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LARGE DEVIATIONS FOR TEMPLATE MATCHING
BETWEEN POINT PROCESSES

BY ZHIYI CHI

University of Chicago

We study the asymptotics related to the following matching criteria
for two independent realizations of point processesX ∼ X and Y ∼ Y.
Given l > 0, X ∩ [0, l) serves as a template. For eacht > 0, the matching
score between the template andY ∩ [t, t + l) is a weighted sum of the
Euclidean distances fromy − t to the template over ally ∈ Y ∩ [t, t + l).
The template matching criteria are used in neuroscience to detect neural
activity with certain patterns. We first considerWl(θ), the waiting time until
the matching score is above a given thresholdθ . We show that whether the
score is scalar- or vector-valued,(1/l) logWl(θ) converges almost surely to
a constant whose explicit form is available, whenX is a stationary ergodic
process andY is a homogeneous Poisson point process. Second, asl →∞,
a strong approximation for− log[Pr{Wl(θ) = 0}] by its rate function is
established, and in the case whereX is sufficiently mixing, the rates, after
being centered and normalized by

√
l, satisfy a central limit theorem and

almost sure invariance principle. The explicit form of the variance of the
normal distribution is given for the case whereX is a homogeneous Poisson
process as well.

1. Introduction. In neuroscience, it is well accepted that neurons are the
basic units of information processing. By complex biochemical mechanisms
governing the ion flows through its membrane, a neuron generates very narrow
and highly peaked electric potentials, or “spikes,” in its soma (main body) [6].
These spikes can propagate along the neuron’s axons, which are cables that
extend over relatively long distance to reach the other cells. The spikes can then
influence the activities of those cells. The temporal pattern in which a neuron
generates spikes dynamically depends on its inputs, which are either stimuli from
the environment or biochemicals induced by the spikes from the other neurons. In
this way, information is processed through the neural network. Because spikes are
very narrow and peaked, point processes are the most commonly used models for
neuronal activity, with points representing the temporal locations of spikes.

For many studies in neuroscience, it is necessary to detect segments of neuronal
activity that exhibit certain patterns [1, 10, 11]. Recently, in a study on the activity
of brain during sleep, a template matching algorithm was developed which uses
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linear filtering to quickly detect such segments (cf. [3]). The algorithm is template
based. SupposeS = {x1, . . . , xn} is a nonempty sequence of spikes generated by a
neuron under some specific condition between time 0 andl. This sequence is used
as a template. Given a data sequence of spikesY = {y1, y2, . . .} generated by the
same neuron but at a different time, the goal is to find segments inY that have
a temporal pattern similar toS. To do this, for each time pointt , collect ally ’s
betweent and t + l and shift them back to the origin. If the temporal distances
between the shiftedy ’s and S are small on average, then it indicates that the
temporal pattern of the activity recorded inY betweent and t + l is similar to
that ofS. Therefore one can use the following matching score

M(t) = 1

l

∑
y betweent and t+l

f
(
d(y − t, S)

)
to measure the overall distance, wheref (x) is a function of x ≥ 0 that is
nonincreasing, andd is the Euclidean distance such that for anyy ∈ R andS ⊂ R,
d(y,S) = inf{|y − s| : s ∈ A}. Let θ be a threshold value fixed beforehand. If
M(t) ≥ θ , then outputt as a location of matching segment, or “target.” To improve
accuracy, the detection was modified to involve multiple matching criteria so that
both f and θ are vector-valued. Thent is a target location only ifM(t) ≥ θ

(cf. [3]), where, for u = (u1, . . . , un) and v = (v1, . . . , vn), “u ≥ v” denotes
“uj ≥ vj for all j .” For later use, let “u > v” denote “u ≥ v andu 	= v.”

In the above studies, it is necessary to evaluate how difficult it is to get false
targets if a data sequence is noise. A useful criterion for this is the waiting time
until the matching score is larger than or equal toθ . Presumably, when the template
is longer, that is,l is larger, it would be more difficult to find false targets. But how
much more difficult? In this article, we study the asymptotics of the waiting time
under certain assumptions on the point processes underlying the template and the
data.

To fix notation, realizations of a point process onR will be regarded as point
sequences. Fora < b andS ⊂ R, denote

Sb
a = S ∩ [a, b), S − a = {t − a :a ∈ S}.

We will think of the templateS as an initial segment of an infinite sequenceX

of points onR. That is,S = Xl
0 for somel > 0. Givenf = (f1, . . . , fn) : {0} ∪

R→R
n, if Y is another sequence of points, then for eacht > 0, define

ρl(X
l
0, Y

t+l
t ) =


1

l

∑
y∈Y t+l

t

f
(
d(y − t,Xl

0)
)
, if Xl

0 	= ∅,

(−∞, . . . ,−∞), otherwise.

In practice, it is reasonable to require thatfk(x), k = 1, . . . , n, be nonincreasing
functions inx ≥ 0. However, to get the asymptotics ofW , this requirement can be
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dropped. Given a thresholdθ ∈ R
n, the waiting time until the first false target is

detected is

Wl(θ,X,Y ) = inf{t ≥ 0 :ρl(X
l
0, Y

t+l
t ) ≥ θ}.

To study the asymptotics ofWl as l increases, assumeX andY are random
realizations of two point processesX andY on R, respectively. One would think
of stationary Poisson point processes as signals that contain the least amount of
information. In other words, they are plainly noise. We will mainly focus on the
case whereY is Poisson.

The asymptotics of waiting times for pattern detection using random templates
have been studied for the case whereX = {Xn,n ≥ 1} andY = {Yn,n ≥ 1} are
integer indexed processes (cf. [2, 7, 13, 14] and references therein). In these works,
the matching score is defined for(X1, . . . ,Xn) and(Y1, . . . , Yn) as the average of
ρ(Xj ,Yj ) for some functionρ. Whereas the temporal relations between points are
essential in the asymptotics considered here, it is apparent such relations are not
relevant in the above results.

Whenf is scalar-valued functionf , the first main result is:

THEOREM 1. Suppose that X and Y are point processes on R that are
independent of each other and f is a bounded scalar function. Assume:

1. X is a stationary and ergodic point process with mean density

�N = ENX[0,1) ∈ (0,∞),

where NX(·) is the random counting measure associated with X (cf. [5]).
2. Pr{d(0,X) is a continuity point of f } = 1.
3. Pr{f (d(0,X)) > 0} > 0.
4. Y is a Poisson point process with density λ ∈ (0,∞).

