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FAST SIMULATION OF NEW COINS FROM OLD

BY SERBAN NACU AND YUVAL PERES
University of California, Berkeley

Let S C (0,1). Given a known functiory : S — (0, 1), we consider the
problem of using independent tosses of a coin with probability of heads
(wherep € S is unknown) to simulate a coinith probability of headsf (p).

We prove that ifS is a closed interval and is real analytic ors, then f has

a fast simulation or§ (the number ofp-coin tosses needed has exponential
tails). Conversely, if a functiorf has a fast simulation on an open set, then it
is real analytic on that set.

1. Introduction. We consider the problem of using a coin with probability of
heads (p unknown) to simulate a coin with probability of heaflp), wheref is
some known function. By this we mean the following: we are allowed to toss the
original p-coin as many times as we want. We stop at some (almost surely) finite
stopping timeN, and depending on the outcomes of the fiVstosses, we declare
heads or tails. We want the probability of declaring a head to be exAcHly.

This problem goes back to von Neumann’s 1951 article [13], where he describes
an algorithm which simulates the constant functit¢p) = 1/2. It is natural to
ask whether this is possible for other functions, and in 1991 Asmussen raised the
guestion for the functiorf (p) = 2p, where itis known thap € (0, 1/2) (see [8]).
The same question was raised independently but later by Propp (see [10]).

In 1994, Keane and O’Brien [8] obtained a necessary and sufficient condition
for such a simulation to be possible. ConsiderS — [0, 1], whereS c (0, 1).
Then it is possible to simulate a coin with probability of hegdg) for all p € S
if and only if f is constant, orf is continuous and satisfies, for some 1,

(1) min(f(p),1— f(p)) =min(p,1—p)*  VpeS.

In particular, f(p) = 2p cannot be simulated oD, 1/2), since the inequal-
ity (1) cannot hold forp close to ¥2. However, if we are giver > 0, then an
algorithm exists to simulate gp2coin from tosses of @-coin for p € (0, 1/2—¢).

The methods in [8] do not provide any estimates on the numbef p-coin
tosses needed to simulate @np)-coin. The stopping timeV will typically be
unbounded, and for fast algorithms it should have rapidly decaying tails. For
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94 S.NACU AND Y. PERES

example, in von Neumann’s algorithm [13], the tail probabilities sat5fyN >
n) < (p?2+ (1— p)?»"/2 so they decay exponentially in

DEFINITION 1. A function f has afast simulation on S if there exists an
algorithm which simulatesf on S, and for anyp € S there exist constants
C >0, p < 1 (which may depend op) such that the numbe¥ of required inputs
satisfiesP,(N > n) < Cp".

REMARK. If Sis closed andf has a fast simulation o, then we can choose
constant<”, p not depending o € S. See Proposition 21 for a proof.

THEOREM 1. Foranye > 0,thefunction f(p) = 2p hasafast simulation on
[0,1/2—¢].

Building on this result, we prove:

THEOREM 2. If f:I — (0,1) is real analytic on the closed interval
I C (0, 1), then it has a fast simulation on 1. Conversely, if a function has a fast
simulation, then it isreal analytic on any open subset of its domain.

As the results stated above indicate, there is a correspondence between
properties of simulation algorithms and classes of functions. Table 1 summarizes
the results of [8, 10] and the present paper on this correspondence. For simplicity,
in this table we restrict attention to functior’s. S — T where S, T are closed
intervals in(0, 1). We do not know whether the one-sided arrows in the table can
be reversed.

We prove Theorem 1 in Sections 2 and 3. In Section 2 we show that simulating
f is equivalent to finding sequences of certain Bernstein polynomials which
approximate f from above and below. If the approximations are good, then
the simulations are fast. In Section 3 we use this to construct a fast simulation

TABLE 1

Simulation type Function class Ref.
Terminating a.s. & f continuous [8]

With finite expectation = f Lipshitz Proposition 23
With finite kth moment = feck Proposition 22

(and uniform tails)

Fast (with exponential tails) < f real analytic Theorem 2
Via pushdown automaton = f algebraic oveQ [10]

Via finite automaton & f rational overQ [10]

andf((0,1)) c (0, 1)
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for the function 2. We can do this because the Bernstein polynomials provide
exponentially convergent approximations for linear functions.

In Section 4 we prove the sufficient (constructive) part of Theorem 2. This
is done in several steps. First, once we have a fast simulation gorit2s
easy to construct fast simulations for polynomials. Using an auxiliary geometric
random variable, we also obtain fast simulations for functions which have a series
expansion around the origin. This proves Theorem 2 for real analytic functions that
extend to an analytic function on a disk centered at the origin. For a general real
analytic function, we use Md6bius maps of the fotay + b)/(cz + d) to map a
subset of their domain to the unit disk. Since we have fast simulations for Mdbius
maps, this leads to fast simulations for the original function.

In particular, Theorem 2 guarantees fast simulations for any rational fungtion
over any subset 0, 1) wheree < f <1 —¢. This generalizes a result from [10],
where the authors prove that any rational functign(0,1) — (0,1) has a
simulation by a finite automaton, which is fast.

In Section 5 we prove the necessary part of Theorem 2, and in Section 6 we
describe a very simple algorithm that gives a good approximate simulation for the
function 2p (the error decreases exponentially in the number of steps). In Section 7
we give a simple proof of the fact that any continuous function bounded away from
0 and 1 has a simulation. Finally, in Section 8 we mention some open problems.

2. Simulation as an approximation problem. In this section we show that
a function f can be simulated if and only if it can be approximated by certain
polynomials, both from below and from above, and the approximations converge
to f. Furthermore, the speed of convergence of the approximations determines the
speed of the simulation (i.e., the distribution of the number of coin tosses needed).

Let P, be the law of an infinite sequencé = (X1, X»,...) of i.i.d. coin
tosses with probability of heads By a slight abuse of notation, we also denote
by P, the induced law of the first tossesXy,..., X,, so for A C {0, 1}",

P,(A) =P,((X1,..., Xn) € A).

