure onA
concentrated onA(xt). The class of all policies is denoted byP . Given the policy
π ∈ P used to drive the system and the initial stateX0 = x ∈ S, the distribution
of the state-action process{(Xt ,At)} is uniquely determined via Ionescu Tulcea’s
theorem (see, e.g., [15] or [18]); such a distribution will be represented byP π

x ,
whereasEπ

x stands for the corresponding expectation operator. Throughout the
remainderIt denotes the information vector up to timet , which is given by

I0 = X0 and It := (X0,A0, . . . ,Xt−1,At−1,Xt ), t = 1,2,3, . . . .

Next, defineF := ∏
x∈S A(x) so thatF consists of all (choice) functionsf :S → A

satisfying thatf (x) ∈ A(x) for eachx ∈ S. A policy π is stationary if there exists
f ∈ F such that, when the system evolves underπ , at each timet ∈ N the action
applied is determined byAt = f (Xt); the class of stationary policies is naturally
identified withF and, with this convention,F ⊂ P .

Performance index.As already noted, the controller is assumed to be risk-
averse with constant risk sensitivityλ > 0, that is, when facing a random costY ,
she grades it throughE[eλY ]. The certain equivalent of the random variableY is
the (possibly extended) real number defined by

E(λ,Y ) := 1

λ
log(E[eλY ]),

so thateλE(λ,Y ) = E[eλY ], and then the controller is indifferent between incurring
the random costY or paying the certain equivalentE(λ,Y ) for sure.
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When the system evolves underπ ∈ P andx ∈ S is the initial state,Jn(λ,π, x)

denotes the certain equivalent of the total cost incurred before timen > 0, that is,

Jn(λ,π, x) := 1

λ
log

(
Eπ

x

[
exp

{
λ

n−1∑
t=0

C(Xt ,At)

}])
,(2.1)

whereas the (long-run expectedλ-sensitive) average cost underπ starting atx is
defined by

J (λ,π, x) := lim sup
n→∞

1

n
Jn(λ,π, x).(2.2)

The optimal (λ-sensitive) average cost at statex is given by

J ∗(λ, x) := inf
π

J (λ,π, x),(2.3)

and a policyπ∗ ∈ P is optimal if J (λ,π∗, x) = J ∗(λ, x) for everyx ∈ S. Given
ε > 0, a policy π is ε-optimal at statex ∈ S if J (λ,π, x) ≤ J ∗(λ, x) + ε; if
the policy π is ε-optimal at every state, thenπ is ε-optimal. The following
simultaneous Doeblin condition will be assumed throughout the sequel.

ASSUMPTION2.1. There exists a statez ∈ S andM ∈ (0,∞) such that

Ef
x [T ] ≤ M, x ∈ S,f ∈ F,

where

T := min{n > 0|Xn = z}(2.4)

is the first positive arrival time to statez and, by convention, the minimum of the
empty set is∞.

The problem. As already mentioned, the main objective of the paper is to pro-
vide a characterization of the optimal value functionJ ∗(λ, ·) for arbitraryλ > 0.
This problem has recently received considerable attention in the literature and, un-
der the above simultaneous Doeblin condition, the results already established can
be described as follows: ifλ > 0 is sufficiently small, then the optimal value func-
tion J ∗(λ, ·) is constant and, moreover, its valueγ is the unique real number for
which there existsh : S → R satisfying the optimality equation

eλ[γ+h(x)] = min
a∈A(x)

[
eλC(x,a)

∑
y

pxy(a)eλh(y)

]
, x ∈ S;(2.5)

see [3, 5, 14]. Also, modulo an additive constant, the relative value functionh(·)
in this equation satisfies that for eachx ∈ S,

h(x) = inf
π∈P

1

λ
log

(
Eπ

x

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ ]
}])

(2.6)

= inf
π∈P

1

λ
log

(
Eπ

x

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}])

,
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whereT is the hitting time in (2.4). However, the situation is substantially different
whenλ > 0 is arbitrary in that (i) Assumption 2.1 does not generally imply that
J ∗(λ, ·) is constant, (ii) the rightmost term in (2.6) may be∞ and, moreover,
(iii) even when the optimal value function takes on a single valueγ , it is not
necessarily determined by (2.5). This potentially complex behavior, which does
not occur under Assumption 2.1 when the performance index is the risk-neutral
average cost, is illustrated in the following example along the lines of Example 2.1
in [6]. In all, this example shows that, when the risk sensitivity coefficient is large
enough, the behavior of the system at transient states, which may be occupied
only at “early stages,” has an important and definite influence on its performance,
establishing a remarkable difference with the risk-neutral case.

EXAMPLE 2.2. Let S = {0,1,2} and A = {0,1}. The sets of admissible
actions are given byA(0) = A(2) = {0} andA(1) = {0,1} = A, whereas the cost
function always satisfiesC(x, a) = x. Finally, for someρ ∈ (0,1), the transition
law is determined by

p00(0) = 1, p22(0) = ρ2 = 1− p20(0)

and

p12(1) = 1, p11(0) = ρ = 1− p10(0).

In this context it is not difficult to see that Assumption 2.1 is satisfied withz = 0.
Now, letf be the stationary policy determined byf (1) = 0 so that, sincea = 0 is
the unique action available at the absorbing state 0 andC(0,0) = 0, it follows that
J ∗(λ,0) = J (λ,f,0) = 0. Assume now that

eλρ > 1.(2.7)

Using that 0 is the unique available action at state 2 and that when the system
leaves state 2 it reachesz = 0, where a null cost is incurred forever, it follows that
J ∗(λ,2) = J (λ,f,2), whereas for each positive integern,

E
f
2

[
exp

{
λ

n−1∑
t=0

C(Xt ,At )

}]

=
n∑

k=1

E
f
2

[
exp

{
λ

k−1∑
t=0

C(Xt ,At)

}
I [T = k]

]

+ E
f
2

[
exp

{
λ

n−1∑
t=0

C(Xt ,At)

}
I [T > n]

]

=
n∑

k=1

e2kλ(ρ2)k−1(1− ρ2) + e2nλ(ρ2)n

= (eλρ)2n + e2λ(1− ρ2)
(eλρ)2n − 1

(eλρ)2 − 1
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and then (2.1) and (2.2) together lead toJ (λ,f,2) = 1
λ

log[(e2λρ2)] =
2
λ

log(eλρ) > 0. A similar argument shows thatJ (λ,f,1) = 1
λ

log(eλρ) > 0 and,
since applying action 1 at state 1 produces a transition to state 2, where the optimal
average cost is2

λ
log(eλρ) > J(λ,f,1), it follows thatf is also optimal at state 1.

In short, under (2.7),

J ∗(λ,0) = 0<
1

λ
log(eλρ) = 1+ log(ρ)

λ
= J ∗(λ,1) < 2J ∗(λ,1) = J ∗(λ,2).

Notice that the system will be ultimately absorbed by statez = 0 but, when (2.7)
holds, the costs incurred at the transient states have a definite influence on the
performance of the system. Assume now that the initial state isX0 = 2. From the
specification of the model, it follows thatXt = 2 for t < T , with T as in (2.4)
with z = 0, and in this caseC(Xt ,At) − J ∗(λ,Xt ) = 2 − 2(1 + log(ρ)/λ) =
−2 log(ρ)/λ, so thatλ

∑T −1
t=0 [C(Xt ,At ) − J ∗(λ,Xt )] = −2T log(ρ). Therefore,

the relative value function at statex = 2, given by the rightmost term in (2.6), is
h(2) = E

f
2 [e−2T log(ρ)] = E

f
2 [ρ−2T ] = ∑∞

k=1 ρ−2k(ρ2)k(1 − ρ2) = ∞; similarly,
it can be established thath(1) = ∞. On the other hand, it is interesting to observe
that there is not any functionh :S → R satisfying that

eλJ ∗(λ,2)+λh(2) ≥ eλC(2,0)
∑
y

p2y(0)eλh(y);(2.8)

indeed, the left-hand side of this inequality ise2λρ2eλh(2), whereas the right-
hand side satisfieseλC(2,0)[p22(0)eλh(2) + p21(0)eλh(0)] > eλC(2,0)p22(0)eλh(2) =
e2λρ2eλh(2). When the risk sensitivity coefficient satisfieseλρ = 1, similar
calculations yield that (i)J ∗(λ, ·) ≡ 0 = γ , (ii) the relative value functionh in (2.6)
is ∞ at x = 1 and 2, and (iii) inequality (2.8) is not satisfied by any function
h : S → R; in particular, even in this case in which the optimal average cost
is constant, the optimality equation (2.5) does not have a solution. Finally, ifλ

satisfies thateλρ < 1, which in this example is the precise meaning of “ifλ is
sufficiently small,” the optimal value function is identically 0= γ , the relative
value function in (2.6) is finite, and the pair(γ,h(·)) satisfies the optimality
equation (2.5); see [3] or [14] for these latter assertions.