Define

φ := λE
[
f

(
d(0,X)

)]
,(1.1)

�(t) := λE
[
etf (d(0,X)) − 1

]
.(1.2)

Then, given θ > φ,

lim
l →∞

1

l
logWl(θ,X,Y) = sup

t≥0
{θt − �(t)} w.p.1.(1.3)

Theorem 1 can be generalized to the case where the signal is a compound
Poisson process. Such a process can be characterized as a pairỸ = (Y, {Q(y), y ∈
R}), where Y is a common Poisson point process with densityλ and Q(y)

i.i.d. ∼ Q ∈ N are random variables independent ofX andY. For Y ∼ Y, each
y ∈ Y is interpreted as a location where there is at least one point, andQ(y) is the
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number of points aty. Then forỸ ∼ Ỹ, the matching score betweenXl
0 and the

segment of̃Y in [t, t + l), denoted bỹY t+l
t , is

ρl(X
l
0, Ỹ

t+l
t ) = 1

l

∑
y∈Y t+l

t

Q(y)f
(
d(y − t,Xl

0)
)
.

PROPOSITION 1. Suppose all the assumptions in Theorem 1 are satisfied.
In addition, suppose G(t) := E[etQ] < ∞ for all t > 0. Then, given θ > φ :=
λE[f (d(0,X))]E[Q],

lim
l →∞

1

l
logWl(θ,X, Ỹ) = sup

t≥0
{θt − �̃(t)} w.p.1,

where �̃(t) = λE[G(tf (d(0,X))) − 1].

The asymptotic in Theorem 1 can also be proved whenn = dimf > 1. Because
the monotonicity property ofR used in the proof of Theorem 1 is lost in this case,
some changes in the assumptions are needed.

THEOREM 2. Assume X, Y and f satisfy all but condition 3 in Theorem 1.
Instead, assume:

3′. For any v 	= 0, Pr{〈v, f (d(0,X))〉 > 0} > 0.

Define �(t) = λE[e〈t, f (d(0,X))〉 − 1] and φ as in (1.1).Then for any θ > φ,

lim
l →∞

1

l
logWl(θ,X,Y) = inf

z≥θ
�∗(z) w.p.1,(1.4)

where

�∗(z) = sup
t∈Rn

{〈z, t〉 − �(t)}

is bounded and continuous.

The proofs for Theorems 1 and 2 rely on the conditional large deviations
principle (LDP) of a family of random variables, becauseX ∼ X is a fixed
realization (cf. [2, 4, 7, 8]). These random variables have close relationship to
ρl(X

l
0,Yl

0). We next consider the asymptotics of the latter and restrict our focus
to the case wheref is scalar-valued. First, the following approximation for the
conditional LDP forρl(X

l
0,Yl

0) holds.
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THEOREM 3. Under the same assumption as in Theorem 1, for any set of
points S ⊂ R, let

�S,l(t) =


1

l
logE

[
exp

{
t

∑
y∈Yl

0

f
(
d(y,S)

)}]
= λ

l

∫ l

0

[
etf (d(y,S)) − 1

]
dy,

if S 	= ∅,

0, otherwise,

(1.5)

�∗
S,l(θ) = sup

t∈R

[θt − �S,l(t)].(1.6)

Then, given θ > φ, almost surely, for X ∼ X,

− logPr{ρl(X
l
0,Yl

0) ≥ θ} − l�∗
Xl

0,l
(θ) = o

(√
l
)
.(1.7)

Note that Pr{ρl(X
l
0,Yl

0) ≥ θ} = Pr{Wl(θ) = 0}.

REMARK. Despite the higher-order approximation in Theorem 3, the differ-
ence between the aforementioned random variables andρl(X

l
0,Yl

0) does not allow
the approximation to be applied to the proof of Theorem 1 and it is not clear to me
how to derive a similar higher-order approximation toWl .

Finally, under suitable conditions,− log Pr{ρl(X
l
0,Yl

0) ≥ θ} after being cen-
tered and normalized is asymptotically normal, as the following result combined
with (1.7) shows.

THEOREM 4. Assume X, Y and f satisfy all but condition 2 in Theorem 1.
Instead, assume f 	= 0 is continuous. Given θ > φ, let t0 be the (unique) point
with �∗(θ) = θt0 − �(t0). If X is a Poisson point process with density ρ, then
almost surely, for X ∼ X,

l
{
�∗

Xl
0,l

(θ) − [
θt0 − �Xl

0,l
(t0)

]} = o
(√

l
)
, l →∞,(1.8)

√
l
(
θt0 − �Xl

0,l
(t0) − �∗(θ)

) D→ N(0,4ρσ 2),(1.9)

with

σ 2 = Var
{
G

(
U

2ρ

)
− UE

[
g

(
U

2ρ

)
U

2ρ

]}
+

{
E

[
G

(
U

2ρ

)
− g

(
U

2ρ

)
U

2ρ

]}2

,(1.10)

where U ∼ Exp(1), g(x) = et0f (x) and G(x) = ∫ x
0 g.

REMARK. Following the proof of Theorem 4, it can be shown that, instead
of assumingX to be a Poisson process, if

∫ ∞
0 ψ(t) dt < ∞ and eitherf has

bounded support orEτ2 < ∞, whereψ(t) = sup{|P (A ∩ B) − P (A)P (B)| :A ∈
σ(X0−∞),B ∈ σ(X∞

t )} andτ = min(X∞
0 ), then (1.8) and the asymptotic normality
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of
√

l(θt0 − �Xl
0,l

(t0)− �∗(θ)) still hold. Indeed, under the assumptions, the left-

hand side of (1.9) is
√

n(�X,n(t0) − �(t0)) + o(1), w.p.1, withn = �l�, and the
random variablesZn = λ

∫ n+1
n [et0f (d(y,X)) − 1]dy satisfy the mixing condition

in [12], Theorem 1, yielding the asymptotic normality. However, in general, the
explicit form of the limit distribution is not readily obtained.

The rest of the article is organized as follows. In Sections 2 and 3, Theorem 1
is proved. In Section 4, Theorem 2 is proved. In Section 5, Theorem 3 is proved.
Finally, in Section 6, Theorem 4 is proved.

2. Waiting times for scalar-valued matching scores. In this section, sup-
poseX and Y satisfy the conditions in Theorem 1. For any functiong, denote
g+ = max(g,0) andg− = max(−g,0), and forε > 0,

gε(x) = sup
|t−x|≤ε

g(t).

For integern > 1 andX,Y ⊂ R with Y discrete, define

An(X,Y ) = 1

n

∑
y∈Y n−1

0

inf
n−1≤l≤n

f +(
d(y,Xl

0)
)

− 1

n − 1

∑
y∈Y n

0

sup
n−1≤l≤n

f −(
d(y,Xl

0)
)
,

Bn,ε(X,Y ) = 1

n − 1

∑
y∈Y n+ε

0

sup
n−1≤l≤n

f +
ε

(
d(y,Xl

0)
)

− 1

n

∑
y∈Y n−1

ε

inf
n−1≤l≤n

f −
ε

(
d(y,Xl

0)
)
.