Fix n and consider the first tosses. Either the algorithm terminates after at
mostn inputs (and in that case, it outputs a 1 or a 0), or it needs morerthan
inputs. LetA, C {0, 1}" be the set of inputs where the algorithm terminates and
outputs 1, and leB,, be the set of inputs where either the algorithm terminates and
outputs 1, or needs more thannputs. Then clearly

P,(A,) < P,(algorithm outputs 1< P, (B,).

The middle term isf (p). Any sequence ifi0, 1} has probabilityp* (1 — p)*~,
wherek is the number of 1's in the sequence, so the lower and upper bounds are
polynomials of the formy_, cx p*(1 — p)*~*, with ¢, nonnegative integers. The
probability that the algorithm needs more thamputs isP,(B,) — P,(A,), so if

the polynomials are good approximations farthen the number of inputs needed
has small tails.
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It is less obvious that a converse also holds: given a funcgtiamd a sequence
of approximating polynomials with certain properties, there exists an algorithm
which generatey, so that the probabilities off,, and B,, as defined above are
given by the approximating polynomials. We prove this in the rest of this section.
In order to state our result in a compact form, we introduce the following.

DEFINITION 2. Letg(x,y),r(x,y) be homogeneous polynomials of equal
degree with real coefficients. If all coefficientsof- ¢ are nonnegative, then we
write ¢ < r. If in additiong # r, then we writeg < r.

This defines a partial order on the set of homogeneous polynomials of two
variables. Ifg < r, then clearlyg(x, y) < r(x, y) for all x, y > 0. The converse
does not hold; for exampley < x2 + y? for all x, y > 0, butxy £ x?+ y2.

PROPOSITION3. If there existsan algorithmwhich simulates a function f on
aset S C (0, 1), thenfor all n > 1 there exist polynomials

n n

gn(x,y)= Z (Z)a(n, k)xky"_k, hp(x,y) = Z (Z) b(n, k)xkyn_k

k=0 k=0
with the following properties:

() O<a(n,k)<b(n, k) <1.
(i) (;)a(n, k) and (})b(n, k) areintegers.
@iii) lim, g, (p,1—p)= f(p)=lim,h,(p,1—p)foral pes.
(iv) For all m <n, wehave (x + y)" ™™g, (x,y) < gu(x,y) and h,(x,y) <
x+ """ hp(x, y).

Conversely, if there exist such polynomials g, (x, y), h,(x, y) satisfying (i)—(iv),
then there exists an algorithmwhich simulates f on S, such that the number N of
inputs needed satisfiesP,(N > n) =h,(p,1—p) — g.(p,1— p).

PROOF = Suppose an algorithm exists, consider its firgiputs, and define
as aboveA, c {0,1}" to be the set of inputs where the algorithm outputs 1,
and B, C {0,1}" to be the set where the algorithm outputs 1 or needs more
thann inputs. We also partitiom,, = (J A, x and B, = |J B, x according to the
numberk of 1's in each word. Then every elementdn x or B, ; has probability
p*(1— p)"k, so if we define

a0 =14l [ (} ). bk =18,/ ().

then

gn(Pal_P)=Pp(An)7 hn(Pal_p)=Pp(Bn)-



FAST SIMULATION OF NEW COINS FROM OLD 97

Conditions (i) and (ii) are clearly satisfied, and (ii) also follows easily. As
discussed above, we hayg(p, 1 — p) < f(p) < h,(p,1— p) andP,(N > n) =
hy(p,1— p) — g.(p,1— p); since the algorithm terminates almost surely, the
difference must converge to 0. From the definitiondpf and B,,, it is clear that
gn(p,1— p)is anincreasing sequence, andp, 1 — p) is decreasing.

Condition (iv) must hold because of the structure of the sgtandB,,. Indeed,
let m < n and assuméXq, ..., X,,) € A,,. Then(X4,..., X,) € A,, whatever
valuesX,,+1, ..., X, take. To make this formal, faE c {0, 1}"" define

Tun(E)={(X1,.... X») €{0,1}": (X1, ..., Xn) € E}.

That is, 7, ,(E) is the set obtained by taking each elementAnand
adding at the end all possible combinations:of m zeroes and ones. Partition
Twn(E) =UTE ,(E), so that all words irf}% , (E) have exactly 1's. We have
Tm,n(Am) C AVH SOTn]i,n(Am) - An,k; SO

k
Ankl 2 118 A = 3 (7 ) A,

i=0
which is the same as

@ (1)atno=3 (4 70) (7 )t

this is equivalent t@,, (x, y) = (x + y)" g (x, ¥). A similar observation holds for
the setsB,, and this completes the proof of (iv).

< Given the numbersi(n, k), b(n, k) satisfying (i)—(iv), we shall define
inductively setsA,, = J Ak, Bn = U By With

Ak B 1Anel = (L )atibo. 1Buxl = () b0a. .

We also want the extra property thatnf < n, then T, ,(A,) C A, and
Tm.n(Bm) D B,. Then we can construct an algorithm simulatifigas follows:
at stepn, output 1 ifinA,,, output O if in BS, continue if inB,, — A,,.

We defineA1 o = {0} if a(1,0) =1, ando otherwise. We defind 1 1 = {1} if
a(1,1) =1, ando otherwise. Similarly forB1 o andB1, 1. Sincea (1, k) < b(1, k),
we haveA ; C B1 for k =0, 1. Condition (iv) guarantees that if

il = ("} )atny and (Byal = (7} ) b,

for all £, then

©) 75 w1 = () atniko = () b0 ) <175, (Bl
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Hence we can construct the sets, B,, from the sets4,,, B,, as follows. We
want to have

4 Tr (Am) C Api C Buy C T ,(By).

In view of (3), this can be done by simply choosing any total ordering of the set
of binary words of length with £ 1's. We build A, ; by starting witth’;n(Am)
and then adding elements Gfﬁvn(Bm) in increasing order until we obtain the
desired cardinality)a(n, k). Then we add})b(n, k) — (})a(n, k) extra elements
to obtain B, ;. Of course,A, = JA, x and B, = J B, k. It is immediate that
the sets thus defined have the desired properties, so the induction step fimm
n =m + 1 works and the proof is completeldJ

REMARK A. Condition (iv) in Proposition 3 implies that the sequence
(gn(p,1— p))n>1isincreasing, and the sequenég(p, 1 — p)),>1 is decreasing
(justsetx = p,y=1— p).