The characterization theorem.The main result of this work, which is formally
stated as Theorem 3.5 in the following section, provides a characterization of
J ∗(λ, ·) covering the diversity of possible behaviors illustrated in Example 2.2.
For eachλ > 0, this theorem determines the optimal value function in terms of a
class of functionsG, and establishes thatJ ∗(λ, ·) is the infimum of such a family.
This conclusion is similar to the characterization of the optimal (risk-neutral) total
expected costV ∗ for MDPs with nonnegative cost function; in this latter case,
V ∗ is the infimum of all nonnegative functionsW defined on the state space
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and satisfyingW ≥ DW , whereD is the corresponding dynamic programming
operator; see [18] for details. However, for the risk-sensitive average criterion in
this work, the construction of familyG involves two conditions, resembling the
two equations that characterize the optimal risk-neutral average cost in multichain
MDPs, for which the optimal performance index is not necessarily constant (see,
e.g., Chapter 9 in [18]). The first restriction imposed on the members ofG reflects
a fundamental property of the risk-sensitive average index, namely, if the system is
driven by a “good” policy, then{J ∗(λ,Xt )} is nonincreasing for almost all sample
trajectories. This property is a consequence of Lemma 3.1 in the following section,
establishing that the optimal value function satisfies a min–max equation, and the
first condition imposed on the members ofG is to satisfy such an equality. The
second condition on a functiong ∈ G is motivated by the optimality equation that,
at least formally, is associated with this optimal control problem. This condition
guarantees thatg is really an upper bound ofJ ∗(λ, ·); it was also used in [6] to
analyze the uncontrolled case, and requires the existence of a (deviation) function
h : S → R such that the pair(g(·), h(·)) satisfies (3.4), which is analogous to the
conditionW ≥ DW mentioned above.

Outline of the argument.As might be expected from the diversity illustrated
in Example 2.2, characterizingJ ∗(λ, ·) for arbitraryλ > 0 is a somewhat technical
task, so that it is convenient to give a brief outline of the argument used to
achieve this goal. In Section 3 the basic min–max equation satisfied byJ ∗(λ, ·) is
established, and then the family of functionsG is introduced. Next, it is shown that
the optimalλ-sensitive average cost is a lower bound ofG, and the characterization
result of J ∗(λ, ·) as the infimum ofG is stated as Theorem 3.5. As it will be
noted below, in generalJ ∗(λ, ·) does not belong toG, but the strategy to establish
Theorem 3.5 consists in showing that, for eachα ∈ (0,1), the functiong(·) =
αJ ∗(λ, ·) + (1− α)‖C‖ lies in G, from which Theorem 3.5 follows immediately.
The main difficulty in establishing this inclusion is to prove that there exists a
deviation functionh :S → R such that the second condition in the definition of
family G is satisfied. In Definition 4.1 a candidateh for the deviation function
for the functiong above is introduced, and from that point onward, the effort is
mainly dedicated to establishing thath(·) is a finite function, a fact that is proved
in two steps: In Theorem 4.4 it is shown thath is finite at the pointsx where the
optimal value function is minimized, whereas in Theorem 5.1 this conclusion is
extended to the whole state space. The argument in this part relies heavily on the
following property: Under anε-optimal policy with ε > 0 small enough, along
almost all trajectories the optimal value function is dominated by its value at the
initial state. Section 6 concerns a last technical point on the functionh introduced
in Definition 4.1, namely, thath(z) is nonpositive, wherez is as in Assumption 2.1.
After the preliminaries in Sections 4–6, Theorem 3.5 is finally proved in Section 7.
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Before leaving this section, it is convenient to point out the following
observation.

REMARK 2.3. (i) Givenε > 0, anε-optimal policy exists. Indeed, from the
definition ofJ ∗(λ, ·) in (2.3), it follows that for eachx ∈ S there exists a policy
πx ∈ P which isε-optimal atx, that is,

J (λ,πx, x) ≤ J ∗(λ, x) + ε

and a new policyπ can be defined as follows: For eacht ∈ N and ht ∈ Ht ,
πt (·|ht ) = π

x0
t (·|ht ). A controller driving the system according toπ first

determines the initial state, and then picks the actions according toπx if X0 = x

is observed. From this construction it follows that the equality

Eπ
x

[
exp

{
λ

n∑
t=0

C(Xt ,At )

}]
= Eπx

x

[
exp

{
λ

n∑
t=0

C(Xt ,At )

}]

is always valid, and then(2.1) and (2.2) together yield thatJ (λ,π, x) =
J (λ,πx, x) ≤ J ∗(λ, x) + ε for every statex, so thatπ is ε-optimal.

(ii) From (2.1)–(2.3) it is not difficult to see that−‖C‖ ≤ J ∗(λ, ·) ≤ ‖C‖.

3. Min–max equation and main result. According to the program outlined
above, in this section the characterization result for the optimal value function is
stated. First, it is shown in the next lemma that the fundamental min–max equation
is satisfied by the optimal value function, and such an equality is used as one of
the requirements in the definition of the family of functionsG involved in the
characterization ofJ ∗(λ, ·).

LEMMA 3.1. For each λ > 0, the functionJ ∗(λ, ·) in (2.3) satisfies the
following min–max equation:

J ∗(x) = min
a∈A(x)

max{J ∗(y)|pxy(a) > 0}, x ∈ S.

PROOF. Let (x, a) ∈ K and ε > 0 be arbitrary but fixed, and letπ ∈ P be
an ε-optimal policy (see Remark 2.3). Next, select a policyf ∈ F satisfying that
f (x) = a, and define the new policỹπ ∈ P as follows:π̃0({f (x0)}|x0) = 1 for
eachx0 ∈ S, whereas for eacht ∈ N andht+1 ∈ Ht+1,

π̃t+1(·|ht+1) = πt (·|x1, a1, . . . , xt+1).

When the system is driven bỹπ , the action applied at time zero is selected usingf ,
whereas from time 1 onwards, the controls are picked using theε-optimal policy
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π as if the decision process had started again at time 1. The Markov property
and (2.1) together yield that for every positive integern,

eλJn+1(λ,π̃ ,x) = Eπ̃
x

[
exp

{
λ

n∑
t=0

C(Xt ,At)

}]

= eλC(x,f (x))
∑
y

pxy(f (x))Eπ
y

[
exp

{
λ

n−1∑
t=0

C(Xt ,At)

}]

= eλC(x,a)
∑
y

pxy(a)eλJn(λ,π,y)

so that

Jn+1(λ, π̃, x)

n + 1
≤ C(x, a)

n + 1
+ n

n + 1
log

([∑
y

pxy(a)eλJn(λ,π,y)

]1/(λn))
.(3.1)

On the other hand, sinceπ is ε-optimal andS is finite, it follows that for some
n0 ∈ N,

Jn(λ,π, ·) ≤ n
(
J ∗(λ, ·) + ε

)
, n ≥ n0.

Therefore,
∑

y pxy(a)eλJn(λ,π,y) ≤ ∑
y pxy(a)eλn(J ∗(λ,y)+ε) whenn ≥ n0, and it

follows that

lim sup
n→∞

[∑
y

pxy(a)eλJn(λ,π,y)

]1/(λn)

≤ lim sup
n→∞

[∑
y

pxy(a)eλn(J ∗(λ,y)+ε)

]1/(λn)

= max
{
eJ ∗(λ,y)+ε|pxy(a) > 0

}
= emax{J ∗(λ,y)+ε|pxy(a)>0},

where the second equality is due to the fact that the exponential function is
increasing. Combining this with (2.2), after taking limit superior asn goes to∞
in (3.1) it follows that

J ∗(λ, x) ≤ J (λ, π̃, x) ≤ max{J ∗(λ, y) + ε|pxy(a) > 0};
see (2.3) for the first inequality. Recalling thatε > 0 is arbitrary, this yields

J ∗(λ, x) ≤ max{J ∗(λ, y)|pxy(a) > 0},
a relation that, since(x, a) ∈ K is arbitrary, implies

J ∗(λ, x) ≤ min
a∈A(x)

max{J ∗(λ, y)|pxy(a) > 0}, x ∈ S.(3.2)

To establish the reverse inequality letx ∈ S and π ∈ P be arbitrary. Select
b ∈ A(x) satisfying π0({b}|x) > 0, and lety ∈ S be such thatpxy(b) > 0.
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Combining (2.1) with the Markov property, it follows that for every positive
integern,

eλJn+1(λ,π,x) = Eπ
x

[
exp

{
λ

n∑
t=0

C(Xt ,At)

}]

≥ Eπ
x

[
exp

{
λ

n∑
t=0

C(Xt ,At)

}
I [A0 = b,X1 = y]

]

= π0({b}|x)pxy(b)eλC(x,b)Eδ
y

[
exp

{
λ

n−1∑
t=0

C(Xt ,At )

}]

= π0({b}|x)pxy(b)eλC(x,b)eλJn(λ,δ,y),

where the “shifted” policyδ is defined as follows: For everyt ∈ N andht ∈ Ht ,
δt (·|ht ) = πt+1(·|x, b,ht ). Therefore,

Jn+1(λ,π, x)

n + 1
≥ 1

λ(n + 1)
log

(
π0({b}|x)pxy(b)eλC(x,b)

) + n

n + 1

Jn(λ, δ, y)

n
,

and taking limit superior asn goes to∞, it follows that

J (λ,π, x) ≥ J (λ, δ, y) ≥ J ∗(λ, y);
see (2.2) and (2.3). Since the statey satisfyingpxy(b) > 0 is arbitrary, this implies
that

J (λ,π, x) ≥ max{J ∗(λ, y)|pxy(b) > 0},
and then

J (λ,π, x) ≥ min
a∈A(x)

max{J ∗(λ, y)|pxy(a) > 0}.

