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Physical notions of stochastic resonance for potential diffusions in
periodically changing double-well potentials such as the spectral power
amplification have proved to be defective. They are not robust for the
passage to their effective dynamics: continuous-time finite-state Markov
chains describing the roudgbatures of transitions b&een different domains
of attraction of metastable points. In the framework of one-dimensional
diffusions moving in periodically changing double-well potentials we design
a new notion of stochastic resonance which refines Freidlin’s concept of
quasi-periodic motin. It is based on exact exponential rates for the transition
probabilities between the domains of attraction which are robust with respect
to the reduced Markov chains. The quality of periodic tuning is measured
by the probability for transition during fixed time windows depending on a
time scale parameter. Maximizing it in this parameter produces the stochastic
resonance points.

0. Introduction. One of the simplest and earliest stochastic climate models
goes back to [1] and [17]. It intends to give a qualitative explanation of glacial
cycles and is based on a deterministic differential equation for the global mean
temperature expressed through a balance between the albedo-driven absorbed
and the black-body type emitted radiative energies. A periodic exterior forcing
comes from the slowly fluctuating solar constant and is due to Milankovich
cycles caused by the gravitation of big planets. Only the addition of a stochastic
term as a second forcing makes spontaneous transitions between the otherwise
isolatedmetastable statesef temperature possible. The resulting stochastically
and periodically perturbed differential equation was capable of describing at least
one characteristic aspect of experience: the typically short and abanpttions
observed before by Kramers [14] in reaction-diffusion phenomena. The model
was soon strongly disputed. Despite its lack of realistic assumptions, the concepts
underlying the model brought to light the phenomenorstothastic resonance
Roughly speaking, a periodic (input) system subject to random perturbations is in
stochastic resonance, if the noise intensity is tuned in such a way that the random
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periodic output is optimal. A very lively research field developed around this
concept, drawing numerous examples from a wide spectrum of areas (see [9, 10]
for a survey).

The mathematically precise understanding of the phenomenon is still under
discussion at the time this paper is written. The first approach is done in [7],
where the deep large deviations’ theory of [8] is employed to produce a notion
of stochastic resonance explaining the phenomenon in the small noise limit as
approximating the periodic hopping between the energetically most favorable
states in the landscape provided by a periodically weakly perturbed potential with
finitely many local minima. In this sense stochastic resonance can be understood
as the ability of the system to undergo quasi-periodic motion in the limit of
small noise intensity. Let us briefly recall this interpretation more precisely. If
noise intensity is, in the absence of periodic exterior forcing, the exponential
order of times at which successive transitions between metasable states occur
corresponds to the work to be done against the potential gradient to leave a
well. This fact, heuristically derived by Kramers and Eyridgdmers time), is
shown with mathematical accuracy in [8]. The attractor basins are subdivided into
a hierarchy of cycles with main states corresponding to the deepest among the
cycle states. In the presence of periodic forcing with period time g¢afein the
limit ¢ — O transitions between (the main states of) cycles with critical hopping
work close tou will be periodically observed. Transitions with smaller critical
work may happen, but are negligible in the limit. Those with larger critical work
are forbidden. In the simplest case of two minima of potential déptand v,

v < V, the role of which switches periodically at ting for T larger thane’/¢
the diffusion will be quasi-deterministic, that is, close to the deterministic periodic
function following the location of the deepest well.

Quasi-periodicity captures an important aspect of stochastic resonance, as it
provides conditions under which stochastic trajectories are able to exhibit periodic
behavior. Yet, physics literature (see [9, 10]) stipulates that stochastic resonance
not only explains conditions fatochastically periodic behavidout comprises its
optimality in a sense quite similar to tllesonance notions of wave dynamics. In
classical optics resonance is understood as the optimal amplitude of the response
of the system to periodic excitation. In the same way, a stochastic resonance
point is claimed to explaimptimal periodic tuningof the stochastic trajectories
of the diffusion responding to deterministic periodic excitation. Amplitude as
a measure ofjuality of periodic tining is replaced bignal-to-noise ratioor
spectral power amplificatio(see below). Numerical simulations as, for example,
in [16] clearly support the optical evidence that beyond the threshold described by
Freidlin [7] at which quasi-deterministic behavior becomes possible, for different
noise intensities quite different qualitie$ periodicity of the random trajectories
can be observed. There are parameter ranges farwhich random trajectories
follow quite well the deterministic shapes of excitation curves. Bufagets
even bigger, many short excursions to the wrong well during one period may
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occur. They will not count on the exponential scale on which quasi-periodic
motion is measured, but trajectories will look less and less periodic. Physicists’
quality measures for tuning therefore cannot be explained on the basis of quasi-
deterministic motion alone.

The thesis by Pavlyukevich [13] and [18] presents an attempt to provide a
mathematically sound underpinning of physical notions of stochastic resonance
based on optimality of periodic tuning—as opposed to the trajectorial analysis
of Berglund and Gentz [2] containing very fine estimates on relaxation times.
The physical concepts are mostly based on comparisons of trajectories of the
noisy system and the deterministic periodic curve describing the location of
the relevant metasable states, averaged with respect to the equilibrium measure.
In the simple one-dimensional situation considered above the system switches
between a double-well potential stat&x) with two wells of unequal depths
V andv, v < V, during the first half period, antl (—x) for the second half period.

The total period length i, and stochastic perturbation comes from the coupling
to a white noise of intensity. The most important measures of quality studied are
thespectral power amplificatigrihe relatedignal-to-noise raticor theentropy of

the equilibrium distributionIn particular, the first two mentioned play an eminent
role in the physical literature. They mainly contain th& average in equilibrium

of the spectral component of the solution trajectories corresponding to the input
period7, normalized in different ways. These measures of quality are functions of
¢ andT, and the problem of finding the resonance point, for example, consists in
optimizing them ine for fixed (large)T .

