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Generalized Pdlya urn models can describe the dynamics of finite
populations of interacting genotypes. Three basic questions these models
can address are: Under what conditions does a population exhibit growth?
On the event of growth, at what rate does the population increase? What is
the long-term behavior of the distribution of genotypes? To address these
guestions, we associate a mean limit ordinary differential equation (ODE)
with the urn model. Previously, it has been shown that on the event of
population growth,the limiting distibution of genotypes is a connected
internally chain recurrent set for the mean limit ODE. To determine when
growth and convergence occurs with positive probability, we prove two
results. First, if the mean limit ODE has an “attainable” attractor at which
growth is expected, then growth and convergence toward this attractor occurs
with positive probability. cond, the population distribution almost surely
does not converge to sets where growth is not expected and almost surely
does not converge to “nondegeneratgistable equilibria or periodic orbits
of the mean limit ODE. Applications to stochastic analogs of the replicator
equations andefrtility-selection equations of population genetics are given.

1. Introduction. The founder-effect in population genetics refers to the
establishment of a new population consisting of a few founders that is isolated
from the original population. A founder-effect can occur when a small number of
individuals colonize a place previously uninhabited by their species. In this case,
the founding population is geographically isolated from the original population.
A founder-effect due to temporal isolation can occur when a population passes
through a bottle neck after which only a few individuals survive. Several
fundamental questions surrounding the founder-effect include: What is the
probability that a founding population successfully establishes itself? If a founding
population establishes itself, what is the population’s growth rate and what is the
long-term genotypic or phmtypic compositia of the population? How does the
initial genotypic composition and initial population size influence the likelihoods
of the various outcomes?

To address these questions, we consider a general class of Pdlya urn models
introduced in [12]. Traditionally, Pélya urn models are described as involving
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an urn, which contains a finite number of balls of different colors. At discrete
moments in time, balls are added or removed from the urn according to
probabilities that only depend on their distribution and number at that point in
time. The pertinence of these models to evolutionary questions is self-evident
if we view the balls as individuals whose color represents their genotype or
phenotype, adding or removing balls as replication or death of individuals and
updates of the urn as interactions between individuals. When balls are added at a
constant rate (i.e., a fixed number of individuals are added at every update of the
process), Pélya urn models have been studied extensively by Arthur, Ermol’ev
and Kaniovskii [1], Benaim and Hirsch [5, 6], Hill, Lane and Sudderth [8],
Pemantle [10] and Posch [11] amongst others. What makes the models introduced
in [12] more relevant to population processes is that they permit the removal of
balls, as well as the addition of balls at nonconstant rates. Consequently, extinction
of the entire population or one or more subpopulations is possible in finite time.
The article is structured as follows. In Section 2 we introduce the class
of generalized urn models. As examples, replicator processes and fertility-
selection processes with and without mutations are introduced. These urn
models typically predict that either the populations go extinct or grow, and that
demographic stochasticity is most pronounced when the population is small. Once
the population starts to get large, it tends to grow in an essentially deterministic
fashion. For this reason, on the event of nonextinction, the dynamics of the
distribution of types in the population (i.e., the distribution of the color of balls
in the urn) are strongly correlated to the asymptotic behavior of an appropriately
chosen ordinary differential equation (ODE), commonly called riiean limit
ODE. In Section 3 we describe the mean limit ODE, and recall a theorem [12] that
on the event of growth relates the asymptotic behaviors of the stochastic process to
its mean limit ODE. Using this result, we derive a time averaging principle and a
competitive exclusion principle for replicator processes. We also show that additive
fertility-selection processes almost syrebnverge on the event of nonextinction
to a fixed point of the mean limit ODE. These results, however, provide no insight
into when population growth occurs with positive probability and which limiting
behaviors occur with positive probability. In [12], Theorem 2.6, it was shown that
if the populationgrows with probabilityl (i.e., more balls are being added than
removed at each update), then the population distribution converges with positive
probability to “attainable” attractors for the mean limit ODE. However, for most
evolutionary and ecological processes extinction occurs with positive probability
and, consequently, the almost surely growth assumption is not meet. In Section 4
we remedy this issue and prove that if there is an “attainable” attractor for the
mean limit ODEat which growth is expectdde., on average more balls are added
than removed), then there is a positive (typically less than 1) probability that the
population grows and the population distribution converges to the attractor. In
addition, we provide an estimate for this probability and for the rate of growth.
In Section 5 we prove nonconvergence to invariant subsets of the mean limit ODE
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where growth is not expected and nonconvergence to “nondegenerate” unstable
equilibria and periodic orbits of the mean limit ODE. In Section 6 we combine
our results to give necessary and sufficient conditions for growth with positive
probability for processes with gradient-like mean limit ODEs and apply these
conditions to additive fertility processes with mutation.