Since this holds for everyπ ∈ P andx ∈ S, (2.2) yields that

J ∗(λ, x) ≥ min
a∈A(x)

max{J ∗(λ, y)|pxy(a) > 0}, x ∈ S,

and the result follows combining this inequality with (3.2).�

DEFINITION 3.2. The classG consists of all functionsg ∈ B(S) satisfying
the following conditions:

(i) For eachx ∈ S

g(x) = min
a∈A(x)

max{g(y)|pxy(a) > 0}.(3.3)
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(ii) There exists a functionh ∈ B(S), possibly depending ong, such that

eλg(x)+λh(x) ≥ min
a∈Bg(x)

[
eλC(x,a)

∑
y

pxy(a)eλh(y)

]
, x ∈ S,(3.4)

where

Bg(x) := {
a ∈ A(x)|g(x) = max{g(y)|pxy(a) > 0}};(3.5)

a functionh(·) satisfying (3.4) will be referred to as a deviation function associated
to g(·).

REMARK 3.3. (i) Giveng ∈ B(S) satisfying (3.3), the finiteness of the action
setsA(x) ensures that each setBg(x) is nonempty.

(ii) Family G is nonempty. In fact, ifg(·) = ‖C‖, theng ∈ G, since (3.3) is
clearly satisfied by this function, whereas (3.4) holds withh(·) = 0.

The following lemma shows that the optimal value function is dominated by
each member ofG.

LEMMA 3.4. (i) Suppose thatg :S → R satisfies(3.3)and for eachx ∈ S let
Bg(x) ⊂ A(x) be as in(3.5).Givenx ∈ S, assume that the policyδ ∈ P satisfies
that P δ

x [Ar ∈ Bg(Xr)] = 1 for everyr ∈ N. In this case, whenx is the initial state
and the system is driven byδ, the process{g(Xt )} is nonincreasing almost surely.
More precisely, for eachn ∈ N,

g(Xn+1) ≤ g(Xn) ≤ · · · ≤ g(X0) = g(x), P δ
x -a.s.

Consequently,
(ii) Everyg ∈ G is an upper bound of the optimal value functionJ ∗(λ, ·).

PROOF. (i) Let t ∈ N be fixed, and suppose thatw,y ∈ S satisfy P δ
x [Xt =

w,Xt+1 = y] > 0. In this case there existsa ∈ Bg(w) such thatP δ
x [Xt = w,At =

a,Xt+1 = y] > 0, sinceP δ
x [At ∈ Bg(Xt)] = 1, and then

0 < P δ
x [Xt = w,At = a,Xt+1 = y]

= P δ
x [Xt+1 = y|Xt = w,At = a]P δ

x [Xt = w,At = a]
= pwy(a)P δ

x [Xt = w,At = a],
where the second equality is due to the Markov property; therefore,

pwy(a) > 0.

On the other hand, from (3.5), the inclusiona ∈ Bg(w) yields that

g(w) = max{g(z)|pwz(a) > 0}
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and combining this with the above inequality, it follows thatg(w) ≥ g(y). In short,
it has been shown that

P δ
x [Xt = w,Xt+1 = y] > 0 �⇒ g(w) ≥ g(y)

and it follows thatP δ
w[g(Xt+1) ≤ g(Xt )] = 1. Sincet ∈ N is arbitrary, this yields

thatP δ
w[g(Xn+1) ≤ g(Xn) ≤ · · · ≤ g(X0)] = 1 for eachn ∈ N.

(ii) Let g ∈ G be arbitrary, and selecth ∈ B(S) as in (3.4). For eachx ∈ S, let
f (x) ∈ Bg(x) be a minimizer of the term within brackets in (3.4), so that for every
x ∈ S,

eλg(x)+λh(x) ≥ eλC(x,f (x))
∑
y

pxy(f (x))eλh(y),

which is equivalent toeλh(x) ≥ E
f
x [eλ[C(X0,A0)−g(X0)]eλh(X1)]; from this point, an

induction argument yields that

eλh(x) ≥ Ef
x

[
exp

{
λ

n∑
t=0

[C(Xt ,At) − g(Xt )]
}
eλh(Xn+1)

]
, x ∈ S,n ∈ N.

Observe that, by part (i), under the action of policyf the inequalities

g(Xn) ≤ g(Xn−1) ≤ · · · ≤ g(X1) ≤ g(X0)

hold with probability 1 regardless of the initial state. Therefore,
∑n

t=0[C(Xt ,At)−
g(Xt )] ≥ ∑n

t=0 C(Xt ,At) − (n + 1)g(X0), so that for eachn ∈ N andx ∈ S,

eλh(x) ≥ Ef
x

[
exp

{
λ

n∑
t=0

C(Xt ,At) − (n + 1)g(X0)

}
eλh(Xn+1)

]

= e−λ(n+1)g(x)Ef
x

[
exp

{
λ

n∑
t=0

C(Xt ,At )

}
eλh(Xn+1)

]

≥ e−λ(n+1)g(x)−λ‖h‖Ef
x

[
exp

{
λ

n∑
t=0

C(Xt ,At )

}]

≥ e−λ(n+1)g(x)−λ‖h‖eλJn+1(λ,f,x).

Hence,

g(x) + ‖h‖ + h(x)

n + 1
≥ Jn+1(λ, f, x)

n + 1
,

and taking limit superior asn goes to∞, this yields thatg(x) ≥ J (λ,f, x) ≥
J ∗(λ, x); see (2.2) and (2.3). Sincex ∈ S is arbitrary, it follows thatg(·) ≥
J ∗(λ, ·). �

According to this result, the functionalJ ∗(λ, ·) is a lower bound for each
member ofG. On the other hand, althoughJ ∗(λ, ·) satisfies (3.3), by Lemma 3.1,
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in general this optimal value function does not belong toG. Indeed, in the context
of Example 2.2, it was shown that wheneλρ ≥ 1 there is not any functionh such
that (2.8) is satisfied, and this implies that the second part of Definition 3.2 fails
for the functionJ ∗(λ, ·). However, under Assumption 2.1, the main result of this
work asserts thatJ ∗(λ, ·) is the largest lower bound ofG.

THEOREM 3.5. Under Assumption2.1,for eachx ∈ S,

J ∗(λ, x) = inf
g∈G

g(x).

This result extends Theorem 2.2 in [6] where the uncontrolled case was
analyzed. The somewhat technical proof of this theorem will be given in Section 7
after establishing the necessary technical preliminaries in the following three
sections. Essentially, although it cannot be ensured that the optimal value function
is a member ofG, the idea is to prove that, for eachα ∈ (0,1), the functiong

specified by

g(·) := αJ ∗(λ, ·) + (1− α)‖C‖(3.6)

lies in G, a fact that immediately yields Theorem 3.5. Using Lemma 3.1 it is not
difficult to see that this functiong satisfies the min–max equation (3.3) and then,
to establish the inclusiong ∈ G it is sufficient to show that there exists a deviation
functionh ∈ B(S) associated tog, so that the pair(g,h) satisfies (3.4). The proof
of this existence result requires an important technical effort that is presented in the
following three sections. Throughout the remainder Assumption 2.1 is supposed
to hold even without explicit reference, andα ∈ (0,1) is arbitrary but fixed.

4. Deviation function. In this section a candidateh(·) for the deviation
function of the functiong in (3.6) is introduced and, as already mentioned, a major
objective is to show that such a function is finite. Although this goal is finally
achieved later, the main result of this section, stated as Theorem 4.4, is a first step
in this direction.

DEFINITION 4.1. (i) For eachx ∈ S, defineB∗(x) := BJ ∗(λ,·)(x); see (3.5).
(ii) The classP ∗ consists of all policiesπ ∈ P satisfying

P π
x [At ∈ B∗(Xt )] = 1, x ∈ S, t ∈ N.

(iii) Given a fixed real numberα ∈ (0,1), the corresponding deviation function
h : S → [−∞,∞] is defined as

h(x) = inf
π∈P ∗

1

λ
log

(
Eπ

x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}])

,

(4.1)
x ∈ S,

whereT is the first positive passage time to statez; see (2.4).
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Notice thata ∈ B∗(x) if and only if J ∗(λ, x) = max{J ∗(λ, y)|pxy(a) > 0},
and thatP ∗ is the class of policies for the MDP〈S,A, {B∗(x)},C,P 〉, which is
obtained by restricting the set of admissible actions at statex to the subsetB∗(x).
On the other hand, observe that the factorλα is used in the exponential inside the
expectation in (4.1); whenα = 1, it is not difficult to see from Example 2.2 that
h(·) may take on an infinite value at some points. However, in the present case
in which α lies in (0,1), it will be proved thath(·) is finite. The key tool in the
argument leading to this goal is the following consequence of Assumption 2.1.

LEMMA 4.2. Under Assumption2.1 there existβ ∈ (0,1) and β0 > 0 such
that

P π
x [T ≥ n] ≤ β0β

n, x ∈ S,π ∈ P , n ∈ N.

A proof of this lemma can be seen, for instance, in [16] or [19]. Using this result,
it is now shown that−∞ is not a value of the functionh(·) in (4.1).

LEMMA 4.3. Letα ∈ (0,1) be fixed and letβ0 andβ be as in Lemma4.2.

(i) There exists a positive constantB0 such that for eachx ∈ S andπ ∈ P ,

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

≥ B0.

Consequently:
(ii) h(·) > −∞.
(iii) Set

ξ0 = −(1− α) log(β)

λα
.(4.2)

If π ∈ P is ε-optimal, whereε ∈ (0, ξ0), andx ∈ S is such that

J ∗(λ, x) = γ,

then

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − γ ]
}]

< ∞.