Let us briefly explain a striking shortcoming of these concepts of optimal
periodic tuning which made us look for different ones. The first step to find
optimal tuning intensities(T') for largeT consists in reducing the dynamics of the
diffusion to theinterwell motion that is, the pure transitions between the potential
minima. In the physics literature, this corresponds to the reduction given, for
example, by [15]. One ends up with continuous-time two-state Markov chains with
transition probabilities avesponding to the inverses of the diffusions’ Kramers—
Eyring times. The mathematical analysis of stochastic resonance then proceeds
along the following lines. One first determines the optimal tuning parameters
e(T) for large T for the approximating Markov chains, a rather simple task.
To see that the Markov chain’s behavior approaches the diffusion’s in the small
noise limit, spectral theory of the infinitesimal generator is used. Its spatial part
is seen to possess a spectral gap between the second and third eigenvalues, and
therefore the closeness of equilibrium distributions of the Markov chain on the
one hand and diffusion on the other hand can be well controlled. Surprisingly,
however, the notion of spectral power amplification is not robust for the passage
from the Markov chain to the diffusion. Subtle dependencies on the geometrical
fine structure of the potential functioti in the minima beyond the expected
curvature properties lead to quite unexpected counterintuitive effects. For example,
a subtle drag away from the other well caused by the sign of the third derivative
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of U in the deep well suffices to make the spectral power amplification curve
strictly increasing in the parameter range in which the approximating Markov
chain has its resonance point. This dramatic deviation from expected behavior is
due to the significance the spectral power amplification attributes to sriraiivell
fluctuations

Our main motivation in writing this paper was to investigate concepts by which
on the one hand the physical intuition of optimal periodic tuning of random
trajectories with a simple periodic input can be interpreted in a mathematically
sound way, and which on the other hand fail to have this unfortunate defect of
robustness. We deal with the framework of one-dimensional potential diffusions.
The notion of quality of periodic tuning we shall investigate completely excludes
the effect of small intrawell fluctuations and purely relies on the transition
mechanism between domains of attraction given by the potential. At the same time
it generalizes the previously known results to potential functions which may vary
periodically in time in a continuous, but otherwise quite general way, and whose
growth at+oo may just be linear. More precisely, we study diffusion processes
driven by a Brownian motion of intensity given by the stochastic differential
equation (SDE)
X, = —iU(i, x,) di +~25dW,,  1>0.

ax T

The underlying potential landscape (see Figure 1) is described by a function
U, x),t >0,x € R, which is periodic in time with period 1, and its temporal
variation, by the rescaling with very largg, acts on the diffusion at a very small
frequency.U is supposed to have exactly two wells locatedtdt, separated by
a saddle at 0. The depth (measured in positive quantitieg) (of-) at £1 is
given by the 1-periodic depth functior3.1(r) which are assumed to never fall

FiG. 1. Potential landscape
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Fic. 2. Definition ofa;l.

below zero. We shall throughout look at time scales- exp(%), for which the
Kramers—Eyring formula indicates that transitions, for example, from the domain
of attraction of—1 to the domain of attraction of 1 will occur as soon sy
becomes less tham, that is, at time (see Figure 2)

art=inf{t > 0:D11(t) < pu}.

This triggers periodic behavior of the diffusion trajectories on long time scales.
The modern theory of metastability itime-homogeneous diffusion processes
complements the fundamental large deviations’ theory presented by [8] to produce
the exponential decay rates of transition probabilities between different domains
of attraction of a potential landscape together with very sharp multiplicative error
estimates, uniformly on compacts in system parameters. Their sharpest forms
are presented in some papers by Bovier, Eckhoff, Gayrard and Klein [3, 4],
improving Day’s previous results obtained in [5, 6]. They are derived from deep
relationships of large deviations’ theory with the spectral and capacity theory of
the infinitesimal generator. We shall make use of this powerful machinery to obtain
very precise estimates of the exponential tails of the laws of the transition times
between domains of attraction. In fact, we have to extend the estimates by Bovier,
Gayrard and Klein [4] to the framework dgime-inhomogeneous diffusionis

the underlying one-dimensional situation, this is roughly achieved by freezing
the time dependence of the potential on small time intervals to define lower
and upper bound time-homogeneous potentials not differing very much from the
original one. Consequently, comparison theorems are used to control the transition
behavior from above and below by the behavior of the corresponding time-
homogeneous diffusions. This allows very precise estimates on the probabilities
with which the diffusion at time scal& = exp(£) transits from the domain of
attraction of—1 to the domain of attraction of 1 or vice versa within time windows
[(@Ft — )T, (@ + m)T] for smallk > 0. If 7,(X) denotes the transit time 1q

it is shown to be given by

lim e In(1— M(e, ) = max{u — Dj(a), —h)},
with
M(e, ) = min Pi(r(X) € [(a, = T, (@, + T, &>0,pel,
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Fic. 3. Resonance interval

and wherely is the resonance intervalFigure 3), that is, the set of scale
parameters for which trivial or chaotic transition behavior of the trajectories is
excluded (Figure 4).

The stated convergenceusiformin p on compact subsets @f. This allows
us to takeM (e, ) as our measure of periodic tuning, compute the spalg)
for which the transition rate is optimal, and define #techastic resonance point
as the eventually existing limit oftg(k) ash — 0. This notion of stochastic
resonance is strongly related to the notions of periodic tuning basederapike
intervals (see Figure 5 and [11]), which describe the probability distribution for
transitions as functions of time with exponentially decayspikesnear the integer
multiples of the forcing periods. As opposed to the physics notions based on
spectral decomposition of the statistics of the solution trajectories investigated in
[13] or [18] it has the big advantage of being robust for the passage from the
diffusion to the two-state Markov chain reducing its behavior to the features of
pure transitions between the two domains of attractions of metasable points.

Here is an outline of the organization of the material in the paper. Section 1
presents a review of results from the asymptotic theory of time-homogeneous
diffusions and their metasable sets needed for our purposes (Theorem 1.1). In
Section 2 we bring to work the tools of comparison theorems to deduce the
sharp exponential transition rates for our time-periodic diffusions from the time-
homogeneous results (Theorem 2.1). Section 3 is devoted to applying these sharp
estimates to identify stochastic resonance points for diffusions (Theorem 3.2),
compare them to their counterparts for the reduced Markov chains and prove
robustness of our notion of resonance (Theorem 3.4).

FIG. 4. Chaotic and trivial transition behavior of the trajectories
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Fic. 5. Length distribution of the interspike intervals in a simplified mofefo-state Markov
chain).

o~

1. Exponential distribution of transition times for time-homogeneous
diffusions. It will turn out to be crucial for our approach of periodic tuning
to be discussed later to obtain large deviation type estimates for the exponential
decay rate of the law of transition times uniformly in a time scale parameter.
We shall make use of a technique of freezing time-dependent potentials on small
subintervals of the periodicity intervgd, T'] on their states taken at fixed times in
the intervals, to be able to use known results for time-homogeneous diffusions. In
this setting, the uniformity problem translates into uniformity of the convergence
to exponential decay rates in compact subsets of the domain of attraction the
diffusion starts in and in time. It is clear that we are led directly into large
deviations’ estimates for exit time distributions tifhe-homogeneous diffusions
such as presented in the pioneering book by Freidlin and Wentzell [8]. But for
obtaining uniformity in space and time, one has to use sharpened versions of these
estimates developed later for controllimgg@articular the expomgial errors in the
estimates. The purpose of this section is to summarize what we shall need from
this fine well-established theory.