Since

f +
ε (x) = sup

|t−x|≤ε

f +(t) ≥ f +(x), f −
ε (x) = inf|t−x|≤ε

f −(t) ≤ f −(x),(2.1)

it is seen thatBn,ε(X,Y ) ≥ An(X,Y ). The following lemmas are needed for the
proof of Theorem 1.

LEMMA 1. Given θ ∈ R, almost surely, for X ∼ X, as n→∞, eventually
there are

αn,X,θ := Pr{An(X,Y) ≥ θ} > 0, βn,ε,X,θ := Pr{Bn,ε(X,Y) ≥ θ} > 0.

Because of Lemma 1, the logarithms in the results below are well defined almost
surely.
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LEMMA 2 (Upper bounds forWl). Let θ be an arbitrary number. Then

Pr
{
lim sup
l →∞

1

l
log

[
α�l�,X,θ × Wl(θ,X,Y)

] ≤ 0
}

= 1.(2.2)

LEMMA 3 (Lower bounds forWl). Let θ be an arbitrary number. Then

Pr
{

lim inf
l →∞

1

l
log

[
β�l�,ε,X,θ × max

(
Wl(θ,X,Y),1

)] ≥ 0
}

= 1.(2.3)

LEMMA 4 (LDP). Almost surely, for X ∼ X, the conditional laws of
An(X,Y), n ≥ 2, satisfy the LDP with a good rate function

�∗(θ) = sup
t∈R

{θt − �(t)},(2.4)

and the conditional laws of Bn,ε(X,Y), n ≥ 2, satisfy the LDP with a good rate
function

�∗
ε(θ) = sup

t∈R

{
θt − λE

[
etfε(d(0,X)) − 1

]}
.

Assume for now that the above lemmas hold. Forθ > φ, by Lemmas 2 and 4,
almost surely, forX ∼ X, Y ∼ Y,

lim sup
l →∞

1

l
logWl(θ,X,Y ) ≤ inf

z>θ
�∗(z).(2.5)

It is known that� is strictly convex (e.g., [9]). Becausef is bounded,� is
smooth everywhere with�′(0) = φ. By condition 3 of Theorem 1,�(t)→∞
exponentially ast →∞. These imply that for anyz > φ, �∗(z) > 0 is finite and
achieved on(0,∞), and�∗ is a continuous strictly increasing convex function on
(φ,∞). Then by (2.5), it is seen that

lim sup
l→∞

1

l
logWl(θ,X,Y ) ≤ �∗(θ),(2.6)

and to complete the proof of (1.3), it remains to show

lim inf
l→∞

1

l
logWl(θ,X,Y ) ≥ �∗(θ).(2.7)

By Lemmas 3 and 4, for anyε > 0,

lim inf
l →∞

1

l
logmax

(
Wl(θ,X,Y ),1

) ≥ inf
z≥θ

�∗
ε(z).

Similar to the above argument, it is seen that almost surely, forX ∼ X, Y ∼ Y,

lim inf
l →∞

1

l
logmax

(
Wl(θ,X,Y ),1

) ≥ �∗
ε(θ) = sup

t≥0
{θt − �ε(t)},(2.8)
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where�ε(t) = λE[etfε(d(0,X)) − 1]. Let t∗ be the unique point where�∗(θ) =
θt∗ − �(t∗). Then �∗

ε(θ) ≥ θt∗ − �ε(t
∗). By condition 2 of Theorem 1

and dominated convergence,�ε(t
∗)→�(t∗), leading to lim infε →0 �∗

ε(θ) ≥
�∗(θ) > 0. So by (2.8)

lim inf
l →∞

1

l
logmax

(
Wl(θ,X,Y ),1

) ≥ �∗(θ) > 0.

The lower bound also impliesWl(θ,X,Y )→∞. These combined with (2.8)
prove (2.7). �

3. Proofs of lemmas.

PROPOSITION2. For X satisfying condition 1 of Theorem 1,

Pr
{

lim
l →∞

l − sup{x :x ∈ Xl
0}

l
= 0

}
= 1,

where, for Xl
0 = ∅, sup{x :x ∈ Xl

0} is defined to be −∞.

PROOF. BecauseX is stationary and ergodic, almost surely, for a realization
X of X, asl →∞, NX[0, l)/ l → �N > 0, implying that for anyε ∈ (0,1), NX[(1−
ε)l, l)→∞. Now

l − sup{Xl
0}

l
≥ ε �⇒ NX

(
(1− ε)l, l

) = 0,

leading to

Pr
{

lim sup
l →∞

l − sup{x :x ∈ Xl
0}

l
≥ ε

}
= 0,

which completes the proof.�

PROOF OFLEMMA 1. BecauseBn,ε ≥ An, it is enough to show that almost
surely, forX ∼ X, αn,X,θ := Pr{An(X,Y) ≥ θ} > 0 eventually, asn→∞. Let
X be a realization ofX and sn = min(Xn−1

0 ), τn = max(Xn−1
0 ), for n ≥ 2. It is

easy to seesn/n→0 w.p.1. By Proposition 2, almost surely,τn is well defined for
all largen and(n − τn)/n→0. Note that fory ∈ Y

τn
sn , d(y,Xn−1

0 ) = d(y,X). By
the ergodicity ofX and condition 3 of Theorem 1, almost surely,

lim
n→∞E

[
1

n

∑
y∈Yτn

sn

1{f (d(y,Xn−1
0 ))>0}

]
= lim

n→∞
λ

n

∫ τn

sn

1{f (d(y,X))>0} dy

= lim
n→∞

λ

n

∫ n

0
1{f (d(0,X−y))>0} dy

= λPr
{
f

(
d(0,X)

)
> 0

}
> 0.
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Then it is seen that forn large enough, there isηn > 0 such that

Pr

{
1

n

∑
y∈Yτn

0

f +(
d(y,Xn−1

0 )
)
> ηn

}
> 0.

Define

Cn =
{
Y :Yn

0 = Y τn
sn

,
1

n

∑
y∈Y n

0

f
(
d(y,Xn−1

0 )
)
> ηn

and ∀y ∈ Yn
0 , f

(
d(y,Xn−1

0 )
)
> 0

}
.

