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COEXISTENCE IN TWO-TYPE FIRST-PASSAGE
PERCOLATION MODELS

BY OLIVIER GARET AND RÉGINE MARCHAND

Université d’Orléans and Université Henri Poincaré Nancy 1

We study the problem of coexistence in a two-type competition model
governed by first-passage percolation onZ

d or on the infinite cluster in
Bernoulli percolation. We prove for a large class of ergodic stationary passage
times that for distinct pointsx, y ∈ Z

d , there is a strictly positive probability
that {z ∈ Z

d ;d(y, z) < d(x, z)} and {z ∈ Z
d ;d(y, z) > d(x, z)} are both

infinite sets. We also show that there is a strictly positive probability that the
graph of time-minimizing path from the origin in first-passage percolation has
at least two topological ends. This generalizes results obtained by Häggström
and Pemantle for independent exponential times on the square lattice.

1. Introduction. The two-type Richardson’s model was introduced by
Häggström and Pemantle (1998) as a simple competition model between two in-
fections: on the cubic gridZd , two distinct infections, type 1 and type 2, starting,
respectively, from two distinct sourcess1, s2 ∈ Z

d , compete to invade the sites of
the gridZ

d . Each one progresses like a first-passage percolation process onZ
d ,

governed by the same family(t (e))e∈Ed of i.i.d. exponential random variables, in-
dexed by the setEd of edges ofZd , but the two infections interfere in the following
way: once a site is infected by the typei infection, it remains of typei forever and
can not transmit the other infection. This leads to two very different possible evo-
lutions of the process:

(a) either one infection surrounds the other one, stops it and then goes on
infecting the remaining healthy sites as if it was alone,

(b) or the two infections grow mutually unboundedly, which is calledcoexis-
tence.

The probability that, given two distinct sources, coexistence occurs is of course
not full, and the relevant question is to determine whether coexistence occurs
with positive probability or not. Although this competition problem is interesting
in its own right, it is also a powerful tool to study the existence of two
semi-infinite geodesics (or topological ends) of the embedded spanning tree
in the related first-passage percolation model. Thus, Häggström and Pemantle
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proved that coexistence for any two initial sources in the two-type Richardson’s
model onZ

2 occurs with positive probability, and, consequently, that in first-
passage percolation onZ2 with i.i.d. exponential passage times on the edges, the
probability that there exist at least two topological ends in the embedded spanning
tree is positive.

Their results strongly rely on an interacting particle representation of the
problem which is typical of the exponential passage times. The aim of this paper
is to extend these results to more general passage times, where this representation
is not available anymore or at least much less natural. We consider here stationary
ergodic first-passage percolation onZ

d , d ≥ 2 (and also on an infinite cluster
of Bernoulli percolation), and prove that, under some extra hypotheses (mainly
integrability conditions on the passage times,finite energy properties and positivity
conditions on the functional giving the directional asymptotic speeds), for any two
distinct sources, the probability that coexistence occurs is strictly positive. As a
consequence, we obtain that in the related first-passage percolation onZ

d , the
probability that there exist at least two topological ends in the embedded spanning
tree is positive.

The structure of the proof is the following. First, the key step is to prove
that there exist two sources such that coexistence occurs, and this is the aim of
Section 3. Heuristically, the shape theorem of first-passage percolation, combined
with the fact that the two infections have the same speed, gives the intuition that
the larger the distance between the two sources is, the harder it is for one infection
to surround the other one. More precisely, Theorem 3.1 says that ifd(x, y) denotes
the travel time between the sitesx andy, then there exists a sitex such that the
event:

(a) the set of sitesz such thatd(0, z) < d(x, z) is infinite,
(b) and the set of sitesz such thatd(0, z) > d(x, z) is infinite,

has positive probability. The proof of this result relies on the existence of a
directional asymptotic speed in the related first-passage percolation model.

Section 4 is devoted to the definition of the two-type first-passage percolation
model, and to a discussion about existence and/or uniqueness of optimal paths.

The next step is to transfer the coexistence result for these sources toany
two initial sources; this is done by a modification argument of the configuration
around the sources using a finite energy property for the passage times. Roughly
speaking, this result expresses the fact that noncoexistence is due to alocal
advantage obtained by one infection at the first moments of the competition. The
two topological ends result is shown by a similar modification argument. These
results are proved separately in Section 5 for diffuse passage times and in Section 6
for integer passage times.

The last section is finally devoted to the study of a probabilistic cellular
automata describing a discrete competition model between two infection types
related to the chemical distance in super-critical Bernoulli percolation onZ

d .
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We start now with a reminder of the result of existence of directional asymptotic
speeds in classical first-passage percolation, and an extension of this result to first-
passage percolation on an infinite Bernoulli cluster.

2. Reminder on the directional asymptotic speed results. In classical first-
passage percolation, one has the well-known directional asymptotic speed result:
if (t (e))e∈Ed are i.i.d. nonnegative integrable random variables, then for every
x ∈ Z

d , there existsµ(x) ≥ 0 such that a.s.

lim
n→∞

t (0, nx)

n
= lim

n→∞
Et (0, nx)

n
= µ(x).

This result has been extended in full details in a previous work of Garet and
Marchand (2003) to first-passage percolation on an infinite Bernoulli cluster. The
aim of this section is to introduce an adapted framework and to recall, without
proofs, the results needed in this paper.

Grid structure ofZd . In the following, d ≥ 2. We denote byZd the graph
whose set of vertices isZd , and where we put a nonoriented edge between each
pair {x, y} of neighborpoints inZ

d , that is, points whose Euclidean distance is
equal to 1. This set of edges is denoted byE

d . A (simple) path is a sequence
γ = (x1, x2, . . . , xn, xn+1) of distinct points such thatxi andxi+1 are neighbors
andei is the edge betweenxi andxi+1. The numbern of edges inγ is called the
lengthof γ and is denoted by|γ |.

For any setX, andu ∈ Z
d , we define thetranslation operatorθu onXE

d
by the

relation

∀ω ∈ X ∀ e ∈ E
d (θuω)e = ωu·e,

whereu · e denotes the natural action ofZ
d on E

d : if e = {a, b}, thenu · e =
{a + u,b + u}.

Assumptions and construction of first-passage percolation.Denote bypc(d)

the critical threshold for Bernoulli percolation on the edgesE
d of Z

d , and choose
p ∈ (pc,1]. On�E = {0,1}E

d
, consider the measurePp:

on�E = {0,1}E
d

Pp = (
pδ1 + (1− p)δ0

)⊗E
d

.

A point ω in �E is a random environmentfor first-passage percolation. An edge
e ∈ E

d is said to beopenin the environmentω if ωe = 1, andclosedotherwise.
A path is said to beopenin the environmentω if all its edges are open inω. The
clustersof an environmentω are the connected components of the graph induced
on Z

d by the open edges inω. As p > pc(d), there almost surely exists one and
only one infinite cluster, denoted byC∞. On�S = (R+)E

d
, consider a probability

measureSν such that

on�S = (R+)E
d

Sν is stationary and ergodic
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with respect to the previously introduced family of translations of the grid. We
suppose, moreover, thatSν satisfies the following integrability and dependence
conditions:

m = sup
e∈Ed

∫
ηe dSν(η) < +∞.(1)

∃α > 1, ∃A,B > 0 such that∀	 ⊆ E
d

Sν

( ∑
e∈	

ηi ≥ B|	|
)

≤ A

|	|α .(2)

For instance, ifSν is the product measureν⊗E
d
, assumption (2) follows from the

Marcinkiewicz–Zygmund inequality as soon as the passage time of an edge has a
moment of order strictly greater than 2—see, for example, Theorem 3.7.8 in Stout
(1974).

Our probability space will then be� = �E × �S . A point in � will be denoted
(ω,η), with ω corresponding to the environment, andη assigning to each edge a
nonnegativepassage timewhich represents the time needed to cross the edge. The
final probability is

on� = �E × �S P = Pp ⊗ Sν.

In the context of first-passage percolation, as we are interested in asymptotic
results concerning travel time from the origin to points that tend to infinity, it is
natural to conditionPp on the event that 0 is in the infinite cluster:


Pp(·) = Pp(·|0 ∈ C∞) and 
P =
Pp ⊗ Sν.

For B ∈ B(�E), with B ⊂ {0 ↔ ∞} and Pp(B) > 0, we will also define the
probability measure
PB by

∀C ∈ B(�) 
PB(C) = P(C ∩ (B × �S))

Pp(B)
.

EXAMPLES. The previous assumptions of the generalized first-passage per-
colation model include:

(a) The case of classical i.i.d. first-passage percolation: takep = 1, i.e., all the
edges ofZd are open, andSν = ν⊗E

d
, whereν is a probability measure onR+.

(b) The case of classical i.i.d. first-passage percolation, but allowing the
passage times to take the value∞ with positive probability: takepc(d) < p < 1,
a probability measureν on R+, and setSν = ν⊗E

d
. This is equivalent to consider

p = 1 andSν = ν̃⊗E
d
, whereν̃ is a probability measure onR+ ∪ {∞} that charges

∞ with probability 1− p.
(c) The case of stationary first-passage percolation, as considered by Boivin

(1990): takep = 1 andSν a stationary probability measure.
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The travel time. The chemical distanceD(x,y) betweenx and y in Z
d

only depends on the Bernoulli percolation structureω and is defined as follows:
D(x,y)(ω) = infγ |γ |, where the infimum is taken on the set of paths whose
extremities arex andy and that are open in the environmentω. It is of course
only defined whenx andy are in the same percolation cluster, and represents then
the minimal number of open edges needed to linkx andy in the environmentω.
Otherwise, we set by conventionD(x,y) = +∞.

