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We study the problem of coexistence in a two-type competition model
governed by first-passage percolation Bf or on the infinite cluster in
Bernoulli percolation. We prove for a large class of ergodic stationary passage
times that for distinct points, y € Z¢, there is a strictly positive probability
that {z € Z9:d(y,z) < d(x,2)} and {z € Z9;d(y,z) > d(x,z)} are both
infinite sets. We also show that there is a strictly positive probability that the
graph of time-minimizing path from the origin in first-passage percolation has
at least two topological ends. This generalizes results obtained by Haggstrom
and Pemantle for independent exponential times on the square lattice.

1. Introduction. The two-type Richardson’s model was introduced by
Haggstrom and Pemantle (1998) as a simple competition model between two in-
fections: on the cubic grid?, two distinct infections, type 1 and type 2, starting,
respectively, from two distinct sources s, € Z¢, compete to invade the sites of
the gridZ¢. Each one progresses like a first-passage percolation proce&s on
governed by the same family(e)),.g« Of i.i.d. exponential random variables, in-
dexed by the sé&? of edges ofZ¢, but the two infections interfere in the following
way: once a site is infected by the typafection, it remains of type forever and
can not transmit the other infection. This leads to two very different possible evo-
lutions of the process:

(a) either one infection surrounds the other one, stops it and then goes on
infecting the remaining healthy sites as if it was alone,

(b) or the two infections grow mutually unboundedly, which is calteéxis-
tence

The probability that, given two distinct sources, coexistence occurs is of course
not full, and the relevant question is to determine whether coexistence occurs
with positive probability or not. Although this competition problem is interesting
in its own right, it is also a powerful tool to study the existence of two
semi-infinite geodesics (or topological ends) of the embedded spanning tree
in the related first-passage percolation model. Thus, Haggstrom and Pemantle
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proved that coexistence for any two initial sources in the two-type Richardson’s
model onZ?2 occurs with positive probability, and, consequently, that in first-
passage percolation 6&f with i.i.d. exponential passage times on the edges, the
probability that there exist at least two topological ends in the embedded spanning
tree is positive.

Their results strongly rely on an interacting particle representation of the
problem which is typical of the exponential passage times. The aim of this paper
is to extend these results to more general passage times, where this representation
is not available anymore or at least much less natural. We consider here stationary
ergodic first-passage percolation @, d > 2 (and also on an infinite cluster
of Bernoulli percolation), and prove that, under some extra hypotheses (mainly
integrability conditions on the passage tinfaste energy propdies and positivity
conditions on the functional giving the directional asymptotic speeds), for any two
distinct sources, the probability that coexistence occurs is strictly positive. As a
consequence, we obtain that in the related first-passage percolati@f, ahe
probability that there exist at least two topological ends in the embedded spanning
tree is positive.

The structure of the proof is the following. First, the key step is to prove
that there exist two sources such that coexistence occurs, and this is the aim of
Section 3. Heuristically, the shape theorem of first-passage percolation, combined
with the fact that the two infections have the same speed, gives the intuition that
the larger the distance between the two sources is, the harder it is for one infection
to surround the other one. More precisely, Theorem 3.1 says #@at,ify) denotes
the travel time between the sitesand y, then there exists a site such that the
event:

(a) the set of sites such thati(0, z) < d(x, z) is infinite,
(b) and the set of sitessuch thati/(0, z) > d(x, z) is infinite,

has positive probability. The proof of this result relies on the existence of a
directional asymptotic speed in the related first-passage percolation model.

Section 4 is devoted to the definition of the two-type first-passage percolation
model, and to a discussion about existence and/or uniqueness of optimal paths.

The next step is to transfer the coexistence result for these souraagy/to
two initial sources; this is done by a modification argument of the configuration
around the sources using a finite energy property for the passage times. Roughly
speaking, this result expresses the fact that noncoexistence is duéotala
advantage obtained by one infection at the first moments of the competition. The
two topological ends result is shown by a similar modification argument. These
results are proved separately in Section 5 for diffuse passage times and in Section 6
for integer passage times.

The last section is finally devoted to the study of a probabilistic cellular
automata describing a discrete competition model between two infection types
related to the chemical distance in super-critical Bernoulli percolatidit‘on
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We start now with a reminder of the result of existence of directional asymptotic
speeds in classical first-passage percolation, and an extension of this result to first-
passage percolation on an infinite Bernoulli cluster.

2. Reminder on thedirectional asymptotic speed results. In classical first-
passage percolation, one has the well-known directional asymptotic speed result:
if (t(e)),cpe are ii.d. nonnegative integrable random variables, then for every
x € Z4, there existg.(x) > 0 such that a.s.

. t(0,nx) . Et(0, nx)
lim = lim ——— = u(x).
n—0o0 n n—0o0 n
This result has been extended in full details in a previous work of Garet and
Marchand (2003) to first-passage percolation on an infinite Bernoulli cluster. The
aim of this section is to introduce an adapted framework and to recall, without
proofs, the results needed in this paper.

Grid structure ofZ¢. In the following, d > 2. We denote byZ¢ the graph
whose set of vertices &4, and where we put a nonoriented edge between each
pair {x, y} of neighborpoints inZ?, that is, points whose Euclidean distance is
equal to 1. This set of edges is denotedlsy, A (simple) path is a sequence
y = (x1, X2, ..., Xn, Xp+1) Of distinct points such that; andx; 1 are neighbors
ande; is the edge betweery andx; 1. The number of edges iny is called the
lengthof y and is denoted byy|.

For any sefX, andu € Z¢, we define théranslation operato®, on XE by the
relation

Va)eXVeeEd (eua))e:wwe’

whereu - e denotes the natural action @ on E?: if e = {a, b}, thenu - e =
{a+u,b+uj}.

Assumptions and construction of first-passage percolati@enote byp.(d)
the critical threshold for Bernoulli percolation on the ed§ésof Z¢, and choose

p e (pe, 11. ONQE = {0, 1}E, consider the measule,:

d d
onQy = {0, E P, = (pd1+ (1— p)so)™™.

A point w in QF is arandom environmerfor first-passage percolation. An edge

e € E4 is said to beopenin the environmenb if w, = 1, andclosedotherwise.

A path is said to b@penin the environmend if all its edges are open in. The
clustersof an environmend are the connected components of the graph induced
onZ¢ by the open edges in. As p > p.(d), there almost surely exists one and
only one infinite cluster, denoted l¥s,. ONn Qg = (R+)Ed, consider a probability
measures, such that

onQg = (R+)Ed S, is stationary and ergodic
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with respect to the previously introduced family of translations of the grid. We
suppose, moreover, th&t satisfies the following integrability and dependence
conditions:

Q) m = sup [ n.dS,(n) < +oo.

ecEd

A
(2) 3Ja>1, 3A,B>0suchthav ACE? S, ni > BIAl] < .
ecA |A|a

For instance, IS, is the product measune@Ed, assumption (2) follows from the
Marcinkiewicz—Zygmund inequality as soon as the passage time of an edge has a
moment of order strictly greater than 2—see, for example, Theorem 3.7.8 in Stout
(1974).

Our probability space will then b@ = Qg x Qg. A pointin Q will be denoted
(w, ), With w corresponding to the environment, ap@ssigning to each edge a
nonnegativepassage timavhich represents the time needed to cross the edge. The
final probability is

onQ = Qg x Qg P=P,®S5,.

In the context of first-passage percolation, as we are interested in asymptotic
results concerning travel time from the origin to points that tend to infinity, it is
natural to conditior?, on the eventthat 0 is in the infinite cluster:

P,()=P,(0eCx) and P=P,®S,.
For B € 8(QE), with B C {0 <> oo} andP,(B) > 0, we will also define the
probability measur@®g by
P(C N (B x s))

VCeB(Q) Pi(C)= F(B)
p

EXAMPLES. The previous assumptions of the generalized first-passage per-
colation model include:

(&) The case of classical i.i.d. first-passage percolation: pakel, i.e., all the
edges ofZ¢ are open, an8, = v®E! wherev is a probability measure dR, .

(b) The case of classical i.i.d. first-passage percolation, but allowing the
passage times to take the valewith positive probability: takep.(d) < p < 1,
a probability measure onRR, and sefS, = v8E’ This is equivalent to consider
p=1landS, = 17®Ed, wherev is a probability measure dR U {oo} that charges
oo with probability 1— p.