We shall refer to the most recent and advanced development of sharp estimates
for transition times presented in [3, 4]. They are valid far beyond our modest
framework, both in the multidimensional case and for any finite number of local
minima of the potential. Their quality comes from a detailed analysis of the
relationship between transition times and low-lying eigenvalues of the spectrum
of the infinitesimal generator of the diffusion. We shall state them in the simple
one-dimensional setting given here. A more complex multidimensional version
can also be found in [5]. For this purpose, suppose thats a purely space-
dependent®? potential function (see Figure 6) possessing only, 1 as local

Fic. 6. Potential
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minima, separated by the saddle point 0 at whittakes the value.(G5uppose that
the curvature ofQ at —1 is strictly positive, that isQ”(—1) > 0. As for ultra- or
hypercontractivity type properties f@, we shall assume that it has exponentially
tight level sets; that is, there ig > 0 such that for anyi > ag there exists a
constantC(a) such that for <1,

(1) /{ o exp(-%) dz < C(a) exp(—g).

We shall concentrate in this situation on a transition out of the domain of attraction
of the stable point-1 for the diffusion associated with the SDE

Ay =—-Q'(Y\)dt +~2edW;,
Y5=y.
Let C be a closed interval of the forfia, co[ with d # 0. To state our aim in a

slightly different version, we will be interested in the asymptotics of the entrance
time of Y¢ into C:

e =inf{r > 0:Y/ € C}.

Then we obtain the following result (see [4] or [5]).

THEOREM1.1l. LetA® denote the principal eigenvalue of the linear operator
Ly = su/’ _ Q/M/

with Dirichlet boundary conditions oAC. Then for every compad < ]—oo, O
there is a constant > 0 such that

(2) Py(zé>1) = e_”t(1+ (91((6_”/8)),

where@k denotes an error term which is uniform ine K, ¢ > 0. Moreoverfor
the asymptotic behavior of the eigenvaliethe following holds

(3) MEy[té]1— 1 uniformly on compact& < ]—o0, O

ase — 0.

PROOF There are two small issues which deserve comments.

First, the uniformity over compacts ir-oo, O[ claimed in the main statements.
Day [5] tackles it. But he considers only exits from bounded domains. Bovier,
Gayrard and Klein [4] have a version for unbounded domains, but uniformity over
compacts of the domain of attraction in which the diffusion starts is not explicitly
proved. It is, however, hidden in their method of proof of Theorem 1.3 ([4], pages
30 and 31) which makes use of an eigenfunction expansion. But due to regularity
results on the eigenfunctions (see [4], pages 16—-18) they must be bounded on
compacts in the domain of attractiproo, O[ . This implies the desired uniformity.
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The second comment concerns our assumptiong offranslated into our
setting, in [4] the target se&f is assumed to be closed, to contain a neighborhood
of 1 if the potential is deeper there than-al, and to have a positive distance
from the saddle 0. Since we are in a one-dimensional setting, we may reduce these
conditions to the simple ong £ 0. If necessary, we may always cut out Gfa
small open neighborhood of 0 without changing the law©ff starting from the
domain of attraction of-1. [

2. Exponential transition rates between moving domains of attraction.
We shall now consider a potential diffusion given by the one-dimensional SDE

oU [t o~
(4) dXt:——<—,Xt)dt+ ZEdW[
ox \T

The time-periodic potential/ of period 1 is supposed to fulfill the following
conditions. First of all, its global rough geometry is the one of a double-well
potential with temporally moving wells, but time-independent critical points. For
simplicity we suppose that its local minima are given-b¥, and its only saddle
point by 0, independently of time. Sfi1 are the only metastable states of the
potential on the whole time axis. Outside o1, % is supposed to be continuous

in (z, x). Our main concern will be the asymptotics of the transition times from the
domain of attractioj—oo, O[ of —1 to the domain of attractiofD, oo[ associated

with 1 of thetime-inhomogeneous diffusiomthe small noise limit — 0. More
precisely, we will be interested in describing the exponential transition rate from
the domain of-1 to the domain of 1. Our potential not being time-homogeneous,
we shall make use of comparison arguments with diffusions possessing time-
independent potentials in order to find a careful reduction of the inhomogeneous
exit problem to the homogeneous one, and use the asymptotic results stated in
Theorem 1.1 in this framework. This will be achieved by freezing the driving force
derived from the potential on small time intervals on the mimimal or maximal level

it takes there. To be more precise, for each intefvalR ; let

d

(5) Vi(x) =sup U(t,x) and R,(x):inf&(t,x).
0x tel 0x

tel
See Figure 7. The regularity conditions valid for imply that V and R are

continuous functions. MoreoveY; (—1) = R;(—1) =0. If I = [a, b], we denote
by X' the solution of the SDE oR.,
dX! = —R;(X])dt + 2 dB,,
(6)
-1
XO = XLIT~

X' is defined in the same way, replaciRg by V;. These twdime-homogeneous
diffusions are used to control thiene-inhomogeneouwsiffusion X as long as time
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Ry

—
9,

.) for some ¢ in I

FiG. 7. Definition of V; and R;.

runs in the interval . In fact, we havepP-a.s.,

-1
X'y < Xgyar <X)p.  tel0,b—al.

Of course, to make use of the asymptotic results stated in the previous section,
we need ultra- or hypercontractivity properties for the frozen potentials. To
formulate a hypothesis which is both not too restrictive and easy to handle for
time-dependent potentials, let us give the following easy sufficient criterion for
exponential tightness of levels of a time independent pote@tial

LEMMA 2.1. Assume thap is a real-valued differentiable function d and
that there are constant&1, K2 > 0 such that
Q'(x) <—K,  forx <—Ku,
() /
0'(x) > K> for x > K;.
ThenQ has exponentially tight level sets
PROOF It is obviously enough to argue dR,. Due to (7), we know that

nearoo, Q is strictly increasing with invers@—1. So fora > 0 big enough and
¢ > 0 we have

/{y:Q<y)>a} p( (Z))d _/ p( )Q(Q 1(t))
< E,/g; exp(—g) dt
:Kizexp(_g).

This clearly implies exponential tightnesd.]
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Conditions like (7) are practical in our setting for the following reason: if we
assume them to be satisfied uniformly foe [0, 1], it is clear that all frozen
potential functions will inherit the property. We will therefore assume throughout
that there exist constank§;, K2 > 0 such that

oU
sup—(t,x) < —K» for x < —Kj,
>0 0X

(8)

. oU

inf —(,x) > K» for x > K.

>0 0x

We measure periodg on the logarithmic scalg given by7T =T, = exp(%).