PROOF. (i) Let N0 ∈ N be such thatβ0β
N0+1 < 1/2, and observe that the

inequality

P π
x [T ≤ N0] ≥ 1

2

always holds by Lemma 4.2. On the other hand, using Remark 2.3(ii), it follows
that

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )] ≥ −2‖C‖T,
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so that for everyx ∈ S andπ ∈ P ,

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

≥ Eπ
x

[
e−2λα‖C‖T ]

≥ Eπ
x

[
e−2λ‖C‖T

] ≥
N0∑
k=0

P π
x [T = k]e−2λ‖C‖k

and then

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

≥ e−2λ‖C‖N0P π
x [T ≤ N0]

≥ e−2λ‖C‖N0

2
=: B0.

(ii) Combining part (i) with (4.1), it follows thath(·) ≥ − log(B0) > −∞.
(iii) Observe that Hölder’s inequality implies

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − γ ]
}]

=
∞∑

n=1

Eπ
x

[
exp

{
λα

n−1∑
t=0

[C(Xt ,At ) − γ ]
}
I [T = n]

]

≤
∞∑

n=1

(
Eπ

x

[
exp

{
λ

n−1∑
t=0

[C(Xt ,At) − γ ]
}])α

(P π
x [T = n])1−α

and then (2.1) and Lemma 4.2 together yield

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − γ ]
}]

≤ β
(1−α)
0

∞∑
n=1

eλα[Jn(λ,π,x)−nγ ]βn(1−α).

SinceJ ∗(λ, x) = γ andπ is ε-optimal, it follows thatJn(λ,π, x)/n ≤ γ +ε when
the positive integern is large enough, sayn > n0. Therefore,

eλα[Jn(λ,π,x)−nγ ]βn(1−α) ≤ eλαεnβn(1−α) ≤ (
eλαεβ(1−α))n, n > n0.

On the other hand, since 0< ε < ξ0, (4.2) implies thateλαεβ(1−α) < 1, so that
the last two displayed relations together yield thatEπ

x [exp{λα
∑T −1

t=0 [C(Xt ,At) −
γ ]}] < ∞. �

In contrast with the above argument used to establish the inequalityh(·) > −∞,
the proof of the inequalityh(·) < ∞ is substantially more technical. As a starting
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point, the main result of this section, stated in the following theorem, establishes
that functionh(·) is finite at the points where the optimal value function attains its
minimum value.

THEOREM 4.4. Letγ0 be the minimum value ofJ ∗(λ, ·). In this case:

(i) J ∗(λ, z) = γ0, wherez is as in Assumption2.1.
(ii) If J ∗(λ, x) = γ0, thenh(x) is finite.

The proof of these results relies on the technical preliminaries in the following
two lemmas; the first one provides a bound for{J ∗(λ,Xt )} when the system is
driven by anε-optimal policy.

LEMMA 4.5. Letπ ∈ P , x ∈ S andr ∈ N be arbitrary but fixed, and suppose
that the vector̃hr = (x̃0, ã0, . . . , x̃r−1, ãr−1, x̃r ) ∈ Hr satisfies

P π
x [Ir = h̃r] > 0.

In this case:

(i) J (λ,π, x) ≥ J (λ, δ, x̃r) ≥ J ∗(λ, x̃r), where the shifted policyδ is given by

δt (·|ht ) = πt+r (·|x̃0, ã0, . . . , x̃r−1, ãr−1,ht ), t ∈ N,ht ∈ Ht .(4.3)

Consequently:
(ii) If π is ε-optimal atx, then for eachm ∈ N,

J ∗(λ,Xm) ≤ J ∗(λ, x) + ε, P π
x -a.s.

PROOF. (i) Given an integern > r , observe that

Eπ
x

[
exp

{
λ

n∑
t=0

C(Xt ,At)

}]

(4.4)

≥ e−λr‖C‖Eπ
x

[
exp

{
λ

n∑
t=r

C(Xt ,At)

}
I [Ir = h̃r]

]
.

On the other hand, an application of the Markov property yields that

Eπ
x

[
exp

{
λ

n∑
t=r

C(Xt ,At )

}
I [Ir = h̃r]|Ir

]

= I [Ir = h̃r]Eδ
x̃r

[
exp

{
λ

n−r∑
t=0

C(Xt ,At)

}]
,
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where policyδ is as in (4.3). Taking expectation with respect toP π
x in both sides

of this equality, it follows that

Eπ
x

[
exp

{
λ

n∑
t=r

C(Xt ,At )

}
I [Ir = h̃r]

]

= P π
x̃r

[Ir = h̃r ]Eδ
x̃r

[
exp

{
λ

n−r∑
t=0

C(Xt ,At )

}]
,

which combined with (4.4) leads to

Eπ
x

[
exp

{
λ

n∑
t=0

C(Xt ,At)

}]

≥ e−λr‖C‖P π
x [Ir = h̃r]Eδ

x̃r

[
exp

{
λ

n−r∑
t=0

C(Xt ,At)

}]
.

This inequality and (2.1) together imply that

Jn+1(λ,π, x)

n + 1
≥ log(e−λr‖C‖P π

x [Ir = h̃r])
λ(n + 1)

+ n − r + 1

n + 1

Jn−r+1(λ, δ, x̃r)

n − r + 1

and taking limit superior asn increases to∞, this yieldsJ (λ,π, x) ≥ J (λ, δ, xr) ≥
J ∗(λ, x̃r ); see (2.2).

(ii) Let π ∈ P beε-optimal atx, and suppose thatP π
x [Xm = y] > 0. Observing

that

[Xm = y] = ⋃
hm∈Hm,xm=y

[Im = hm],

the finiteness ofHm implies thatP π
x [Im = hm] > 0 for somehm ∈ Hm satisfying

xm = y. In this case, part (i) yields thatJ ∗(λ, y) ≤ J (λ,π, x), so thatJ ∗(λ, y) ≤
J ∗(λ, x) + ε, sinceπ is ε-optimal atx. In short

P π
x [Xm = y] > 0 �⇒ J ∗(λ, y) ≤ J ∗(λ, x) + ε,

and thenP π
x [J ∗(λ,Xm) ≤ J ∗(λ, x) + ε] = 1. �

In the following lemma it is shown that, ifε > 0 is small enough, the set of
minimizers ofJ ∗(λ, ·) is closed under the action of anε-optimal policy and that,
“essentially,” such a policy belongs to the classP ∗ in Definition 4.1. The precise
statement of these facts involves the following notation.

DEFINITION 4.6. (i) Define the positive numberξ1 as follows:

(a) If J ∗(λ, ·) is constant, setξ1 := 1.
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(b) If J ∗(λ, ·) is not constant, letγi , i = 0,1, . . . , d , be the different values
of J ∗(λ, ·) arranged in increasing order:

γ0 < γ1 < · · · < γd.(4.5)

In this case set

ξ1 := min{γi − γi−1|i = 1, . . . , d}.
(ii) The positive numberξ is given by

ξ = min{ξ0, ξ1};
see (4.2).

REMARK 4.7. Observe thatJ ∗(λ, y) > J ∗(λ, x) implies that J ∗(λ, y) ≥
J ∗(λ, x) + ξ1. Therefore,

if 0 < ε < ξ(≤ ξ1), J ∗(λ, x) + ε ≥ J ∗(λ, y) �⇒ J ∗(λ, x) ≥ J ∗(λ, y).

LEMMA 4.8. Let x ∈ S be such thatJ ∗(λ, x) = γ0 = miny J ∗(λ, y), and
suppose thatπ ∈ P is ε-optimal at x, whereε ∈ (0, ξ). In this case, for each
r ∈ N:

(i) P π
x [J ∗(λ,Xr) = γ0] = 1.

(ii) P π
x [Ar ∈ B∗(Xr)] = 1.

Moreover:
(iii) there exists a policyδ ∈ P ∗ such that, when the initial state isx, the

distribution of the state-action process{(Xt ,At)} coincides underπ and δ, that
is, P π

x = P δ
x .

PROOF. (i) By Lemma 4.5,P π
x [J ∗(λ,Xr) ≤ J ∗(λ, x) + ε] = 1, whereas

the inclusionε ∈ (0, ξ) yields that[J ∗(λ,Xr) ≤ J ∗(λ, x) + ε] ⊂ [J ∗(λ,Xr) ≤
J ∗(λ, x)], by Remark 4.7, so that

P π
x [J ∗(λ,Xr) ≤ J ∗(λ, x)] = 1.

SinceJ ∗(λ, x) = γ0 is the minimum value ofJ ∗(λ, ·), it follows thatP π
x [J ∗(λ,

Xr) = γ0] = 1.

(ii) Suppose thatP π
x [Ar = a,Xr = w] > 0. If pwy(a) > 0, the Markov

property yields thatP π
x [Xr+1 = y|Xr = w,Ar = a] = pwy(a) > 0, so that

0 < P π
x [Ar = a,Xr = w]P π

x [Xr+1 = y|Xr = w,Ar = a]
= P π

x [Xr+1 = y,Xr = w,Ar = a]
≤ P π

x [Xr = w,Xr+1 = y]
and then part (i) yields thatJ ∗(λ,w) = J ∗(λ, y) = γ0; sincey ∈ S satisfying
pwy(a) > 0, is arbitrary, it follows thatJ ∗(λ,w) = max{J ∗(λ, y)|pxy(a) > 0},
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so thata ∈ B∗(w); see Definition 4.1. Thus,P π
x [Ar = a,Xr = w] > 0 �⇒ a ∈

B∗(w), so that

1 = ∑
(w,a)∈K

P π
x [Ar = a,Xr = w]

= ∑
(w,a)∈K,a∈B∗(w)

P π
x [Ar = a,Xr = w] = P π

x [Ar ∈ B∗(Xr)].