REMARK B. It is enough to define the number:, k) andb(n, k) whenn
takes values along an increasing subsequepgexc. Indeed, assume (iv) holds
for m = n;,n = n;11. Then just like above, we can construct the séis B,
from the setsA,,, B, so that (4) holds. Thus we can construct inductively the
setsA,,, B,,. The algorithm is allowed to stop only at somg if n; <n <n;41,
it just continues. This amounts to definidg = 7, ,(A,,), By, = Ty, 2 (By,) for
n; <n <n;4+1. In terms of the polynomials, this means

gn(x, )= +0"gn (x, ), ha(x,y) =+ y)" T hy(x, )
forn; <n <n;y1. This is the same as
an,k)y=(/nan—-L k-1 +QA—k/n)aln —1,k),
bn,k)y=(k/n)b(n — 1,k —1)+ (1 —k/n)b(n —1,k),

for n; < n < n;31 and all 0< k < n. In the next section we will use this for
the subsequence of powers ofi2,= 2. Note that it is enough to check (iv) for
m = n;,n = n;+1, because then the algorithm is well defined and (iv) must hold
for all m, n. Similarly, it is enough to check (iii) for = n;, because the sequences
(gn(p. 1= p))n=1and(h,(p,1— p)),>1 are monotone.

REMARK C. Finally, condition (ii) in Proposition 3 is not essential. Indeed,
suppose we find numbeis(n, k) and B(n, k) satisfying all conditions in the
proposition, except for (ii). Then if we define

& won=lann(@]/ (1) smo=lans (3)]/()
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conditions (i) and (ii) are trivially satisfied, and (iv) is satisfied because, for
arbitraryx; nonnegative reals ang nonnegative integers,

(6) LZCixiJ >y cilxil, {Zcixi—l <> cilxil.
Finally, (iii) still holds for p # 0, 1 because the error introducedgnandh,, is at
mostY"}_o2p* (1 — p)"~*, which is exponentially small.

3. Simulating linear functions. Lete > 0, and letf(p) = (2p) A (1 — 2¢).
Since we are only interested in smallwe also assume < 1/8. We will use
Proposition 3 to construct an algorithm which simulatesAs explained in
Remark B of the previous section, it is enough to defite k) andb(n, k) when
n is a power of 2. Then the compatibility equations in (iv) are equivalent to

™ an o (') zéam,n(’;)(kfi),
® bz (%) fgbm,a (")

These can be nicely expressed in terms of the hypergeometric distribution.

DEFINITION 3. We say a random variabl has hypergeometric distribution
H(2n,k,n) if

o me=()()/C)

We require < k < 2n. If we have an urn with 2 balls of whichk are red, and
we select a sample afballs uniformly without replacement, theéhis the number
of red balls in the sample.
In terms of the hypergeometric, the compatibility equations (7) and (8) become

(20) a(@n,k) > Ea(n, X),
(11) b(2n, k) < Eb(n, X).

We will need some properties of this distribution.

LEMMA 4. If X hasdistribution H(2n, k, n), then:

() E(X/n)=k/(2n).
(i) Var(X/n)=k2n —k)/(42n — Hn?) <1/(2n).
(i) 1fa>0,thenP(|X/n —k/(2n)| > a) < 2 exp—2a°n).
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Both (i) and (ii) are standard facts; (iii) is a standard large deviation estimate.
For a proof, see, for example, [7].

Finally, we need a way to find good approximations jarProposition 3(iii)
suggests we can use the Bernstein polynomials. We recall their definition and main
property. See [12], Chapter 1.4 for more details.

DEFINITION 4. For any functionf : [0, 1] - R and any integett > 0, thenth
Bernstein polynomial of is @, (x) = Yo f (k/n) ()xF (L — x)"~*.

PROPOSITIONS. If f iscontinuous, then Q,,(x) — f(x) uniformly on [0, 1].

If a function is linear on some interval, the Bernstein polynomials provide a
very good approximation to it; this suggests we could use them to construct a
fast algorithm for functions such ag(p) = (2p) A (1 — 2¢). To prove that the
compatibility equations (10), (11) hold, we will need the following.

LEMMA 6. Let X be hypergeometric with distribution H (2n, k, n) as defined
in(9),andlet f:[0, 1] — R be any function with | f| < 1. Then:
@) If f is Lipschitz, with |f(x) — f(y)| < Clx — y|, then |[Ef(X/n) —
f(k/(2n))| < C//2n.
(i) If fistwicedifferentiable, with | /| < C,then |Ef(X/n) — f(k/(2n))| <
C/(4n).
(i) If f is linear on a neighborhood of k/(2n), so f(t) = Ct + D if
|t —k/(@2n)| < a, then |Ef(X/n) — f(k/(2n))| < (2|C| + 4) exp(—2a?n).
ProoOF If (i) holds, then we get
[Ef(X/n) — f(k/(2m)| < E[f(X/n) — f(k/(@n)]
< CE|X/n —k/(2n)|
< C(E|X/n —k/(2n)D)Y?
= CVar(X/mY?<c/von.
If (ii) holds, then Taylor’s expansion fof gives
|f(X/n) = f(k/2m) = (X/n —k/@m)) f'(k/ (20))
< (1/2)(X/n — k/(2n))*sup| £
andE(X/n — k/(2n)) f'(k/(2n)) =0, SO
[Ef(X/n) — f(k/(2n))|
= [E(f(X/n) = f(k/2m) = (X/n = k/@2m)) f'(k/(2n)))]
< (C/2E(X/n — k/(2n))?
= (C/2)Var(X/n) < C/(4n).
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If (iii) holds, then letg(r) = f(r) — Ct — D. We haveg = 0 on [k/(2n) —
a,k/(2n) +al and|g(t) — g < [f (1) — f)I+Cllt —s| <2+ |C| Vi,s €
[0, 1]. Hence

|Ef(X/n) — f(k/(2n))]
= |Eg(X/n) — g(k/(2n))|
<Elg(X/n) — g(k/@n))|
=E|g(X/n) — g(k/(2m)| 11X /n—k/2n|>a
< @+ICDHP(IX/n —k/(2n)| > a)
<2(2+|C)) exp(—2a°n).
This completes the proof of the lemmal]

If we specialize the lemmatd(p) = (2p) A (1 — 2¢), which is Lipschitz with
C = 2 and also piecewise linear, we obtain:

PrROPOSITION 7. Let f(p) = 2p) A (L — 2¢), where ¢ < 1/2. For X
satisfying (9), we have:

() IEf(X/n)— flk/(2n)| <~2//n ¥k, n,
(i) |Ef(X/n)— f(k/(2n))| < 8exg—2¢2n) if k/(2n) < 1/2 — 2.