(c) The case of stationary first-passage percolation, as considered by Boivin
(1990): takep = 1 andS,, a stationary probability measure.
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The travel time. The chemical distanceD(x, y) betweenx and y in Z¢
only depends on the Bernoulli percolation structwrand is defined as follows:
D(x, y)(w) = inf, |y|, where the infimum is taken on the set of paths whose
extremities arexr and y and that are open in the environmentlt is of course
only defined whenr andy are in the same percolation cluster, and represents then
the minimal number of open edges needed to krd&ndy in the environmenty.
Otherwise, we set by conventidn(x, y) = +o0.

For (w, n) € Q, and(x, y) € Z¢ x Z¢, we define theravel timefrom x to y:

d(x,y)(w,n) =infd(y)=inf> n,,
Y =y

where the infimum is taken on the set of paths whose extremities ared y
and that are open in the environmentOf coursed(x, y) = +oo if and only if
D(x,y) = 4o0.

A path y from x to y which realizes the distancé(x, y) is called afinite
geodesic An infinite path y = (x;);>0 is called asemi-infinite geodesidf
(Xn, Xp41, ..., Xp) Is & finite geodesic for every < p.

Directional asymptotic speed resultsn classical first-passage percolation, we
study, for each: € Z4 \ {0}, the travel timed (0, nu) asn goes to infinity. Here,
as all points inZ? are not necessarily accessible from 0, we must introduce the
following definitions:

DEFINITION 2.1. Foreach € Z¢ \ {0} andB € B(Qp), let
TB(w) =inf{n > 1, 0,,0 € B},
define the associated random translation operat@ enQg x Qg

TB TB
OB, n =" (), 60" “ ()

and the composed version
n—1
Tl (@)=Y T (O} w).
k=0

Note that7,? only depends on the environmentand not on the passage timgs
whereas the operat@? acts on the whole configuratiqw, n). The next step is
to study the asymptotic behavior of such quantities:

LEMMA 2.2. ©2 is aP-preserving transformatiaris ergodic forP and

1 T} 1 _
Esl,}) = —— and —*— , Pas
P,(B) n PyB)
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PROOF The idea is to prove that classical ergodic theorems can be applied.
O

We turn now to the study of the quantity analogougd {6, n«) in the classical
first-passage percolation:

LEMMA 2.3. Let B € 8(Qg), with B C {0 < oo} and P,(B) > 0. For
uezd \ {0}, there exists a constanﬁf’ > 0 such that

d(0,T,2 (w)u)(@, )
—
n

1B, Pg as.

u

The convergence also holdsirt(Pg). Moreover .2 <Ep d(0, T,Fu) < +o0.

PROOF These results are proved with full details whge:= {0 <> oo} in Garet
and Marchand (2003). Since the proof is essentially the same, we omiif it.

Now, for eachu € Z4 \ {0}, we define the asymptotic speed in the direction
by
() =P, (0 < o0) f;

for the choiced = {0 <> co}. We also defing.(0) = 0.

COROLLARY 2.4. LetB e 8(QE), with B C {0 < oo} andP,(B) > 0. For
u € 74\ {0}, we have

d(O, (T.} (w)u)(w, n) w(u)

. — ]P’p(B) s Pg as,
d(0, (T2 (o)u) (@, n) =
Tnl?u © — u(u), Pp as.

B A
PrROOE We use the fact thiW)nzo, asa subsequence(éIW)nzo,
admits the same almost sure limpitx), and Lemma 2.2. O ’

In Garet and Marchand (2003), it has been proved ghahjoys the properties
that are usual in classical i.i.d. first-passage percolatioms a semi-norm. In
classical i.i.d. first-passage percolation with passage timev|ains well known
that 1 is a norm as soon as(0) < p.(d). In the same paper we gave a long
discussion about conditions &) implying thatu is a norm. Particularly, i, is

a product measunégzd, wis anorm as soon gsv(0) < p.(d).
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3. Coexistence result. Consider the first-passage percolation modelZ8n
previously introduced. For every pairandy of distinct points inZ¢, say that the
event Coekr, y) happens if

(zeZ%d(x,2) <d(y,z)} and {ze€Z% d(x,2)>d(y,z)}

are both infinite sets.

The goal of the paper is to prove that for every pair of distinct pointse Z¢,
P(Coexx, y)) > 0. Our proofs always require the assumption tpais not
identically null and we guess that this assumption is close to being optimal. Let
us detail a particular case wheare= 0 and coexistence never occurs. Suppose that
d=2andS, = v®Ed, with pv(0) > p.(2) = 1. In this casey is identically null,
as previously noted. Consider two distinct points’ € Z2. Sincepv(0) > p.(2),
there almost surely exists an infinite cluster of open edges with passage time zero.
It is known that in dimension 2, the supercritical infinite cluster almost surely
contains a circuit that surroundsand y and disconnects them from infinity—
see Harris (1960) or, for instance, Grimmett (1999). Clearly, the points in this
circuit are equally/-distant fromx (resp.y). So, if x reaches the circuit befong
it necessarily also reaches every point outside the circuit befo&milarly, if
x andy reach the circuit at the same time, all the points outside the circuit will
also be reached at the same timexbgndy. In both cases, coexistence does not
occur.

The next theorem gives conditions that ensure that coexistence possibly occurs
for some (randomy, y.

THEOREM 3.1. Letd > 2, p > p.(d), S, a stationary ergodic probability

measure on(R+)]Ed satisfying (1) and (2), and i be the related semi-norm
describing the directional asymptotic speeds
Let B € B(QE), with B C {0 <> oo} andP,(B) > 0,andy € Z¢. We have

21 (y)
P,(B)

if Ed(0,Ty) < thenP(Coex0, 7% y)) > 0.
Moreover if x € Z¢ is such thatu(x) > 0, then y = rx satisfies the previous
condition provided that is large enough

Note that wherp = 1, which corresponds to classical first-passage percolation,
we can takeB = Qp, and therfrfyy is simply equal toy.

Before beginning the proof, we want to describe an elementary and clever
trick used by Haggstrom and Pemantle (1998) that will also be useful here.
The following symmetry argument gives the idea underlying the proof in the
i.i.d. caseS, = v®E Wwith p =1, but in the real proof we will treat the general
stationary ergodic case. Consider Figure 1. The left-hand side picture deals with
our problem: if we prove that wheM,, goes to the infinity on the right (resp. on
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M'I"L I’IL J’I’L

FIG. 1. The symmetry argument

the left), thenM,, is infinitely often closer (resp. more distant) fraBnthan fromA
with a probabilitybounded away from .8, then coexistence holds with positive
probability.

Now consider the right-hand side picture: for fixed(d (0, J,,), d (0, I,,)) has
the same law that/ (A, M,,), d(B, M},)), so the evend (0, J,) > d(0, I,,)} occurs
with the same probability as the eveiat(A, M,,) > d(B, M,)}. So, if we show
that for somex > 1/2,P(d(0, J,) > d(0, I,,)) > « holds for infinitely many:, the
result is proved.

As Haggstrom and Pemantle said, the idea is that there are sites arbitrarily
far away from the origin which strongly feel from which source the infection
is coming. Theirmodus operandiin the case of i.i.d. exponentials &%, was
to control the infection rate “from the right to the left” and the infection rate
“from the left to the right.” The main idea of the proof which follows is that
the advantage of the closest source can be quantified using the existence of
a directional asymptotic speed in first-passage percolation. Concretely, we will
use the law ofd(A, M,) — d(B, M,,) [in fact, the law ofd(0, J,) — d(0, I,,)]
instead of those ofd(A, M,,) > d(B, M,,)} [or {d(O, J,,) > d(0, I,,)}] to carry the
information.