(iii) Take a fixed stationary policyf satisfying

f (y) ∈ B∗(y), y ∈ S,

and let the policyδ be determined as follows: For eacht ∈ N andht ∈ Ht ,

δt (·|ht ) := πt(·|ht ) if x0 = x, δt (f (xt )|ht ) := 1 whenx0 �= x.(4.6)

In this case,π andδ coincide along trajectories starting atx, so thatP π
x = P δ

x ,
and thenP δ

x [At ∈ B∗(Xt )] = P π
x [At ∈ B∗(Xt )] = 1 for eacht ∈ N. Moreover, by

the choice off , P δ
w[At ∈ B∗(Xt )] = 1 always holds whenw �= x, and it follows

thatδ ∈ P ∗; see Definition 4.1. �

After the above preliminaries, the proof of the main result of this section can be
established as follows.

PROOF OF THEOREM 4.4. Let x ∈ S be a minimizer ofJ ∗(λ, ·), so that
J ∗(λ, x) = γ0.

(i) By Lemma 4.2, there exists a positive integerr such thatP π
x [Xr = z] ≥

P π
x [T = r] > 0, and then Lemma 4.8 (i) yields thatJ ∗(λ, z) = γ0.
(ii) Let π be anε-optimal policy, whereε < ξ(≤ ξ0); see (4.2) and Def-

inition 4.6. In this case, using thatJ ∗(λ, x) = γ0, Lemma 4.3(iii) yields that
Eπ

x [exp{λα
∑T −1

t=0 [C(Xt ,At) − γ0]}] < ∞; sinceP π
x [J ∗(λ,Xr) = γ0] = 1 holds

for everyr ∈ N , by Lemma 4.8(i), it follows that

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At ) − J ∗(λ,Xt )]
}]

< ∞.

Now, using part (iii) in Lemma 4.8, selectδ ∈ P ∗ such thatP δ
x = P π

x , so that the
above inequality yields

Eδ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

< ∞

which, via Definition 4.1(iii) implies thath(x) < ∞; since h(·) > −∞, by
Lemma 4.3(ii), it follows thath(x) is finite. �
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5. Finiteness of the deviation function on the state space. Following the
program outlined in Section 2, the objective of this section is to extend the
finiteness result in Theorem 4.4(ii) to the whole state space.

THEOREM 5.1. For everyx ∈ S, h(x) is finite; see(4.1).

Sinceh(·) > −∞, by Lemma 4.3(ii), to establish this result it is sufficient to
show thath(x) < ∞ for every statex ∈ S. This latter inequality holds whenx
is a minimizer of the optimal value functionJ ∗(λ, ·), by Theorem 4.4(ii), so that
the deviation function is certainly finite whenJ ∗(λ, ·) is constant. Thus, to prove
Theorem 5.1 it must be shown thath(·) < ∞ when the optimal value function
is not constant, and throughout the remainder of the section it is supposed that
J ∗(λ, ·) assumes valuesγi , i = 0,1, . . . , d , whered ≥ 1, which are arranged in
increasing order; see (4.5). With this in mind, let the level setGi be given by

Gi := {x ∈ S|J ∗(λ, x) = γi}, i = 0, . . . , d.(5.1)

Notice that

S =
d⋃

i=0

Gi,(5.2)

and define the exit time of setGi by

TGc
i
:= min{n > 1|Xn /∈ Gi}, i = 1,2, . . . , d.(5.3)

Since the statez in Assumption 2.1 is a minimizer ofJ ∗(λ, ·), by Theorem 4.4, it
follows thatz /∈ Gi when 1≤ i ≤ d , by (4.5) and (5.1). Therefore, (5.3) and (2.4)
together imply that

TGc
i
≤ T(5.4)

and, via Lemma 4.2, this yields

P π
x

[
TGc

i
= n

] ≤ P π
x

[
TGc

i
≥ n

] ≤ P π
x [T ≥ n] ≤ β0β

n,
(5.5)

n ∈ N, i = 1,2, . . . , d.

The proof of Theorem 5.1, which parallels the ideas used to establish
Theorem 4.4(ii), relies on the following lemma extending conclusions in Lemmas
4.3(iii) and 4.8.

LEMMA 5.2. Let ε ∈ (0, ξ) and x ∈ Gi be arbitrary but fixed, wherei > 0,
and suppose thatπ ∈ P is ε-optimal at statex. In this case, assertions(i)–(iv)
below are valid.

(i) Eπ
x [exp{λα

∑TGc
i
−1

t=0 [C(Xt ,At) − J ∗(λ,Xt )]}] < ∞.
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(ii) P π
x [J ∗(λ,Xr) ≤ γi] = 1 for eachr ∈ N.

Consequently:
(iii) WhenX0 = x and the system is driven byπ , the inclusionAt ∈ B∗(Xt )

holds beforeTGc
i

with probability1, that is,

P π
x

[TGc
i
−1⋂

t=0

[At ∈ B∗(Xt )]
]

= 1.

(iv) P π
x [XTGc

i
∈ ⋃i−1

k=0 Gk] = 1.

PROOF. (i) The argument is along the lines in the proof of Lemma 4.3(iii).
First, notice that (5.3) yields thatXt ∈ Gi if 1 ≤ t < TGc

i
, and then,J ∗(λ,Xt ) = γi

for 0 ≤ t < TGc
i

when X0 ∈ Gi . Therefore, using thatx ∈ Gi , via Hölder’s
inequality it follows that

Eπ
x

[
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

= Eπ
x

[
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At) − γi]
}]

=
∞∑

n=1

Eπ
x

[
exp

{
λα

n−1∑
t=0

[C(Xt ,At) − γi]
}
I
[
TGc

i
= n

]]

≤
∞∑

n=1

(
Eπ

x

[
exp

{
λ

n−1∑
t=0

[C(Xt ,At) − γi]
}])α(

P π
x

[
TGc

i
= n

])1−α

so that

Eπ
x

[
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At ) − J ∗(λ,Xt )]
}]

(5.6)

≤
∞∑

n=1

eλα[Jn(λ,π,x)−nγi ](P π
x

[
TGc

i
= n

])1−α;

see (2.1). SinceJ ∗(λ, x) = γi andπ is ε-optimal atx, it follows that, for some
positive integern0, Jn(λ,π, x) ≤ n(γi + ε) whenn > n0. This leads, via (5.5), to

eλα[Jn(λ,π,x)−nγi ](P π
x

[
TGc

i
= n

])1−α ≤ β1−α
0 (eλαεβ1−α)n, n > n0.

Observing that the inclusionε ∈ (0, ξ) yields thateλαεβ1−α < 1 [see (4.2) and
Definition 4.6], the above-displayed inequality and (5.6) together imply that

Eπ
x [exp{λα

∑TGc
i
−1

t=0 [C(Xt ,At) − J ∗(λ,Xt )]}] is finite.
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(ii) Let r ∈ N be arbitrary but fixed. Since policyπ is ε-optimal at x,
Lemma 4.5(ii) yields thatP π

x [J ∗(λ,Xr) ≤ J ∗(λ, x) + ε] = 1, and using the
inclusionε ∈ (0, ξ), Remark 4.7 allows us to writeP π

x [J ∗(λ,Xr) ≤ J ∗(λ, x)] = 1.
The conclusion follows sinceJ ∗(λ, x) = γi .

(iii) Let r, k ∈ N be such thatr < k, and suppose that the pair(w,a) ∈ K is
such that

P π
x

[
Xr = w,Ar = a,TGc

i
= k

]
> 0.(5.7)

Sincer < k, from the definition of the exit timeTGc
i

and the inclusionx ∈ Gi , it
follows that

w ∈ Gi,

and it will be shown thata ∈ B∗(w). To achieve this goal, suppose thaty ∈ S

satisfiespwy(a) > 0 and observe that the Markov property yieldsP π
x [Xr+1 =

y|Xr = w,Ar = a] = pwy(a) > 0; sinceP π
x [Xr = w,Ar = a] > 0, by (5.7), it

follows that

P π
x [Xr+1 = y] ≥ P π

x [Xr+1 = y,Xr = w,Ar = a]
≥ P π

x [Xr+1 = y|Xr = w,Ar = a]P π
x [Xr = w,Ar = a] > 0.

Therefore, part (ii) yields thatJ ∗(λ, y) ≤ γi . Sincey ∈ S satisfyingpwy(a) > 0 is
arbitrary, it follows that

max{J ∗(λ, y)|pwy(a) > 0} ≤ γi = J ∗(λ,w),

where the inclusionw ∈ Gi was used to set the equality. Then

max{J ∗(λ, y)|pwy(a) > 0} = J ∗(λ,w),

by Lemma 3.1, so thata ∈ B∗(w); see Definition 4.1(i). In short, whenr < k,

P π
x

[
Xr = w,Ar = a,TGc

i
= k

]
> 0 �⇒ a ∈ B∗(w),

and it follows that

P π
x

[
TGc

i
= k

] = ∑
(w,a)∈K

P π
x

[
Xr = w,Ar = a,TGc

i
= k

]

= ∑
(w,a)∈K,a∈B∗(w)

P π
x

[
Xr = w,Ar = a,TGc

i
= k

]

and then

P π
x

[
TGc

i
= k

] = P π
x

[[Ar ∈ B∗(Xr)] ∩ [
TGc

i
= k

]]
.
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Since this equality holds wheneverr < k, it follows that

P π
x

[
TGc

i
= k

] = P π
x

[
k−1⋂
r=0

[Ar ∈ B∗(Xr)] ∩ [
TGc

i
= k

]]

= P π
x

[TGc
i
−1⋂

r=0

[Ar ∈ B∗(Xr)] ∩ [
TGc

i
= k

]]
.