For (ω,η) ∈ �, and(x, y) ∈ Z
d × Z

d , we define thetravel timefrom x to y:

d(x, y)(ω,η) = inf
γ

d(γ ) = inf
γ

∑
e∈γ

ηe,

where the infimum is taken on the set of paths whose extremities arex and y

and that are open in the environmentω. Of coursed(x, y) = +∞ if and only if
D(x,y) = +∞.

A path γ from x to y which realizes the distanced(x, y) is called afinite
geodesic. An infinite path γ = (xi)i≥0 is called a semi-infinite geodesicif
(xn, xn+1, . . . , xp) is a finite geodesic for everyn ≤ p.

Directional asymptotic speed results.In classical first-passage percolation, we
study, for eachu ∈ Z

d \ {0}, the travel timed(0, nu) asn goes to infinity. Here,
as all points inZ

d are not necessarily accessible from 0, we must introduce the
following definitions:

DEFINITION 2.1. For eachu ∈ Z
d \ {0} andB ∈ B(�E), let

T B
u (ω) = inf{n ≥ 1; θnuω ∈ B},

define the associated random translation operator on� = �E × �S


B
u (ω,η) = (

θ
T B

u (ω)
u (ω), θ

T B
u (ω)

u (η)
)

and the composed version

T B
n,u(ω) =

n−1∑
k=0

T B
u

(
(
B

u )kω
)
.

Note thatT B
u only depends on the environmentω, and not on the passage timesη,

whereas the operator
B
u acts on the whole configuration(ω,η). The next step is

to study the asymptotic behavior of such quantities:

LEMMA 2.2. 
B
u is a
P-preserving transformation, is ergodic for
P and

E
PT B
u = 1

Pp(B)
and

T B
n,u

n
→ 1

Pp(B)
, 
P a.s.
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PROOF. The idea is to prove that classical ergodic theorems can be applied.
�

We turn now to the study of the quantity analogous tod(0, nu) in the classical
first-passage percolation:

LEMMA 2.3. Let B ∈ B(�E), with B ⊂ {0 ↔ ∞} and Pp(B) > 0. For
u ∈ Z

d \ {0}, there exists a constantf B
u ≥ 0 such that

d(0, T B
n,u(ω)u)(ω,η)

n
→ f B

u , 
PB a.s.

The convergence also holds inL1(
PB). Moreover, f B
u ≤ E
PB

d(0, T B
u u) < +∞.

PROOF. These results are proved with full details whenB = {0 ↔ ∞} in Garet
and Marchand (2003). Since the proof is essentially the same, we omit it.�

Now, for eachu ∈ Z
d \ {0}, we define the asymptotic speed in the directionu

by

µ(u) = Pp(0↔ ∞)f A
u

for the choiceA = {0↔ ∞}. We also defineµ(0) = 0.

COROLLARY 2.4. Let B ∈ B(�E), with B ⊂ {0 ↔ ∞} andPp(B) > 0. For
u ∈ Z

d \ {0}, we have

d(0, (T B
n,u(ω)u)(ω,η)

n
→ µ(u)

Pp(B)
, 
PB a.s.,

d(0, (T B
n,u(ω)u)(ω,η)

T B
n,u(ω)

→ µ(u), 
PB a.s.

PROOF. We use the fact that(
d(0,T B

n,uu)

T B
n,u

)n≥0, as a subsequence of(
d(0,T A

n,uu)

T A
n,u

)n≥0,

admits the same almost sure limitµ(x), and Lemma 2.2. �

In Garet and Marchand (2003), it has been proved thatµ enjoys the properties
that are usual in classical i.i.d. first-passage percolation:µ is a semi-norm. In
classical i.i.d. first-passage percolation with passage time lawν, it is well known
that µ is a norm as soon asν(0) < pc(d). In the same paper we gave a long
discussion about conditions onSν implying thatµ is a norm. Particularly, ifSν is
a product measureν⊗Z

d
, µ is a norm as soon aspν(0) < pc(d).
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3. Coexistence result. Consider the first-passage percolation model onZ
d

previously introduced. For every pairx andy of distinct points inZd , say that the
event Coex(x, y) happens if

{z ∈ Z
d;d(x, z) < d(y, z)} and {z ∈ Z

d;d(x, z) > d(y, z)}
are both infinite sets.

The goal of the paper is to prove that for every pair of distinct pointsx, y ∈ Z
d ,

P(Coex(x, y)) > 0. Our proofs always require the assumption thatµ is not
identically null and we guess that this assumption is close to being optimal. Let
us detail a particular case whereµ = 0 and coexistence never occurs. Suppose that
d = 2 andSν = ν⊗E

d
, with pν(0) > pc(2) = 1

2. In this case,µ is identically null,
as previously noted. Consider two distinct pointsx, y ∈ Z

2. Sincepν(0) > pc(2),
there almost surely exists an infinite cluster of open edges with passage time zero.
It is known that in dimension 2, the supercritical infinite cluster almost surely
contains a circuit that surroundsx andy and disconnects them from infinity—
see Harris (1960) or, for instance, Grimmett (1999). Clearly, the points in this
circuit are equallyd-distant fromx (resp.y). So, if x reaches the circuit beforey,
it necessarily also reaches every point outside the circuit beforey. Similarly, if
x andy reach the circuit at the same time, all the points outside the circuit will
also be reached at the same time byx andy. In both cases, coexistence does not
occur.

The next theorem gives conditions that ensure that coexistence possibly occurs
for some (random)x, y.

THEOREM 3.1. Let d ≥ 2, p > pc(d), Sν a stationary ergodic probability
measure on(R+)E

d
satisfying (1) and (2), and µ be the related semi-norm

describing the directional asymptotic speeds.
LetB ∈ B(�E), with B ⊂ {0↔ ∞} andPp(B) > 0, andy ∈ Z

d . We have

if Ed(0, T B
1,yy) <

2µ(y)

Pp(B)
then
PB

(
Coex(0, T B

1,yy)
)
> 0.

Moreover, if x ∈ Z
d is such thatµ(x) > 0, then y = rx satisfies the previous

condition provided thatr is large enough.

Note that whenp = 1, which corresponds to classical first-passage percolation,
we can takeB = �E , and thenT B

1,yy is simply equal toy.
Before beginning the proof, we want to describe an elementary and clever

trick used by Häggström and Pemantle (1998) that will also be useful here.
The following symmetry argument gives the idea underlying the proof in the
i.i.d. caseSν = ν⊗E

d
with p = 1, but in the real proof we will treat the general

stationary ergodic case. Consider Figure 1. The left-hand side picture deals with
our problem: if we prove that whenMn goes to the infinity on the right (resp. on
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FIG. 1. The symmetry argument.

the left), thenMn is infinitely often closer (resp. more distant) fromB than fromA

with a probabilitybounded away from 0.5, then coexistence holds with positive
probability.

Now consider the right-hand side picture: for fixedn, (d(0, Jn), d(0, In)) has
the same law that(d(A,Mn), d(B,Mn)), so the event{d(0, Jn) > d(0, In)} occurs
with the same probability as the event{d(A,Mn) > d(B,Mn)}. So, if we show
that for someα > 1/2, P(d(0, Jn) > d(0, In)) ≥ α holds for infinitely manyn, the
result is proved.

As Häggström and Pemantle said, the idea is that there are sites arbitrarily
far away from the origin which strongly feel from which source the infection
is coming. Theirmodus operandi, in the case of i.i.d. exponentials onZ2, was
to control the infection rate “from the right to the left” and the infection rate
“from the left to the right.” The main idea of the proof which follows is that
the advantage of the closest source can be quantified using the existence of
a directional asymptotic speed in first-passage percolation. Concretely, we will
use the law ofd(A,Mn) − d(B,Mn) [in fact, the law ofd(0, Jn) − d(0, In)]
instead of those of{d(A,Mn) > d(B,Mn)} [or {d(0, Jn) > d(0, In)}] to carry the
information.

PROOF OFTHEOREM 3.1. Choosey ∈ Z
d \ {0} such that

E
PB
d(0, T B

1,yy) <
2µ(y)

Pp(B)
.(3)

Let us note

S0 = lim sup
‖z‖1→+∞

{d(0, z) < d(T B
1,yy, z) < +∞},

S1 = lim sup
‖z‖1→+∞

{+∞ > d(0, z) > d(T B
1,yy, z)}.

It is obvious that Coex(0, T B
1,yy) = S0 ∩ S1. Intuitively, one expects that the

difference betweend(0, z) andd(T B
1,yy, z) will be more important ifz ∈ Ry, and

we will effectively consider suchz. For the convenience of the reader, we also
note, forn ∈ Z+ andx ∈ Z

d , T̃n,x = T B
n,xx. DefineT̃0,x = 0, and forn ≥ 0,

Xn = d(0, T̃n,y) − d(T̃1,y, T̃n,y),

X′
n = d(T̃1,y, T̃n,−y) − d(0, T̃n,−y).
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By the triangle inequality, one has|Xn| ≤ d(0, T̃1,y) and|X′
n| ≤ d(0, T̃1,y).

Note that forω /∈ S1, Xn(ω) ≤ 0 as soon asn is large enough, whereas for
ω /∈ S0, X′

n(ω) ≤ 0 for largen. It follows that forω /∈ S0 ∩ S1,

Xn(ω) + X′
n−1(ω) ≤ d(0, T̃1,y)(ω)

for largen. Let us define

Qn =
n∑

k=1

(Xk + X′
k−1), Zn = Qn

n
and Z = lim sup

n→+∞
Zn.