2. Generalized urn models. In this section we introduce a class of general-
ized urn models. This class generalizes the urn models introduced in [12]. Three
examples or evolutionary processes described by these generalized urn models are
given in the sections below. One of these processes, replicator processes, was de-
scribed previously in [12] and stochastic versions of the replicator equations [9].
The other two processes, fertility-selection processes with and without mutation,
are stochastic versions of the fertilitglection equations with and without muta-
tion [9].

Due to the fact that we are dealing with finite populations consisting of
individuals that are one of types, we consider Markov chains on the positive
cone

Zh ={z=(4 ... 2 ezh i > oforalli}
of the setZ* of k-tuples of integers. Given a vector= (w?, ..., w¥) € Z¥, define
lw| = [wl +-- +|wk| and aw)=wr+-- +wk

We shall always write| - || for the Euclidean norm oR*.
Let z, = (z%, e z,’i) be a homogeneous Markov chain with state sp%@e

In our contextz! corresponds to the number of balls of colat thenth update.
Associated witl,, is the random process defined by

2 iz, #0,
Xp = |Zn ]
0, if z, =0,

which is the distribution of balls at theth update. Note that when there are no
balls at thenth update, we set, to zero which we view as the “null” distribution.
Let Sy c R* denote the unit — 1 simplex, that is,

k
Sy = {x:(xl,...,xk)eRk:xi zO,in =1;.
i=1
Let IT: ZX x Z% + [0, 1] denote the transition kernel of the Markov chaijn
In other words I1(z, z’) = Plzy+1 = 7'|zx = z]. We place the following assump-
tions on the Markov chainsg, of interest:

(A1) At each update, there is a maximal number of balls that can be added
or removed. In other words, there exists a positive integesuch that
|Zn+1 — Zn| < m for all n.
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(A2) There exist Lipschitz maps
{Pw:Sk— [0,1]:w € ZX, |w| <m)
and a real number > 0, such that
lpw(z/1z]) = I(z, z + w)| < a/lz]

for all nonzeraz € ZX andw € Z* with |w| < m.

Since we view updates of the Markov chain to correspond to the effect of
interactions between individuals, assumption (Al) implies that each interaction
results in the addition or removal of no more than a maximum number of
individuals. Assumption (A2) assures that there is a well-defined mean limit ODE
for the urn models.

2.1. Replicator processes.Consider a system consisting of a finite popula-
tion of individuals playingk different strategies. At each update of the population,
pairs of individuals are chosen randomly with replacement from the population.
The chosen individuals replicate and die according to probabilities that only de-
pend on their strategies. More precisely,dAebe a nonnegative integer that rep-
resents the maximum number of progeny that any individual can produce in one
update. Le{R,},>0 and{Rn}nzo be sequences of independent identically distrib-
uted r_andonk xk matrices whose entries take values in the{s€t O, 1, ..., m}.

Let R/ andR,/ denote thejth entry of R, and R,, respectively. Letr,},~o be

a sequence of independent identically distributed randoml matrices whose
entries take values in the st1,0, 1, ..., m}. We define a replicator process ac-
cording to the following rules:

1. Two individuals are chosen at random with replacement from the the popula-
tion. Make note of the individuals chosen and return them to the population.

2. If the same individual is chosen twice and it plays strategiyenr! individuals
of strategyi are added to population. -

3. Iftwo distinct individuals are chosen, say strategyd strategy, then addr,/
individuals of strategy and addr;' individuals of strategy.

It is not difficult to verify that this process satisfies assumptions (A1) and (A2)
with p,,(x) = x'x' P[RY + R = w'] + ¥, 2x'x/ P[RY = w]P[R]' = 0],
wheneverw = (0,...,0,w’,0,...,0) with w’ # 0, p,(x) = Zx"fo[Rij =
w']P[R]' = w/],whenevew = (0,...,0,w,0,...,0,w’,0,...,0) with w0,

w! #£0,andi # j, py,(x) =0, whenevew has three or more nonzero coordinates,
andpo(x) =1— 3,20 Pw(x).
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2.2. Fertility-selection processes Consider a population of diploid individu-
als that hag distinct allelesAq, ..., Ax that occupy a single locus. Assume that
the population is monoecious (i.e., there is only one “sex”) and that each individual
chooses its mate randomly from the population. We assume that individuals die
immediately after mating. Although there is no distinction between individuals of
genotypeA; A ; andA ; A;, we develop an urn model of the form = (z)/ ) € ZX**

as it is notationally more convenient. Fo# j, letz;/ =z}’ denote the number of
individuals of genotyped; A; at thenth update of the population. Alternatively,
let 7'/ denote twice the number of individuals of genotypet; at thenth update
of the population. Hencez,,| = Y; ; z equals twice the total number of individ-
uals in the population.