Now we are ready to construct the algorithm. We start by defining numbers
a(n, k), B(n, k) which satisfy assumptions (i), (iii) and (iv) in Proposition 3 [but
not (ii)]. First we prove the compatibility equations (10) and (11):

LEMMA 8. Define
(12) an, k)= fk/n)=(2k/n) A (1—2¢).
Thenfor X satisfying (9), «(2n, k) > Ea(n, X).

PROOF This follows from Jensen’s inequality, singeis concave. [

The upper bound is more complicated. We would ligé:, k) to be close
to a(n,k), so that the algorithm is fast. Ideally, the difference should be
exponentially small. This cannot be done over the whole intgfdl], since the
Bernstein polynomials do not approximagewell near 32 — ¢, where it is not
linear. To account for this, we also need a term of ordey/d, to be added if
k/n > 1/2 — 3¢. Finally, to control the speed of the algorithm for smallwe also
wantg(n, k) anda (n, k) to be in fact equal ik /» is small.

To achieve this, consider the following auxiliary functions:

ri(p)=Ci(p— (1/2—3¢)),,  ra(p)=Ca(p —1/9).
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The positive constant§; andC> will be determined later. Both functions are
constant, equal to zero farbelow a certain threshold, and increase linearly above
the threshold. They are continuous and convex.

LEMMA 9. Define
(13) B(n, k) = f(k/n) +ri(k/n)v/2/n + ra(k/n) exp(—2¢2n).
If ¢ <1/8and X satisfies (9), then 8(2n, k) <EB(n, X) Vk,n.

PROOF This amounts to proving
f(k/@n) —Ef(X/n)
< Eri(X/n)v/2/n —ri(k/(2n))/~/2/(2n)
+ Era(X/n) exp(—2s2n) — ra(k/(2n)) exp(—4e?n).

Sincery andrp are convexz1(k/(2n)) < Er1(X/n) andra(k/(2n)) < Era(X/n),
so it is enough to show

| f(k/(2n)) —Ef(X/n)]
<ri(k/(2n))(1 = 1/v/2)v/2/n
+ ra(k/(2n)) exp(—2e%n) (1 — exp(—2¢2n)).

If k/2n <1/8,thenX/n <k/n<1/4<1/2—¢,s0 f(X/n) =2X/n for all
values ofX, so the left-hand side is in fact zero and the inequality holds.

If 1/8 <k/(2n) < 1/2 — 2¢, then we use the second part of Proposition 7 (the
large deviation result). Thus, it suffices to show that

8 < ra(k/(2n))(1 — exp(—2¢%n)).
Butra(k/(2n)) > C2(1/8 — 1/9) = C2/72, so it is enough to choose
Cy=T72(1—exp(—262) ",

If k/2n > 1/2 — 2¢, we use the first part of Proposition 7. It is enough then to
show that 1< r1(k/(2n))(1 — 1/+/2). But ri(k/(2n)) > C1¢, SO it is enough to
chooseCy = ¢~1(1— 1/+4/2)~L. This completes the proof of the lemma]

We can now restate and prove:

THEOREM 1. For ¢ € (0,1/8), the function f(p) =2p A (1 — 2¢) has a
simulation on [0, 1], so that the number of inputs needed, N, satisfies P,(N >
n) < Cp", foraln>1and pe[0,1/2— 4e]. The constants C and p depend on
g butnoton p,and p < 1.
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PrROOF We use Proposition 3. First we prove that tefz, k) and B8(n, k)
defined in (12) and (13) and

n n

gn(x, ) =) <Z> an, k)xky =k, ha(x,y) =Y (Z) Bn k)x*y" ¥,

k=0 k=0

conditions (i), (i) and (iv) are satisfied for the subsequengce= 2'. We have
already proven (iv), and as discussed in the previous section, this implies that
gn(p,1 — p) is increasing andi,(p,1 — p) is decreasing. By Proposition 5,
the Bernstein polynomialg, (p, 1 — p) converge tof. Clearly, h,(p,1— p) —
gn(p,1— p) <sup(B(n,k) —a(n,k)) - 0 asn — oo, SO h,(p,1— p) also
converges tof and we have proven (iii). Condition (i) clearly holds ferarge
enough.

The remaining condition (ii) does not hold fetn, k), B(n, k), but as discussed
in the previous section, we can get around this by defining

oo snir=[an (1)} (7). mnr=[onn (5)]/ (),

Note that fork/n < 1/9, we havex(n, k) = B(n, k) = 2k/n So a(n,k)(Z) =
2(}77) is an integer, whence(n, k) = b(n, k).

The sequenceas(n, k), b(n, k) satisfy conditions (i)—(iv), and the tail probabil-
itiesP,(N > n) =h,(p,1— p) — g.(p, 1 — p) satisfy

n n
Pp(N = m) = Y (Bn ) —atn ) () A= pr 4+ 3 29— pr
k=0 k=n/9
(15)
. n k —k —2¢2n 2pn/9
<Cv2/n Y (k)p (L= p)' ™+ Coe™ 7+ .
k=n/2—3en -p
The second term in (15) decays exponentially, and so does the third (we can use
4.2-"/9 as an upper bound). For the first term, ignore the square root factor and
look at the sum; it is equal tB(Y/n > 1/2 — 3¢), whereY has binomial(n, p)
distribution. Sincep < 1/2 — 4¢, a standard large deviation estimate (see [7])
guarantees that the first term in (15) is bounded above by-&@n), so it also
decays exponentially in.
Thus we do hav®,(N > n) < Cp" if n is a power of 2. For general, write
2% < < 281, ThenP,(N > n) < P,(N > 2¢) < Cp? < C(pY/?)". The proofis
complete. OJ

REMARK. Most of the proof works for a general linear functigiip) =
(ap) A (1—ae), for anya > 0. For integer the whole proof works (with different
constants). Ifa is not an integer, then the only problem comes from rounding
the coefficients; the rounding error introduced is bounde® By, Pk — pyik,



104 S.NACU AND Y. PERES

which still decays exponentially, but the rate of decay approaches % as
approaches 0. In the next section we deduce a slightly weaker version of the result
for generak as a consequence of the case 2.