The previous remark implies easily that

∀ω /∈ S0 ∩ S1 Z(ω) ≤ d(0, T̃1,y)(ω).(4)

By Lemma 2.3,d(0, T̃1,y) is integrable under
PB . Since |Zn| ≤ d(0, T̃1,y), it
follows (for instance, by Fatou’s lemma) that

E
PB
Z = E
PB

lim sup
n→+∞

Zn ≥ lim sup
n→+∞

E
PB
Zn.

Sinced(T̃1,y, T̃n,y) = d(0, T̃n−1,y) ◦ 
B
y , it follows from the invariance of
PB

under
B
y that

E
PB
Xn = E
PB

(
d(0, T̃n,y) − d(T̃1,y, T̃n,y)

)
= E
PB

d(0, T̃n,y) − E
PB
d(0, T̃n−1,y).

Then, it follows thatE
PB
(X1 + X2 + · · · + Xn) = E
PB

d(0, T̃n,y). Similarly, as

d(T̃1,y, T̃n,−y) = d(0, T̃n+1,−y) ◦ 
B
y ,

E
PB
X′

n = E
PB

(
d(T̃1,y, T̃n,−y) − d(0, T̃n,−y)

)
= E
PB

d(0, T̃n+1,−y) − E
PB
d(0, T̃n,−y),

andE
PB
(X′

0 +X′
1 +· · ·+X′

n−1) = E
PB
d(0, T̃n,−y) = E
PB

d(0, T̃n,y), using for the

last equality the fact that
PB is invariant under(
B
y )n and the fact that a distance

is symmetric.

Then,E
PB
Zn = 2E
PB

d(0,T̃n,y )

n
. Since, via Corollary 2.4,

E
PB
d(0,T̃n,y )

n
converges

to µ(y)
Pp(B)

, it follows that

E
PB
Z ≥ 2µ(y)

Pp(B)
.(5)

Putting together (3), (4) and (5), we see that
PB(S0 ∩ S1) = 0—or, equivalently,

PB((S0 ∩ S1)

c) = 1—would yield to a contradiction. This concludes the proof of
the first assertion.
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The second assertion is a direct consequence of Corollary 2.4.�

One can be a bit perplexed by the fact that the position of the source which may
coexist with a source at the origin is a random variable. The goal of the next result
is to come back to deterministic sources. Intuitively, one can guess that the larger
the distance between the two sources is, the higher the probability of coexistence
will be. This is the spirit of the next result.

THEOREM 3.2. Under the same assumptions as in Theorem3.1, suppose,
moreover, thatµ is not identically null. Then, we have the following:

(a) For x ∈ Z
d with µ(x) �= 0, there is an infinite set of odd values forn ∈ Z+

such thatP(Coex(0, nx)) > 0.
(b) P(∃x, y ∈ Z

d, Coex(x, y)) = 1.

Let us say a word on the unexpected apparition of odd integers. Of course,
the result would be the same with the set of integers and, generally, this
additional constraint does not bring much. Nevertheless, one will see later that,
in the competition context, this additional property sometimes prevents the two
infections from reaching a point at the very same time; it will also play a
fundamental role in the proof of Theorem 6.1.

PROOF. Let x ∈ Z
d be such thatµ(x) > 0 andN ∈ Z+. Let A = {0 ↔ ∞}

andB = A ∩ {T A−x is odd}. We have, from the FKG inequalities,


Pp(B) ≥
Pp(T A−x = 1) =
Pp(−x ↔ ∞) ≥ Pp(−x ↔ ∞) > 0.

By Lemma 2.3 and Theorem 2.4,
Ed(0,T B

1,rx )

r
tends to µ(x)

Pp(B)
, so we can find an odd

integerr ≥ N with
Ed(0,T B

1,rx rx)

r
<

2µ(x)
Pp(B)

. By Theorem 3.1, one has
P(S0 ∩S1) > 0.

By its definition,T B
1,rx almost surely takes its values in the set of nonnegative

odd integers. Then, we can write


PB(S0 ∩ S1) = ∑
k odd


PB(S0 ∩ S1 ∩ {T B
1,rx = k}).

Then, there exists an odd integerk ∈ Z+, with 
PB(S0 ∩ S1 ∩ {T B
1,rx = k}) > 0. So,

if we noten = kr , we haven ≥ r ≥ N , n is odd and

P
(
Coex(0, nx)

) ≥ Pp(B)
PB(S0 ∩ S1 ∩ {T B
1,rx = k}) > 0.

The second point is a consequence of the ergodicity assumption.�
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4. Competition model and optimal paths. We define here the two-type
competition model and discuss the assumptions needed to ensure the uniqueness
and/or existence of optimal paths.

ASSUMPTIONS. We consider first-passage percolation onZ
d , with d ≥ 2. The

open edges are given by a realization of a Bernoulli percolation on the edgesE
d

of Z
d with parameterp ∈ (pc(d),1]:

on�E = {0,1}E
d

Pp = (
pδ1 + (1− p)δ0

)⊗E
d

.

The passage times of the edges are given by a probability measureSν :

on�S = (R+)E
d

Sν is stationary and ergodic.

Finally, we consider the product measureP = Pp ⊗ Sν on�E × �S . We also need
two distinct initial sourcess1, s2 in Z

d .

This allows us to define the following two-type first-passage percolation model.

DEFINITION 4.1. Under the previous assumptions, we set the following:

A1(s1, s2) = {x ∈ Z
d, d(s1, x) < d(s2, x)},

A2(s1, s2) = {x ∈ Z
d, d(s2, x) < d(s1, x)}.

Ai(s1, s2) is the set of sites inZd that are finally infected by typei infection. The
time of infection ofx ∈ Z

d is t (x) = inf{d(si, x),1 ≤ i ≤ 2}. We say thatx is
finally infected if t (x) < ∞.

Note that the set of finally infected points could be larger than the union of
A1(s1, s2) and A2(s1, s2): we cannot a priori exclude that a pointx could be
reached simultaneously by the two infections, in which case we call it an infected
point without defining an infection type.

We say that the two infections mutually grow unboundedly if the two sets
A1(s1, s2) andA2(s1, s2) are both infinite.

The mutual unbounded growth of a two-type first-passage percolation starting
from s1, s2 is equal to the event Coex(s1, s2) defined in Section 3.

LEMMA 4.2. If x ∈ Z
d is such thatd(s1, x) is reached on at least a finite path

and such thatd(s1, x) < d(s2, x), then for everyy in an optimal path realizing
d(s1, x), we haved(s1, y) < d(s2, y).

PROOF. Denote byγ (s1, x) an optimal path froms1 to x, and suppose that
there existsy ∈ γ (s1, x) such thatd(s2, y) ≤ d(s1, y). Then, by the triangle
inequality,

d(s2, x) ≤ d(s2, y) + d(y, x) ≤ d(s1, y) + d(y, x)
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but asy ∈ γ (s1, x), d(s1, x) = d(s1, y) + d(y, x) and thend(s2, x) ≤ d(s1, x),
which is a contradiction. �

ASSUMPTION FOR UNIQUENESS OF OPTIMAL PATHS. If 	 is a finite subset
of E

d , denote byF	c theσ -algebra generated by{(ωe, ηe), e /∈ 	}. We suppose

∀	 finite subset ofEd, ∀ e ∈ 	, ∀a ∈ R+ Sν(ηe = a|F	c) = 0.(6)

LEMMA 4.3. Under the additional assumption(6), we have the following:

(i) If γ andγ ′ are paths that differ in at least one edge, then

P

(
d(γ ) = ∑

e∈γ

ηe = d(γ ′) = ∑
e∈γ ′

ηe < ∞
)

= 0.

Thus, the optimal paths, when they exist, are unique.
(ii) For everyα ∈ R, if x, x′, y, y′ are distinct points inZd ,

P
(∃finite pathγ such thatd(x, y) = d(γ ),

∃finite pathγ ′ such thatd(x′, y′) = d(γ ′)
andd(x, y) − d(x′, y′) = α

) = 0.

PROOF. These are classical and not too difficult consequences of assump-
tion (6). �

ASSUMPTIONS FOR THE EXISTENCE OF OPTIMAL PATHS. Consider the
following extra assumption onP:

lim‖x‖1→+∞d(0, x) = +∞, P a.s.(7)

This assumption ensures that for eachx, y ∈ Z
d with d(x, y) < +∞, there

always exists at least a pathγ from x to y with d(x, y) = d(γ ). When, moreover,
assumption (6) is satisfied, this path is unique. Assumption (7) is, for instance,
fulfilled when an asymptotic shape theorem is available, which ensures a certain
uniformity in the direction for the convergence toward the directional asymptotic
speed. Suppose, for instance, that the functionalµ associated toP is a norm and
that one of the three following conditions is fulfilled:

(a) (Hα) holds for someα > d2 + 2d − 1, where

∃A,B > 0 such that∀	 ⊆ E
d

Sν

(
η ∈ �S; ∑

e∈	

ηi ≥ B|	|
)

≤ A

|	|α .(Hα)

(b) p = 1 and the passage times of bonds have a moment of orderα > d.