PROOF OFTHEOREM3.1. Choose € Z4 \ {0} such that

2u(y)
P,(B)

(3) Ep,d(0, T{,y) <

Let us note

So= limsup {d(0,2) <d(T{,y, z) < 400},

lzll2—>+o00

S1= limsup {+oo >d(0,2) > d(T{,y. 2)}.

lzll2—>+o00

It is obvious that Coef0, Tfyy) = So N S1. Intuitively, one expects that the

difference betweed (0, z) anda’(Tfyy, z) will be more important if; € Ry, and
we will effectively consider~suclz. For the conv~enience of the reader, we also
note, forn € Z, andx € 74, T,x= T,fxx. DefineTp » =0, and forn > 0,

Xp=d(0, T y) —d(Try. Ty,
X, =d(T1y, Ty.—y) —d(O, T, —y).
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By the triangle inequality, one ha¥, | < (0, Ty ,) and|X/| <d(0, T1.y).
Note that forw ¢ S1, X,,(w) < 0 as soon ag is large enough, whereas for
w ¢ So, X, (w) <0 for largen. It follows that forw ¢ So N S1,

X(@) + X, _1(@) <d (0, T1,) (@)
for largen. Let us define
Qn=i(Xk+X;/€_1), Z,=— and Z=IlimsupZz,.
P n n—>+00
The previous remark implies easily that
) YodSonSi  Z) <dO T1y) ().

By Lemma 2.3,d(0, T1,) is integrable undeip. Since|Z,| < d(0, T1,), it
follows (for instance, by Fatou’s lemma) that

Eg,Z = Eg, limsupZ, > limsupEz, Z,.

n——+0o n——+0o
Sinced(T4.y, Ty.y) = d(0, T,—1.y) o ®B, it follows from the invariance ofPp
under®? that
B, Xn =Ep,(d(0, T,.,) —d(T1y, T,.))
=E5,d(0, T,.,) — Ep,d (0, T,-1,).
Then, it follows thatEp, (X1 + X2 + -+ + X,) = Ep,d(0, Ty.y). Similarly, as
d(Tl,ya Tn,—y) =d(0, Tn—&—l,—y) © ®57
Ep,X;, =Ep, (d(T1y, Ty —y) —d (0. T,._y))

=Ez5,d(0, Tyt1.-y) — B, d(0, T, ),

andEg, (X(+ Xy +---+X,,_;) =E5,d(0, T, _,) =E5,d(0, T,,,), using for the
last equality the fact thakp is invariant unde(@f)” and the fact that a distance
iS symmetric.

2E§Bd(o,ﬁ,,y) . . E@Bd(o,ﬁ,,y)
Then,EFB Z, = —f———. Since, via Corollary 2.4—2——— converges
wy) i
to F,(8) it follows that
2
(5) Es 7 > M()’)'
57 T Py(B)

__Putting together (3), (4) and (5), we see tRgiSo N S1) = 0—or, equivalently,
Pp((Sp N S1)¢) = 1—would yield to a contradiction. This concludes the proof of
the first assertion.
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The second assertion is a direct consequence of Corollary 214.

One can be a bit perplexed by the fact that the position of the source which may
coexist with a source at the origin is a random variable. The goal of the next result
is to come back to deterministic sources. Intuitively, one can guess that the larger
the distance between the two sources is, the higher the probability of coexistence
will be. This is the spirit of the next result.

THEOREM 3.2. Under the same assumptions as in Theofef) suppose
moreoverthat u is not identically null Then we have the followirng

(@) For x € Z4 with u(x) # 0, there is an infinite set of odd values foe Z.,
such thatP(Coex0, nx)) > 0.
(b) P(3x, y e Z%, Coexx,y))=1.

Let us say a word on the unexpected apparition of odd integers. Of course,
the result would be the same with the set of integers and, generally, this
additional constraint does not bring much. Nevertheless, one will see later that,
in the competition context, this additional property sometimes prevents the two
infections from reaching a point at the very same time; it will also play a
fundamental role in the proof of Theorem 6.1.

PROOF Letx e Z¢ be such thaj(x) > 0 andN € Z,. Let A = {0 < oo}
andB=AnN {T_Ax is odd. We have, from the FKG inequalities,

P,(B) >P,(TA =1) =P,(—x <> 00) > P, (—x <> 00) > 0.

d(0,T8 .
By Lemma 2.3 and Theorem ZM tends top’i((’g), so we can find an odd

. ... [Ed, T8 —
integerr > N with — rl’”m) < u%l,f((?) By Theorem 3.1, one h&(SoN S1) > 0.

By its definition,Tfrx almost surely takes its values in the set of nonnegative
odd integers. Then, we can write

Pp(SoNSp) = D Pp(SoN St {TL, = k).
kodd

Then, there exists an odd intedee Z.., with Pg(So N S1 N {Tfrx =k}) > 0. So,
if we noten = kr, we haven > r > N, n is odd and

P(Coex0, nx)) = P,(B)Pg(So N S1 N{TL., =k}) > 0.

The second point is a consequence of the ergodicity assumpfion.
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4. Competition model and optimal paths. We define here the two-type
competition model and discuss the assumptions needed to ensure the uniqueness
and/or existence of optimal paths.

ASSUMPTIONS We consider first-passage percolatiornwith d > 2. The
open edges are given by a realization of a Bernoulli percolation on the &fges
of Z¢ with parametep € (p.(d), 1]

onQe = {0, 1% P, =(ps1+(1—pso)®* .
The passage times of the edges are given by a probability me&sure
onQg = (R+)Ed S, is stationary and ergodic.

Finally, we consider the product measilite- P, ® S, on Qg x Qg. We also need
two distinct initial sourcess, s, in Z4.

This allows us to define the following two-type first-passage percolation model.

DEFINITION 4.1. Under the previous assumptions, we set the following:
A1(s1,52) = {x € Z%, d(s1, x) < d(s2, )},
Aa(s1,52) = {x € 2, d (s, x) < d(s1, x)}.

A;(s1, s2) is the set of sites ifZ¢ that are finally infected by typeinfection. The
time of infection ofx € Z¢ is t(x) = inf{d(s;, x),1 < i < 2}. We say thatx is
finally infected ifz (x) < oc.

Note that the set of finally infected points could be larger than the union of
A1(s1,s2) and Ao(s1, s2): we cannot a priori exclude that a pointcould be
reached simultaneously by the two infections, in which case we call it an infected
point without defining an infection type.

We say that the two infections mutually grow unboundedly if the two sets
A1(s1, s2) andAo(s1, s2) are both infinite.

The mutual unbounded growth of a two-type first-passage percolation starting
from s1, 52 is equal to the event Coé, s») defined in Section 3.

LEMMA 4.2. If x € Z% is such thati(s1, x) is reached on at least a finite path
and such thati(s1, x) < d(s2, x), then for everyy in an optimal path realizing
d(s1, x), we haved(s1, y) < d(s2, ).

PrROOF Denote byy (s1, x) an optimal path fromy1 to x, and suppose that
there existsy € y(s1,x) such thatd(so, y) < d(s1,y). Then, by the triangle
inequality,

d(s2,x) <d(s2,y) +d(y,x) <d(s1,y) +d(y,x)
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but asy € y(s1,x), d(s1,x) = d(s1,y) +d(y,x) and thend (s, x) < d(s1, x),
which is a contradiction. O

ASSUMPTION FOR UNIQUENESS OF OPTIMAL PATHS If A is a finite subset
of B4, denote by¥,« theo-algebra generated Hyw,, 1.), e ¢ A}. We suppose

(6) VA finite subsetofi?, Vee A, Vae Ry  S,(. =a|Fac) =0.

LEMMA 4.3. Under the additional assumptidB), we have the followirng

() If y andy’ are paths that differ in at least one eddieen

IP’(d(y) =D ne=d(y) =) ne< OO) =0.

ecy ecy’

Thus the optimal pathswhen they exisare unique
(i) Foreverya € R, if x,x', y, y are distinct points irZ?,

P(3finite pathy such thatd(x, y) =d(y),
Ifinite pathy’ such thatd (x’, y') =d(y')
andd(x,y) —d(’,y)=a)=0.

PROOF These are classical and not too difficult consequences of assump-
tion (6). O

ASSUMPTIONS FOR THE EXISTENCE OF OPTIMAL PATHS Consider the
following extra assumption oR:
(7) lim d(0,x)=+o0, Pa.s.

llxll1—+00

This assumption ensures that for eachy € 74 with d(x, y) < 400, there
always exists at least a paghfrom x to y with d(x, y) =d(y). When, moreover,
assumption (6) is satisfied, this path is unique. Assumption (7) is, for instance,
fulfilled when an asymptotic shape theorem is available, which ensures a certain
uniformity in the direction for the convergence toward the directional asymptotic
speed. Suppose, for instance, that the functipnassociated t&® is a norm and
that one of the three following conditions is fulfilled:

(a) (H,) holds for somer > d? + 2d — 1, where

A
(Hy) JA, B> 0suchthav A C E¢ Sv<neQS;Zsz|A|)§ .
[A|*
ecA
(b) p =1 and the passage times of bonds have a moment of erdef.
(c) p=1,S, is a product measure and the passage times of bonds have a
second moment.