The reason for this is hidden in the classical formula of Kramers—Eyring. It states
that in the small noise limif" is the time it takes the diffusing particle to climb
a heightu in a potential landscap¥&. This formula has the following intuitive
consequences. Assume the diffusion faces an obstacle of constant potential height
Ut > u for exiting if it diffuses on time scald". Then asymptotically it never
exits on this scale. On the other hand, if it faces an obstacle of h&ight u
diffusing at time scald’, it has to exit immediately in the small noise limit. We
introduce the depth function ate R by

D,(t)=U(t,0 —U(t, x), t>0.

The maximal well depth®_1 and D1 will be of particular importance. We shall
assume that they satisfy the assumption (see Figure 2)

all local extrema ofD;, D_1 are global and the
functions are strictly monotonous between the extrema.

9)
For . > 0 let now
a, =inf{t >0:D_1(t) < pu}.

This is the same function a;jl defined above. Here we omit the superscript since
we always concentrate on transitions freft to 1. The interval

(20) I_1= } inf D_1(2), supD_l(t)[

=0 t>0
contains all possible depths the potential minimum locatedlatakes during one
period of time. Note that, = O for u strictly above the upper boundary bf;,
anda,, = oo for p strictly below the lower boundary. |t € /_1, then for times
beyonda,,, the barrier height betweenl and O has dropped below the critical
level so that on time scal€& the diffusion exits immediately. According to this
heuristic, the diffusion running on time scdleshould exit the domain of attraction
]—o00, O[ through 0 and then transit to the other well immediately aftér_1(z)
drops below:. We shall be interested in the exponential rate at which this happens,
uniformly in starting points taken from a compact]ir oo, O[. For this purpose,
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for a regular diffusior onR anda € R, we denote by, (Y) the first hitting time
ofaby?Y.
Our first aim is to prove the precise estimate

(11) Iimoe NPy (t1(X) < (ay —h)T)=pn— D_1(a, — h)

for x < 0, uniformly in © on compact subintervalg of (10) and for O< & <
inf,cr a,. Note that given such a compdctdue to the continuity oD_; we have
inf,.cr a, > 0. Fix I', x andA from now on. Our approach proceeds in essentially
two steps.

2.1. Upper bound for the exponential exit rateln the first step we shall find
upper bounds for the exponential rates. For this purpose we shall partition the
relevant time interval$0, a,, — h]. Fix somes > 0 such that < |x]. Since%
is continuous, we may choose an equidistant partitiea@ <ry < -+ <r, =
a, — h of [0, a,, — h] with meshy small enough to ensure

oU oU
(12) sup sup |— (@, x) — —(s,x)| <4.
s,t€lrj,rjpal x€[-1,0] dx dx

Denote/; = [rj_1,7;], 1 < j <n. Though the choice of the intervals depends
on h andT, their number will be bounded by a universal constant. Using this
partition, we may start our search for an upper bound by freezing the time-
dependent potential ofy at its valueR;;, 1 < j < n, and then comparing the

diffusion X there withX /. There is a little difficulty with this procedure. The
drift coefficientsR,; which govern the SDE fox "/ were defined by taking infima
over time intervals. This operation may destroy their differentiability properties in
the spatial variable. Therefore it may be necessary to coniparethe intervald

with smoother diffusions still dominating it. But this can be done at no extra cost.
For each 1< j <n we may choos&; € C1(R) satisfying

Rj =Ry =R +9,

there aren ; €]-1-6,-1+6[,s;€]-6,8[,m; €]1—-45,1+4[
such thatR [1—co,m ;{uls;.m;1 < 0, Rjlim ;,s;101m;,000 > O,

R}(ﬂj) >0,

there are constanf§;, K, > 0 such thaiR; (x) < —K» forx < — K7y,
R;(x) > Ko forx > K.

(13)

Let X/ be the diffusion associated WitR;, 1 < j <n. Let us choose a partition
X =x0<x1<--<x,=-—34 of the interval[x, —&] which will typically not be
supposed to be equidistant. In the following inequality the diffusi®nand X’
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on /; are compared and the Markov property is employed. We have
P, (Tl(X) =< (au - h)T)

n—1

<Y Pu(te, 1 (X) = rjaT. 0 (X) <r;T)
j=1
+ ]P)x(fxn_l(x) >rp-1T, 11(X) < rnT)
n—1

= Z PX[{TXJ‘ (X-+rj—1T) = VT} N {ij—l(X) = rj—lT}]
j=1

(14) '

+ Pel{ra(Xepr,a7) ¥ T {70, 1 (X) Z 11 TH]
n—1 _

< .ZlE" [Px,, yr (2, (X)) <y T)ifr,, 020, 47)]
J=
+E[Px, (X" <y T)Lr,, ,x)2r,aT)]
n—1 _

<D Py (g (X)) <y T) + Py, (ra(X™) <y T).
j=1

Let us now fix 1< j <n and continue estimating the teriig,_, (zy, (X))<yT)
andPy, ,(r1(X") <y T) individually. For this purpose we apply Theorem 1.1 for
Q = R;,d = x, to obtain that

IP)XI‘,]_(TX_,' (Xl) = )/T)
<l-e?"TA—e )y <1— P71 el
(15)
Pxn,l(fl(xn) =< )/T)
< 1—6_A2VT(1—6_C/8) < 1_e—kflyT +e—c/s’

uniformly in 7', hence uniformly inw. Here)&j. denotes the principal eigenvalue of
the operatorL’; defined by ‘

£§-u =eu”" — Rju’

with Dirichlet boundary conditions at;. We now come to the crucial part of
the derivation of an upper estimate. We shall use precise asymptotics of the
eigenvalues.’.

LEMMA 2.2. There exist€ > 0such thatforl < j <n,

(16) b!igwoslnxj—[U(rj,xj)—U(rj,—l)] = Cé.
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PrROOF Fix 1 < j < n. Define the pseudopotential corresponding to the
drift R; by

(1., R; 2
Vj<x,z>=mf{§/0 (¢s+7’<¢s>) ds,¢o=x,¢,=z,r>o},

where ¢ stands for absolutely continuous functions defined on the time inter-
val [0, 7]. Since due to our assumptions; is the only local minimum of the
potential corresponding t&; on ] —oo, 0[, the sharpened form of the exit time
theorem of Freidlin—Wentzell (see [4], Theorem 1.1) implies that

lii)ﬂoelnki =—Vi(m;,x;).

Let us estimate the pseudopotential. We have

Xj
Vj(mj,xj)=/ R;(0)do
m

_/Xj aU( ; 9)d9+/xj(R'(9) aU( ; 9))d9
)1 ox " . U 9x "

—J

U
—/ —(rj,0)do.
[

—1,ﬂ_j] dx

Continuity of% in (7, x) entails the existence @, < 0 such that
au
‘/ —(rj,e)de‘gcla.
[—1m;] Ox

To estimate the second remainder term, recall that the meslas chosen to
produce at most as modulus of continuity o%% [see (12)], and thak; is also at
most a distancé away [see (13)]. We therefore obtain

/x’ (Rj(e) - %(rj,e)) de‘ <25,

—J

Hence

(17) ‘ Iimoslnk’j- —[U@j,xj) —U(rj, —1)]’ <2+ C1)s.
E—> -

The asserted asymptotic result follows.]