(c) p = 1, Sν is a product measure and the passage times of bonds have a
second moment.
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The second moment assumption is classical in i.i.d. first-passage percolation to
ensure the shape theorem—see the review article by Kesten (1986), Lemma 3.5;
the (Hα) assumption withα > d is the one used by Boivin (1990) for the shape
theorem in stationary first-passage percolation. Finally, the(Hα) assumption with
α > d2 + 2d − 1 is the one we use in Garet and Marchand (2003), Lemma 3.7,
to obtain the shape theorem when the edges can be closed. Note that, ifSν is
the product measureν⊗E

d
, assumption(Hα) follows from the Marcinkiewicz–

Zygmund inequality as soon as the passage time of an edge has a moment of order
strictly greater than 2α.

5. Mutual unbounded growth and existence of two disjoint geodesics for
diffuse passage times. The aim of this section is to prove the possibility of
coexistence in two-type first-passage percolation for diffuse passage times, and to
study the existence of two semi-infinite geodesics in the corresponding one-type
first-passage percolation. We will thus work here under assumption (6).

The next result ensures the irrelevance of the positions of the two initial sources
in determining whether mutual unbounded growth occurs with positive probability
or not. Its proof is based on a modification of the configuration around the sources,
sufficiently strong to change the initial sources, and sufficiently slight to ensure
that some lengths are not modified outside a finite box.

LEMMA 5.1. Consider Z
d , with d ≥ 2 and p ∈ (pc(d),1]. Choose a

stationary ergodic probability measureSν on �S = (R+)E
d

satisfying the
nonatomic assumption(6) and

∀	 finite subset ofEd, ∀ e ∈ 	, ∀ ε > 0 Sν(ηe ≤ ε|F	c) > 0 a.s.(8)

If p = 1, we add the assumption that the support of the passage time is
conditionally unbounded:

∀	 finite subset ofEd, ∀ e ∈ 	, ∀M > 0
(9)

Sν(ηe ≥ M|F	c) > 0 a.s.

Then ifs1, s2 ands′
1, s

′
2 are two pairs of distinct points inZd ,

P
(
Coex(s1, s2)

)
> 0 ⇐⇒ P

(
Coex(s′

1, s
′
2)

)
> 0.

Let us comment on the two assumptions (8) and (9). They have the form of
finite energy properties, which are usual in modification arguments: it enables us
to force the occurrence of a wished event inside a finite box. But they also enable
the passage time of an edge to take as small—and as large whenp = 1—values as
we like. This is a rather a technical assumption that could probably be relaxed. For
instance, assumptions (8) and (9) are satisfied forSν = ν⊗E

d
with ν equivalent to

Lebesgue’s measure onR+.
Combining these results with Theorem 3.2, we obtain the following:
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THEOREM 5.2. Consider Z
d , with d ≥ 2 and p ∈ (pc(d),1]. Choose

a stationary ergodic probability measureSν on �S = (R+)E
d

satisfying the
integrability assumptions(1), (2)and such that the related semi-normµ describing
the directional asymptotic speeds is not identically null.

Suppose, moreover, thatSν satisfies the nonatomic assumption(6) and the finite
energy property(8). If p = 1, suppose, moreover, that the support of the passage
time is conditionally unbounded, that is, thatSν satisfies(9). Then

∀x �= y ∈ Z
d

P
(
Coex(x, y)

)
> 0.

To tackle the geodesics problem, we must be sure that the distancesd(x, y) are
reached. We thus work under the additional assumptions (6) and (7): optimal paths
exist and are unique.

Thanks to Lemma 4.2,A1(s1, s2) and A2(s1, s2) are now connected sets.
Moreover, with Lemma 4.3, ift (x) < ∞, then x is reached first by a unique
infection; the path of infectionγ (x) is the unique path from the corresponding
source tox that realizest (x). The set of eventually infected points is in this case
the union ofA1(s1, s2) andA2(s1, s2). In other words, we can define uniquely,
for each eventually infected point, its type of infection and its optimal path. The
union of (γ (x))x∈Zd ,t (x)<∞ is then a random forest of two treesT1(s1, s2) and
T2(s1, s2), respectively, rooted ats1 ands2 and, respectively, spanningA1(s1, s2)

andA2(s1, s2).
In the same manner, under these assumptions, optimal paths exist and are

unique in the first-passage percolation model: for everyx ∈ Z
d , there exists

a unique optimal pathγ (x) which realizes the distanced(0, x). The union of
(γ (x))x∈Zd ,t (x)<∞ is then a tree rooted in 0 and spanning allZ

d . A semi-infinite
geodesic is in this context an infinite branch of this tree.

The next result says that the mutual unbounded growth in the two-type first-
passage percolation model and the existence of two distinct semi-infinite geodesics
in the embedded spanning tree in the corresponding first-passage percolation
model are equivalent.

LEMMA 5.3. Under the same assumptions as in Lemma5.1, plus the extra
assumption(7),

∃ s1, s2 ∈ Z
d such thatP

(
Coex(s1, s2)

)
> 0

⇐⇒ P(there exist two edge-disjoint semi-infinite geodesics
in the infection tree rooted in0) > 0.

Combining these results with Theorem 3.2, we obtain the following:

THEOREM 5.4. Under the same assumptions as in Theorem5.2,plus the extra
assumption(7),

P(there exist two edge-disjoint semi-infinite geodesics
in the infection tree rooted in0) > 0.
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EXAMPLES. 1. Consider first-passage percolation onZ
d , d ≥ 2, with a family

(t (e))e∈Ed of i.i.d. nonnegative random variables with a nonatomic unbounded
support containing 0, for instance, an exponential law as in Richardson’s model.
Then:

(a) For the two-type competition model, the probability of mutual unbounded
growth is positive for every pair of distinct sources inZ

d .
(b) For the first-passage percolation model with one source, the probability

that the embedded spanning tree ofZ
d has two edge-disjoint infinite branches

is positive.

These results were proved by Häggström and Pemantle (1998) for Richardson’s
model in dimension 2. Our results positively answer the questions asked by
Häggström and Pemantle about extensions of their coexistence result to higher
dimensions and more general distributions for passage times.

2. Consider first-passage percolation onZ
d , d ≥ 2, with a family (t (e))e∈Ed

of i.i.d. nonnegative random variables whose law has no atom excepted in∞ (i.e.,
edges can be closed with positive probability) and has 0 in its support, for instance,
t ∼ p · U[0,1] + (1− p) · δ∞, with pc(d) < p < 1. Then:

(a) For the two-type competition model, the probability of mutual unbounded
growth is positive for every pair of distinct sources inZ

d .
(b) For the first-passage percolation model with one source, the spanning tree

of the infinite open cluster has two edge-disjoint infinite branches with positive
probability.

REMARKS. We evoke here some possible extensions of these results.
1. In the spirit of Deijfen and Häggström (2003), we could have considered

competition models withfertile finite setsas initial sources rather thanpoints. Two
finite nonempty disjoint setsS1 andS2 in Z

d are said to be fertile if there exist
two infinite paths
1 and 
2 such that
1 (resp.
2) starts from a point inS1
(resp. inS2) and such that these paths have no point in common. As the argument
is a local modification argument around the sources, our proof can be adapted to
generalize the irrelevance of the initial sources result: ifS1, S2 andS′

1, S
′
2 are two

pairs of fertile finite sets inZd ,

P
(
Coex(S1, S2)

)
> 0 ⇐⇒ P

(
Coex(S′

1, S
′
2)

)
> 0.

2. Let us say a word onmultitype first-passage percolation. The definitions
concerning the two-type first-passage percolation can be generalized in the obvious
manner to consider a competition model betweenN infections starting fromN

sourcess1, s2, . . . , sN and trying to invade the sites ofZ
d . In this context, the event

Coex(s1, s2, . . . , sN) is defined as the event that there finally exist an infinite set
of infected points of each type of infection. Theorems 5.1 and 5.3 can be proved
in the same manner forN -type first-passage percolation. The only difficulty is to



COEXISTENCE IN TWO-TYPE MODELS 313

ensure that the considered initial sourcess1, s2, . . . , sN are susceptible to give rise
to a coexistence configuration: this means initial sourcess1, s2, . . . , sN for which
it is possible to find a family ofN infinite paths(
i)1≤i≤N such that for everyi,

i starts fromsi and such that any two of these paths have no point in common.

Unfortunately, the coexistence result Theorem 5.2 is not available forN sources,
as it relies on Theorem 3.1, which is only valid for two sources, and whose proof
does not seem to be easy to adapt to more sources.

We can now begin the proofs of these results. As the arguments of Lemmas
5.1 and 5.3 are very similar, we give the proof of Lemma 5.1 in full details, and
give only indications to adapt the proof for the geodesics problem.

PROOF OFLEMMA 5.1. Chooses1, s2 ands′
1, s

′
2 two pairs of distinct points

in Z
d and denote by	 an hypercubic box inZd large enough to contains1, s2 and

s′
1, s

′
2. We also define∂	 = {x ∈ 	, ∃y /∈ 	, ‖x − y‖1 = 1}.

By enlarging	 if necessary, we can assume thats1, s2, s
′
1, s

′
2 are at a distance

at least 3 from∂	. For an edgee ∈ E
d , we say thate ∈ 	 if and only

if its two extremities are in	 and at least one is not in∂	. For a point(ω,η) in
� = �E × �S = {0,1}E

d × (R+)E
d
,

(ω	,η	) = {(ωe, ηe), e ∈ 	} and (ω	c, η	c) = {(ωe, ηe), e ∈ E
d \ 	}.

For two pointsx, y that are in	c ∪ ∂	, we defined	c(x, y)(ω) as the infimum,
among all the pathsγ from x to y whose edges are not in	, of

∑
e∈γ ηe.