310 O. GARET AND R. MARCHAND

The second moment assumption is classical in i.i.d. first-passage percolation to
ensure the shape theorem—see the review article by Kesten (1986), Lemma 3.5;
the (H,) assumption withw > d is the one used by Boivin (1990) for the shape
theorem in stationary first-passage percolation. Finally(H#g assumption with

a > d? + 2d — 1 is the one we use in Garet and Marchand (2003), Lemma 3.7,
to obtain the shape theorem when the edges can be closed. Note faisif

the product measure®Ed, assumption(H,) follows from the Marcinkiewicz—
Zygmund inequality as soon as the passage time of an edge has a moment of order
strictly greater than@.

5. Mutual unbounded growth and existence of two digoint geodesics for
diffuse passage times. The aim of this section is to prove the possibility of
coexistence in two-type first-passage percolation for diffuse passage times, and to
study the existence of two semi-infinite geodesics in the corresponding one-type
first-passage percolation. We will thus work here under assumption (6).

The next result ensures the irrelevance of the positions of the two initial sources
in determining whether mutual unbounded growth occurs with positive probability
or not. Its proof is based on a modification of the configuration around the sources,
sufficiently strong to change the initial sources, and sufficiently slight to ensure
that some lengths are not modified outside a finite box.

LEMMA 5.1. Consider Z¢, with d > 2 and p € (p.(d),1]. Choose a
stationary ergodic probability measur8, on Qg = (R+)Ed satisfying the
nonatomic assumptiof®) and

(8) VA finite subsetof?, Vee A, Ve>0  S,(n. <¢|Fac) >0 as

If p =1, we add the assumption that the support of the passage time is
conditionally unbounded

V¥ A finite subset oE?, Yec A, VM >0

9)
Sy(e = M|Fpc) >0 a.s.

Then ifsy, s2 ands?, s, are two pairs of distinct points iz,
P(Coexsi, s2)) >0 <<= P(Coexsy,sy)) > 0.

Let us comment on the two assumptions (8) and (9). They have the form of
finite energy properties, which are usual in modification arguments: it enables us
to force the occurrence of a wished event inside a finite box. But they also enable
the passage time of an edge to take as small—and as largepnhdr—values as
we like. This is a rather a technical assumption that could probably be relaxed. For

instance, assumptions (8) and (9) are satisfie®fos v®E! with v equivalent to

Lebesgue’s measure @, .
Combining these results with Theorem 3.2, we obtain the following:
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THEOREM 5.2. Consider Z¢, with d > 2 and p € (p.(d),1]. Choose
a stationary ergodic probability measui®, on Qg = (R+)Ed satisfying the
integrability assumptiongl), (2)and such that the related semi-nogndescribing
the directional asymptotic speeds is not identically null

SupposgmoreoverthatS, satisfies the nonatomic assumpti{@and the finite
energy property8). If p = 1, supposemoreoverthat the support of the passage
time is conditionally unboundethat is, thatS, satisfieq9). Then

Vx#£yezd P(Coexx, y)) > 0.

To tackle the geodesics problem, we must be sure that the dista@ces are
reached. We thus work under the additiored@amptions (6) and (7): optimal paths
exist and are unique.

Thanks to Lemma 4.2A1(s1, s2) and Ax(sy, s2) are now connected sets.
Moreover, with Lemma 4.3, it (x) < oo, thenx is reached first by a unique
infection; the path of infectiory (x) is the unique path from the corresponding
source tax that realizes (x). The set of eventually infected points is in this case
the union ofA1(s1, s2) and Ax(s1, s2). In other words, we can define uniquely,
for each eventually infected point, its type of infection and its optimal path. The
union of (¥ (x)),ezd 1(x)<co 1S then a random forest of two treds(sy, s2) and
T»(s1, s2), respectively, rooted at ands2 and, respectively, spanniry (s1, s2)
andAs(sq, s2).

In the same manner, under these assumptions, optimal paths exist and are
unique in the first-passage percolation model: for every Z¢, there exists
a unique optimal pathy (x) which realizes the distanc#(0, x). The union of
(¥ (X)) xezd 1 (x)<oo IS then a tree rooted in 0 and spanningZil A semi-infinite
geodesic is in this context an infinite branch of this tree.

The next result says that the mutual unbounded growth in the two-type first-
passage percolation model and the existence of two distinct semi-infinite geodesics
in the embedded spanning tree in the corresponding first-passage percolation
model are equivalent.

LEMMA 5.3. Under the same assumptions as in Lenig plus the extra
assumptior{7),

351, 52 € Z4 such thatP(Coexsy, s2)) > 0

<= [P(there exist two edge-disjoint semi-infinite geodesics
in the infection tree rooted ifh) > 0.

Combining these results with Theorem 3.2, we obtain the following:

THEOREMb5.4. Underthe same assumptions as in Thedbeyplus the extra
assumptior{7),

P(there exist two edge-disjoint semi-infinite geodesics
in the infection tree rooted ifh) > 0.
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EXAMPLES. 1. Consider first-passage percolationZsnd > 2, with a family
(t(e)).ecre Of Li.d. nonnegative random variables with a nonatomic unbounded
support containing 0, for instance, an exponential law as in Richardson’s model.
Then:

(a) For the two-type competition model, the probability of mutual unbounded
growth is positive for every pair of distinct sourcesfh.

(b) For the first-passage percolation model with one source, the probability
that the embedded spanning treeZsf has two edge-disjoint infinite branches
is positive.

These results were proved by Haggstrom and Pemantle (1998) for Richardson’s
model in dimension 2. Our results positively answer the questions asked by
Haggstrom and Pemantle about extensions of their coexistence result to higher
dimensions and more general distributions for passage times.

2. Consider first-passage percolation B, d > 2, with a family (¢ (e)) g«
of i.i.d. nonnegative random variables whose law has no atom exceptediie.,
edges can be closed with positive probability) and has 0 in its support, for instance,
t~p-Upo1+ (1—p)- b, With p.(d) < p <1. Then:

(a) For the two-type competition model, the probability of mutual unbounded
growth is positive for every pair of distinct source<z.

(b) For the first-passage percolation model with one source, the spanning tree
of the infinite open cluster has two edge-disjoint infinite branches with positive
probability.

REMARKS. We evoke here some possible extensions of these results.

1. In the spirit of Deijfen and Haggstrom (2003), we could have considered
competition models witlfertile finite setsas initial sources rather thgoints Two
finite nonempty disjoint set§; and S, in Z¢ are said to be fertile if there exist
two infinite pathsI'y and I'; such thatl"; (resp.T"2) starts from a point inSy
(resp. inS2) and such that these paths have no point in common. As the argument
is alocal modification argument around the sources, our proof can be adapted to
generalize the irrelevance of the initial sources resulf; jfS> and S’l, Sé are two
pairs of fertile finite sets i,

P(CoexS1, S2)) >0 <<= P(CoexsSi, S,)) > 0.

2. Let us say a word omultitypefirst-passage percolation. The definitions
concerning the two-type first-passage percolation can be generalized in the obvious
manner to consider a competition model betweétnfections starting fromv
sourcess, s2, ..., sy and trying to invade the sites @f . In this context, the event
Coex(s1, 52, ..., sy) is defined as the event that there finally exist an infinite set
of infected points of each type of infection. Theorems 5.1 and 5.3 can be proved
in the same manner fav -type first-passage percolation. The only difficulty is to
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ensure that the considered initial sourgesy, ..., sy are susceptible to give rise

to a coexistence configuration: this means initial sousges, . .., sy for which

it is possible to find a family ofV infinite paths(I";)1<;<x such that for every,

I'; starts froms; and such that any two of these paths have no point in common.
Unfortunately, the coexistence result Theorem 5.2 is not availablé &murces,

as it relies on Theorem 3.1, which is only valid for two sources, and whose proof

does not seem to be easy to adapt to more sources.