Proposition 3 ad Lemma 6 can also be used to aibtsimulations for more
general functions. The simulations are no longer guaranteed to be fast, but we do
obtainsome bounds for the tails oiV:

PROPOSITION10. Assume f satisfiese < f <1 — ¢ on (0, 1). Then:

(i) If f is Lipschitz then it can be simulated with P, (N > n) < D//n for
some uniform D > 0.

(i) If fistwicedifferentiable, thenit can besimulated withP,,(N > n) < D/n
for some uniform D > 0.

REMARK. Neither of these conditions guarantees tNahas finite expecta-
tion, though we do believe that this should be possible to achieve, at least for
functions.

PROOF OF PROPOSITION 10. As in the proof of Theorem 1, it is enough
to define numbera (n, k), B(n, k) which satisfy assumptions (i), (iii) and (iv) in
Proposition 3; assumption (ii) can then be achieved by rounding as described in
Remark C. We set

a(n, k) = f(k/n) =8y, Bn, k) = f(k/n)+bn,

with §, — 0. Then (i) holds as soon &g < ¢ and (iii) holds becausg,(p, 1 —

p) = 0,(p) — 8,, hy(p,1 — p) = O, (p) + 8,, where Q, are the Bernstein
polynomials. It remains to check (iv), and as in the proof of Theorem 1, it is enough
to do it form, n powers of 2, which amounts to checking that for hypergeometric
X satisfying (9), we have(2n, k) > Ea(n, X) andB(2n,k) < EB(n, X). From
Lemma 6,

a(2n, k) —Ea(n, X)>68, — 82— C/~v2n
if f is Lipschitz with constan€, and
a(2n, k) — Ea(n, X) > 6§, — 82, — C/(4n)

if f is twice differentiable andf”| < C. The exact same inequalities hold for

EB(n, X) — B(2n, k). Hence we can choos$g = (1+ ﬁ)C/ﬁ in the Lipschitz

case, and,, = C/(2n) in the twice differentiable case, and the proof is complete.
O
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4. Fast simulation for other functions. We start with some facts about
random variables with exponential tails.

PrROPOSITION11l. Let X > 0 be a random variable. Then the following are
equivalent:

(i) Thereexist constantsC > 0, p < 1suchthat P(X > x) < Cp* Vx > 0.
(i) Eexp(rX) < oo for somer > 0.

If these hold, we say X has exponential tails.
PrROOF Straightforward. O

PROPOSITION12. Let X; > 0bei.i.d. with exponential tails, andlet N > 0 be
an integer-valued randomvariable with exponential tails. ThenY = X1 +-- -+ Xy
has exponential tails.

PrROOF Taker > 0 such thaE exp(rX1) < oo. Then we can find > 0 such
thatp = Eexp(t(X1 —k)) < 1. LetS,=3""_4X;. Then

P(Sy > kn) <P(N > n) + P(S,, > kn).

The first term on the right-hand side decreases exponentially fast. To evaluate
the second term, we use a standard large deviation estimate,

P(S, > kn) < exp(—tkn)E exp(tS,) = (Eexp(t(X1—k)))" = p",

so the second term also decreases exponentially fast and we are done.
REMARK. We do not assume that is independent from th&;’s.

PrRopPoOsSITION13. Constant functions f(p) = ¢ € [0, 1] have a fast simula-
tionon (0, 1).

PROOFE For f(p) =1/2, we can use von Neumann'’s trick: toss coins in pairs,
until we obtain 10 or 01; in the first case output 1, otherwise output O (if we obtain
11 or 00, we toss again). We neelN 20sses, wher@/ has geometric distribution
with parametep? + (1 — p)2; this clearly has exponential tails (unlgsss 0 or 1).

For any other constant write it in base 2c = Y",2 1 ¢,27" with ¢, € {0, 1},
generate fair coins using von Neumann'’s trick, and toss them until we get a 1.
Outputcys, where M is the number of fair coin tosses. This scheme generates
f(p) =c,and requiresX1 + - -- + X»; p-coin tosses, wher#; is the number of
p-coin tosses needed to generate #thefair coin. All X; have exponential tails
and so doed/, so Proposition 12 completes the proof. Note that the rate of decay
of the tails depends op but not onc; this will be used below. [
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ProrPoOsSITION14. LetS,T c |0, 1].

() If f,g have fast ssimulations on S, then the product f - ¢ has a fast

simulation on S.

(ii) If f hasa fast simulation on 7 and g has a fast simulation on S, where
g(S) C T, then f o g hasafast smulationon S.

(iii) If f, g havefast simulationson S and f + g <1—¢ on S for somee > 0O,
then f + g hasafast simulationon S.

(iv) If f, g havefast smulationson S and f — g > ¢ on S for somee > 0, then
f — g hasafast simulation on S.

PROOF (i) Let Ny, N, be the number of inputs needed to simulate each
function. We simulatef and g separately; if both algorithms output 1, we also
output 1; otherwise, we output 0. This simulatgés g using Ny + N, inputs,
which has exponential tails by Proposition 12.

(i) We simulateg using its algorithm, then feed the results to the algorithm
for f. We needX; + --- + Xy, inputs, whereX; are i.i.d. with the same
distribution asV,. This has exponential tails by Proposition 12.

(iii) We write f + g ="h oy, whereh(p) =2p andy(p) = (f(p) + 8(p))/2.