For every pair of genotypes, sa§;A; and A, A, we associate a sequence
of i.i.d. random variable&;, (ij, rs) = G, (rs, ij) that take values if0, ..., m},
where m represents the maximal number progeny produced by a mating and
whereG,(ij, rs) represents the number of progeny produced by a mating between
genotypesA;A; and A, A, at updaten. Let z, € ZX** be a Markov chain

satisfyingzi,j = z,],'i and updated according to the following rules:

1. If the population size is less than two, then the population goes extinct. In other
words, if|z,| < 4, thenz, 11 =0.

2. Pick two individuals at random without replacement from the population, say
genotypesA; A; andA, As.

3. Remove the chosen individuals from the population (i.e., they die).

4. AddG,(ij, rs) individuals to the population. The genotype, sgyA,, of each
added individual is independently deténed by random nting probabilities
(i.e., u equalsi or j with equal probability and equalsr or s with equal
probability).

Define
ij
Zn .
ij . if z, #0,
xn] =1 lzal n#
0, if z, =0.

Hence, ifi # j, then &%/ = 2x/ equals the proportion of the population
with genotypeA; A;. Alternatively, x* is the proportion of the population with
genotypeA; A;.

To see that this process satisfies assumption (A2)y lebdz be in Z’fﬁ" such
thatw'/ = w/’ andz” =z// forall 1 <, j < k. Assume thaiz| > 0. p,,(z/|z]) is
given by a linear combination of the term¥x"*. On the other hand](z, z + w)
is given by the corresponding linear combination of the tetfs’|z|/(|z| — 2),
when {i, j} # {r, s} and x¥ (x"%|z| — 2)/(]z] — 2). From these observations it
follows that assumption (A2) is satisfied.
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2.3. Fertility-selection process with mutationsTo account for mutations in
the fertility-selection process, let(ij,rs) > 0 for L < i, j,r,s < k be such
that) ", u(ij,rs) =1forall 1<i < j <k. The quantityu(ij, rs) represents
the probability that the genotypd; A; mutates to the genotypd,A,. The
fertility process with mutation is given by the first three rules of the fertility
process without mutation and replacing the fourth rule with: A@gij, rs)
individuals to the population. For each added individual, its genotype is determined
by two steps. First, determine a genotypgA, according to random mating
probabilities. The probability that the added individual has genotypg; is
given by u(uv, uv). For reasons similar to the fertility-selection process without
mutation, this process also satisfies assumptions (Al) and (A2).

3. Mean limit ODEs. To understand the limiting behavior of thg, we
expressy, as a stochastic algorithm using the following lemma.

LEMMA 1. Letz, be a Markov chain orZt satisfying assumption@\1)
and (A2) with mean limit transition probabilitiep,, : Sy — [0, 1]. Let #,, denote
the o field generated by{zog, z1,...,2,}. There exists sequences of random
variables{U, } and{b, } adapted ta¥,, and a real numbekK > 0 such that

(i) if z, #0,then

1
(1) Xn+l— Xp = m( Z Pw (xn)(w - an((w)) +Upg1+ bn—l—l),

weZk

(i) E[Up+1lza1=0,

(i) Ul < 4m and EQUy 1211 < 4m?,
: K

(V) Nbn+1ll < maan

PrROOF The proof of this lemma is very similar to the proof of Lemma 2.1
in [12]. Consequently, we only provide an outline of the proof. Define

)= Y pu)(w—xa(w)),

weZk
Upp1= (xn+1 —Xn — E[xn+1 — XnlznDlznl,
byi1=zu| E[xp+1 — Xnl2n] — g(xp).