As a consequence we obtain an upper bound for the exponential convergence
rate for the exit time from the domain of attraction of the potential wel &t

PROPOSITION2.1. Letx <0 and letI’ be a compact subset ¢10). Then
there exist® < hg < inf,cr a, such that forh < ho,
(18) limsupe INPy (11(X) < (a, —h)T) < — D_1(a,, — h)
e—0

uniformly foru € T.
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PROOFE According to what has been proved, there are constgntsO and
K > 0 suchthat foe <gg, u €T,

P, (TI(X) = (au - h)T)

n—1
S Py, (e (X)) <y T) + Py, (tu(X") <y T)

(19)

[A

~
[N

n
<KyT Y A5 +ne /",
j=1

Taking logarithms on both sides, multiplying byand using the equation

lim eIn(f(e) + g(e)) = max{lim eIn(f(e)), lim 8|n(g(e))]
e—0 e—0 e—0
for two positive functionsf andg, we may apply Lemma 2.2 to get

limsupe InPy (11(X) < (a, —h)T)
e—0
<[maqu—[U(rj,x;)—U(rj,—D]:1< j <n]+ CS] V (—c)
<[ma{u—[U@rj,x1) —U(rj,—D]:1<j <n]+C8]V (—o).
Recalling the definition of,, and thatx; < O is arbitrary, we may conclude
limsupe InPy (71(X) < (a,, —h)T)
e—0
<[maxp —D_1(rj):1<j <nl+C§]V (=0)
<[(x— D-1(ay —h)) + C8] v (—¢)
uniformly for © € I'. Now chooséig > 0 small enough so that fér < hg we have
Ilr;];(,u — D_1(a, —h)) > —c.
Finally, sinces is arbitrary, we may lef tend to zero. This way we obtain the
desired upper bound for the exponential ratel

2.2. Lower bound for the exponential exit rateln the second step of our
approach, we shall establish lower bounds for the exponential rates at which the
diffusion exits from the basin of attraction efl. Let us first prove an auxiliary
result. It states that the probability of exiting the interyaD] via!l is exponentially
small with exponential order increasing|ih, due to hypercontractivity. Recall the
constantk’; andK» from (8).
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LEMMA 2.3. There exist positive constar@sandeg such that fore < g9 and
| <x A—Kiandu > 0we have

(20) ]P’x(fl(X)ST)5%exp(2K2(l_X/\(—K1))+M>.

&

PrROOF We give arguments for the case< —K4, the other case being
easier. Recalling that by (8) the gradient @fis bounded below by-K, on
Ry x]—o00, —K1], we may compare the diffusiok with the diffusionZ on the
interval]—oo, x] reflected at with constant drift equal t&>. It can be given by
the SDE

dZt = KZdt +dL[ =+ ZSth,

whereZp = x andL is an increasing process satisfyiﬁgzs —x)dL,=0,r>0.
See, for example, [19]. The comparison clearly yields

(21) Po(u(X) <T) <Py (u(Z2) <T).
By Chebyshev’s inequality,
1
(22) Py(1(Z) <T) <eE, [exp(—?rl(Z))}.
Let p(y) = Ey[exp(—%rl(Z))], I <y < x. Our task consists in an estimation

of ¢(x). According to the Feynman—Kac and Dynkin formulaesolves the
boundary value problem

1
e¢” + Kog' — Z¢=0  onll,x[,
¢'(x) =0, p(h)=1
The eigenvalues of the differential equation are determined by the equation

1
g,\2+1<2,\—?:o,

hence byr* = L[—K, £ /K2 + %]. Taking the boundary conditions into
account leads to the equation

)\—i—e)ﬁx—&-)ﬁy _ )L—e)ﬁx—i—)ﬁy

P = St A XA _ g —gh XAt y€ll,x].
Neglecting the second term in the denominator of the fraction, we obtain

VK3 +4¢/T

P = e
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Now for ¢ small enoughj.™ > FIT and.~ < =%2_Therefore, foe small enough
there exists a constagy > 0 independent of andT such that

Kz(l—x)} _ CoK3 exp[Kz(l—x)Jru}
€ e € '

T
p(x) < CoK5—ex
&
This implies the desired inequality (20)0

We shall continue to use the partition : 1 < j <n) of the interval[0, a,, — h]
of the preceding section. This time, we shall compare with homogeneous
diffusions by freezing the potential derivative at an upper level, which results in
working with the driftsV/i and the diffusionst’/. Again, these drifts may fail to
possess the regularity properties required to apply Theorem 1.1. For this reason we
may choose smoothed versioVis CL(R) of the potentials with corresponding
diffusion processeg’ satisfying

Viz Vi =z Vj+3,

there aren ; €]-1-6,-1+6[,s;€]-48,8[,m; €]1—-6,1+4[
such that;l1—ocm [uls; ;1 < 0. Vilum ;.s;10 115,000 > O,

V;(mj) >0,

there are constanfs;, K> > 0 such that/;(x) < —K forx < —Ky,
Vi(x) > Kp forx > K.

(23)

To deduce a lower estimate, we shall compgireia X’» with Y” on the interval
I, in the scalel". We may write forl < x

P, (‘L’l(X) =< (au - h)T)

> Py (t1(X) <1 T, i(X) A 1(X) = 1y—1T)
(24)
> Ec(Luan 0z a1y Px,_r (t1(Xetr, 17) <¥T))

> Py(ra(¥") < yT) x Py (ra(X) A 1(X) = rpaT).

As a consequence @f — D_1((a, — h)T) < 0 and the arguments presented in
Section 2.1, we note that uniformly on our compactiset

|im0]P)x (‘L’]_(X) < "n—lT) =0.
e—

This clearly implies that there i) > 0 and a constar@ > % such that for < ¢,
(25) Py (t1(X) = r,—1T) = C.