We can now begin the proofs of these results. As the arguments of Lemmas
5.1 and 5.3 are very similar, we give the proof of Lemma 5.1 in full details, and
give only indications to adapt the proof for the geodesics problem.

PrROOF OFLEMMA 5.1. Chooseq, s2 ands/l, s/2 two pairs of distinct points
in Z¢ and denote by\ an hypercubic box ifZ¢ large enough to contain, s> and
51,55 We also defin@A ={x e A, Iy ¢ A, |lx —yll1=1}.

By enlargingA if necessary, we can assume thatso, s7, s, are at a distance
at least 3 fromdA. For an edgee € E¢, we say thate € A if and only
if its two extremities are im\ and at least one is not iA. For a point(w, ) in
Q=Qp x Q5= {0, )% x R,

((,()A, TIA) = {(w€7 776)7 ec A} and (a)AC’ 77A") = {(w€7 Tle), ec Ed \ A}

For two pointsx, y that are inA° U dA, we definedc(x, y)(w) as the infimum,
among all the pathg from x to y whose edges are not ify, of 3_,c,, 7..

Suppose thdP(Coexsi, s2)) > 0, or, equivalently, that 1(s1, s2) andA2(s1, s2)
are both infinite sets.

Remember that the bax has been chosen large enough to containy. For
s €A, x € A€ andr € dA, let us denote byr, (s, x) the set of paths from to x
such that is the last point of the path which is . Sinced A is finite, there exists
at least one € 0 A such that

d(s,x) = yew(fs’x)d(y).

Forx € A€ ands € A, let us denote byR,(x) such anr—use, if necessary, the
lexicographic order to make a choicedfs, x) is reached on a (unique) optimal
pathy (s, x), then R, (x) is just the point where (s, x) exits from the boxA for
the last time. Note that

d(s,x)=d(s, Ry(x)) + d(Rs(x),x) =d(s, Rs(x)) + dpc(Rs(x), x).
As 0 A is finite, there must exist two distinct pointg r» € 0 A such that
P(A1(s1,52) N |x € Z4; Ry, (x) = r1} is infinite

(10)
Aa(s1,52) N {x € Z4; Ry, (x) = rp} is infinite) > 0.
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[

i

Fic. 2. Madification of the infection tree®©n the left competition with two sources; (black
triangle) and so (white triangle: the box B is in grey the squares are the iing points of the
branches from\ (black forr; and white forrp) and the circles are the visible portions of the infinite
sets outsider (black forxl, x3, ..., x} and white forx?, ..., x2). On the right the configuration
outsideA has not changedut we forced the infinite sets to connecy{a(in black) andy; (dashedl
and thus we changed the sources intp, s5.

Now we introduce the following events:

C1 = {There is an infinite setc});>1 in A€ such that
Vi>1 Ry (x;) =r1},

C2 = {There is an infinite s&t%) ;~1 in A such that
V.] 2 19 Rsz(xl) = ”2},

A} ={dpc(x}, r1) +d(r1, s1) < dpe(xt, r2) +d(r2, 52)},

A% ={dpe(xF,r2) +d(r, 52) < dac (x5, r1) +d(r1, s1)}.
Stepl. Let us prove that (10) implies
(11) P(CmczmﬂA}m ﬂA?) > 0.
i>1 j>1

Indeed, suppose that the event in (10) is realized. TAe@1, sp) N {x € Z¢;
R, (x) =r1} is a good candidate far;. Now, Rsl(xl.l) =rq implies that

d(s1,r1) +d(ry, x}) = d(s1, x 1)
<d(s2,xh)
< d(s2.r2) +d(ra, x})

< d(s2,72) +dac(rz, x}).
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Asry is the last point of, for eachy € Y, (s1, xi) to be inA, we haved (r1, xl-l) =
dac(r1, x}) and, thus Al is realized. Doing the same faf, andA?, we see that

the event that appears in (10) is includeddnn C2 N (51 Al.l NNjs1 A? and,
thus, (11) is proved.
Now, asC1 andC» are in¥ ¢, conditioning onFc gives

I%Qm@mﬂAﬁﬁjﬁ)

i~1 j=1

= / dP(wpe, nac)ley (wae, nac)le,(@ac, nac)

xP(@Lme(]A}m(]Aﬂ$N>

i>1 j>1
where we can also write
PQ@JﬂG(}A}ﬂ(\Aﬂ?@)
i>1 j=1
=P(Vi>1,dpc(x}, r1) —dac(xt, rp) <d(ra,s2) —d(r1, s1)
ijLth@—MMJo<m4ﬁwﬂ—%dﬁJMﬁw
a.s.

(12)

Define

m1 =my(wpc, Nac) = suf(dAc(x}, r1) — dac(xi, r2)),
i>

mo = mz(a)Ac, nA") = JIQE_(dA( (sz-, 7'1) — dAc (.XJZ, I"Z)).

Step2. We have

(13) P(ClﬂCzﬂf]A}ﬂf]A?ﬂ{m1<an:>0
i>1 j>1

Indeed, thanks to (12) and to Lemma 4.3(ii),
P((]A}ﬂ(jA?ﬂ{mlznuwfk»
i>1 j>1
=P(d(r2, s2) — d(r1, s1) = m1|Fac)
=0 a.s.

and then the probabilities in (13) and in (11) are equal.



316 O. GARET AND R. MARCHAND

It is also easy to see, ifny(wac, nac) < ma(wac, nac), that we can find
ai,az, b1, b2 € Ry such that

bim1 < bomo, asmo < aimi, bi—a1=1 and by —arx=1.
Define also
M = M(wpc, nac)
= maxX{ayma, bomy}

+ max {dac(r1,2)}+ max {dac(rz,2)}
z€0A z€0A
dpc(ry,z)<00 dpc(rp,z)<00

Now, we build a seG = G(wac, nac) of goodconfigurationgwa, na) inside A,
depending on the configuration outside First, sinceA has been chosen large
enough, it is possible to draw with the edgesAna pathy; that linkss; to rq
and a pathy, that links s, to r» such thaty; andy, have no vertex and no edge
in common. Denote byy;| (resp.|y,|) the number of edges ip (resp.y,). We
define nowG as the set ofw,, 174 ) that satisfy the following conditions:

(i) Ve €y, we=1andaxmz/ly;l <ne <aimi/lyl,

(i) Ve e yy we=1andbimi/|y,l < ne < bamz/|ys|,
(i) o if p<1,thenvee A\ (y{Uys), w.=0,
o if p=1,thenveec A\ (y{Uy)), n.> M.

Under the finite energy assumptions (8) and (9), on the event< m»}, we
haveP(G (wac, nac)|Fac) > 0 a.s., so (13) implies
(14) / 1,10, 4my<mp)P(G|Fpc) dP =P(C1 N CoN{my <mp} N G) > 0.

Step3. Let us prove that on the evefit N CoN {m1 < m2} N G, each of the two
types survives or, in other words,

CiNCoN{mi<ma}NG C Coe)(s/l, sé).

Suppose thenthéb, n) € C1NCaN{m1 < m2}NG. We have in the configuration
(w,m):

(@) apmo < d(y;) < aim1 thanks to condition (i) in the definition a¥.
(b) bim1 < d(y,) < bomy thanks to condition (iijn the definition ofG.
(c) Thus, by difference and by the choiceaaf b1, a2, b2, we have

m1=m1(b1 — a1) < d(yy) —d(y;) <ma(by — a) = my.
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Moreover, as soon as a pathfrom s; to r1 differs fromy; by at least one edge,
it must use an edge in A \ (y{ U y;), and this edge is either closed or such
thatn, > M thanks to condition (iii) in the definition of;. Thus,d(y) > M >
aimy > d(y;). Consequentlyy; is the optimal path frony; to r1. On the other
hand, every patly from s5 to r1 has to use an edgein A \ (y; U y,), and then
by the same argument(y) > M > aym1 > d(y;), and theni(s5, r1) > d(s3, r1).
Consequently; is finally infected bys; andd(s3, r1) is reached for the optimal
pathy;; in the same manner; is finally infected bys5 andd (s, r») is reached for
the optimal patty,.

Let us now prove that for each> 1, Rs’l(xil) =r1. Leti > 1 and note
7= Rs’l(x,-l)- If z  rq1, we would have

d(sy, x}) = d (s, 2) + dpe(z, x}) < d(s}, r1) + dac(ry, x1)
and then
d(sy,2) <d(s], r1) + dac(r1, x}) — dac(z, x}) <d(sy, r1) + dc(ry, 2).