We proved in the previous section thiahas a fast simulation o, (1 —¢)/2]. To
simulateyr, we simulatef andg separately to obtain binary variabl8g andB,,
then toss afair coin; if the coin is heads, we outBuyt otherwise we outpuB,. So
¥ can be simulated usiny s + N, + N inputs, whereV is the number of inputs
needed to simulate a fair coin. Hengealso has a fast simulation, so (iii) follows
from (ii).

(iv) Clearly f has a (fast) simulation iff + f has one, so we can look at
1-(f—g)=0A-f)+ g <1—¢. The conclusion then follows from (iii). O

ProPOSITION15. Ifa > 0,¢ > 0, thefunction f hasafast simulation on S,
andaf(p) <1—ceonS,thena- f hasafast smulationon S.

PrROOF By Theorem 1, 2 has a fast simulation of0,1/2 — ¢). By the
composition rule Raposition 14(ii), 2 p has a fast simulation ofD, 1/2" — ¢).
For generala > 0, find n with a < 2" and writeap = 2"(a/2")p. We know
multiplication by Z has a fast simulation; so does multiplicationd2", because
constants smaller than 1 have a fast simulation. Hence their compasitioas a
fast simulation ori0, 1/a — ¢). We apply the compositiorule Proposition 14(ii)
again to complete the proofd

PROPOSITION16. Let f(p) =), ganp" Witha, > 0forall n. Letz € (0, 1]
suchthat f(r) < 1. Then f hasafast simulationon [0, r — 2¢], Ve > 0.
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PROOF Write
& = mf( P \"(t—e\"¢
D=3 () (55) s

Since the termg(r — ¢)/t)"(¢/t) are the probabilities of a geometric distri-
bution, we can generate dn/t) f (p)-coin as follows. First we obtaiv with
geometric distribution, s®,(N =n) = ((t — )/t)"(¢/t). Then we generat®/
i.i.d. p/(t — e)-coins (by Proposition 15, this can be done by a fast simulation),
and we generate ongyt" -coin [sincef (1) < 1, ayt" < 1]. Finally, we multiply
the N + 1 outputs as in Proposition 14(i).

The number of coin tosses we needXis+ Y1 + --- + Yy + Z, whereX is
the number of tosses required to obtainY; is the number of tosses required to
generate théth p/(r — ¢)-coin, andZ is the number of tosses required to generate
one (constantyy" -coin. ¥; have exponential tails by Proposition 15, afidas
exponential tails (whose rate of decay does not depend on the valyg by
Proposition 13.

The way we obtainV is we toss(r — ¢)/z-coins until we obtain a zero; hence
X can itself be written aX = W1 + --- + Wy, whereW; is the number of tosses
required to generate a constémnt ¢)/¢-coin. Hence by Proposition 12/1) f (p)
has a fast simulation.

Finally, f = (t/e)(¢/t) f has a fast simulath by Propogion 15. [

PROPOSITION 17. Let f(p) = Y o2ga,p" have a series expansion with
arbitrary coefficients a,, € R and radius of convergence R > 0. Let ¢ > 0 and
Sc (0,1 sothate < f <1—eonS,andsupS < R. Then f hasafast simulation
ons.

PROOF Separating the positive and negative coefficients, we can wirite
g — h whereg, h are analytic with radius of convergence at le&stand have
nonnegative coefficients. They must also be bounged:M andh < M, with
M =32 olayl(supS)” < oco. Theng/(2M), h/(2M) must have fast simulations
on S by Propositimm 16, so by Proposition 14, so doe&f2g/(2M) — h/(2M)).
O

PROPOSITION18. If f, g havefast ssimulationson S, are both bounded on S,
g>¢eonS,and f/g <1—¢onS for somee > 0,then f/g hasa fast smulation
onS.

PROOF LetM =supg. LetC € (0,1) andh(p) =C/(1— p) => o2, Cp".
By Proposition 16, this has a fast simulation h1 — C — ¢/(4M)). We can
replace 1—- p with p by switching heads and tails; heng¢€p) = C/p has a fast
simulation on(C + ¢/(4M), 1). SetC = ¢/(4M). Theny has a fast simulation
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on (¢/(2M), 1) and so doeg/(2M) € (¢/(2M), 1), soy o g = ¢/(2g) has a
fast simulation onS. So does the product - (v o g) = (¢/2)(f/g), and by
Proposition 15 so doeg/g, since we know it is bounded above by-k. O

THEOREM19. Let f beareal analytic function on a closed interval [a, b] C
(0, 1), so f isanalytic on a domain D containing [a, b], and assumethat f(x)
(0,1) for all x € [a, b]. Then f hasafast simulation on [a, b].

ProOOF If D is the open disk of radius 1 centered at the origin, then
has a series expansion with radius of convergence 1 and the result follows from
Proposition 17. For a generd), the idea of the proof is to map one of its
subdomains to the unit disk, using a map which has a fast simulation. See Figure 1.

Using a standard compactness argument, it is easy to show we can find a domain
E so that[a,b] C E C D and E is the intersection of two large open disks of
equal radius. The centers of both disks are on the ling)Re (a + b)/2, located
symmetrically above and below the real axis. The boundaries of the disks intersect
on the real axis at the poinés— ¢ andb + ¢ for some smalt > 0. If we make the
radius of the disks large enough, we may assume that the angle between the disks
is 7w /n for some large integer.

We shall use a Mobius map of the fortpz + ¢)/(rz + s) to map those disks
into half-planes. Fix > 0. The map

C _ C
z—(@—1t) Bb+t)—(a—1)

maps the boundaries of the disks into lines going through the origin, so it Eheps
the domain between those two lines contained in the positive half-plaizge R®.
The angle between the two linesign, so the mag’] mapskE to the positive half-
plane.

(16) 21(z) =

gib) & (a)

Fic.1. Themap g;.
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The mapga(z) =1 — 2/(1+ z) maps the positive half-plane to the unit disk,
S0g2 o g% mapsE to the unit disk. Hence o (g%) 1o (g2)~1 is real analytic on
the unit disk (it is easy to check that the inversegpfindg, are analytic on their
respective domains), so it has a fast simulation on any closed interval contained in
(0, 1). It remains to check that, o g mapsia, b] to such an interval, and that it
has a fast simulation. Then it follows from Proposition 14(i) tiialso has a fast
simulation.