Moreover, by Lemma 2.3, fof small enough, there exists > 0 such that
for e <eq,

Py (Tl(X) > rn—lT) >C.
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Hence fore small enough we have
Po(ti(X) A(X) = 1 1T) = C — 3 >0,

It therefore remains to find lower bounds (1 (Y") <y T).
We may now apply the same arguments as those developed in Section 2.1. We
just have to use Lemma 2.2 for the eigenvalues of the operator

Léu=ceu" —V,u'

with Dirichlet boundary conditions at 0 in the sense of lower bounds uniformly
on the compacr'. As a consequence we obviously obtain, with a constast0
independent of",

lim igf einPy(ra(Y") <yT) > (u— D_1(ay —h) — C8) Vv (—c),
E—>
uniformly for u € I'. Let us now choosgg > 0 andsg > 0 small enough such that

for h < ho, 8 < 8o we haven — D_1((a, —h)T) — C§ > —c. Sinces is arbitrary,
we obtain

lim igf einPy(ta(Y") <yT) > (n — D_1((a, — h)T)),

uniformly for i € T'. Recalling (24) and (25), we finally obtain
lim igf eInPy(t1(X) < (ay —W)T) > pn— D_1((a, —W)T),
e—

uniformly onT". With this result we have established the desired lower bound for
the exponential exit rate.

PROPOSITION2.2. Letx <0, and letI" be a compact subset ¢1.0). Then
there exist® < hg < inf,cr a, such that forh < ho,

(26) gli—r>n08 InPy (‘L’l(X) = (au - h)T) el D—l(au —h)
uniformly forp € T.

2.3. The exponential smallness of the rate of too long transitiokaving
proved (11) in the preceding two propositions, the second aim of this section is
to show that the exponential rate at whigliX) exceedsa, + )T is arbitrarily
small. In fact, we shall make precise that the rate at which transitions happen which
take at least as long &8, + #)T vanishes to all exponential orders, for> 0
arbitrary.

ProOPOSITION2.3. Letx < 0, and letI" be a compact subset fLlO) not
containing D_1(0). Then there existgg > 0 such that for all0 < & < hg and
u €T we have

limsupe InPy (11(X) > (a, + h)T) = —o0.

e—0
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PROOF Letd > 0 andiz > 0 be given. Letl” be a compact subset of (10).
First, forl < x we may write

(27) Py (t2(X) = (ay +W)T) < Pe(ra(X) A u(X) = (au +1)T)
(28) +Po(u(X) < (ay +)T).
To estimate the second term on the right-hand side of (27), we employ Lemma 2.3.
In fact, for! < x A (—K7) we have
limsupe INP, (t;(X) < (ay +h)T) < 2K(l —x A (—K1)) + Supu.
e—0 nell
Therefore
lim [Iim supe InPy ((X) < (a, + h)T)} = —00.
[=—ool ¢-0
It therefore remains to estimate the first term on the right-hand side of (27) for
small but fixed. Let G=rg <ry < --- < r, =a, + h be an equidistant partition of
the interval0, a,, 4 /] of meshy < % anddenotd; =[r;_1,r;],1< j <n.Then
we have
Py (t2(X) A i(X) = (a, + W)T)
=Py (r0(X) A T(X) = 11T, ti(Xegry 17) ATU(Xogr,_y7) = ¥ T)

< Ex (Lirgnq (02, 11y Px,,_r (7(X™) = ¥ T))

(29) ; '
< max Py(ra(X™) > yT)

yell,of
=Pi(ra(X") = yT)
<Py (ra(X") = yT).
Here, we compare the inhomogeneous diffusioon 7, with the time-homoge-

neous oneX’» corresponding to drifR;, and finally with X" subject to driftR,
to be described below, and we use monotonicity of

v Py(ra(X) =y T).
We assume to be small enough to ensure
U U

(30) sup  sup |[— (@, x) — —(s,x)| <4.

s.t€lry_1.ra]x€[1,0] | 0X dx
We may choose the dri®,, to satisfy
Ry < Rj, < Ry + 6,
therearen, €]1-1—6,—-1+46[,s, €]1—-68,8[,m, €]1 —68,1+ 4]
such thatRn|]_oo,mn[U1snﬁn[ <0, Rn|]mmsn[U]mn,OO[ >0,
R,(m,) >0,
there are constanf$;, K> > 0 such thaiR,,(x) < — K> forx < —Kj,
R,(x) > K> for x > K.

(31)
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We are ready to apply Theorem 1.1, this time &= R, d = —4§ to obtain that
(32) Pi(to(X") > yT) <e T (14 e %)

uniformly onT". Here A! stands for the principal eigenvalue of the operatgr
defined by

4 /
Lyu=¢eu" — Ryu

with Dirichlet boundary conditions at-§. The asymptotic properties of, can

be deduced in a similar way to Lemma 2.2. We estimate the pseudopotential
corresponding tar,, taking (30) into account. We obtain that there exiSts- 0

such that

(33) lim eA; T — (u — D_1(ry))| < C$

e—0

uniformly on I". Now recall that due to the choice of, we havea, + % < r,,
hence

p— D_1(rn) >0, ner,

and by compactness dfeven,
AQ{,[M —D_1(rp)] > 0.
This in turn implies that
fim T = o

uniformly onT". But due to (32) we are allowed to conclude

Sli_rpOIP’z (t1(X") = yT) = —c0
uniformly in T". According to (29), this completes the proot.]

Finally, we may summarize the results of Sections 2.1 and 2.2, and state the
main result on asymptotiexponential decay tas of transitiorprobabilities.

THEOREM2.1. Letx <0, and letl" be a compact subset ¢10). For ¢ > 0,
w>0letT = exp(%). Then there existsg > 0 such that for < hg,

(34)  lim NP, (ra(X) & [(@ —WT. (@ +M7T]) = s = D-1(a —h)

uniformly forp € T.

ProOOF This is an immediate consequence of Propositions 2.1-213.
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3. Stochastic resonancein a double-well potential. Let us now turn to the
main subject of this paper, a characterization of the notictaxfhastic resonance
Let us recall that we look for a characterization of the concepptifnal periodic
tuning which is extensively studied in the physics literature by notions such as
the signal-to-noise ratio or the spectral power amplification (see [18]). Let us
also remark that this concept implicitly uses and refines the concept of stochastic
resonance studied by Freidlin [7] which paraphrases the ability of periodically
perturbed stochastic systems to follow the periodic excitation in the small noise
limit, and exhibit quasi-periodic motionIin more mathematical terms and the
notation introduced before, we aim at choosing the noise intensity parameter
such that in thdarge period limit 7 — oo the diffusion trajectories follow the
periodic excitation of the system hidden & in an optimal way to be made
precise. In Section 3.1 we shall show that a quality measure of goodness of periodic
tuning is given by the exponential rate at which the first transition to the other well
happens within a fixed interval aroung 7. In Section 3.2 we establish robustness
of this notion of quality: we show that in the small noise limit the diffusion and its
reduced model, a Markov chain living on a two-point state space, have the same
resonance pattern.

3.1. Transition probabilities as a measure of qualityThe local extrema of the
depth functiond 1 of U are supposed to be global, abd ; is strictly increasing
between its extrema. Recall that we work with exponential time sgatetated to
the natural timeT" by the equatior” = exp(£). In this section, we have to work
with scale functions depending on the starting well and eventually on arbitrary
starting times. So we let

aj (s) =inf{t > s:D;(t) < u}, i=+1u>0.