From these definitions it follows that (i) and (ii) hold. For the remainder of the
proof, letz = z, andx = x,,. To prove (iii), notice that i, 1 # 0, then it can be
shown that

2 [(nt1 — )zl | < 2m,

as no more tham balls are being added or removed at any update. Alternatively,
if z,41 =0, then it must be thalz,| < m since no more tham balls can be
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removed at a single update. In which casg,1 = 0 and ||(x,+1 — xn)|zalll =
Iz |l < m. From this (ii) follows. To prove (iv), notice that if £ 0, then

2| E[Xn41 — X]2p = 2]

© |z|(w — a(w)x)
= Z _

I1 —zI1(z, 0).
EET (z,z+w) —zI1(z,0)

w#—z
If |z] > m, (3) can be used to show

1bnall <

> (TG e+ w) = o)) (0 —a(w)s)

ol =m lz] + o (w)

Applying assumptions (Al) and (A2) implies that there K3 > 0 such that
lbp+1ll < K1/l|znl, whenever|z,| > m. On the other hand, ifz] < m, then
the definition ofb, 1 implies that||b, 1]l < 2m + sup.cs, [1g(x)[l. Choosingk

sufficiently larger tharK1 completes the proof of (iv). O

The recurrence relationship (1) can be viewed as a “noisy” Cauchy—Euler
approximation scheme with step siz¢|Z,| for solving the ordinary differen-
tial equation

d
(4) == 2 pulo(w —xaw)).

weZk

which we call themean limit ODE When the number of individuals in the
population grow without bound, the step size decreases to zero and it seems
reasonable that there is a strong relationship between the limiting behavior of the
mean limit ODE and the distribution of ballg. To make the relationship between

the stochastic process and the mean limit ODE more transparent, it is useful

to define a continuous time version gf where time is scaled in an appropriate
manner. Since the number of events (updates) that occur in a given time interval is
likely to be proportional to the size of the population, we defimetimer, that

has elapsed by updateas

10=0,

1 .
r}’l + R If Zn # 01
Thtl = 1Znl

T, +1, if z,=0.
The continuous time version af, is given by
(5) X, =x, fort, <t <1,41.

To relate the limiting behavior of the flow; (x) of (4) to the limiting behavior
of X;, Schreiber [12] proved the next theorem using techniques of Benaim [2, 4].
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Recall, a setC is calledinvariant for the flow ¢; provided thatp,(C) = C for

all r e R. A compact invariant sef is internally chain recurrenprovided that
for everyx € C, T > 0 ande > 0, there exist points1, x2...,x, in C and
times1, ..., 1, greater tharl” such thatx; = x; = x and||¢; (x;) — xiy1ll <€

for 1<i <s— 1. Given a functionX, :R, — R¥ or a sequencéx,},>o in RX,

we define thelimit sets L(X;) and L(x,), of X, and x,. L(X;) is the set
of p € R* such that lim_ X, = p for some subsequencgy}i=o with

im0 fx = 00. L(x,) is the set ofp € R such that liM_ o xn, = p for some
subsequencer x>0 With limy_, o ng = oco.

THEOREM 1 ([12]). Let z, be a Markov process satisfying assumptions
(A1) and(A2) with mean limit ODE(4). Then on the everttiminf,_, o, 2 > 0}:

1. The interpolated process; is almost surely aasymptotic pseudotrajectofyr
the flowg, of the mean limit ODEIn other words X; almost surely satisfies

Jim - sup [l¢nX; — X; 4]l =0
T X0<h<T
foranyT > 0.
2. The limit setL (X;) of X; is almost surely an internally chain recurrent set for
the mean limit ODE

The first assertion of the theorem roughly states fatracks the flow of the
mean limit ODE with increasing accuracy far into the future. The second assertion
of the theorem states that the only candidates for limit sets of the pragess
corresponding to the distribution of balls are connected compact internally chain
recurrent sets for the mean limit flow.

To give a sense of the utility of this result, we derive some corollaries for
the replicator processes and the fertility-selection process in the next two sections.

3.1. Implications for replicator processeslLet {R,},>0 and {Rn}nzo be
sequences of independent identically distributed randoxnk matrices whose
entries take values in the sét1,0,1,...,m}. Let {r,},>0 be a sequence of
independent identically distributed randaimx 1 matrices whose entries take
valuesinthe set—1,0,1,...,m}. Letz, Z’; be the replicator process associated
with these random matrices. Define the mean payoff matrix by E[Ro + Ro.

The limiting mean ODE associated with this process is given by a replicator
equation [9]

(6) ili—); =diagx)Ax — (x.Ax)x, i=1...k,

wherex.A denotes multiplying the left-hand side afby the transpose of and
diag(x) is a diagonak x k matrix with diagonal entries’. The dynamics of (6)

are well studied and have two remarkable properties whose proofs can be found
in [9].
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THEOREM 2 (Exclusion principle). If the replicator equation(6) has no
equilibrium inint Sy, then every orbit 0{6) converges t® Sk.