For sufficiently largec, the function g1 maps the intervalla, b] to the
interval [g1(b), g1(a)] where 1< g1(b). Hence Yg1 maps[a, b] to some closed
subinterval of(0, 1), and by Proposition 18 it has a fast simulation (as the ratio
of two linear functions). Clearly, so doeggl. Finally, we can writeg, o g] =
g30(1/g}), wherega(z) = g2(1/z) =1 — (22)/(1 + z) also has a fast simulation,
by the same Proposition 18. This completes the proaf.

5. Necessary conditionsfor fast ssmulations.

PrROPOSITION20. Assume f hasa fast simulation on an open set S C (0, 1).
Then f isreal analyticon S.

PrROOF Consider a fast algorithm, fig and let f,,(p) be the probability that
it outputs 1 after exactly steps. Thery =3~ f, and

0<f(p—-)Y_ filp= Y. filp)<Co" V¥n=0
i=1

i=n+1

for some constant€ > 0, p < 1. Pick anyB with 1 < B < 1/p. Since f,, are
polynomials, f,, (z) is well defined for any complex. We shall prove below that
we can finde > 0 so that for any complexand positive integet,

(17) | fn(2)] < B" fu(p) if |z—pl<e.

Then for anyn > n andz € B(p, ¢) (the open ball with centey and radius), we
have

< Y 1@< Y B'fi(p)

i=n+1 i=n+1

> fi@

i=n+1

o0
< Y. B'Cp'""t=(Bp)"BC/(1- Bp).
i=n+1
Hence the sequend@_"_, fi} is Cauchy onB(p, ¢), so it converges uniformly

on B(p, ¢) to a limit which is analytic by a standard theorem (see [1], page 176,
Theorem 1). Hencg is real analytic.
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To prove (17), note thaf, can be written as/, (z) = Y 7_ganxz* (1 — z)"*
with a, x > 0. Since|z — p| <¢e, we havelzl| < p+eand|l—z|<1—p+e.
Chooses sop +e < Bpand 1— p+¢ < B(1— p). Then

1KA—2)" M <(p+e)fA-p+e)F < B pcA—p)*
and

n n n
Y ani =2 <> il A= 2" < B anipt @ - p)tF
k=0 k=0 k=0

as desired. O

ProPOSITION21. Assume S C [0, 1] isclosed and f has a fast simulation
on S. Then the number of inputs N has uniformly bounded tails: there exist
constants C, p which do not dependon p, soP,(N >n) <Cp", VpeSS.

PROOF Letg,(p) =P,(N >n). Just as in Proposition 2@, can be written
asg,(z) = Y i ganxz"(L — z)"~* with a, x > 0, so for anyp € (0, 1) andB > 1
we can finds > 0 so

(18) 182 (2)| < B"gn(p) if ]z—pl<e.

Foranyp € SN (0, 1) we haveg, (p) < C)p}, for someC), > 0, p,, < 1. Setting

B= p;l/z in (18), we obtain that there exists > 0 so

/2

gn(2) < Cppl, ifze(p—ep,pt+ep).

The intervals(p — ¢, p + ¢,,) coverS. Sinces is closed, it is compact, so we
can find a finite subcovep; — ¢,,, pi +¢),,), 1 <i < N. Then we can set
C =maxC,,, p =maxpy/%. O
REMARK. This also shows that if a function has a simulation on some
S C (0, 1), then the set op where the simulation is fast is opensn

PROPOSITION 22. Assume f has a simulation on an open set S C (0, 1),
such that the number of inputs needed N has finite kth moment on §, and
furthermore the tails of the moments decrease uniformly: lim,,_, « E,,Nkjl(N >
n) = 0 uniformly in p € S. Then f € C*(S) (i.e., f has k continuous derivatives
on S).

PROOF Let f, be defined as in Proposition 20. Singe= Y72, f,, it is
enough to prove that the serigs’> ; f,,(k) converges uniformly or§. We shall

prove thaﬂf,,(k)| < Cn* f, for a uniform constan€. Then

00 o0
£91< N cnkf, = CE,NI(N > m — 1)
n p
n=m

n=m
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converges to zero uniformly as — oo, so the series is Cauchy and we are done.
To prove the required inequality, recall that(p) = 3" ga,.ip (1 — p)*~" with

a,; > 0. Write [i]; =i(i —1)---(i — j + 1). From Leibniz’s formula for the
derivative of a product,

(P @—p)—)P| =

i( )(p YD (= pyr=iy &=

k
> (4 )ti1sp T = ity - py D -t

j=0

k
<Y &Hn*p'(d—p)"~'/min(p, 1— p)*
=0

S anpi (1 _ p)n—i
for C = k(k!)/inf,cpmin(g, 1 — ¢)*, where the inf is taken over some small
neighborhood of p. It follows that| £,*'| < Crk £, onS. O

PROPOSITION23. Assume f hasasimulationonaclosedinterval I c (0, 1),
such that the number of inputs needed N has sup,¢; E,(N) < co. Then f is
Lipschitzover 1.

PROOF We are given thaE,N = > ° 1nf,, < C < 00. Sincel is closed,
I C (e,1—¢) for somee. As |n the previous proposition, we obtajif;| <
nfx/mine, 1 —¢). Hence| Y-7_; f/| < C/min(e, 1 —¢) so

Y filp) =D fil@| <Ip—qlC/min(e, 1 —¢).
i=1

i=1
Lettingn — oo completes the proof. [

6. An approximate algorithm for doubling. The methods described in the
previous sections are essentially constructive. Proposition 3 gives a recipe for
constructing an algorithm, given an approximation; all that is needed is an ordering
of all binary words of lengtlx with k£ 1's.