Summing up over all positive integersk, this yields

P π
x

[
TGc

i
< ∞] = P π

x

[TGc
i
−1⋂

r=0

[Ar ∈ B∗(Xr)] ∩ [
TGc

i
< ∞]]

,

and the conclusion follows since, by (5.5),P π
x [TGc

i
< ∞] = 1.

(iv) Notice that (4.5), (5.1) and part (ii) together yield that, for each positive
integerr ,

P π
x

[
Xr ∈

i⋃
k=0

Gk

]
= 1.

On the other hand, from (5.3) it follows thatXr /∈ Gi on the event[TGc
i
= r], so

that the above displayed equation implies that

P π
x

[
TGc

i
= r,XTGc

i
∈

i−1⋃
k=0

Gk

]
= P π

x

[
TGc

i
= r,Xr ∈

i−1⋃
k=0

Gk

]
= P π

x

[
TGc

i
= r

]
.

Hence,

P π
x

[
TGc

i
< ∞,XTGc

i
∈

i−1⋃
k=0

Gk

]
=

∞∑
r=1

P π
x

[
TGc

i
= r,XTGc

i
∈

i−1⋃
k=0

Gk

]

=
∞∑

r=1

P π
x

[
TGc

i
= r

] = P π
x

[
TGc

i
< ∞]

,

and the conclusion follows using thatTGc
i

is finite with probability 1. �

PROOF OFTHEOREM 5.1. For eachm = 0,1,2, . . . , d , consider the follow-
ing claim:

(Cm) h(x) < ∞ for everyx ∈ Gm.

Observe that the conclusion of Theorem 5.1 is equivalent to the truth of every
(Cm) a fact that will be established by induction. To begin with, notice that (C0)
holds, by Theorem 4.4(ii); see (4.5) and (5.1). Assume now thati ≤ d is a positive
integer such that (Cm) holds whenm < i. Under this condition it will be proved
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that (Ci ) is valid. From this induction hypothesis, the definition ofh(·) in (4.1)
yields that for eachy ∈ ⋃i−1

k=0 Gk there exists a policyδy such that

δy ∈ P ∗ and Eδy

y

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

< ∞.(5.8)

Next, letx ∈ Gi andε ∈ (0, ξ) be arbitrary but fixed, and select a policyπ ∈ P
which isε-optimal atx. Given a stationary policyf satisfyingf (w) ∈ B∗(w) for
everyw ∈ S, define the new policyδ as follows: For eacht ∈ N andht ∈ Ht :

(a) If x0 �= x, δt ({f (xt)}|ht ) = 1.
(b) If x0 = x andxk ∈ Gi for everyk = 1,2, . . . , t , thenδt (·|ht ) = πt (·|ht ).
(c) If x0 = x and, for some positive integerr ≤ t , xk ∈ Gi for everyk < r and

xr /∈ Gi , then

δt (·|ht ) = δ
xr
t−r (·|xr , . . . , xt−1, at−1, xt ) if xr ∈

i−1⋃
j=0

Gj,

δt ({f (xt )}|ht ) = 1 whenxr ∈ S
∖ i⋃

j=0

Gj .

A controller driving the system via policyδ operates as follows: When the initial
state isX0 �= x, at each decision time the actions are selected according tof .
On the other hand, whenX0 = x, she uses policyπ to choose actions while the
system stays inGi , but when the system first leavesGi at timeTGc

i
= k, then the

decision maker “forgets” the history observed before timek and, as if the process
had started again, she switches to policyδXk if Xk belongs to some setGm with
m < i, or to policyf otherwise. Now, lett ∈ N be fixed. When the initial state isx,
δ andπ coincide while the system stays inGi , by part (b) so that Lemma 5.2(iii)
yields that

At ∈ B∗(Xt )

holds on[TGc
i
< t] P δ

x -a.s. whereas, by part (c), the choice off and the inclusion

in (5.8) imply that the above displayed relation also occursP δ
x -a.s. on the event

[TGc
i
≥ t]. WhenX0 = w �= x, from the choice off and part (a) in the above

definition, it follows thatP δ
w[At ∈ B∗(Xt )] = 1, so that

δ ∈ P ∗;(5.9)

see Definition 4.1. Moreover, using again thatδ and π coincide beforeTGc
i

when x is the initial state, it follows that the event[XTGc
i

∈ ⋃i−1
k=0 Gk] has

the same probability with respect toP δ
x and P π

x , whereas the expectation
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of exp{λα
∑TGc

i
−1

t=0 [C(Xt ,At ) − γi]} with respect to these measures coincides.
Thus, by parts (i) and (iv) of Lemma 5.2,

P δ
x

[
XTGc

i
∈

i−1⋃
k=0

Gk

]
= 1(5.10)

and

Eδ
x

[
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At ) − J ∗(λ,Xt )]
}]

< ∞.(5.11)

Next, it will be shown that

Eδ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

< ∞.(5.12)

To achieve this goal, notice that

Eδ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}
I
[
TGc

i
= T

]]

= Eδ
x

[
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At ) − J ∗(λ,Xt )]
}
I
[
TGc

i
= T

]]

≤ Eδ
x

[
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

and then

Eδ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At ) − J ∗(λ,Xt )]
}
I
[
TGc

i
= T

]]
< ∞,(5.13)

by (5.11). Next, observe that for each positive integerr ,

Eδ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}
I
[
r = TGc

i
< T

]∣∣Ir

]

= exp

{
λα

r−1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}
I
[
r = TGc

i
< T

]

× Eδ
x

[
exp

{
λα

T −1∑
t=r

[C(Xt ,At ) − J ∗(λ,Xt )]
}∣∣∣Ir

]
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= exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}
I
[
r = TGc

i
< T

]

× Eδ
x

[
exp

{
λα

T −1∑
t=r

[C(Xt ,At ) − J ∗(λ,Xt )]
}∣∣∣Ir

]

and that, on the event[TGc
i

= r], Xr lies in
⋃r−1

j=0Gi P δ
x -a.s., by (5.10). Thus,

part (c) in the definition of policyδ yields, via the Markov property, that the
following holds with probability 1 with respect toP δ

x :

I
[
r = TGc

i
< T

]
Eδ

x

[
exp

{
λα

T −1∑
t=r

[C(Xt ,At) − J ∗(λ,Xt )]
}∣∣∣Ir

]

= I

[
r = TGc

i
< T,Xr ∈

i−1⋃
j=0

Gi

]

× EδXr

Xr

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

≤ MI
[
r = TGc

i
< T

]
,

whereM := max{Eδy

y [exp{λα
∑T −1

t=0 [C(Xt ) − V (Xt)]}]|y ∈ ⋃i−1
j=0Gi} < ∞, and

the inequality is due to the induction hypothesis. Combining the last two displayed
relations, it follows that

Eδ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}
I
[
r = TGc

i
< T

]∣∣Ir

]

≤ MI
[
r = TGc

i
< T

]
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}
, P δ

x -a.s.,

so that

Eδ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At ) − J ∗(λ,Xt )]
}
I
[
r = TGc

i
< T

]]

≤ MEδ
x

[
I
[
r = TGc

i
< T

]
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

.

Since this inequality is valid for every positive integerr andTGc
i

is finite P δ
x -a.s.,
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it follows that

Eδ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}
I
[
TGc

i
< T

]]

≤ MEδ
x

[
I
[
TGc

i
< T

]
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

≤ MEδ
x

[
exp

{
λα

TGc
i
−1∑

t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

.

SinceM is finite, this relation and (5.11) yield thatEδ
x[exp{λα

∑T −1
t=0 [C(Xt ,At)−

J ∗(λ,Xt )]}I [TGc
i
< T ]] is finite, and this fact, (5.4) and (5.13) together imply

that (5.12) occurs. To conclude, observe that, by the definition of functionh(·)
in (4.1), the inclusion in (5.9) and (5.12) together yield thath(x) < ∞; since
h(·) > −∞, by Lemma 4.3, it follows thath(x) is finite and, sincex ∈ Gi is
arbitrary, this shows that claim (Ci ) holds, completing the induction proof.�

6. A key inequality. This section contains the last technical tool that, together
with the finiteness result in Theorem 5.1, will be used to establish Theorem 3.5.
The main objective is to establish the following.

THEOREM 6.1. Letz be the state in Assumption2.1.In this case, the deviation
function in(4.1)satisfies that

h(z) ≤ 0.

The proof of this theorem relies on Lemma 6.3, whose conclusions involve
the random times at which the system occupies the distinguished statez in
Assumption 2.1.

DEFINITION 6.2. (i) The sequence{Tk} of successive arrival times to statez

is recursively determined as follows:

T1 := T and Tk := min{n > Tk−1|Xn = z}, k > 1;
see(2.4) for the definition ofT .