By the property of Poisson processes, it is not hard to see that Pr{Y ∈ Cn} > 0.
Fix N ∈ N with N > θ/ηn. Let Dn consist of allY with Yn

0 being the union of
Z1 ∩ [0, n), . . . ,ZN ∩ [0, n) for someZ1, . . . ,ZN ∈ Cn with Zi ∩Zj ∩ [0, n) = ∅,
i 	= j . Then Pr{Y ∈ Dn} > (Pr{Y ∈ Cn})N > 0 and for anyY ∈ Dn, An(X,Y ) ≥
Nηn ≥ θ . �

PROOF OF LEMMA 2. Let {Kn} be a sequence of positive numbers to be
determined later. Fixn ≥ 2. Let X be a realization ofX with αn,X,θ > 0 andY

a realization ofY. If there isl ∈ (n − 1, n], such thatWl(θ,X,Y ) > Kn, then for
all t ∈ [0,Kn],

1

l

∑
y∈Y t+l

t

f
(
d(y − t,Xl

0)
)
< θ

�⇒ 1

l

∑
y∈Y t+l

t

f +(
d(y − t,Xl

0)
)

< θ + 1

l

∑
y∈Y t+l

t

f −(
d(y − t,Xl

0)
)

�⇒
(a)

1

n

∑
y∈Y t+n−1

t

inf
n−1≤l≤n

f +(
d(y − t,Xl

0)
)

< θ + 1

n − 1

∑
y∈Y t+n

t

sup
n−1≤l≤n

f −(
d(y − t,Xl

0)
)

�⇒ An(X,Y − t) < θ,

with (a) due tof +, f − ≥ 0. In particular,Wl(θ,X,Y ) > Kn impliesAn(X,Y −
kn) < θ for k = 0, . . . , �Kn/n�. BecauseAn(X,Y − kn) only depends onX
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andY
(k+1)n
kn , by the fact thatY(k+1)n

kn are i.i.d.,

Pr{∃ l ∈ (n − 1, n] s.t.Wl(θ,X,Y) > Kn}

≤ Pr

{�Kn/n�⋂
k=0

{An(X,Y − kn) < θ}
}

=
�Kn/n�∏

k=0

Pr{An(X,Y − kn) < θ} ≤ (1− αn,X,θ )
Kn/n ≤ e−αn,X,θKn/n.

ChooseKn = c(n)n/αn,X,θ , with
∑

e−c(n) < ∞ and 1
n

logc(n)→0. Then

Pr
{
∃ l ∈ (n − 1, n] s.t.

1

l
log[αn,X,θ × Wl(θ,X,Y)] >

1

l
log[c(n)n]

}
≤ e−c(n).

Because the above bound is uniform overX with αn,X,θ > 0 and summable, by the
Borel–Cantelli lemma and Lemma 1, (2.2) is therefore proved.�

PROOF OFLEMMA 3. Fix n ≥ 2, ε ∈ (0,1) andL > 0. LetX be a realization
of X with βn,ε,X,θ > 0 and letY be a realization ofY. If there isl ∈ (n−1, n] such
thatWl(θ,X,Y ) ≤ L, then there isτ ∈ [0,L] such that

1

l

∑
y∈Y τ+l

τ

f
(
d(y − τ,Xl

0)
) ≥ θ,

which implies that for somet = kε, k = 0,1, . . . , �L/ε�,

1

l
sup

τ∈[t,t+ε]

∑
y∈Y τ+l

τ

f
(
d(y − τ,Xl

0)
) ≥ θ.

Since for anyτ ∈ [t, t + ε], Y t+n−1
t+ε ⊂ Y τ+l

τ ⊂ Y t+n+ε
t , the above equality leads to

1

n − 1
sup

τ∈[t,t+ε]

∑
y∈Y t+n+ε

t

f +(
d(y − τ,Xl

0)
)

− 1

n
inf

τ∈[t,t+ε]
∑

y∈Y t+n−1
t+ε

f −(
d(y − τ,Xl

0)
) ≥ θ.

Because|d(y−τ,Xl
0)−d(y− t,Xl

0)| ≤ ε for anyy ∈ R andτ ∈ [t, t +ε], by (2.1),
the above inequality implies

1

n − 1

∑
y∈Y t+n+ε

t

f +
ε

(
d(y − t,Xl

0)
) − 1

n

∑
y∈Y t+n−1

t+ε

f −
ε

(
d(y − t,Xl

0)
) ≥ θ

�⇒ Bn,ε(X,Y − t) ≥ θ.
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Becauset = kε, for somek = 0,1, . . . , �L/ε�, by the stationarity ofY,

Pr{∃ l ∈ (n − 1, n] s.t.Wl(θ,X,Y) ≤ L}

≤ Pr

{�L/ε�⋃
k=0

{Bn,ε(X,Y − kε) ≥ θ}
}

≤
�L/ε�∑
k=0

Pr{Bn,ε(X,Y − kε) ≥ θ} = (L/ε + 1)βn,ε,X,θ .

ForL ≥ 1, this implies

Pr
{∃ l ∈ (n − 1, n] s.t. max

(
Wl(θ,X,Y),1

) ≤ L
} ≤ 2Lβn,ε,X,θ/ε.

The above bound holds forL ∈ (0,1) as well. ChooseL = L(n) = e−c(n)/βn,ε,X,θ

with
∑

e−c(n) < ∞ and c(n)
n

→0 to get

Pr
{
∃ l ∈ (n − 1, n] s.t.

1

l
log

[
βn,ε,X,θ × max

(
Wl(θ,X,Y),1

)] ≤ −c(n)

l

}
≤ 2e−c(n)/ε.

By an argument similar to the end of the proof of Lemma 2, (2.3) is proved.�

PROOF OF LEMMA 4. The proof is an application of the Gärtner–Ellis
theorem. We will only consider the LDP ofAn(X,Y). The LDP ofBn,ε(X,Y)

can be similarly treated.
The first step is to show that almost surely, forX ∼ X,

1

n
logE

[
entAn(X,Y)]→�(t) for all t ∈ R.(3.1)

Let gn(y) = infn−1≤l≤n f +(d(y,Xl
0)) andhn(y) = supn−1≤l≤n f −(d(y,Xl

0)).
Then givent ∈ R,

1

n
logE

[
entAn(X,Y)

] = 1

n
logE

[
exp

{
t

( ∑
y∈Yn−1

0

gn(y) − n

n − 1

∑
y∈Yn

0

hn(y)

)}]

= I1 + I2,

with

I1 = λ

n

∫ n−1

0

[
exp

{
t

(
gn(y) − n

n − 1
hn(y)

)}
− 1

]
dy,

I2 = λ

n

∫ n

n−1

[
exp

{
− tn

n − 1
hn(y)

}
− 1

]
dy.
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Becausef is bounded,I2→0 as n→∞. Letting sn = min(Xn−1
0 ) and τn =

max(Xn−1
0 ), it is seen that ifsn ≤ y ≤ τn, then d(y,Xl

0) = d(y,X), yielding
gn(y) = f +(d(y,X)) andhn(y) = f −(d(y,X)). Let

F(y) = exp
{
t

(
f +(

d(y,X)
) − n

n − 1
f −(

d(y,X)
))}

− 1.