In the particular case of the functiofi(p) = 2p, there exists an extremely
simple algorithm. It also works for any € (0, 1/2); there is no need to bound
the function away from 1. The catch is that it is approximate: it outputs 1
with probability very close to g, with the error decaying exponentially in the
number of steps. This must be, of course; the Keane—O’Brien results show that we
could not have amxact algorithm with these properties. However, in practice, an
approximate result may suffice.
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PROPOSITION24. Let p < 1/2 and consider an asymmetric simple random
walk S, = X1+ - + X, With P, (X; =1) = p=1—P,(X; = —1). Let A, be
the event that max(S, ..., S,) > 0. Then P,(A,) = Y}_o(2k/n A D)(}) pF (1 —
)" * = 0,(p), where Q, isthenth Bernstein polynomial of the function f(p) =
2p A L.

PrROOF We need to show that the number of paths wifiositive steps among
the firstn steps, and mas$i, ..., S,) >0, is (2k/n A 1)(}). Fork > n/2, this is
obvious. Fok < n/2, (2k/n)(}) = 2(}_1) and the result follows from the reflection
principle (see, e.g., [3], page 197)J

Since f is piecewise linear, its Bernstein polynomials converge to it exponen-
tially fast (except ap = 1/2), so we obtain the following.

ALGORITHM. Run an asymmetric simple random walk= X1 + --- + X,,,
with P,(X; =1) = p =1 - P,(X; = —1) for at mostn steps. If the walk ever
reaches nonnegative territor§;(> 0 for some 1< k < n), output 1. Otherwise,
stop aftem steps, output O.

A standard large deviation estimate (see [7]) shows thgb & 1/2, the
probability of outputting 1 is 2 — ¢, where 0< & < 2exp—2n(1/2 — p)?).
See [5] for another construction of an approximate doubling algorithm.

7. Continuous functions revisited. In this section we use Proposition 3 to
simulate any continuous functigfithat satisfies < f <1— ¢ on (0, 1) for some
¢ > 0. Our proof is simpler than the original proof of [8]. However, their argument
is more general since it does not assume fhetbounded away from 0 and 1. We
will use the following theorem of Pdlya:

THEOREM 25. Let g(x, y) be a homogeneous polynomial with real coeffi-
cientssatisfying ¢ (x, y) > 0,Vx > 0, y > 0. Then for some honnegative integer »,
all coefficients of (x 4+ y)"¢(x, y) are nonnegative.

See [6], pages 57-59, for a proof. This clarifies the connection between the
partial order=< in Definition 2 and the pointwise partial order. It says that if
qg(x,y) <r(x,y) forall x,y >0, then(x + y)"q(x,y) < (x + y)'r(x,y) for
somen.

THEOREM 26 ([8]). Let ¢ > 0 and suppose that f:(0,1) — [e,1 — &] is
continuous. Then f admits a terminating simulation.
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PROOF. Let i satisfy 27 < ¢/4. By Proposition 5, we can approximate
f —3-27" by a Bernstein polynomiaj,,, of sufficiently high degreen; with
error smaller than2. More precisely,
m; . .
a0 =3 (")) (7 G/ = 3277 )by
k=0
will satisfy f(p) —4-27" < gu.(p,1—p) < f(p)—2-27" forall p € (0, 1).
The sequencg,,, (p, 1 — p) is increasing in, so

Gm; (X, y)(x + )" < gy, (x,y) Y,y >0.
By Theorem 25,

Gm; (%, Y)Y (x 4 )T < g, ) (x4 )

for some integes; > 0. Thus if we definez; = m1 and more generally;; =
m; + (s1+ --- + s;_1), then the homogeneous polynomials

—m;

8n; (X, ) =g, (x, y)(x + )"

satisfy conditions (i), (iii) and (iv) in Proposition 3 along the subsequdngce
Condition (ii) is easily obtained by th@unding process described in Remark C.
By Remark B, once we havg, for the subsequence= n;, we can define it for
all n. A similar construction can be used to define approximations from abave
(In fact, these approximations will require another sequésj¢enalogous tds; }
above, and for consistency we need to use {max} in both approximations.)
Hence by Proposition 3f has a terminating simulation algorithm(J

8. Open problems. Theorem 2 does not settle the issue of what happens
near 0 and 1, or on the boundary of the domain of analyticity of a function. An
interesting example is the square root functjoip) = ,/p. Our methods provide
fast simulations on any intervéd, 1], butif p is allowed to take any value i, 1),
the best result we are aware of is the one in [10], where the authors construct a
simulation using a random walk on a ladder graph. Estimates for the tails of the
number of inputs needel are then given by return probabilities for a simple
random walk, sd®,(N > n) decays liken=1/2, We do not know whether one can
do better.

QUESTION1. Isthere an algorithm that simulatg® on (0, 1), for which the
number of inputs needed has finite expectation fopall

REMARK. Entropy considerations (see [2], page 43) imply that if an algorithm
as in Question 1 exists, then the expectation of the number of inputs cannot
be uniformly bounded on(0,1). Indeed, this expectation must be at least

H(/p)/H(p), where H(p) = —plog(p) — (1 — p)log(1 — p) is the entropy
function.
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QUESTION 2. LetJ c (0,1) be a closed interval and lgt: J — (0, 1) be
continuous. Suppose that we have a simulation algorithm that takes as input a
sequencéX;} of i.i.d. p-coins and produces a sequence of i.fdp)-coins. The
rate of the algorithm (when it exists) is defined to be the limitias> oo of 1/n
times the expected number ¢f(p) coins produced from the first inputs. The
rate can never exceed the entropy rdiiop)/H (f (p)); see [2]. Given/ and f,
are there simulation algorithms with rates arbitrarily close to the entropy ratio,
uniformly for all p € J?

A positive answer is known for constait for f(p) = 1/2 variants of the von
Neumann scheme (see [4, 11]) will do, and other constants follow from combining
these with [9]. However, for nonconstafifexcept the identity ang (p) = 1— p]
the situation is unclear; a good example to pondgf(is) = p2.

We would also like to know whether Proposition 22 can be improved.

QUESTION 3. Is it true (possibly subject to some technical conditions) that a
function has a simulation where the number of inputs has uniformly boukttied
moment, if and only if it hag continuous derivatives?

Acknowledgments. We are grateful to Jim Propp for suggesting the simula-
tion problem to us, and to Omer Angel and Elchanan Mossel for helpful discus-
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