Suppose thatP(Coex(s1, s2)) > 0, or, equivalently, thatA1(s1, s2) andA2(s1, s2)

are both infinite sets.
Remember that the box	 has been chosen large enough to contains1, s2. For

s ∈ 	, x ∈ 	c andr ∈ ∂	, let us denote byϒr(s, x) the set of paths froms to x

such thatr is the last point of the path which is in	. Since∂	 is finite, there exists
at least oner ∈ ∂	 such that

d(s, x) = inf
γ∈ϒr(s,x)

d(γ ).

For x ∈ 	c ands ∈ 	, let us denote byRs(x) such anr—use, if necessary, the
lexicographic order to make a choice. Ifd(s, x) is reached on a (unique) optimal
pathγ (s, x), thenRs(x) is just the point whereγ (s, x) exits from the box	 for
the last time. Note that

d(s, x) = d
(
s,Rs(x)

) + d
(
Rs(x), x

) = d
(
s,Rs(x)

) + d	c

(
Rs(x), x

)
.

As ∂	 is finite, there must exist two distinct pointsr1, r2 ∈ ∂	 such that

P
(
A1(s1, s2) ∩ {

x ∈ Z
d;Rs1(x) = r1

}
is infinite

A2(s1, s2) ∩ {
x ∈ Z

d;Rs2(x) = r2
}

is infinite
)
> 0.

(10)
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FIG. 2. Modification of the infection trees. On the left, competition with two sourcess1 (black
triangle) and s2 (white triangle): the boxB is in grey, the squares are the exiting points of the
branches from	 (black forr1 and white forr2) and the circles are the visible portions of the infinite
sets outside	 (black for x1

1, x1
2, . . . , x1

7 and white forx2
1, . . . , x2

5). On the right, the configuration
outside	 has not changed, but we forced the infinite sets to connect toγ ′

1 (in black) andγ ′
2 (dashed)

and, thus, we changed the sources intos′
1, s′

2.

Now we introduce the following events:

C1 = {
There is an infinite set(x1

i )i≥1 in 	c such that
∀ i ≥ 1,Rs1(xi) = r1

}
,

C2 = {
There is an infinite set(x2

j )j≥1 in 	c such that
∀ j ≥ 1,Rs2(xi) = r2

}
,

A1
i = {d	c(x1

i , r1) + d(r1, s1) < d	c(x1
i , r2) + d(r2, s2)},

A2
j = {d	c(x2

j , r2) + d(r2, s2) < d	c(x2
j , r1) + d(r1, s1)}.

Step1. Let us prove that (10) implies

P

(
C1 ∩ C2 ∩ ⋂

i≥1

A1
i ∩ ⋂

j≥1

A2
j

)
> 0.(11)

Indeed, suppose that the event in (10) is realized. ThenA1(s1, s2) ∩ {x ∈ Z
d;

Rs1(x) = r1} is a good candidate forC1. Now,Rs1(x
1
i ) = r1 implies that

d(s1, r1) + d(r1, x
1
i ) = d(s1, x

1
i )

< d(s2, x
1
i )

≤ d(s2, r2) + d(r2, x
1
i )

≤ d(s2, r2) + d	c(r2, x
1
i ).
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As r1 is the last point ofγ for eachγ ∈ ϒr1(s1, x
i
1) to be in	, we haved(r1, x

1
i ) =

d	c(r1, x
1
i ) and, thus,A1

i is realized. Doing the same forC2 andA2
j , we see that

the event that appears in (10) is included inC1 ∩ C2 ∩ ⋂
i≥1 A1

i ∩ ⋂
j≥1A2

j and,
thus, (11) is proved.

Now, asC1 andC2 are inF	c , conditioning onF	c gives

P

(
C1 ∩ C2 ∩ ⋂

i≥1

A1
i ∩ ⋂

j≥1

A2
j

)

=
∫

dP(ω	c, η	c)1C1(ω	c, η	c)1C2(ω	c, η	c)

× P

(
(ω,η) ∈ ⋂

i≥1

A1
i ∩ ⋂

j≥1

A2
j

∣∣∣F	c

)
,

where we can also write

P

(
(ω,η) ∈ ⋂

i≥1

A1
i ∩ ⋂

j≥1

A2
j

∣∣∣F	c

)

= P
(∀ i ≥ 1, d	c(x1

i , r1) − d	c(x1
i , r2) < d(r2, s2) − d(r1, s1)

∀ j ≥ 1, d(r2, s2) − d(r1, s1) < d	c(x2
j , r1) − d	c(x2

j , r2)|F	c

)(12)

a.s.

Define

m1 = m1(ω	c, η	c) = sup
i≥1

(
d	c(x1

i , r1) − d	c(x1
i , r2)

)
,

m2 = m2(ω	c, η	c) = inf
j≥1

(
d	c(x2

j , r1) − d	c(x2
j , r2)

)
.

Step2. We have

P

(
C1 ∩ C2 ∩ ⋂

i≥1

A1
i ∩ ⋂

j≥1

A2
j ∩ {m1 < m2}

)
> 0.(13)

Indeed, thanks to (12) and to Lemma 4.3(ii),

P

( ⋂
i≥1

A1
i ∩ ⋂

j≥1

A2
j ∩ {m1 ≥ m2}

∣∣∣F	c

)

= P
(
d(r2, s2) − d(r1, s1) = m1|F	c

)
= 0 a.s.

and then the probabilities in (13) and in (11) are equal.
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It is also easy to see, ifm1(ω	c, η	c) < m2(ω	c, η	c), that we can find
a1, a2, b1, b2 ∈ R+ such that

b1m1 < b2m2, a2m2 < a1m1, b1 − a1 = 1 and b2 − a2 = 1.

Define also

M = M(ω	c, η	c )

= max{a1m1, b2m2}
+ max

z∈∂	
d	c (r1,z)<∞

{d	c(r1, z)} + max
z∈∂	

d	c (r2,z)<∞
{d	c(r2, z)}.

Now, we build a setG = G(ω	c, η	c) of goodconfigurations(ω	,η	) inside	,
depending on the configuration outside	. First, since	 has been chosen large
enough, it is possible to draw with the edges in	, a pathγ ′

1 that links s′
1 to r1

and a pathγ ′
2 that linkss′

2 to r2 such thatγ ′
1 andγ ′

2 have no vertex and no edge
in common. Denote by|γ ′

1| (resp.|γ ′
2|) the number of edges inγ ′

1 (resp.γ ′
2). We

define nowG as the set of(ω	,η	) that satisfy the following conditions:

(i) ∀ e ∈ γ ′
1, ωe = 1 anda2m2/|γ ′

1| < ηe < a1m1/|γ ′
1|,

(ii) ∀ e ∈ γ ′
2, ωe = 1 andb1m1/|γ ′

2| < ηe < b2m2/|γ ′
2|,

(iii) • if p < 1, then∀ e ∈ 	 \ (γ ′
1 ∪ γ ′

2), ωe = 0,
• if p = 1, then∀ e ∈ 	 \ (γ ′

1 ∪ γ ′
2), ηe > M .

Under the finite energy assumptions (8) and (9), on the event{m1 < m2}, we
haveP(G(ω	c, η	c )|F	c) > 0 a.s., so (13) implies∫

1C11C21{m1<m2}P(G|F	c) dP = P(C1 ∩ C2 ∩ {m1 < m2} ∩ G) > 0.(14)

Step3. Let us prove that on the eventC1 ∩C2 ∩{m1 < m2}∩G, each of the two
types survives or, in other words,

C1 ∩ C2 ∩ {m1 < m2} ∩ G ⊂ Coex(s′
1, s

′
2).

Suppose then that(ω,η) ∈ C1∩C2∩{m1 < m2}∩G. We have in the configuration
(ω,η):

(a) a2m2 < d(γ ′
1) < a1m1 thanks to condition (i) in the definition ofG.

(b) b1m1 < d(γ ′
2) < b2m2 thanks to condition (ii)in the definition ofG.

(c) Thus, by difference and by the choice ofa1, b1, a2, b2, we have

m1 = m1(b1 − a1) < d(γ ′
2) − d(γ ′

1) < m2(b2 − a2) = m2.
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Moreover, as soon as a pathγ from s′
1 to r1 differs fromγ ′

1 by at least one edge,
it must use an edgee in 	 \ (γ ′

1 ∪ γ ′
2), and this edge is either closed or such

that ηe > M thanks to condition (iii) in the definition ofG. Thus,d(γ ) > M ≥
a1m1 > d(γ ′

1). Consequently,γ ′
1 is the optimal path froms′

1 to r1. On the other
hand, every pathγ from s′

2 to r1 has to use an edgee in 	 \ (γ ′
1 ∪ γ ′

2), and then
by the same argument,d(γ ) > M ≥ a1m1 > d(γ ′

1), and thend(s′
2, r1) > d(s′

1, r1).
Consequently,r1 is finally infected bys′

1 andd(s′
1, r1) is reached for the optimal

pathγ ′
1; in the same manner,r2 is finally infected bys′

2 andd(s′
2, r2) is reached for

the optimal pathγ ′
2.

Let us now prove that for eachi ≥ 1, Rs′
1
(x1

i ) = r1. Let i ≥ 1 and note

z = Rs′
1
(x1

i ). If z �= r1, we would have

d(s′
1, x

1
i ) = d(s′

1, z) + d	c(z, x1
i ) ≤ d(s′

1, r1) + d	c(r1, x
1
i )

and then

d(s′
1, z) ≤ d(s′

1, r1) + d	c(r1, x
1
i ) − d	c(z, x1

i ) ≤ d(s′
1, r1) + d	c(r1, z).