The last inequality is just the triangle inequality .. But each path from; to
z must then contain at least one edgi@ A \ (y{ U y5), and so such thaf, > M
or w, = 0, and then by definition o#/, we must have

d(s1,z) > M > aim1 + dac(r1, z) > d(sy, r1) + dac(r1, 2),

which contradicts the previous inequality. In the same manner, we can prove the
following:

(a) foreach >1, Ry (x}) = ra,
(b) for eachj >1, Rsé(sz.) =ry,
(c) foreachj > 1, Rs/l(x;) —r1.

Let us now prove that for eagh> 1, we havei (s, x1) < d(sh, x}). We have
d(sy, x) = d (s, r1) + dac(r1, x7)
= d(y]) +dac(ra, x}) + (dac (r1, x1) — dac(ra, x)
<d(y)) +dpc(ra. x}) +my
< d(yz/) —m1+dpc(ra, xl-l) +mq
<d(sh, r2) +dpe(ra. x}) = d (s, x})

becauseRsé(xil) = rp. Similarly, we can prove that for each> 1, we have
d(sy, sz.) > d(sh, sz). We have thus proved the desired inclusim C> N {m1 <

m2} NG C Coexsy, 55).
Now, (14) ensures tha@t(Coexsy, s5)) > 0, which ends the proof.[]
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PROOF OF LEMMA 5.3. Let us give the line of the proof for the direct
implication. By Lemma 4.3, we can assume that= 0 ands, = 1. Under
assumptions (6) and (74,1 (0, 1) andA>(0, 1), with edges the ones (0.7« ¥ (x),
are both connected trees, denoted, respectivelyI’'t® and T(1). Thus, if
A1(0,1) and A2(0, 1) are infinite, by a classical compactness argument, one can
find, from Oe A1(0, 1), a semi-infinite geodesic which is completely4n(0, 1),
and from 1€ A»(0, 1), a semi-infinite geodesic which is completelyAn(0, 1).
Following the proof of Lemma 5.1, inequality (10) is now replaced by

IP(T(0) contains a infinite branch; starting from 0
and whose last point ifA is r1,
T (1) contains a infinite branch, starting from 1
and whose last point iBA is rp) > 0.

(15)

The proof follows exactly the same lines as the previous one: just replaaeed
Cs by

C1 = {There is a simple patx});>1 in A€ such that|x] —r1[1 =1
andVvi > 1, yac(r1, xl-l) = (r1, x%, e xl-l_l, xil)},

C> ={There is a simple pathcjz)jzl in A€ such thaﬂ|xf —rol1=1
andv j > 1, yac(r2, sz) = (ro, x%, . sz—l’ sz-)}.

The modification argument is the same, the only difference is to choose two paths
y; andy; starting both from 0, reaching, respectivetyandrz, with no edge and
no point in common except 0. The passage times are then modified exactly in the
same manner.

The converse implication can also be proved by an analogous modification
argument. [

6. Mutual unbounded growth and existence of two distinct geodesics for
integer passage times. In the previous section, the law of the passage time of
an edge was supposed to admit no atom to ensure the uniqueness of optimal paths
when they exist. However, the competition model, as defined in Definition 4.1,
is still available without such an assumption: in this section we consider integer
passage times, and study the problem of coexistence in the competition model and
the geodesics problem. Note that in this case, optimal paths always exist because
the length of a given path takes its values in the discrete &et.

THEOREM 6.1. Consider Z4, with d > 2 and p € (p.(d),1]. Choose
a stationary ergodic probability measuf®, on Qg = (R+)Ed satisfying the
integrability assumptiongl), (2) and assumeanoreoverthe following

1. The related semi-norm describing the directional asymptotic speeds is not
identically null
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S, is “discreté: there exists a subsétof Z, such thaiSv(S]Ed) =1.
S, satisfies the following finite energy propertgr each finite subset of E¢
and eache, € SA, we have

wnN

SU(CUA =€A|37AC)>O, SU a.s.

4. If p =1, we add the assumptiaghis unbounded
5. Some stronger integrability is assumedppose that one of the three following
conditions is fulfilled

(@) (H,) holds for somer > d? + 2d — 1.

(b) p =1and the passage times of bonds have a moment of arded.

(c) p=1,S, is a product measure and the passage times of bonds have a
second moment

Then for each pair s1, s» of distinct sources inZ?, P(Coexsi, s2)) > 0.
Moreover

P(there exists two disjoint semi-infinite geodesics
starting fromO for the random distancé) > 0.

The last integrability condition is the only one that is specific to the discrete
case: in the diffuse case of the previous section, we could give to a given edge
an arbitrary small value thanks to (8), and there was no need to control the
length of an optimal path. Here, as passage times are integers, we need a stronger
integrability assumption that helps to control these paths. As seen in Section 4,
these assumptions are the classical ones to ensure a shape theorem. In any case,
the following estimate is available:

LEMMA 6.2. There existK1 > 0such that for every € Z¢, we can construct
a random integeM (a) < +o0 such that

a<>oo and y<«oo and |ylli1=M@@ = d(a,y) =Kilyla.

EXAMPLES. 1. Takep <1 andS, = U®Ed, where the support of is a finite
subset ofZ7 . As a special case, = §; gives the classical chemical distance on a
Bernoulli percolation cluster:

COROLLARY 6.3 (Geodesics on a Bernoulli cluster)for each p > p.,
consider Bernoulli percolation with parametgr Then there almost surely exists
a point of the infinite cluster from which we can draw two disjoint semi-infinite
geodesics

PROOF The considered eventis translation-invariant, so its probability is null
or full. By Theorem 6.1 witls,, = (Si@Ed, it cannot be null. O
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Note that this result could also be obtained from the existence of an infinite
cluster in half-spaces as soon as- p.—see Barski, Grimmett and Newman
(1991).

2. Consider a Poisson point process®h with an intensity proportional to
Lebesgue’s measure. Lete Z* and define the passage timeby n, = 1+ an,,
wheren, is the number of obstacles arouadhat is, the number of points of the
Poisson process which are closer frettihan from any other edge.

We can now begin the proof of Theorem 6.1.

PrROOF OFTHEOREM 6.1 (Coexistence result). The goal is to prove that for
each paify, s» of distinct sources ifZ¢, P(CoeXsy, s2)) > 0.

By translation invariance, we can suppese Z? \ {0} ands, = 0. Sinceu is
not identically null, we can find € Z¢ such that||s1|1 and|x|1 have the same
parity and such that(x) # 0. Thanks to Theorem 3.2, we can consider an odd
integerng such thatP(Coex0, nox)) > 0. Notes; = nox. We are going to prove
thatP(Coex0, s1)) > 0.

TakeK1 > 0 andM (0) andM (s}) as defined in Lemma 6.2. Since

nﬂrﬂooIP’({M(O) <n}N{M(sy) <n}NCoex0,s;)) =P(Coex0,s;)) >0,

we can find an integeR1 such that
P({M(0) < R1}N{M(s7) < R1} N Coex0, s7)) > O.

Let A = {x € Z%; ||x|l1 < R}, for a large integeR whose exact value will be
fixed later. The idea is then to show that every configurafioyy) in the event
A ={M(0) < R1} N {M(s7) < R1} N Coex0, s7) can be modified inside the ball
A to get a configuratioiw’, n") where CoexQ, s1) holds. A classical finite energy
argument concludes the proof: at first, note that P, ® S, also enjoys the finite
energy property. Now iB is a subset of2 such that there existsamgp A — B
with f(x)pc = xpc for eachx € A, thenP (B) > 0, because

P(B) = /Q P(B|Fc)(x) dP(x)
> / P(B| Fxe) (x) dP(x)
A

> fA P((f (1)} Fac) (x) dP(x)
> 0.

Let us explain now the modification inside In the following, we will assume
without loss of generality that the greatest common divisor of the elemerfis of
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is 1. By the lemma of Bezout, we can find a finite family of integersandsy,
with s; € S, such thaf_,axsr = 1. Note

Sy ={keS;a >0}, S_=1{keS;a <0},
Ci= ) a, Ca= ) (—ap),
keSy kesS_
b1 = smallest odd element ¢f, by = smallest even element 6f
C =max(Cy, C»), B =max(b1, b2).