(ii) Given ε > 0, defineψ(ε) by

ψ(ε) := 1

λ
inf

δ∈P ∗ log

(
Eδ

z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}])

where, as before,γ0 = J ∗(λ, z).
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It is not difficult to see that eachTk is a stopping time with respect to the family
of σ -fields{σ(In)}, that is, the event[Tk = m] always lies inσ(Im), and that

Tk ≥ k, k = 1,2, . . . .(6.1)

LEMMA 6.3. Let ε ∈ (0, ξ) be fixed, and suppose thatπ ∈ P is ε-optimal at
statez. In this case:

(i) For each positive integerk,

eλkψ(ε) ≤ Eπ
z

[
exp

{
λ

Tk−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

.(6.2)

(ii) There existsn0 such that, for everyk ≥ n0,

Eπ
z

[
exp

{
λ

Tk−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

≤ e−λεk

1− e−λε
.

Consequently:
(iii) ψ(ε) ≤ −ε.

PROOF. (i) The argument is by induction. Sinceπ is ε-optimal at z and
ε ∈ (0, ξ), Theorem 4.4(i) and Lemma 4.8(iii) together yield that there exists
δ ∈ P ∗ such thatP π

z = P δ
z . In this case, using thatT1 = T , it follows that

Eπ
z

[
exp

{
λ

T1−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

= Eδ
z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

≥ eλψ(ε),

where the inequality is due to Definition 6.2(ii), so that (6.2) is valid fork = 1.
Let n be an integer larger than 1, and suppose that (6.2) holds whenk < n. In
this situation, take a positive integerr andh̃r = (x̃0, ã0, . . . , x̃r−1, ãr−1, x̃r) ∈ Hr

satisfying that

P π
x [Tn−1 = r, Ir = h̃r] > 0;(6.3)

since XTn−1 = z when Tn−1 is finite, it follows that x̃r = z. Notice now that
Tn > Tn−1 so that, on the event[Tn−1 = r],

Tn−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]

=
r−1∑
t=0

[C(Xt ,At) − γ0 − 2ε] +
Tn−1∑
t=r

[C(Xt ,At ) − γ0 − 2ε]
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and an application of the Markov property yields, via Definition 6.2, that

Eπ
z

[
exp

{
λ

Tn−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}∣∣∣Tn−1 = r, Ir = h̃r

]

= exp

{
λ

r−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}

× Eδ
z

[
exp

{
λ

T1∑
t=0

[C(Xt ,At ) − γ0 − 2ε]
}]

,

where the shifted policyδ is as in (4.3). Sinceπ is ε-optimal atz, Lemma 4.5(i)
yields thatJ (λ, δ, z) ≤ J (λ,π, z) ≤ J ∗(λ, z) + ε, so thatδ itself is ε-optimal
at z. Therefore, applying the casek = 1 of (6.2) to this policyδ, it follows that
Eδ

z [exp{λ∑T1
t=0[C(Xt ,At) − γ0 − 2ε]}] ≥ eλψ(ε), which combined with the above

displayed equation leads to

Eπ
z

[
exp

{
λ

Tn−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}∣∣∣Tn−1 = r, Ir = h̃r

]

≥ exp

{
λ

r−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}
eλψ(ε).

Since this inequality is valid whenever (6.3) holds, it follows that

Eπ
z

[
exp

{
λ

Tn−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

≥ Eπ
z

[
exp

{
λ

Tn−1−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

eλψ(ε) ≥ enλψ(ε),

where the induction hypothesis was used to set the second inequality. This
establishes the casek = n of (6.2) and completes the induction argument.

(ii) Since π is ε-optimal at z, there exists a positive integern0 such that
Jn(λ,π, z) ≤ n(J ∗(λ, z) + ε) = n(γ0 + ε) whenn ≥ n0. Observing that

Eπ
z

[
exp

{
λ

n−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

= e−2nλε−nγ0Eπ
z

[
exp

{
λ

n−1∑
t=0

C(Xt ,At)

}]

= e−2nλε−nγ0eJn(λ,π,z),
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it follows that

Eπ
z

[
exp

{
λ

n−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

≤ e−nλε, n ≥ n0.(6.4)

Next, let the positive integerk and ρ ∈ (0,1) be fixed. In this case, (6.1) and
Hölder’s inequality yield that

Eπ
z

[
exp

{
λρ

Tk−1∑
t=0

[C(Xt ,At ) − γ0 − 2ε]
}]

=
∞∑

n=k

Eπ
z

[
exp

{
λρ

n−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}
I [Tk = n]

]

≤
∞∑

n=k

(
Eπ

z

[
exp

{
λ

n−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}])ρ

(P π
x I [Tk = n])1−ρ

≤
∞∑

n=k

(
Eπ

z

[
exp

{
λ

n−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}])ρ

.

Combining this with (6.4) it follows that

Eπ
z

[
exp

{
λρ

Tk−1∑
t=0

[C(Xt ,At ) − γ0 − 2ε]
}]

≤
∞∑

n=k

e−nερλ = e−kελρ

1− e−ελρ
,

k ≥ n0.

Given a sequence{ρm} of positive numbers increasing to 1, this inequality implies,
via Fatou’s lemma, that for every positive integerk ≥ n0,

Eπ
z

[
exp

{
λ

Tk−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

= Eπ
z

[
lim inf
m→∞ exp

{
λρm

Tk−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

≤ lim inf
m→∞ Eπ

z

[
exp

{
λρm

Tk−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

≤ lim inf
m→∞

e−kελρm

1− e−ελρm

and then

Eπ
z

[
exp

{
λ

Tk−1∑
t=0

[C(Xt ,At) − γ0 − 2ε]
}]

≤ e−kελ

1− e−ελ
, k ≥ n0.
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(iii) Observe that parts (i) and (ii) together yield thateλkψ(ε) ≤ e−kελ/(1 −
e−ελ) whenk is large enough, and in this case

ψ(ε) ≤ −ε − 1

λk
log(1− eελ),

so that the conclusion follows lettingk increase to∞. �

PROOF OF THEOREM 6.1. It will be shown that there exists a policyδ
satisfying

δ ∈ P ∗ and Eδ
z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At ) − γ0]
}]

≤ 1.(6.5)

Assuming that such a policy exists, Theorem 6.1 can be established as follows:
First, recall thatJ ∗(λ, ·) satisfies the min–max equation in (3.3), by Lemma 3.1,
and thatB∗ = BJ ∗(λ,·), by Definition 4.1(i). Therefore, the inclusionδ ∈ P ∗ yields
that P δ

z [At ∈ BJ ∗(λ,·)(Xt )] = 1 for everyt ∈ N, by Definition 4.1(ii), so that an
application of Lemma 3.4(i) implies that, for eachn ∈ N,

J ∗(λ,Xn) ≤ J ∗(λ,X0) = J ∗(λ, z) = γ0, P δ
z -a.s.

Sinceγ0 is the minimum value ofJ ∗(λ, ·), it follows thatP δ
z [J ∗(λ,Xn) = γ0] = 1

for everyn ∈ N, so that the inequality in (6.5) is equivalent to

Eδ
z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At ) − J ∗(λ,Xt )]
}]

≤ 1.

From this point, an application of Hölder’s inequality yields that

Eδ
z

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

≤
(
Eδ

z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}])α

≤ 1;

recall that the fixed numberα lies in (0,1). Combining this inequality with the
inclusionδ ∈ P ∗ and (4.1), it follows that

h(z) ≤ 1

λ
log

(
Eδ

z

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}])

≤ 0,

completing the proof of Theorem 6.1. To conclude, (6.5) will be established. Let
{εk} ⊂ (0, ξ) be a sequence converging to zero and notice that, for eachk ∈ N,
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Lemma 6.3(iii) yields thateλψ(εk) ≤ e−λεk < e−λεk/2. Thus, by Definition 6.2, for
everyk ∈ N there exists a policyπk ∈ P ∗ such that

Eπk

z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ0 − 2εk]
}]

≤ e−λεk/2.(6.6)

Let P(A) be the class of probability measures defined on the subsets of the action
spaceA. For eachr ∈ N andhr ∈ Hr , {πk

r (·|hr )|k ∈ N} is a sequence inP(A) and,
sinceA is finite, there existsδr(·|hr ) ∈ P(A), as well as a subsequence of{πk},
denoted by{πm}, such that

lim
m→∞πm

r (F |hr) =: δr(F |hr), F ⊂ A.(6.7)

Moreover, since
⋃∞

r=0 Hr is denumerable, applying Cantor’s diagonal method it
can be assumed that this convergence holds for everyF ⊂ A, r ∈ N andhr ∈ Hr ,
and it will be shown thatδ := {δr} satisfies (6.5). To achieve this goal, first notice
thatπk

r (A(xr)|hr) = 1 always holds, sinceπk ∈ P ∗ ⊂ P , so that (6.7) yields that
δr(A(xr)|hr ) = 1 for everyr ∈ N andhr ∈ Hr , that is,δ is a policy. Next, observe
that the equality

P π
x [Ir = hr ] = δx,x0π0(a0|x0)px0x1(a0)π1(a1|x0, a0, x1) × · · ·

× πr−1(ar−1|x0, a0, . . . , xn−1)pxn−1xn(an−a)

is always valid, whereδx,y := 1 if x = y andδx,y := 0 otherwise. Combining this
equation with (6.7), it follows that for everyx ∈ S, r ∈ N andD :Hr → R,

lim
m→∞Eπm

x [D(Ir)] = Eδ
x[D(Ir)].(6.8)

In particular, for eachn ∈ N andx ∈ S, P δ
x [An ∈ B∗(Xn)] = limm→∞ P πm

x [An ∈
B∗(Xn)] = 1, where the inclusionπm ∈ P ∗ was used to set the second equality,
so that

δ ∈ P ∗;(6.9)

see Definition 4.1. Moreover, (6.8) yields that for everyr ∈ N,

lim
m→∞Eπm

z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ0]
}
I [T ≤ r]

]

(6.10)

= Eδ
z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ0]
}
I [T ≤ r]

]
.
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Observing that

exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ0 − 2εk]
}
I [T ≤ r]

≥ e−2λrεk exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ0]
}
I [T ≤ r],

it follows that

Eπm

z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ0]
}
I [T ≤ r]

]

≤ e2λrεmEπm

z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At ) − γ0 − 2εm]
}
I [T ≤ r]

]

≤ e2λrεmEπm

z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At ) − γ0 − 2εm]
}]

so thatEπm

z [exp{λ∑T −1
t=0 [C(Xt ,At ) − γ0]}I [T ≤ r]] ≤ e2λrεm+λεm/2 [see (6.6)];

since {εm} converges to zero, this inequality and (6.10) together yield that
Eδ

z [exp{λ∑T −1
t=0 [C(Xt ,At) − γ0]}I [T ≤ r]] ≤ 1 for every r ∈ N and, via the

monotone convergence theorem, this implies that

Eδ
z

[
exp

{
λ

T −1∑
t=0

[C(Xt ,At) − γ0]
}]

≤ 1.