The last inequality is just the triangle inequality ford	c . But each path froms′
1 to

z must then contain at least one edgee in 	 \ (γ ′
1 ∪ γ ′

2), and so such thatηe > M

or ωe = 0, and then by definition ofM , we must have

d(s′
1, z) ≥ M ≥ a1m1 + d	c(r1, z) > d(s′

1, r1) + d	c(r1, z),

which contradicts the previous inequality. In the same manner, we can prove the
following:

(a) for eachi ≥ 1, Rs′
2
(x1

i ) = r2,

(b) for eachj ≥ 1, Rs′
2
(x2

j ) = r2,

(c) for eachj ≥ 1, Rs′
1
(x2

j ) = r1.

Let us now prove that for eachi ≥ 1, we haved(s′
1, x

1
i ) < d(s′

2, x
1
i ). We have

d(s′
1, x

1
i ) = d(s′

1, r1) + d	c(r1, x
1
i )

= d(γ ′
1) + d	c(r2, x

1
i ) + (

d	c(r1, x
1
i ) − d	c(r2, x

1
i )

)
≤ d(γ ′

1) + d	c(r2, x
1
i ) + m1

< d(γ ′
2) − m1 + d	c(r2, x

1
i ) + m1

< d(s′
2, r2) + d	c(r2, x

1
i ) = d(s′

2, x
1
i )

becauseRs′
2
(x1

i ) = r2. Similarly, we can prove that for eachj ≥ 1, we have

d(s′
1, x

2
j ) > d(s′

2, x
2
j ). We have thus proved the desired inclusionC1 ∩ C2 ∩ {m1 <

m2} ∩ G ⊂ Coex(s′
1, s

′
2).

Now, (14) ensures thatP(Coex(s′
1, s

′
2)) > 0, which ends the proof.�



318 O. GARET AND R. MARCHAND

PROOF OF LEMMA 5.3. Let us give the line of the proof for the direct
implication. By Lemma 4.3, we can assume thats1 = 0 and s2 = 1. Under
assumptions (6) and (7),A1(0,1) andA2(0,1), with edges the ones in

⋃
x∈Zd γ (x),

are both connected trees, denoted, respectively, byT (0) and T (1). Thus, if
A1(0,1) andA2(0,1) are infinite, by a classical compactness argument, one can
find, from 0∈ A1(0,1), a semi-infinite geodesic which is completely inA1(0,1),
and from 1∈ A2(0,1), a semi-infinite geodesic which is completely inA2(0,1).
Following the proof of Lemma 5.1, inequality (10) is now replaced by

P
(
T (0) contains a infinite branch
1 starting from 0
and whose last point in∂	 is r1,

T (1) contains a infinite branch
2 starting from 1
and whose last point in∂	 is r2

)
> 0.

(15)

The proof follows exactly the same lines as the previous one: just replaceC1 and
C2 by

C1 = {There is a simple path(x1
i )i≥1 in 	c such that‖x1

1 − r1‖1 = 1
and∀ i ≥ 1, γ	c(r1, x

1
i ) = (r1, x

1
1, . . . , x1

i−1, x
1
i )},

C2 = {There is a simple path(x2
j )j≥1 in 	c such that‖x2

1 − r2‖1 = 1
and∀ j ≥ 1, γ	c(r2, x

2
j ) = (r2, x

2
1, . . . , x2

j−1, x
2
j )}.

The modification argument is the same, the only difference is to choose two paths
γ ′

1 andγ ′
2 starting both from 0, reaching, respectively,r1 andr2, with no edge and

no point in common except 0. The passage times are then modified exactly in the
same manner.

The converse implication can also be proved by an analogous modification
argument. �

6. Mutual unbounded growth and existence of two distinct geodesics for
integer passage times. In the previous section, the law of the passage time of
an edge was supposed to admit no atom to ensure the uniqueness of optimal paths
when they exist. However, the competition model, as defined in Definition 4.1,
is still available without such an assumption: in this section we consider integer
passage times, and study the problem of coexistence in the competition model and
the geodesics problem. Note that in this case, optimal paths always exist because
the length of a given pathγ takes its values in the discrete setZ+.

THEOREM 6.1. Consider Z
d , with d ≥ 2 and p ∈ (pc(d),1]. Choose

a stationary ergodic probability measureSν on �S = (R+)E
d

satisfying the
integrability assumptions(1), (2)and assume, moreover, the following:

1. The related semi-normµ describing the directional asymptotic speeds is not
identically null.
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2. Sν is “discrete”: there exists a subsetS of Z+ such thatSν(S
E

d
) = 1.

3. Sν satisfies the following finite energy property: for each finite subset	 of E
d

and eache	 ∈ S	, we have

Sν(ω	 = e	|F	c) > 0, Sν a.s.

4. If p = 1, we add the assumptionS is unbounded.
5. Some stronger integrability is assumed; suppose that one of the three following

conditions is fulfilled:

(a) (Hα) holds for someα > d2 + 2d − 1.
(b) p = 1 and the passage times of bonds have a moment of orderα > d .
(c) p = 1, Sν is a product measure and the passage times of bonds have a

second moment.

Then, for each pair s1, s2 of distinct sources inZd , P(Coex(s1, s2)) > 0.
Moreover,

P(there exists two disjoint semi-infinite geodesics
starting from0 for the random distanced) > 0.

The last integrability condition is the only one that is specific to the discrete
case: in the diffuse case of the previous section, we could give to a given edge
an arbitrary small value thanks to (8), and there was no need to control the
length of an optimal path. Here, as passage times are integers, we need a stronger
integrability assumption that helps to control these paths. As seen in Section 4,
these assumptions are the classical ones to ensure a shape theorem. In any case,
the following estimate is available:

LEMMA 6.2. There existsK1 > 0 such that for everya ∈ Z
d , we can construct

a random integerM(a) < +∞ such that

a ↔ ∞ and y ↔ ∞ and ‖y‖1 ≥ M(a) �⇒ d(a, y) ≤ K1‖y‖1.

EXAMPLES. 1. Takep < 1 andSν = ν⊗E
d
, where the support ofν is a finite

subset ofZ∗+. As a special case,ν = δ1 gives the classical chemical distance on a
Bernoulli percolation cluster:

COROLLARY 6.3 (Geodesics on a Bernoulli cluster).For each p > pc,
consider Bernoulli percolation with parameterp. Then, there almost surely exists
a point of the infinite cluster from which we can draw two disjoint semi-infinite
geodesics.

PROOF. The considered event is translation-invariant, so its probability is null

or full. By Theorem 6.1 withSν = δ⊗E
d

1 , it cannot be null. �
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Note that this result could also be obtained from the existence of an infinite
cluster in half-spaces as soon asp > pc—see Barski, Grimmett and Newman
(1991).

2. Consider a Poisson point process onR
d with an intensity proportional to

Lebesgue’s measure. Letα ∈ Z
∗+ and define the passage timeηe by ηe = 1+ αne,

wherene is the number of obstacles arounde, that is, the number of points of the
Poisson process which are closer frome than from any other edge.

We can now begin the proof of Theorem 6.1.

PROOF OFTHEOREM 6.1 (Coexistence result). The goal is to prove that for
each pairs1, s2 of distinct sources inZd , P(Coex(s1, s2)) > 0.

By translation invariance, we can supposes1 ∈ Z
d \ {0} ands2 = 0. Sinceµ is

not identically null, we can findx ∈ Z
d such that‖s1‖1 and‖x‖1 have the same

parity and such thatµ(x) �= 0. Thanks to Theorem 3.2, we can consider an odd
integern0 such thatP(Coex(0, n0x)) > 0. Notes′

1 = n0x. We are going to prove
thatP(Coex(0, s1)) > 0.

TakeK1 > 0 andM(0) andM(s′
1) as defined in Lemma 6.2. Since

lim
n→+∞ P

({M(0) ≤ n} ∩ {M(s′
1) ≤ n} ∩ Coex(0, s′

1)
) = P

(
Coex(0, s′

1)
)
> 0,

we can find an integerR1 such that

P
({M(0) ≤ R1} ∩ {M(s′

1) ≤ R1} ∩ Coex(0, s′
1)

)
> 0.

Let 	 = {x ∈ Z
d; ‖x‖1 ≤ R}, for a large integerR whose exact value will be

fixed later. The idea is then to show that every configuration(ω,η) in the event
A = {M(0) ≤ R1} ∩ {M(s′

1) ≤ R1} ∩ Coex(0, s′
1) can be modified inside the ball

	 to get a configuration(ω′, η′) where Coex(0, s1) holds. A classical finite energy
argument concludes the proof: at first, note thatP = Pp ⊗ Sν also enjoys the finite
energy property. Now ifB is a subset of� such that there exists a mapf :A → B

with f (x)	c = x	c for eachx ∈ A, thenP (B) > 0, because

P(B) =
∫
�

P(B|F	c)(x) dP(x)

≥
∫
A

P(B|F	c)(x) dP(x)

≥
∫
A

P
({f (x)}|F	c

)
(x) dP(x)

> 0.

Let us explain now the modification inside	. In the following, we will assume
without loss of generality that the greatest common divisor of the elements ofS
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is 1. By the lemma of Bezout, we can find a finite family of integersak andsk ,
with sk ∈ S, such that

∑
kaksk = 1. Note

S+ = {k ∈ S;ak > 0}, S− = {k ∈ S;ak < 0},
C1 = ∑

k∈S+
ak, C2 = ∑

k∈S−
(−ak),

b1 = smallest odd element ofS, b2 = smallest even element ofS,

C = max(C1,C2), B = max(b1, b2).