By convention, ifS only contains odd integers, we get=b; andB = 0.
The nextlemma is a geometrical result, and we omit its proof because it is rather
tedious and not particularly illuminating:

LEMMA 6.4. Let us consider two fixed points, a; € Z¢ (not necessarily
distinch and two nonnegative numbei3 and K. Let us noteA, = {x € Z%;
xll1 <n}.

There existk = «(ag, a1, D, K) < +o00 such that the following holds as soon
asn >«

For each distinctrg, r1 € Z¢ with ||ro||1 = ||Ir1]l1 = n and each integet which
has the same parity agig — a1||1 and satisfie$l| < Kn + D, one can construct
inside A, two simple pathsg fromag to rg andyy froma; to r1 with no common
point (but maybexg if ag = a1) and such that

lyol = Kn+ D, ly1l > Kn+ D, lvol — Iyl =1.

We can now define the radius
R =maxk (0, s1, B, K10), [Is1ll1 + 2, R1)

and defineA = Ag. Consider a semi-infinite geodesic starting from 0 (regp.
and define byrg (resp.r1) the last point of this semi-infinite geodesic which
belongs toA. Denote

L =d(ro,0) — d(r1, 57).

For simplicity, we will suppose, without loss of generality, tliais nonnegative.
Remember that; has the same parity as. Let us define

5=bpandb] = by, if |ls1]|1 does not have the same parityla&1 — C»),
by =b,=0, otherwise
and

l=L(C1—C2)+ by — D).

Note thath; — b2 is 0dd, unless only contains odd integers. But in that case,
C1 — Cz is odd andL has the same parity ai$oll1 + [1ll1 + lIs7ll1, that is, the
same parity ags1||1.



322 O. GARET AND R. MARCHAND

Thus,! and||s1]|1 always have the same parity. Note that
[l <IL||C1—Co| + B
<maxd(0, ro), d(s1,r1)) maxCi, C2) + B
< Kimax(||roll1, Ir1ll1)C + B =B + CK1R.

So, by Lemma 6.4, and by the choice we madeRopbne can construct inside
two simple paths with no common poipg from 0 torg, andy; from s1 to r1 such
that

lyol > CK1R + B, ly1l> CK1R + B, lvol — lval =1.

Let us notek = |yo| — (LC1 + b7). As proved in the upper bound fgi|, LC1 <
CK1R. We thus have

k>CKiR+ B — (LC1+b})>B—b1>0.

Obviously,|yg| = LC1+ b} +k and|y1| = LC2+ b, + k. Define also the following
quantity M that will play the role of an “infinite” passage time for open edges:

M=maxtL Y ajsi+bibo+ kb1, L Y (—ap)si + (by+k)b1

ieSy ieS_

+ maxd(x, y)(Oawae, m), Ixlle =yl = R}.

Note thatM is in ¢, theo-algebra generated {yw,, n.), e € A°}. Now define,
for every (w., 1.) € A, the configuration«’, n) € Q: set(w,, n,) = (@, n.) for
e € E?\ A and defingo/y, ) inside A as follows:

(i) If p<1,Yee A\ (yoUy1),w, =0 andn, = by, but this value does not
play a special role; ip =1,Ve € A\ (yoU y1), 1, > M andw, = 1.
(i) YeeyUyr, o, =1.

(iii) Assign a passage time to edgesg as follows (remember thdig| =
LC1+ b} + k):first, for eachi € S, give toa; L edges the valug, = s; and next
complete giving td} other edges the valug = b» and tok other edges the value
n, = b1.

(iv) Assign a passage time to edgesjyinas follows (remember thdy,| =
LC> + bj + k): first, for eachi € S_, give to —qg; L edges the valug, = s; and
next complete giving to the remainidg + k edges the valug, = b;.

Now we immediately obtain
Y m,=L Y aisi +biba+kba,

€€Yo ieSy
Y m, =LY (—a)si + (by+ k)b,
ecy, ieS_

Z Me — Z My = L(Zm&) + bibs — bob1 = L =d (0, ro) — d(sq, r1).

ecyn ecyy ieS
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For(w,n) € A C CoexO0, s/l), there exist two infinite geodesics starting from 0
ands]. Let us denote by'g (resp.I'1) the part beginning atg (resp.r1) in the
geodesic starting from 0 (resg) in the configuratior(w, n).

We are going to prove that UT'g (resp.y1 UT'1) is an infinite geodesic starting
from 0 (respsi) in the configuratione’, n’). Let x be a point ofl'g. Let us prove
that an optimal path from 0 tein the configurationie’, n’) is included inyg U I'g.

Let y be an optimal path from 0 te in the configuration«’, '), and denote
by z the point from which the path exits fromA. We have

d0,2)=) n'(e)< Y n'(e)+d(ro,2).
ecy ecyo

But since

Y n'(e)=L Y aisi+biba+kb1 and d(ro,2)(@',n') <d(ro, 2)(0prwac, ),

e€yo ieSy

it follows thatd (0, z) < M. By definition of M, it ensures thag does not use any
bond in A, except those used i U y1, and, particularly, it implies that = ro,
and thus an optimal path from 0 tois included inyg U I'g.

Similarly, lety be an optimal path frony to x in the configuratiorie’, "), and
denote by, the point from which the path exits fromA. We have

d0,2)=> "1'(e)< Y n'(e)+d(r1,2).

ecy ecy

But since}_,c,, n'(e) =LY ics (—aj)si + (b5 + k)by and d(ry, 2) (o', 1) <
d(r1,2)(0Opwapc, 1), it follows thatd(s1, z) < M. By definition of M, it ensures
thaty do not use any bond in, except those used i U y1, and, particularly, it
implies that; = r1, and thus an optimal path from to x usesy; to exit from A.
Let us now prove that if € I'g, d(0, x) (', n') < d(s1, x)(', '):
d(s1,x) (@', 1) =d(s1,r)(@', 1) +d(r1, x)(Opwac, 1)
=d(s1,r1) (@', 1) + d(ry, x)(Opwac, 1),
d(0,x)(w',n) =d(0,r0)(@', n') + d(ro, x)(Orwpc, 1)
=d(0,r0)(«', ') +d(ro, x)(Onwac, n).
Consequently,

(d(s1,x) —d(0,x)) (@, 1)
= (d(s1,r1) —d(0,70) (@', n') +d(r1, x)(Opwpe, ) — d(ro, x)(0pwac, 1)
= (d(s1,r1) —d(0,r0))(w, n) + d(r1, x)(Oawac, n) — d(ro, x)(Oprwac, 1)
> d(s1, x)(w,n) —d(0,x)(w,n) >0,
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becausex € I'g, which is a part of the infinite geodesic issued from 0 in the
configuration(w, n). Thus,yg U I'g is an infinite geodesic issued from 0 in the
configuration(w’, 1').

In the same manner, working symmetrically with, we prove thaty; U I'1
is an infinite geodesic issued from in the configurationw’, n"), and, finally,
(o', ') € Coex0,s1). O

PrROOF OFTHEOREM 6.1 (Geodesics result). The goal here is to prove that

P(there exists two distinct semi-infinite geodesics
starting from 0 for the random distangg > O.

The proof is exactly the same as the previous one. The only difference is to use
the single source 0 rather than two distinct source$.0rhe geometrical structure

of the modification is once again given by Lemma 6.4, and the adjustment of the
values is made as before]

As seen previously, a trouble with integer passage times is that some points can
be reached at the very same moment by the two distinct infections. This case can
be ruled out under some extra assumptions, and this is the goal of the next result.
But first, for two distinct sources, y € Z¢, we say that the event SepCoexx, y)
happens if

{zeZ% d(x,z) <d(y,z)} isinfinite and
(zeZ% d(x,z) >d(y,z)} isinfinite and
VzeZd d(x,z) #d(y,z)  unlessd(x,z) =d(y,z) =+o0.
We have the following result:
LEMMA 6.5. Denote by® the set of nonnegative odd integeend as

previously let d > 2, p > p.(d), S, a stationary ergodic probability measure
on O satisfying(1) and(2). Then for x € Z¢ with ||x||1 odd,

P(Coex0, x) \ Sep— Coex0, x)) =0.