Combining this inequality with the inclusion in (6.9), it follows that the conditions
in (6.5) are satisfied by policyδ. �

7. Proof of the main result. After the previous preliminaries, in this section
the characterization result in Theorem 3.5 will be finally proved. The argument
combines Theorems 5.1 and 6.1 with the properties of the policies inP ∗
established in the following lemma.

LEMMA 7.1. Given a policyπ ∈ P ∗, suppose that for some(x, a) ∈ K the
inequalityP π

x [A0 = a] > 0 holds and define the shifted policyδ by

δt (·|ht ) = πt+1(·|x, a,ht ).(7.1)

In this case, for eachy ∈ S satisfying thatpxy(a) > 0,assertions(i) and(ii) below
hold.

(i) P δ
y [At ∈ B∗(Xt )] = 1 for everyt ∈ N.

(ii) There exists̃δ ∈ P ∗ such thatP δ
y = P δ̃

y .
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PROOF. (i) Suppose thatpxy(a) > 0 and observe thatP π
x [X1 = y,A0 = a] =

P π
x [X1 = y|A0 = a]P π

x [A0 = a] = pxy(a)P π
x [A0 = a] > 0. Thus, for everyt ∈ N,

P π
x [At+1 /∈ B∗(Xt+1)]

≥ P π
x [At+1 /∈ B∗(Xt+1),X1 = y,A0 = a]

= P π
x [At+1 /∈ B∗(Xt+1)|X1 = y,A0 = a]P π

x [X1 = y,A0 = a].
Observing thatP π

x [At+1 /∈ B∗(Xt+1)|X1 = y,A0 = a] = P δ
y [At /∈ B∗(Xt )],

which is due to the definition of policyδ and the Markov property, it follows that

P π
x [At+1 /∈ B∗(Xt+1)] ≥ P δ

y [At /∈ B∗(Xt )]P π
x [X1 = y,A0 = a].

SinceP π
x [At+1 /∈ B∗(Xt+1)] = 0, by the inclusionπ ∈ P ∗, andP π

x [X1 = y,A0 =
a] > 0, it follows thatP δ

y [At /∈ B∗(Xt )] = 0, that is,P δ
y [At ∈ B∗(Xt )] = 1.

(ii) Pick a stationary policyf such thatf (y) ∈ B∗(y) for eachy ∈ S, and
define the policỹδ as follows: For eacht ∈ N andht ∈ Ht ,

δ̃t (·|ht ) = δt (·|ht ) if pxx0(a) > 0,

δ̃t ({f (xt)}|ht ) = 1 if pxx0(a) = 0.

From this definition it follows thatP δ̃
w = P δ

w whenpxw(a) > 0, andP δ̃
w = P

f
w if

pxw(a) = 0. Therefore,P δ̃
y = P δ

y , sincepxy(a) > 0, whereas the choice off and

part (i) together imply thatP δ̃
y [At ∈ B∗(Xt )] = 1 always holds, that is,̃δ ∈ P ∗, by

Definition 4.1. �

PROOF OF THEOREM 3.5. Recall that the fixed numberα belongs to
(0,1) and let g(·) be the function defined in (3.6). It will be shown that this
function belongs to the familyG in Definition 3.2. Using thatα is positive,
from Lemma 3.1 it is not difficult to see the min–max equation (3.3) holds,
so thatg(·) satisfies the first requirement in Definition 3.2. Moreover, for each
(x, a) ∈ K, the equalityg(x) = max{g(y)|pxy(a) > 0} is equivalent toJ ∗(λ, x) =
max{J ∗(λ, y)|pxy(a) > 0}, so that

Bg(x) = BJ ∗(λ,·) = B∗(x), x ∈ S;
see (3.5) and Definition 4.1(i). It will be verified that the second part of
Definition 3.2 is satisfied by the pair(g(·), h(·)), whereh(·) is given in (4.1). To
achieve this goal, first notice that this functionh(·) is finite, by Theorem 5.1. Next,
select a policyπ ∈ P ∗ and letx ∈ S be arbitrary. For each actiona satisfying that
P π

x [A0 = a] > 0, it follows thata ∈ B∗(x), sinceπ ∈ P ∗, whereas the Markov
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property yields

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}∣∣∣A0 = a

]

= Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}
I [T = 1]|A0 = a

]

+ Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At ) − J ∗(λ,Xt )]
}
I [T > 1]|A0 = a

]

= eλα[C(x,a)−J ∗(λ,x)]pxz(a)

+ eλα[C(x,a)−J ∗(λ,x)]

× ∑
y �=z

pxy(a)Eδ
y

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

,

whereδ is the shifted policy in (7.1). By Lemma 7.1, there existsδ̃ ∈ P ∗ such that
P δ

y = P δ̃
y whenpxy(a) > 0, so that

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}∣∣∣A0 = a

]

= eλα[C(x,a)−J ∗(λ,x)]pxz(a)

+ eλα[C(x,a)−J ∗(λ,x)]

× ∑
y �=z

pxy(a)Eδ̃
y

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At ) − J ∗(λ,Xt )]
}]

≥ eλα[C(x,a)−J ∗(λ,x)]pxz(a) + eλα[C(x,a)−J ∗(λ,x)] ∑
y �=z

pxy(a)eλh(y),

where the inequality is due to the inclusionδ̃ ∈ P ∗; see (4.1). Recalling that
a ∈ B∗(x), this leads to

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}∣∣∣A0 = a

]

≥ min
b∈B∗(x)

[
eλα[C(x,b)−J ∗(λ,x)]pxz(b)

+ eλα[C(x,b)−J ∗(λ,x)] ∑
y �=z

pxy(b)eλh(y)

]
,
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and then, since this inequality holds for every actiona satisfying thatP π
x [A0 =

a] > 0,

Eπ
x

[
exp

{
λα

T −1∑
t=0

[C(Xt ,At) − J ∗(λ,Xt )]
}]

≥ min
b∈B∗(x)

[
eλα[C(x,b)−J ∗(λ,x)]pxz(b)

+ eλα[C(x,b)−J ∗(λ,x)] ∑
y �=z

pxy(b)eλh(y)

]
.

Using thatπ ∈ P ∗ andx ∈ S are arbitrary, via (4.1), this inequality yields

eλh(x) ≥ min
b∈B∗(x)

[
eλα[C(x,b)−J ∗(λ,x)]pxz(b)

(7.2)

+ eλα[C(x,b)−J ∗(λ,x)] ∑
y �=z

pxy(b)eλh(y)

]
, x ∈ S.

On the other hand, by Theorem 6.1

eλh(z) ≤ 1

which, combined with (7.2), implies that for everyx ∈ S,

eλh(x) ≥ min
b∈B∗(x)

[
eλα[C(x,b)−J ∗(λ,x)] ∑

y

pxy(b)eλh(y)

]
,

and then, multiplying both sides of this inequality byeλg(x)= eλ[αJ ∗(λ,x)+(1−α)‖C‖],

eλg(x)+λh(x) ≥ min
b∈B∗(x)

[
eλαC(x,b)+(1−α)‖C‖ ∑

y

pxy(b)eλh(y)

]
;

sinceαC(x, b) + (1− α)‖C‖ ≥ C(x, b), this yields that

eλg(x)+λh(x) ≥ min
b∈B∗(x)

[
eλC(x,b)

∑
y

pxy(b)eλh(y)

]
, x ∈ S.

Therefore, the pair(g(·), h(·)) satisfies the second condition of Definition 3.2, and
it follows that

αJ ∗(λ, ·) + (1− α)‖C‖ ∈ G.

This inclusion is valid for eachα ∈ (0,1), so that

J ∗(λ, x) ≥ inf
g∈G

g(x), x ∈ S,

and, via Lemma 3.4, this implies thatJ ∗(λ, x) = infg∈G g(x) for every statex,
completing the proof of Theorem 3.5.�
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REMARK 7.2. As a consequence of the results presented in this paper, two
main problems remain open:

(i) Find (nontrivial) conditions under which the optimal value functionJ (λ, ·)
belongs to setG and there exists a solution to the dynamic programming equation.

(ii) Find an efficient algorithm to approximate the optimal value function and
obtainε-optimal stationary policies.
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