Clearly sn/n→0. By Proposition 2, we can assume(n − τn)/n→0. Let Jn =
[0, sn] ∪ [τn, n − 1]. Then by the boundedness off , asn→∞,

I1 = λ

n

∫ n−1

0
F − λ

n

∫
Jn

F + λ

n

∫
Jn

[
exp

{
t

(
gn(y) − n

n − 1
hn(y)

)}
− 1

]
dy

= λ

n

∫ n

0

[
exp

{
t

(
f +(

d(0,X − y)
) − n

n − 1
f −(

d(0,X − y)
))}

− 1
]
dy + o(1).

BecauseX is ergodic, it is seen thatI1 →λE[etf (d(0,X)) − 1], proving (3.1) for
fixed t . It follows that almost surely, (3.1) holds fort in a countable dense
subset ofR. On the other hand, by the boundedness off , it is not hard to
show that 1

n
logE[entAn(X,Y)], n ≥ 1, are equicontinuous functions int on any

bounded region and�(t) is continuous. Therefore, almost surely, forX ∼ X, the
convergence in (3.1) holds for allt ∈ R.

The function�(t) is smooth and strictly convex. By condition 3 of Theorem 1,
�(t)→∞ exponentially fast ast →∞. To finish the proof, consider the event
E = {f (d(0,X)) < 0}. If Pr(E) > 0, then, ast → −∞, �(t)→∞ exponentially
fast and hence� is essentially smooth (cf. [9], Definition 2.3.5). By the Gärtner–
Ellis theorem, the LDP holds forAn(X,Y) with the good rate function�∗. If
Pr(E) = 0, or equivalently,f (d(0,X)) ≥ 0 w.p.1, then by Theorem 2.3.6 and
Lemma 2.3.9 of [9], for any open setG,

lim inf
n→∞

1

n
logPr{An(X,Y) ∈ G} ≥ − inf

α∈G∩(0,∞)
�∗(α).

Since forα < 0, �∗(α) = ∞, and for 0≤ α < φ, �∗(α) < ∞ is decreasing, the
above inequality implies

lim inf
n→∞

1

n
log Pr{An(X,Y) ∈ G} ≥ − inf

α∈G
�∗(α).

Therefore the LDP is proved.�

4. Waiting times for vector-valued matching scores. Let comparison or
maximization of vectors be made component-wise, for example, iff = (f1, . . . ,

fn), thenf + = (f +
1 , . . . , f +

n ), supx∈A f (x) = (supx∈A f1(x), . . . ,supx∈A fn(x)),
and for vectorsu = (u1, . . . , un), v = (v1, . . . , vn), max(u, v) = (max(u1, v1), . . . ,

max(un, vn)). Givenθ ∈ R
n, defineWl(θ,X,Y ) as in the case wheref is scalar-

valued.
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PROOF OF THEOREM 2. Lemmas 1–3 still hold. Following the proof for
Lemma 4,

1

n
logE

[
en〈t,An(X,Y)〉]→�(t).(4.1)

Let ζ = f (d(0,X)). Since�(t) < ∞ on R
n and is differentiable, to show

that the laws ofAn(X,Y) follow the LDP with the good rate function�∗(z), by
the Gärtner–Ellis theorem, it is enoughto show that|∇�(t)| = |E[ζe〈t, ζ 〉]|→∞
as |t|→∞. Assume for a sequencetj ∈ R

n with |tj |→∞, |E[ζe〈tj , ζ 〉]| ≤ M .
Then there is a subsequence ofτj := tj /|tj | converging to somev with |v| = 1.
Without loss of generality, assume the whole sequenceτj converges tov. Then
|E[〈v, ζ 〉e〈tj , ζ 〉]| ≤ M . By condition 3′, there isε > 0 such that Pr{〈v, ζ 〉 >

3ε} > 0. Becausef is bounded, forj large enough,|τj − v||ζ | < ε. Then∣∣E[〈v, ζ 〉e〈tj , ζ 〉]∣∣ ≥ E
[〈v, ζ 〉e〈tj , ζ 〉1{〈v, ζ 〉≥3ε}

] + E
[〈v, ζ 〉e〈tj , ζ 〉1{〈v, ζ 〉≤0}

]
≥ E

[〈v, ζ 〉e|tj |(〈v, ζ 〉−ε)1{〈v, ζ 〉≥3ε}
]

+ E
[〈v, ζ 〉e|tj |(〈v, ζ 〉+ε)1{〈v, ζ 〉≤0}

]
≥ 3ε Pr{〈v, ζ 〉 ≥ 3ε}e2ε|tj | − E|ζ |eε|tj | →∞,

which is a contradiction.
Let M(t) = E[e〈t, ζ 〉]. For anya > 1, let V = {t :M(t) ≤ a}. BecauseM(t) is

convex and continuous,V is a convex closed set. AssumeV is unbounded, then
there aretj ∈ V with |tj |→∞ and τj = tj /|tj |→v for somev with length 1.
Given r > 0, |tj | > r for all largej . As 0, |tj |τj ∈ V , rτj ∈ V , implying rv ∈ V .
As a result,M(rv) ≤ a for all r > 0, which is impossible due to condition 3′.
Therefore,V is bounded. Suppose|v| ≤ R for all v ∈ V . Then fort with |t| > R,
by the Hölder inequality,M(t) ≥ (M(Rt/|t|))|t|/R ≥ a|t|/R, and hence�(t) =
M(t) − 1→∞ exponentially fast in|t|. Therefore,�∗(z) ≤ supt∈R{|z||t| − �(t)}
is bounded on any bounded set. Since�∗ is convex, then it is seen�∗ is
continuous.

By (2.2) and the LDP for the conditional laws ofAn, almost surely, forX ∼ X
andY ∼ Y,

lim sup
l →∞

1

l
logWl(θ,X,Y ) ≤ − lim inf

n→∞
1

n
Pr{An(X,Y) > θ}

(4.2)
≤ inf

z>θ
�∗(z) = inf

z≥θ
�∗(z),

with the last equality due to the continuity of�∗. Forz ≥ θ > φ, 〈1, z〉 ≥ 〈1, θ〉 >

〈1, φ〉 = λE[〈1, ζ 〉]. Then by Theorem 1

�∗(z) ≥ sup
t≥0

{
t〈1, z〉 − λE

[
et〈1, ζ 〉 − 1

]} ≥ sup
t≥0

{
t〈1, θ〉 − λE

[
et〈1, ζ 〉 − 1

]}
> 0.
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On the other hand, by the Gärtner–Ellis theorem,

lim inf
l →∞

1

l
logmax{1,Wl(θ,X,Y )} ≥ − lim sup

n→∞
1

n
Pr{Bn,ε(X,Y) ≥ θ}

(4.3)
≥ inf

z≥θ
�∗

ε(z).

Similarly to the proof for Theorem 1, it just remains to show

lim
ε →0

inf
z≥θ

�∗
ε(z) = inf

z≥θ
�∗(z),(4.4)

where�∗
ε(z) = supt∈R{〈z, t〉 − E[e〈t, fε(d(0,X))〉 − 1]}.