PrROOF By the assumption we made gnthe length of a path from to y has
the same parity algx — y||1. So, the identityl(x, z) = d(y, z) can only happens if
lx — y|l1is even. [

Now, for a given pointc with ||x||1 odd, the fact thaP(Sep— CoexO0, x)) > 0
can be obtained as a consequence of Theorem 3.2 or Theorem 6.1. Note also that
when the assumptions of Lemma 6.5 are fulfilladis always a norm: since the
passage time of a bond is an odd integer, it is at least equal to 1. Then, it is easy to
see that for each € Z¢, we havew (x) > ||x||1.
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7. An example of a discrete time competing process. The last section is
devoted to the study of a natural example of a nontrivial dynamical system which
can be studied with the help of Theorem 6.1 and Lemma 6.5.

Consider two species, say blue and yellow, which attempt to conquer the
spaceZ?. At each instant, each young cell tries to contaminate each of its
nonoccupied neighbors. It succeeds with probabitityln case of success, the
nonoccupied cell takes the color of the infector. If a yellow cell and blue cell
simultaneously succeed in contaminating a given cell, this one takes the green
color. If a green cell and another cell simultaneously succeed in contaminating a
given cell, this one takes the green color. At the next step, the individuals that have
just been generated are young, but the previous generation is no more young. We
make the following assumptions:

(a) the success of each attempt of contamination at a given time does not
depend on the past,
(b) the successes of simultaneous attempts to contamination are independent.

The first assumption allows a modelization by a homogeneous Markov chain.
Markov chains satisfying the second condition are sometimes called probabilistic
cellular automata (PCA).

Let us define

S = {0, blue, yellow, greenblu€e*, yellow*, greeri},

where 0 is the state of an empty cell, hlyellow, green the states of young cells,
and blué, yellow*, greert the states of old (i.e., not young) cells.

Since we will study the evolution of a system which starts with only two
cells, we will only deal with configurations in which a finite numbers of cells are
nonempty. So, we will deal with a classical Markov chain on the denumerable set

C =1{t e S A finite, & =0fork e Z¢\ A).
We now define for coloe Act = {blue yellow, green:
n(color, x)(&) = [{y € Z¢; |x — y|l1 = 1 andg, = color}|
and
s(color, x) =1 — (1 — p)"(colorn)

which represents the probability that at least one neighbar slicceeds in
infecting x with the given color.
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The considered dynamics form a homogeneous PCA with spaceSstaie
whose local evolution rules are given by

(1 _ p)n(yellow,x)+n(bluex)+n(greenx)’ ifs=¢= 0,
s(blug x)(1 — p)nyellow.x)+n(greenx) if s =0 andr = blue
s(yellow, x)(1 — p)"(bluex)+n(greeny) if s =0 andr = yellow,

pe(s, 1) ={ s(@reenx) + (1 —s(greenx))s(blue x)s(yellow, x),
if s =0 andr =green
1, if s € {blue yellow, green andr = s*,

1, if s € {blue*, yellow*, greerf} andr = s,

0, otherwise

In terms of Markov chains, it means that the transition matrix is defined by

VE, w)eCxC p& o) = [ pcCr o).
keZd

The product is convergent because only a finite numbers of terms differs from 1.
With the help of the tools that we have developed above, we will prove the
following theorem:

THEOREM 7.1. Let p > p.. FOr syellows Sbiue € Z¢ With spiue 7 Syellow, let
us denote bYP) s gion.sone the law of a PCA(X,)n>0 following the dynamics
described aboveand starting a configuration with exactly two nonempty cells
a blue cell at sitespiye, a yellow cell at sitesyelow, the others cells being empty
Then

Py syetowesoue(Y 1 € Zy 3 (x, y) € Z4 x 7,
X, (x) = blueand X, (y) = yellow) > 0.

If, moreover||syeliow — sbiuell1 is 0dd green cells never appear

The following lemma gives the link between this PCA and our competing
model.

LEMMA 7.2. Consider a probability space where lives a famiby,), g«
of independent Bernoulli variables with parameter which defines a random
chemical distance®.
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Fic. 3. Two samples of simulation of the competing process wherD.6. The process is stopped
when the border of a given box is attained by one of the two spebiescolor in the picture is
determined by the time of coloring and the type of the cell

Let syellow, Sblue € Z4 with Sblue 7 Syellow- Define

blue if n = D(splue, ¥) < D(syellow, X),
yellow, if n = D (syellow X) < D(Sblue, X),
green if n = D(syeliow, X) = D (splue, X),

X, (x) = { blue*, if D (sbiue, x) < MiN(D (syeliow: X), 1),
yellow*, if D(syellow, X) < MiN(D (spiue, X), 1),
greert, if D(syellow, X) = D(sblue, X) < 1,
0, otherwise

Then (X,),>0 is @ homogeneous PCA with space state
S = {0, blue, yellow, greenblug®, yellow*, greer}

associated to the probabilitigs, (s, r) defined above

PROOF Let us consider the map
Fi8% % Qp — s,
& o) (frx, 0),czas
wheref, : S x Qg — S is defined by
fo(s, ) =s* for eachs € {blug yellow, green,

fe(s,w)=s for eachs e {blu€e*, yellow*, greeri},
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blue, if Act N {£,; llx — ylli =1 andwy, ) = 1} = {blug},
yellow, if Act N {£,; [lx — ylla = 1 andwy, ) = 1} = {yellow},
green ifAct N {&y; llx —ylla=1

£ 0.0= anda){x’y}; 1} = {blue yellow},
green if Act N {&,; llx — ylla =1 andw, y) =1} D {green,
0, otherwise

By considering Dijkstra’s algorithm in the particular case where the travel times
are constant, it is not difficult to see th@X,),>o satisfy the recurrence formula
Xn+1 = f(X,,w). To recognize(X,),>o0 as a convenient PCA, we will build a
coupling of w with an i.i.d. sequencéw”),>1 to obtain the canonical Markov
chain representatiok, .1 = f (X, ®").

Let (2, ¥, P) be a probability space witlt?, °, !, w?, ... independent
{0, 1}E valued variables with Bép)®E’ as common law.

We defineAg = {sbiue, Syellow} and recursively

Byya={yeZ'\ A, 3x €dA,:|x — yll1=1andef, ,, =1},
An+1 = An U Bn+1-

Note that the random seB,.1 is measurable with respect to thealgebra
generated byo?, »l, ..., »"). We define;” recursively by

i1 it if e={x,y}with (x,y) €A, x Z¢\ A,,

N Vo otherwise.

By natural induction, we prove that the law ¢f under P is Ber(p)®Ed. By
construction, each bordnritese = {x, y} with (x, y) € 94, x Zd\An for at most
one value ofu. It follows that the sequenag' converges in the product topology.
Let us denote by its limit. Since the law ot” underP is Ber(p)@Ed, it follows
that the law of»™ underP is also Be¢p)®E"

Now, it is not difficult to see that sequencg,),>o, defined fromw™ as
previously, satisfies the recurrence formMla,; = f(X,, »*), but alsoX,, 11 =
f(Xu, o).

It is now proved thatX,),>0 is @ homogeneous Markov chain. The recognition
of the transition matrix follows from an elementary calculus]

We can now prove the theorem announced above.

PROOF OFTHEOREM7.1. Clearly, Lemma 7.2 connects the considered PCA
with the random distance studied in Theorem 6.1. Here, the passage times of open
bonds are identically equal to 1, which is obviously an odd number. By Lemma 6.5,
this prevents from the appearance of green cells Wigiow — sbiuell1 is odd. [J
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FIG. 4. Green surrounding the two sources

REMARKS. If [[syellow — sbiuell1 # O is even and if the two species infinitely
grow, there are necessarily green cells at the boundary between blue cells and
yellow cells.

A natural question is the following: is it possible to have an infinite set of green
cells surrounding the blue cells and the yellow cells? The answer is yes, as soon as
l|syellow — sbiuell1 # O is even: consider Figure 4.

The picture describes a particular case wlhks 2, but the reasoning can
obviously be generalized.

In this case, the yellow flow and the blue flow immediately converge to engender
a green flow. They also do not develop themselves elsewhere. If the point labelled O
belongs to the infinite cluster, then the result is proved.

It is now easy to see that, conditionally to the states of the bonds imposed by
this picture, the probability that 0 belongs to the infinite cluster is strictly positive,
which follows from a classical modification argument.
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