By convention, ifS only contains odd integers, we setb2 = b1 andB = 0.
The next lemma is a geometrical result, and we omit its proof because it is rather

tedious and not particularly illuminating:

LEMMA 6.4. Let us consider two fixed pointsa0, a1 ∈ Z
d (not necessarily

distinct) and two nonnegative numbersD and K . Let us note	n = {x ∈ Z
d;

‖x‖1 ≤ n}.
There existsκ = κ(a0, a1,D,K) < +∞ such that the following holds as soon

asn ≥ κ :
For each distinctr0, r1 ∈ Z

d with ‖r0‖1 = ‖r1‖1 = n and each integerl which
has the same parity as‖a0 − a1‖1 and satisfies|l| ≤ Kn + D, one can construct
inside	n two simple pathsγ0 froma0 to r0 andγ1 from a1 to r1 with no common
point (but maybea0 if a0 = a1) and such that

|γ0| ≥ Kn + D, |γ1| ≥ Kn + D, |γ0| − |γ1| = l.

We can now define the radius

R = max
(
κ(0, s1,B,K1C),‖s′

1‖1 + 2,R1
)

and define	 = 	R. Consider a semi-infinite geodesic starting from 0 (resp.s′
1)

and define byr0 (resp. r1) the last point of this semi-infinite geodesic which
belongs to	. Denote

L = d(r0,0) − d(r1, s
′
1).

For simplicity, we will suppose, without loss of generality, thatL is nonnegative.
Remember thats′

1 has the same parity ass1. Let us define

b′
2 = b2 andb′

1 = b1, if ‖s1‖1 does not have the same parity asL(C1 − C2),

b′
1 = b′

2 = 0, otherwise,

and

l = L(C1 − C2) + b′
1 − b′

2.

Note thatb1 − b2 is odd, unlessS only contains odd integers. But in that case,
C1 − C2 is odd andL has the same parity as‖r0‖1 + ‖r1‖1 + ‖s′

1‖1, that is, the
same parity as‖s1‖1.
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Thus,l and‖s1‖1 always have the same parity. Note that

|l| ≤ |L||C1 − C2| + B

≤ max
(
d(0, r0), d(s′

1, r1)
)
max(C1,C2) + B

≤ K1 max(‖r0‖1,‖r1‖1)C + B = B + CK1R.

So, by Lemma 6.4, and by the choice we made forR, one can construct inside	
two simple paths with no common pointγ0 from 0 tor0, andγ1 from s1 to r1 such
that

|γ0| ≥ CK1R + B, |γ1| ≥ CK1R + B, |γ0| − |γ1| = l.

Let us notek = |γ0| − (LC1 + b′
1). As proved in the upper bound for|l|, LC1 ≤

CK1R. We thus have

k ≥ CK1R + B − (LC1 + b′
1) ≥ B − b1 ≥ 0.

Obviously,|γ0| = LC1+b′
1+k and|γ1| = LC2+b′

2+k. Define also the following
quantityM that will play the role of an “infinite” passage time for open edges:

M = max

{
L

∑
i∈S+

aisi + b′
1b2 + kb1,L

∑
i∈S−

(−ai)si + (b′
2 + k)b1

}

+ max{d(x, y)(0	ω	c, η),‖x‖1 = ‖y‖1 = R}.
Note thatM is in F	c , theσ -algebra generated by{(ωe, ηe), e ∈ 	c}. Now define,
for every(ωe, ηe) ∈ A, the configuration(ω′, η′) ∈ �: set(ω′

e, η
′
e) = (ωe, ηe) for

e ∈ E
d \ 	 and define(ω′

	,η′
	) inside	 as follows:

(i) If p < 1, ∀ e ∈ 	 \ (γ0 ∪ γ1),ω
′
e = 0 andη′

e = b1, but this value does not
play a special role; ifp = 1, ∀ e ∈ 	 \ (γ0 ∪ γ1), η

′
e > M andω′

e = 1.
(ii) ∀ e ∈ γ0 ∪ γ1,ω

′
e = 1.

(iii) Assign a passage time to edges inγ0 as follows (remember that|γ0| =
LC1 + b′

1 + k): first, for eachi ∈ S+, give toaiL edges the valueη′
e = si and next

complete giving tob′
1 other edges the valueη′

e = b2 and tok other edges the value
η′

e = b1.
(iv) Assign a passage time to edges inγ1 as follows (remember that|γ1| =

LC2 + b′
2 + k): first, for eachi ∈ S−, give to−aiL edges the valueη′

e = si and
next complete giving to the remainingb′

2 + k edges the valueη′
e = b1.

Now we immediately obtain∑
e∈γ0

η′
e = L

∑
i∈S+

aisi + b′
1b2 + kb1,

∑
e∈γ1

η′
e = L

∑
i∈S−

(−ai)si + (b′
2 + k)b1,

∑
e∈γ0

η′
e − ∑

e∈γ1

η′
e = L

(∑
i∈S

aisi

)
+ b′

1b2 − b′
2b1 = L = d(0, r0) − d(s′

1, r1).
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For (ω,η) ∈ A ⊂ Coex(0, s′
1), there exist two infinite geodesics starting from 0

and s′
1. Let us denote by
0 (resp.
1) the part beginning atr0 (resp.r1) in the

geodesic starting from 0 (resp.s′
1) in the configuration(ω,η).

We are going to prove thatγ0 ∪
0 (resp.γ1∪
1) is an infinite geodesic starting
from 0 (resp.s1) in the configuration(ω′, η′). Let x be a point of
0. Let us prove
that an optimal path from 0 tox in the configuration(ω′, η′) is included inγ0 ∪
0.

Let γ be an optimal path from 0 tox in the configuration(ω′, η′), and denote
by z the point from which the pathγ exits from	. We have

d(0, z) = ∑
e∈γ

η′(e) ≤ ∑
e∈γ0

η′(e) + d(r0, z).

But since∑
e∈γ0

η′(e) = L
∑
i∈S+

aisi +b′
1b2+kb1 and d(r0, z)(ω

′, η′) ≤ d(r0, z)(0	ω	c, η),

it follows thatd(0, z) ≤ M . By definition ofM , it ensures thatγ does not use any
bond in	, except those used inγ0 ∪ γ1, and, particularly, it implies thatz = r0,
and thus an optimal path from 0 tox is included inγ0 ∪ 
0.

Similarly, letγ be an optimal path froms1 to x in the configuration(ω′, η′), and
denote byz the point from which the pathγ exits from	. We have

d(0, z) = ∑
e∈γ

η′(e) ≤ ∑
e∈γ1

η′(e) + d(r1, z).

But since
∑

e∈γ1
η′(e) = L

∑
i∈S−(−ai)si + (b′

2 + k)b1 and d(r1, z)(ω
′, η′) ≤

d(r1, z)(0	ω	c, η), it follows that d(s1, z) ≤ M . By definition of M , it ensures
thatγ do not use any bond in	, except those used inγ0 ∪ γ1, and, particularly, it
implies thatz = r1, and thus an optimal path froms1 to x usesγ1 to exit from	.

Let us now prove that ifx ∈ 
0, d(0, x)(ω′, η′) < d(s1, x)(ω′, η′):

d(s1, x)(ω′, η′) = d(s1, r1)(ω
′, η′) + d(r1, x)(0	ω	c, η′)

= d(s1, r1)(ω
′, η′) + d(r1, x)(0	ω	c, η),

d(0, x)(ω′, η′) = d(0, r0)(ω
′, η′) + d(r0, x)(0	ω	c, η′)

= d(0, r0)(ω
′, η′) + d(r0, x)(0	ω	c, η).

Consequently,(
d(s1, x) − d(0, x)

)
(ω′, η′)

= (
d(s1, r1) − d(0, r0)

)
(ω′, η′) + d(r1, x)(0	ω	c, η) − d(r0, x)(0	ω	c, η)

= (
d(s′

1, r1) − d(0, r0)
)
(ω,η) + d(r1, x)(0	ω	c, η) − d(r0, x)(0	ω	c, η)

≥ d(s′
1, x)(ω,η) − d(0, x)(ω,η) > 0,
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becausex ∈ 
0, which is a part of the infinite geodesic issued from 0 in the
configuration(ω,η). Thus,γ0 ∪ 
0 is an infinite geodesic issued from 0 in the
configuration(ω′, η′).

In the same manner, working symmetrically with
1, we prove thatγ1 ∪ 
1
is an infinite geodesic issued froms1 in the configuration(ω′, η′), and, finally,
(ω′, η′) ∈ Coex(0, s1). �

PROOF OFTHEOREM 6.1 (Geodesics result). The goal here is to prove that

P(there exists two distinct semi-infinite geodesics
starting from 0 for the random distanced) > 0.

The proof is exactly the same as the previous one. The only difference is to use
the single source 0 rather than two distinct sources 0, s′

1. The geometrical structure
of the modification is once again given by Lemma 6.4, and the adjustment of the
values is made as before.�

As seen previously, a trouble with integer passage times is that some points can
be reached at the very same moment by the two distinct infections. This case can
be ruled out under some extra assumptions, and this is the goal of the next result.
But first, for two distinct sourcesx, y ∈ Z

d , we say that the event Sep− Coex(x, y)

happens if

{z ∈ Z
d, d(x, z) < d(y, z)} is infinite and

{z ∈ Z
d, d(x, z) > d(y, z)} is infinite and

∀ z ∈ Z
d, d(x, z) �= d(y, z) unlessd(x, z) = d(y, z) = +∞.