Let M = supx≥0 |f (x)|. Since

�∗
ε(z) ≥ sup

t≥0
{|z|t − etM}→∞, |z|→∞,

uniformly for ε > 0, for some bounded closed setA ⊂ {z : z ≥ θ}, infz≥θ �∗
ε(z) =

infz∈A �∗
ε(z). Next show that as a family of functions parameterized byε > 0,

�∗
ε is equicontinuous onA for all smallε.
By the boundedness off and conditions 2 and 3′, for anyv ∈�= {z : |z| = 1},

there areη = η(v) > 0, δ = δ(v) > 0, and an open neighborhoodU = U(v) ⊂ �,
such that

Pr
{〈
v,fε

(
d(0,X)

)〉 ≥ 2η
}
> η for all ε ≤ δ

andM|v − u| < η, for all u ∈ U . Because� is compact, there arev1, . . . , vn such
that� = ⋃n

k=1 U(vk). Let δ = mink=1 δ(vk) andη = minn
k=1 η(vk). For anyv ∈ �,

there isk such thatv ∈ U(vk). Then for anyε ≤ δ, when 〈vk, fε(d(0,X))〉 ≥
2η(vk),〈

v,fε

(
d(0,X)

)〉 ≥ 〈
vkfε

(
d(0,X)

)〉 − |v − vk|M ≥ 2η(vk) − η(vk) ≥ η,

implying Pr〈v, fε(d(0,X))〉 > η > η. Fix L > 0 such that|z| ≤ L for all z ∈ A.
For t ∈ R \ {0}, write t = |t|v. Then as|t|→∞,

〈z, t〉 − λE
[
e〈t, fε(d(0,X))〉 − 1

]
≤ L|t| − λE

[
(e|t|〈v, fε(d(0,X))〉 − 1)1{〈v, fε(d(0,X))〉>η}

] + λ

≤ L|t| − ηλeη|t| + λ→ −∞,

uniformly for z ∈ A and ε ≤ δ. Since �∗
ε(z) ≥ 0, this implies that there is

R > 0 such that for allz ∈ A and ε ≤ δ, the maximizert∗(z, ε) of 〈z, t〉 −
λE[e〈t, fε(d(0,X))〉 − 1] is in BR := {z : |z| ≤ R}. Then for anyz1, z2 ∈ A, it is
seen�∗

ε(z1) − �∗
ε(z2) ≤ 〈t∗(z1, ε), z1 − z2〉 ≤ R|z1 − z2|. Likewise, �∗

ε(z2) −
�∗

ε(z1) ≤ R|z1 − z2|. So�∗
ε(z) is equicontinuous.

Chooseεn such that limn infz≥θ �∗
n(z) = lim inf ε →0 infz≥θ �∗

ε(z), where�∗
n :=

�∗
εn

. Let zn ∈ A be such that�∗
n(zn) = infz∈A �∗

n(z). Thenzn has a convergent
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subsequence. Without loss of generality, supposezn → z ∈ A. Following the
same argument as in the proof of Theorem 1,�∗

n(z)→�∗(z). Then by the
equicontinuity of�∗

ε ,

lim inf
ε →0

inf
z≥θ

�∗
ε(z) = lim

n→∞�∗
n(zn) = lim

n→∞�∗
n(z) = �∗(z) ≥ inf

z≥θ
�∗(z) > 0.

Therefore, (4.3) can be replaced by

lim inf
l →∞

1

l
logWl(θ,X,Y ) ≥ inf

z≥θ
�∗

ε(z).

This together with (4.2) implies that

lim sup
ε →0

inf
z≥θ

�∗
ε(z) ≤ inf

z≥θ
�∗(z),

which completes the proof of (4.4).�

5. An approximation for large deviations. Givenθ > φ := λE[f (d(0,X))],
it is easy to see thatθt − �(t) achieves�∗(θ) at a unique pointt0. Furthermore,
t0 ∈ (0,∞) and

θ = �′(t0) = λE
[
f

(
d(0,X)

)
et0f (d(0,X))

]
.(5.1)

LEMMA 5. Almost surely, for X ∼ X, when l is large, θt − �Xl
0,l

(t) achieves

�∗
Xl

0,l
(θ) on (0,∞) and the maximizer t∗ = t∗(X, l) is unique. Furthermore, t∗

satisfies

θ = �′
Xl

0,l
(t∗) = λ

l

∫ l

0
f

(
d(y,Xl

0)
)
et∗f (d(y,Xl

0)) dy(5.2)

and, as l →∞, t∗ → t0, �Xl
0,l

(t∗)→�(t0) and �′′
Xl

0,l
(t∗)→�′′(t0).

PROOF. Almost surely, for X ∼ X, for all large l, �Xl
0,l

(t) is smooth,

strictly convex,�Xl
0,l

(0) = 0, and�′
Xl

0,l
(t)→∞ exponentially fast ast →∞.

Furthermore, following the proof of Lemma 1,

lim
l →∞

λ

l

∫ l

0
f

(
d(y,Xl

0)
)
dy = lim

l →∞
λ

l

∫ l

0
f

(
d(y,X)

)
dy = E

[
f

(
d(0,X)

)]
.

and hence�′
Xl

0,l
(0) < θ , implying θt −�Xl

0,l
(t) has a unique maximizert∗ which

is in (0,∞). By differentiation, (5.2) is proved. For anyt > t0, by (5.1) and (5.2),
asl →∞,

�′
Xl

0,l
(t)→�′(t) > �′(t0) = θ = �Xl

0,l
(t∗).
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Therefore, t∗ < t eventually, giving lim supl →∞ t∗ ≤ t0. Likewise,
lim inf l →∞ t∗ ≥ t0. This provest∗ → t0. Finally, following the equicontinuity ar-
gument as in the previous sections,

�Xl
0,l

(t∗) = λ

l

∫ l

0

[
et∗f (d(y,Xl

0)) − 1
]
dy →λE

[
et0f (d(0,X)) − 1

] = �(t0)

and

�′′
Xl

0,l
(t∗)= λ

l

∫ l

0
f 2(

d(y,Xl
0)

)
et∗f (d(y,Xl

0)) dy

→λE
[
f 2(

d(0,X)
)
et0f (d(0,X))] = �′′(t0) > 0. �

PROOF OF THEOREM 3. GivenX ∼ X such that�Xl
0,l

has the properties
described in Lemma 5, let

Jl = exp
(
l�∗

Xl
0,l

(θ)
)
Pr

{ ∑
y∈Yl

0

f
(
d(y,Xl

0)
) ≥ lθ

}
.