The relevant time scalgs will be chosen from the intervals

I = }inf D;(1), supDi(t)[, i ==+1.
=0 >0

Our aim is to observe periodic behavior of the diffusion. This will in principle
mean that the process can travel from one well to the other and back on the time
scales in which we let the diffusion run, but not instantaneously. So, on the one
hand, we have to work on time scales on whictiaes not get stuck in one of the
wells of the potential. On the other hand, the time scales we are concentrating on
should alsonot allow for chaotic behavigrthat is, immediate re-bouncing after
changing the well.

To make these conditions mathematically precise, recall that transitions become
possible as soon as the potential barfier; becomes smaller than the time scale
parameten. Hence if u > inf;>o D; (), there is a time range during which the
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diffusion can leave the well centerediatTo not get stuck in one of them, the
diffusion has to be able to leave both. This is guaranteed if
) > IR Do

To avoid immediate re-bouncing, we have to assure that the diffusion cannot
leave the domain of attraction efi at the moment it reaches it, coming fram
Suppose we consider the dynamics after time0, and the diffusion is nearat
that time. Its first transition to the well ati occurs at timesz(s)T, and it stays
there for at least a little while iD_; (aL(s)) is bigger tharnw. This is equivalent
to stating that for alk > 0 there exist$ > 0 such that orid/, (s), a,(s) + 5] we
haveu < D_;. Butforr shortly aftera,i (s), we always have; (t) < u by the very
definition ofaL. Hence our condition becomes equivalent to the following: for all
s > 0 there exist$ > 0 such that ora}, (s), a!, (s) + 8] we haveu < max—-1 D;.

This in turn is more elegantly expressed by
o) <m0
See Figure 8.

We may summarize our search for an appropriate set of scale parameters
for which periodicity in the diffusion behavior will occur. We call this set the
“resonance interval” to indicate that we have to look for the scale of optimal
periodicity, theresonance scalen this interval. See [11] for the definition of the
corresponding interval in the case of two-state Markov chains. The interval

Ir = |maxinf D; (), inf maxD; (¢
R i|i=ilt20 i(®) t>0i=+1 i )|:

is called theresonance interva({see Figure 3). Let us pause for a moment at
this point to compare our approach with Freidlin’s [7] understanding of stochastic
resonance by quasi-deterministic motion. In Freidlin’s terms, stochastic resonance
is given if the parametex exceeds the lower boundary of our resonance interval.
Our concept of resonance stipulates to look for an optimah the resonance
interval at which in a sense to be made precise the quality of periodic tuning is
optimal.

D1 (1)

D_1(t)
N\ —

FiG. 8. Depth functions in phase
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Let us now come to the discussion of the quality of periodic response of the
stochastic system given by the diffusion, in dependence on the noise parameter
and the time scale paramejemhich according to the remarks made above has to
be chosen in the resonance interval. To simplify things a little, let us assume that
the depth functions are related by a phase]0, 1[, that is,

D_1(t) = D1(t + ¢), t>0.

Moreover, we assume that the diffusion starts-d. There are many ways
to describe optimality of periodic tuning. Imkeller and Pavlyukevich [12, 13]
consider different measures of quality such asgpectral power amplificatign
the energy the energy-to-noise ratiothe out-of-phase measuréhe entropyand
the relative entropy The detailed study of the physicists’ favorite measure, the
spectral power amplification, based on the energy of the spectral component of the
mean trajectory in equilibrium corsponding to the forcing frequené’fl, shows
one surprising defect: it is not robust as one passes from the diffusion to a reduced
model described by a two-state Markov chain jumping with rates corresponding
to the transition rates between the metasable stafesf the diffusion given by
the potential minima. In fact, while the Markov chain’s spectral power coefficient
shows a pronounced peak farnear an average well depth, the overwhelming
influence of the diffusion’s fluctuations in small neighborhoods of the potential
wells, discovering very subtle details of the potential’s geometry there, destroys
this picture completely. Here we propose a notion of quality of periodic tuning
which is based on the pure transition mechanism of the system between the
domains of attraction of the double-well potential. Generalizing the approach
of a study of optimal tuning for two-state Markov chain models (see [11]), we
measure the quality of tuning by computing for varying time scale parameters
the probability that, starting i, the diffusion is transferred tei within the time
window [(a!, — )T, (a!, + h)T] of width 2xT. To find thestochastic resonance
point for large T we have to maximize this measure of qualitysine Ig. The
probability for transition within this window will be computed by the estimates
of the preceding section. Uniformity of convergence to the exponential rates will
enable us to maximize in. Let us now make these ideas precise.

To make sure that the transition window makes sense at least for snved
have to suppose thaL > 0,i ==+1 for u € I¢. This will be guaranteed if

37 D;(0) > inf D; (1), | =41,
=) O e,
If this is not granted from the beginning, it suffices to start the diffusion a little
later, in order to be sure that (37) is satisfied. Under (37), we call
(38) M(e, )= _mjiplIP’i (r—i(X) € [(@}, — T, (a, + W) T]), e>0,uelg,
1=

the transition pobability for a timewindow of width.
We are prepared to state our main resonance result.
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THEOREM 3.1. LetI" be a compact subset @k, and lethg > 0 be given
according to Theorer.1.Then

; _ _ D4 —
(39) é!inoeln(l Mg, ) irL\?l({u Dj(a,, — h)}
uniformly forp € T.

PrROOF This proposition is an obvious consequence of Propositions 2.1-2.3.
O

It is clear that forz small the eventually existing global minimizew (k) of

Ig > max{u — D;(a’, —h
RO M I,:ﬂ{u i(a, —h)}

is a good candidate for our resonance point. But it still depends @ get rid of
this dependence, we shall consider the limiugf(k) ash — 0.

DEFINITION 3.1. Suppose that
I max{i — D;(a’ — h
RO > i:i>1<{u (a, —h)}
possesses a global minimyng (2). Suppose further that
= lim h
UR h_>0MR( )

exists inIg. We call ug the stochastic resonance poiof the diffusion X with
time-periodic potential/.

We shall now show that the stochastic resonance point exists if one of the depth
functions, and thus both, due to the phase lag, has a unigue point of maximal
decrease on the interval where it is strictly decreasing. See Figure 9.

THEOREM 3.2. Suppose thab; is twice continuously differentiable and has
its global maximum at;, and its global minimum at,, wheret; < t,. Suppose

further that there is a unique point < s < t» such thatD1|y, 4 is strictly concave
and D1|ys,,1 is strictly convexThenu g = D1(s) is the stochastic resonance paint

N NS

Fic. 9. Point of maximal decrease
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PrROOF First of all, note that there igr €10, 1[ such thatD1 = D_1(- + ¥).
As a consequence of this,

max{u — Dj(ay, — h)} = {u — Da(a, — )}.