We have the following result:

LEMMA 6.5. Denote byO the set of nonnegative odd integers, and as
previously, let d ≥ 2, p > pc(d), Sν a stationary ergodic probability measure
onOE

d
satisfying(1) and(2). Then, for x ∈ Z

d with ‖x‖1 odd,

P
(
Coex(0, x) \ Sep− Coex(0, x)

) = 0.

PROOF. By the assumption we made onµ, the length of a path fromx to y has
the same parity as‖x − y‖1. So, the identityd(x, z) = d(y, z) can only happens if
‖x − y‖1 is even. �

Now, for a given pointx with ‖x‖1 odd, the fact thatP(Sep− Coex(0, x)) > 0
can be obtained as a consequence of Theorem 3.2 or Theorem 6.1. Note also that
when the assumptions of Lemma 6.5 are fulfilled,µ is always a norm: since the
passage time of a bond is an odd integer, it is at least equal to 1. Then, it is easy to
see that for eachx ∈ Z

d , we haveµ(x) ≥ ‖x‖1.
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7. An example of a discrete time competing process. The last section is
devoted to the study of a natural example of a nontrivial dynamical system which
can be studied with the help of Theorem 6.1 and Lemma 6.5.

Consider two species, say blue and yellow, which attempt to conquer the
spaceZ

d . At each instant, each young cell tries to contaminate each of its
nonoccupied neighbors. It succeeds with probabilityp. In case of success, the
nonoccupied cell takes the color of the infector. If a yellow cell and blue cell
simultaneously succeed in contaminating a given cell, this one takes the green
color. If a green cell and another cell simultaneously succeed in contaminating a
given cell, this one takes the green color. At the next step, the individuals that have
just been generated are young, but the previous generation is no more young. We
make the following assumptions:

(a) the success of each attempt of contamination at a given time does not
depend on the past,

(b) the successes of simultaneous attempts to contamination are independent.

The first assumption allows a modelization by a homogeneous Markov chain.
Markov chains satisfying the second condition are sometimes called probabilistic
cellular automata (PCA).

Let us define

S = {0,blue,yellow,green,blue∗,yellow∗,green∗},

where 0 is the state of an empty cell, blue,yellow,green the states of young cells,
and blue∗,yellow∗,green∗ the states of old (i.e., not young) cells.

Since we will study the evolution of a system which starts with only two
cells, we will only deal with configurations in which a finite numbers of cells are
nonempty. So, we will deal with a classical Markov chain on the denumerable set

C = {ξ ∈ SZ
d ; ∃	 finite, ξk = 0 for k ∈ Z

d \ 	}.

We now define for color∈ Act = {blue,yellow,green}:

n(color, x)(ξ) = |{y ∈ Z
d; ‖x − y‖1 = 1 andξy = color}|

and

s(color, x) = 1− (1− p)n(color,x),

which represents the probability that at least one neighbor ofx succeeds in
infectingx with the given color.
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The considered dynamics form a homogeneous PCA with space stateS and
whose local evolution rules are given by

px(s, t) =



(1− p)n(yellow,x)+n(blue,x)+n(green,x), if s = t = 0,

s(blue, x)(1− p)n(yellow,x)+n(green,x), if s = 0 andt = blue,

s(yellow, x)(1− p)n(blue,x)+n(green,x), if s = 0 andt = yellow,

s(green, x) + (1− s(green, x))s(blue, x)s(yellow, x),

if s = 0 andt = green,
1, if s ∈ {blue,yellow,green} andt = s∗,
1, if s ∈ {blue∗,yellow∗,green∗} andt = s,

0, otherwise.

In terms of Markov chains, it means that the transition matrix is defined by

∀ (ξ,ω) ∈ C × C p(ξ,ω) = ∏
k∈Zd

pk(ξk,ωk).

The product is convergent because only a finite numbers of terms differs from 1.
With the help of the tools that we have developed above, we will prove the

following theorem:

THEOREM 7.1. Let p > pc. For syellow, sblue ∈ Z
d with sblue �= syellow, let

us denote byPp,syellow,sblue the law of a PCA(Xn)n≥0 following the dynamics
described above, and starting a configuration with exactly two nonempty cells:
a blue cell at sitesblue, a yellow cell at sitesyellow, the others cells being empty.
Then,

Pp,syellow,sblue

(∀n ∈ Z+ ∃ (x, y) ∈ Z
d × Z

d,

Xn(x) = blueandXn(y) = yellow
)
> 0.

If, moreover, ‖syellow − sblue‖1 is odd, green cells never appear.

The following lemma gives the link between this PCA and our competing
model.

LEMMA 7.2. Consider a probability space where lives a family(ωe)e∈Ed

of independent Bernoulli variables with parameterp, which defines a random
chemical distanceD.



COEXISTENCE IN TWO-TYPE MODELS 327

FIG. 3. Two samples of simulation of the competing process whenp = 0.6. The process is stopped
when the border of a given box is attained by one of the two species. The color in the picture is
determined by the time of coloring and the type of the cell.

Let syellow, sblue∈ Z
d with sblue �= syellow. Define

Xn(x) =



blue, if n = D(sblue, x) < D(syellow, x),

yellow, if n = D(syellow, x) < D(sblue, x),

green, if n = D(syellow, x) = D(sblue, x),

blue∗, if D(sblue, x) < min(D(syellow, x), n),

yellow∗, if D(syellow, x) < min(D(sblue, x), n),

green∗, if D(syellow, x) = D(sblue, x) < n,

0, otherwise.

Then, (Xn)n≥0 is a homogeneous PCA with space state

S = {0,blue,yellow,green,blue∗,yellow∗,green∗}
associated to the probabilitiespx(s, t) defined above.

PROOF. Let us consider the map

f :SZ
d × �E → SZ

d

,

(ξ,ω) �→ (
fx(ξx,ω)

)
x∈Zd ,

wherefx :S × �E → S is defined by

fx(s,ω) = s∗ for eachs ∈ {blue,yellow,green},
fx(s,ω) = s for eachs ∈ {blue∗,yellow∗,green∗},
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fx(0, t) =



blue, if Act ∩ {ξy; ‖x − y‖1 = 1 andω{x,y} = 1} = {blue},
yellow, if Act ∩ {ξy; ‖x − y‖1 = 1 andω{x,y} = 1} = {yellow},
green, if Act ∩ {ξy; ‖x − y‖1 = 1

andω{x,y} = 1} = {blue,yellow},
green, if Act ∩ {ξy; ‖x − y‖1 = 1 andω{x,y} = 1} ⊃ {green},
0, otherwise.

By considering Dijkstra’s algorithm in the particular case where the travel times
are constant, it is not difficult to see that(Xn)n≥0 satisfy the recurrence formula
Xn+1 = f (Xn,ω). To recognize(Xn)n≥0 as a convenient PCA, we will build a
coupling of ω with an i.i.d. sequence(ωn)n≥1 to obtain the canonical Markov
chain representationXn+1 = f (Xn,ω

n).
Let (�,F ,P ) be a probability space withζ 0,ω0,ω1,ω2, . . . independent

{0,1}E
d

valued variables with Ber(p)⊗E
d

as common law.
We defineA0 = {sblue, syellow} and recursively

Bn+1 = {
y ∈ Z

d \ An ∃x ∈ ∂An :‖x − y‖1 = 1 andωn{x,y} = 1
}
,

An+1 = An ∪ Bn+1.

Note that the random setBn+1 is measurable with respect to theσ -algebra
generated by(ω0,ω1, . . . ,ωn). We defineζ n recursively by

ζ n+1
e =

{
ωn+1

e , if e = {x, y} with (x, y) ∈ ∂An × Z
d \ An,

ζ n
e , otherwise.

By natural induction, we prove that the law ofζ n underP is Ber(p)⊗E
d
. By

construction, each bonde writese = {x, y} with (x, y) ∈ ∂An×Z
d \An for at most

one value ofn. It follows that the sequenceζ n converges in the product topology.
Let us denote byω∞ its limit. Since the law ofζ n underP is Ber(p)⊗E

d
, it follows

that the law ofω∞ underP is also Ber(p)⊗E
d
.

Now, it is not difficult to see that sequence(Xn)n≥0, defined fromω∞ as
previously, satisfies the recurrence formulaXn+1 = f (Xn,ω

∞), but alsoXn+1 =
f (Xn,ω

n).
It is now proved that(Xn)n≥0 is a homogeneous Markov chain. The recognition

of the transition matrix follows from an elementary calculus.�

We can now prove the theorem announced above.

PROOF OFTHEOREM 7.1. Clearly, Lemma 7.2 connects the considered PCA
with the random distance studied in Theorem 6.1. Here, the passage times of open
bonds are identically equal to 1, which is obviously an odd number. By Lemma 6.5,
this prevents from the appearance of green cells when‖syellow− sblue‖1 is odd. �
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FIG. 4. Green surrounding the two sources.

REMARKS. If ‖syellow − sblue‖1 �= 0 is even and if the two species infinitely
grow, there are necessarily green cells at the boundary between blue cells and
yellow cells.

A natural question is the following: is it possible to have an infinite set of green
cells surrounding the blue cells and the yellow cells? The answer is yes, as soon as
‖syellow − sblue‖1 �= 0 is even: consider Figure 4.

The picture describes a particular case whend = 2, but the reasoning can
obviously be generalized.

In this case, the yellow flow and the blue flow immediately converge to engender
a green flow. They also do not develop themselves elsewhere. If the point labelled 0
belongs to the infinite cluster, then the result is proved.

It is now easy to see that, conditionally to the states of the bonds imposed by
this picture, the probability that 0 belongs to the infinite cluster is strictly positive,
which follows from a classical modification argument.
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