First, becauseJl ≤ exp(l�∗
Xl

0,l
(θ))E[exp{t∗(∑y∈Yl

0
f (d(y,Xl

0)) − lθ)}] = 1, we

have

lim sup
l →∞

1√
l

logJl ≤ 0.

It remains to show that

lim inf
l →∞

1√
l

logJl ≥ 0.(5.3)

For l > 0 large enough, letg(y) := f (d(y,Xl
0)). Let t∗ > 0 be the maximizer of

θt − �Xl
0,l

(t) as in Lemma 5. Define measuresν = νXl
0,l

andµ = µXl
0,l

on [0, l],
respectively, by

dν(y)

dy
= λet∗g(y) and dµ(y) = dν(y)

K
,

with K = ∫ l
0 dν(y). Thenµ is a probability measure. It is easy to see that

K = l
(
�Xl

0,l
(t∗) + λ

) = l
(
θt∗ − �∗

Xl
0,l

(θ) + λ
)

and lθ = KE[g(ξ)],(5.4)

with ξ ∼ µ. Also,

K

l
= �Xl

0,l
(t∗) + λ→�(t0) + λ = λE

[
et0f (d(0,X))

]
> 0 asl →∞.(5.5)
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Lettingm = E[g(ξ)], by (5.4) and the properties of Poisson processes,

Jl = e
l�∗

Xl
0,l

(θ) ∞∑
n=0

e−λl λ
n

n!
∫
[0,l]n

1{∑n
i=1 g(yi)≥lθ} dy1 · · ·dyn

= e
l�∗

Xl
0,l

(θ)−λl+K ∞∑
n=0

e−K Kn

n!
∫
[0,l]n

1{∑n
i=1 g(yi)≥lθ} exp

{
−t∗

n∑
i=1

g(yi)

}

×
n∏

i=1

λet∗g(yi)

K
dy1 · · ·dyn

= elθ t∗
∞∑

n=0

e−K Kn

n! E

[
1{∑n

i=1 g(ξi)≥lθ} exp

{
−t∗

n∑
i=1

g(ξi)

}]

=
∞∑

n=0

e−K Kn

n! E

[
1{∑n

i=1(g(ξi)−m)≥(K−n)m} exp

{
−t∗

n∑
i=1

(
g(ξi) − m

)}]
et∗(K−n)m,

with ξ1, . . . , ξn i.i.d.∼ µ.
Fix δ > 0. Recallt∗ > 0. If m ≥ 0, then

Jl ≥ ∑
K≤n≤K+δ

√
K

e−K Kn

n! E

[
1{∑n

i=1(g(ξi)−m)≥0} exp

{
−t∗

n∑
i=1

(
g(ξi) − m

)}]

× e−t∗
√

Kmδ.

A similar bound can be obtained whenm < 0, by summing overK − δ
√

K ≤
n ≤ K instead. Without loss of generality, assumem ≥ 0. Let

Gn =
∑n

i=1(g(ξi) − m)√
nVar[g(ξ)] .

Let l →∞. Thent∗ → t0 and by (5.5),K →∞. There is a constantc1 = c1(δ) > 0,
such that for largeK ,

∑
K≤n≤K+δ

√
K

e−KKn/n! ≥ c1 and hence

Jl ≥ ∑
K≤n≤K+δ

√
K

e−K Kn

n! E
[
1{0≤Gn≤δ}e−t∗

√
n Var[g(ξ )]Gn

]
e−t∗

√
Kmδ

≥ ∑
K≤n≤K+δ

√
K

e−K Kn

n! Pr{0≤ Gn ≤ δ}e−t∗
√

2K Var[g(ξ )]δe−t∗
√

Kmδ

≥ c1 min
K≤n≤K+δ

√
K

Pr{0 ≤ Gn ≤ δ}e−t∗
√

KDδ
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with D = √
2 Var[g(ξ)] + m. It is not hard to see that forξ ∼ µ and η =

f (d(0,X)),

Var[g(ξ)] =
∫ l
0 g2(y)et∗g(y) dy∫ l

0 et∗g(y) dy
−

(∫ l
0 g(y)et∗g(y) dy∫ l

0 et∗g(y) dy

)2

→ E[η2et0η]
E[et0η] −

(
E[ηet0η]
E[et0η]

)2

> 0

and hence Var[g(ξ)] is uniformly bounded below from 0 for all largel. Because
g(y) = f (d(y,Xl

0)) is uniformly bounded,Gn satisfy Lindeberg’s condition,

giving Gn
D→ N(0,1). Together with (5.5), these imply that there is a constant

c2 > 0 which is independent ofl and δ, and someρ = ρ(δ) > 0, such that
Jl ≥ ρe−c2t

∗√
lδ , yielding

lim inf
l →∞

1√
l

logJl ≥ −c2t0δ.

Becauseδ is arbitrary, (5.3) is proved.�

6. Asymptotic normality.

PROOF OF THEOREM 4. From Lemma 5, it is seen that almost surely, for
largel > 0, there are uniqueτl, tl > 0 with �∗

X,l = θτl − �(τl), �∗
Xl

0,l
(θ) = θtl −

�Xl
0,l

(tl). Furthermore,τl, tl → t0 asl →∞. Fix δ,M > 0, such thatτl, tl ∈ (t0−δ,

t0 + δ) for all largel > 0 andλ|etf (d(y,Xl
0)) − 1| ≤ M/2 for t ∈ (t0 − δ, t0 + δ) and

all y. Following the argument in the proof of Lemma 1, on(t0 − δ, t0 + δ),∣∣�X,l(t) − �Xl
0,l

(t)
∣∣ ≤ (

min(Xl
0) + dl

)
M/l,(6.1)

where dl = l − max(Xl
0). Clearly, min(Xl

0) = O(1) w.p.1. Letting n = �l�,

dl ≤ sn = n + 1 − max(Xn−∞)
D= 1 − max(X0−∞)

D= 1 + ρU , with U ∼ Exp(1).
Givenε > 0, Pr{sn ≥ √

εn } ≤ Pr{(U + 1)2 ≥ εn}. SinceEU2 < ∞, applying the
Borel–Cantelli lemma tosn, it is seen thatdl = o(

√
l ), w.p.1, and hence the left-

hand side of (6.1) iso(1/
√

l ) w.p.1. Then, bytl, τl ∈ (t0 − δ, t0 + δ),∣∣�∗
X,l(θ) − �∗

Xl
0,l

(θ)
∣∣ ≤ sup

|t−t0|<δ

∣∣�X,l(t) − �Xl
0,l

(t)
∣∣ = o

(
1/

√
l
)

(6.2)
w.p.1.