Write a,, = a/ﬁ and recall that on the interval of decreasef, a, = D7 1(w).
Therefore, the differentiability assumption yields

1= Dj(ay —h)-a, = Dy(a, —h)

D;/L(au)'
Our hypothesis concerning convexity and concavityDafessentially means that
D7 (s) =0, andD/ |y, s < 0, D{|3s,1o1 > O; in other words, that — D/ (a,) has
a local maximum at, = s. Hence forh small there exists a unique poimg (h)
such that

Di(a(h) — h) = Dy (a,, (h))
and
}liLnoaM(h) =s.
To show thaw, (1) corresponds to a minimum of the function
p = [ — Di(a, — h)],
we take the second derivative of this functiormgth), which is given by

Dj(a, (h) — h) DY (a,(h)) — Dy (a,(h) —h)Dy(a,(h))
Dy (ay(h))
But D (a, (h)), Dj(a,(h) —h) <0, whereasDj (a, (h) —h) > 0, D} (a, (h)) <O.
This clearly implies that:, (k) corresponds to a minimum of the function. But

by definition, ash — 0, a, (h) — s. Therefore, finally,D1(s) is the stochastic
resonance point.[]

To illustrate our results, we next discuss an example.
EXAMPLE. Let us consider the double-well potential

x° 1 %3 x2
U0 =g ooz (= grvsow ) (5 -5) - 5

with 7 = exp(£) andy € [0, £[. See Figures 10 and 11.
U satisfies all the assumptions required for potentials above, in particular

iU .
—(t,x)=0 iff x € {—1,0,1}.
ox
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e |
I M/ | ]
""’77/ i

//,'5/

FiG. 11. Level sets of the potential
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—1 and 1 are the metasable states of the potential, and 0 is the saddle point. We
can then compute the barrier height of the two wells.Fof{—1, 1},

D;(t) = g —1—COS(2nt+12mﬁ - —)

Let us note thaD1 () = D_1(t + 2y + 7). Sincey € [0, Z[, we are in the phase
case withp = 2y + 1/2. The resonance interval is then given by

1_]22 4 21#)[
R= 1537 15% 2 d

In the symmetric case, that is, 4f = 0, we obtainfgz =12/5, 2/3[. Let us now
compute the optimal tuning scale applying Theorem 2.1. We obtain

a;l= iarcco{ls(— — })) +1ﬁ+}
m2n 2\2 3 4
Hence, forh > 0 small enough,

F(p)=p— D_1<a—1 —h)

= 2 coq arcco 15 ! 2mh
==~ ggeodaccod (5 - )| -2m)
2 4 15 1\\?
= (M— g)(l—cos%h) - 1—55|n(2nh)\/1— ( > (5 - §)> .

Let us recall that" does not depend on the phase which implies
_1((ayt =) T) = — Da((a, — WT).

Hence, to obtain optimal tuning, it suffices to compute the minimun# dbr
u € Ir. Differentiating F, we obtain

n/2—1/3
J1— 1504 —15/6)2

15
F'(u) =1—cos2rh) + > sin(2h)

HenceF attains its minimum for
pr(h) =2 — 22 /T cos2rh)
and
— lim ugr(h) = 2.
KR hI—>OMR( ) 3

Thus we obtain that ; is the stochastic resonance poinkig € I, that is, if the
phase is near té, that is, if ¥ is close to O. In the other case, the optimal tuning
rate on every intervdk, b] C I is given by the upper bourfd
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3.2. The robustness of stochastic resonance based on transition windaws.
the small noise limite — 0, it seems reasonable to assume that the periodicity
properties of the diffusion trajectories caused by the periodic forcing due to the
potential, are essentially captured by a simpler, reduced stochastic process: a
continuous-time Markov chain which just jumps between two states representing
the bottoms of the wells of the double-well potential at rates corresponding to the
transition mechanism of the diffusion. This is just the reduction idea ubiquitous
in the physics literature, and explained, for example, in [15]. In [13] it is found
that this idea may conflict with the intrawell fluctuations of the diffusion if the
quality of periodic tuning is measured by concepts using spectral decompositions
of the trajectories. We shall now show that in the small noise limit both models,
diffusion and Markov chain, produce the same resonance picture, if quality of
periodic tuning is measured by transition rates as discussed in Section 3.1.

We first have to describe the reduced model. Letbe a time-dependent
potential function generating the potential diffusions of the preceding section.
Recall that the depth functions of the potential minima saii¥fyt) = D_1(r + ¢),

t > 0, with phase shifip €10, 1[. So, let us consider a time-continuous Markov
chain{Y;, r > 0} taking values in the state spajcel, 1} with initial dataYy = —1.
Suppose the infinitesimal generator is given by

(00 )
W2 ()

wherey (1) = ¢t + ¢), t > 0, andg is a 1-periodic function describing a rate
which just produces the transition dynamics of the diffusion between the potential
minima=+1, that is,

(40) o) = exp(— D_el(t) ) t>0.
Note that by choice o,
(41) Y(t) = exp(— Dl;t) ) t>0.

Transition probabilities for the Markov chain thus defined are easily computed.
See ([11], Section 2). For example, the probability density of the first transition
timeo; (Y) is given by

t
p) = () exp(—/ o (s) ds) ifi =-1,
0

CI(I)=<p(t+¢)exp<—/0t<p(s+¢)ds) ifi =1,
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t > 0. Equation (42) can be used to obtain results on exponential rates of the
transition timesy; (Y) if starting from—i, i = +1. We summarize them and apply
them to the measure of quality of periodic tuning in case (37):

(42) N(e. )= minPi(o—(¥) € [(a], —=MWT. (@, +M)T]), &>0,pelg,

which is calledransition probability for a time window of width for the Markov
chain.

Here is the asymptotic result obtained from a slight modification of Theorems
3 and 4 of [11] which consists of allowing more general depth functions than the
sinusoidal ones used there and requires just the same proof.

THEOREM 3.3. LetTI be a compact subset df;, and lethg < sumz;l,
T/2—a;"). Thenfor0 < h < ho,

(43) !i_rpog IN(1— N (e, p) = irg?l({u — Di(a, —h)}
uniformly foru € T.

It is clear from Theorem 3.3 that the reduced Markov chiaiend the diffusion
processX have exactly the same resonance behavior. Of course, we may define
the stochastic resonance poiftdr Y just as we did forX. So the following final
robustness result holds true.

THEOREM3.4. The resonance points af with periodic potential/ and ofY
with exponential transition rate functiord3.1 coincide
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