On the other hand, it is easy to see that for largel > 0 andn = �l�,

|�X,l(t) − �X,n(t)| ≤ 2M/l(6.3)
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for all t ∈ (t0 − δ, t0 + δ). In particular, lettingt = τn, τl leads to

|�∗
X,l(θ) − �∗

X,n(θ)| ≤ sup
|t−t0|<δ

∣∣�Xl
0,l

(t) − �Xl
0,l

(t)
∣∣ ≤ 2M/l.(6.4)

From (6.1)–(6.4), it is seen that (1.8) holds if we can show

zn = √
n

[
θ(τn − t0) − (

�X,n(τn) − �X,n(t0)
)] = o(1) w.p.1.

Sincezn = �∗
X,n(θ) − (θt0 − �X,n(t0)) ≥ 0, it is enough to prove lim supzn ≤ 0,

or equivalently,

lim inf
n→∞

√
n [�X,n(τn) − �X,n(t0) − θ(τn − t0)] ≥ 0.(6.5)

Becauseτn ∈ (t0 − δ, t0 + δ) and�X,n(t) is smooth, by Taylor’s expansion, for
somet∗ ∈ (t0 − δ, t0 + δ),

�X,n(t) − �X,n(t0) − θ(t − t0) = An(t − t0) + Bn,t∗(t − t0)
2

2
≥ − A2

n

2Bn,t∗
,

where

An = 1

n

∫ n

0
f

(
d(y,X)

)
et0f (d(y,X)) dy − θ,

Bn,t = 1

n

∫ n

0
f 2(

d(y,X)
)
etf (d(y,X)) dy > 0.

Becausef is bounded andX is ergodic, there exists a constantη > 0, such that
Bn,t > η for all largen andt ∈ (t0 − δ, t0 + δ). The random variables

Zn =
∫ n

n−1
f

(
d(y,X)

)
et0f (d(y,X)) dy

are bounded and form a stationary process such thatAn = 1
n

∑n
k=1 Zk − θ .

Since t0 maximizesθt − E[etf (d(0,X))], θ = E[f (d(0,X))et0f (d(0,X))] = EZn.
Let α(k) := sup{|P (F1 ∩ F2) − P (F1)P (F2)| :F1 ∈ σ(Zn,n ≤ m), F2 ∈ σ(Zn,

n > m + k), m ≥ 1}. We shall show
∑∞

k=1 α(k) < ∞, once this is done, it
follows that

√
nA2

n →0 almost surely (cf. [12], Theorem 2). Then the left-hand
side of (6.5) is bounded below by lim inf(−√

nA2
n/2η) = 0, which completes the

proof of (1.8).
Givenk ≥ 1, for anym ≥ 1, let

I = 1{X∩(m,m+k/3) 	=∅} and J = 1{X∩(m+2k/3,m+k) 	=∅}.

From the definition ofZn, it is seen that whenI = 1, for n ≤ m, Zn

only depends onXm+k/3
−∞ . Therefore, for any eventF1 ∈ σ(Zn,n ≤ m), F1 ∩

{I = 1} ∈ σ(Xm+k/3
−∞ ). Likewise, for any eventF2 ∈ σ(Zn,n > m + k), F2 ∩

{J = 1} ∈ σ(X∞
m+2k/3). Consequently, by the property of Poisson processes,

P (F1 ∩ F2, I = 1, J = 1) = P (F1, I = 1)P (F2, J = 1). BecauseX is stationary
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and has densityρ > 0,

0 ≤ P (F1 ∩ F2) − P (F1 ∩ F2, I = 1, J = 1)

≤ P {I = 0} + P {J = 0} = 2P {X ∩ [0, k/3) = ∅} = 2e−ρk/3

and similarly, 0≤ P (F1)P (F2) − P (F1, I = 1)P (F2, J = 1) ≤ 2e−ρk/3. There-
fore,|P (F1∩F2)−P (F1)P (F2)| ≤ 4e−ρk/3, leading to

∑
α(k) ≤ 4

∑
e−ρk/3< ∞.

By (6.1) and (6.3), in order to show (1.9), it is enough to demonstrate
√

n(θt0 −
�X,n(t0) − �∗(θ))

D→ N(0,4ρσ 2), or

1√
n

(∫ n

0
g

(
d(y,X)

)
dy − nν

)
D→ N(0,4ρσ 2),

whereν = E[g(d(0,X))]. Becaused(0,X) ∼ 1
2ρ

U , with U ∼ Exp(1),

ν = E

[
g

(
U

2ρ

)]
= 2ρE

[
G

(
U

2ρ

)]
.

For Xn
0 = {x1, . . . , xN }, with xi < xi+1, letting x0 = 0, xN+1 = n and I =∑N

i=0 G(
xi+1−xi

2 ),∫ n

0
g

(
d(y,X)

)
dy

=
∫ x1

0
g(y) dy + 2

N−1∑
i=1

∫ (xi+xi+1)/2

xi

g(y − xi) dy +
∫ n

xN

g(y − xN)dy

= 2I + G(x1) + G(n − xN) − 2G(x1/2) − 2G
(
(n − xN)/2

)
.

The last four terms areo(n−1/2), so it suffices to consider 2I . Given a specific
value ofN ,

(x1, x2, . . . , xN) ∼
(

nU0

(N + 1)�U ,
n(U0 + U1)

(N + 1)�U , . . . ,
n(U0 + U1 + · · · + UN)

(N + 1)�U
)
,

with U0, . . . ,UN i.i.d.∼ Exp(1), and �UN = 1
N+1

∑N
k=0Uk . So by Taylor’s

expansion,

I
D=

N∑
i=0

G

(
nUi

2(N + 1)�UN

)

=
N∑

i=0

G

(
Ui

2ρ

)
+

N∑
i=0

g

(
n(1− ξ)Ui

2(N + 1)�UN

+ ξUi

2(N + 1)�UN

)[
nρ

(N + 1)�UN

− 1
]
Ui

2ρ

=
N∑

i=0

G

(
Ui

2ρ

)
+ (N + 1)AN

[
nρ

(N + 1)�UN

− 1
]

=
N∑

i=0

[
G

(
Ui

2ρ

)
− AN

�UN

(Ui − 1)

]
+ AN

�UN

(nρ − N − 1),
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whereξ ∈ (0,1) and

AN = 1

N + 1

N∑
i=0

g

(
n(1− ξ)Ui

2(N + 1)�UN

+ ξUi

2(N + 1)�UN

)
Ui

2ρ
.

Therefore,

1√
n

(
I − nν

2

)
D= 1√

n

N∑
i=0

[
G

(
Ui

2ρ

)
− ν

2ρ
− AN

�UN

(Ui − 1)

]

+ N + 1− nρ√
n

(
ν

2ρ
− AN

�UN

)
.

As n→∞, (N + 1 − nρ)/
√

nρ
D→ N(0,1). And asm→∞, �Um

P→ 1, Am
P→

E[g( U
2ρ

) U
2ρ

] (becauseg is continuous). These combined with CLT then give (1.10).
�
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