THEOREM 3 (Time averaging principle). If the replicator equation6) has
a unique equilibriump in intS; and if x(zr) is a solution of (6) such that
L(x(z)) CintSg, then

I f— =
im t)dt = p.

T—o0

It turns out that Theorem 1 provides us the tool in which to transfer these
theorems to replicator processes.

THEOREMA4. Letgz, be areplicator process oﬁ’; with mean payoff matrid.
If mean limit replicator equation has no equilibria int Sy, thenL (x,,) N 3.Sx # &
almost surely on the evefliminf,_, - % > 0}.

PROOF.  The proof of Theorem 2 implies there exists a veectarR* such that
the functionV (x) = Y ¢ logx! is strictly increasing along the forward orbits of
the mean limit replicator equation that lie in §it Consequently, every compact
connected internally chain recurrent set intersecfs. Applying Theorem 1
completes the proof.[]

THEOREMbS. Letgz, be areplicator process oﬁ’; with mean payoff matrid.
Let X, be continuous-time process associated wijtthat is defined b{5). Assume
that (6) has a unique rest point in int S. Then

1 T
lim —/ X, dt =
T—oo T Jo ! p

almost surely on the event

{liminf 2l
n

n—oo

> 0} N{L(X;) CintSg}.

PROOF  Consider a trajectoryk, from the event{liminf, . ! > 0} n
{L(X;) C intS;}. Theorem 1 implies thak, is almost surely an asymptotic
pseudotrajectory for the flow; of the mean limit replicator equation. Theorem 1
implies thatL (X;) is a compact internally chain recurrent set for the fipvef (6).
Theorem 3 implies that

1
im —

t—00 t

t
/ ¢sxds=p
0
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for all x € L(X;), and this convergence is uniform. Therefore gigen 0, we can
choosel’ > 0 and a compact neighborhoétof L(X;) such that

[7 ) ommas—r] <5

— xds — < =,

TJ 7 p 3

whenever € U. SinceX; is an asymptotic pseudotrajectory, there existsani
such that

&
SUP [|Xon — én Xill < 3
O<h<T

forallt > IT. For anyi € Z, define

T T
wu'):”fo (XiT4s — ds Xir) ds +”/0 (¢ XiT — p)ds

Since L(X;) C U, there is anN > [ such thatX, € U for all r > NT. Given
anyr € R, let [¢] denote the integer part of For any: > (N + 1)T, we get

[7 e
<3 (| e
v([7]-2) |- e
sj(vreer([F]-) 2= (7))

Taking the limit ag — oo, we get that

+YW) + YN+ + -

)

. 1t
IlmsupH;/ Xsds—pH <e.
0

—00

Taking the limit as= — 0 completes the proof of the theorentil]

3.2. Implications for additive fdility-selection processes.Let z,, € Zﬁx" be
a fertility-selection process defined by the sequence of random var@es rs)
with 1 < i, j,r,s < k. Define g(ij,rs) = E[Go(ij, rs)]. Define x, = z,/|zxl,
whenever,, # 0 andx, = 0 otherwise.

The mean limit ODE for this selection-fertility process is given by the fertility-
selection equations (see, e.g., [9])

7) dxt ir s _ i
( P = Z g(ir, js)x'" x7® —x' g,
r,s=1
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where
g= Z g(ir, js)x"x/s.
1<i,j,r,s<k

Now consider the special case, when each allele contributes additively to number
of progeny produced by a mating. In this case,yjf is genotypeA;A;’s
contribution to fertility, then the mating between genotypesi; and A, A,
produces on average

glij,rs) = Vij + Vrs
progeny. Under this additional assumption, equation (7) simplifies to
dx'
8
(8) T

wherex! = Z’;le"f is the frequency of the alleld; in the population,

k
Yi = Z yirxlr
r=1

is the average fertility of allelein the population and

k k
y=>vi= Y yijx"
i—1

i,j=1

=xlyi+x'y; -2y,

is the average féfity of the population.

THEOREM 6. If z, is an additive fertility-selection process and the mean-
limit ODE (8) has only a finite number of equilibriathen on the event

{liminf . 22l > 0}, x, almost surely converges to an equilibrium(8.

The proof of this theorem follows from the work of Hofbauer and Sigmund [9]
that we include here for the reader’s convenience.

PROOF OFTHEOREM 6. Define the Hardy—Weinberg manifold by
H={x:x/=x'x/forall1<i, j <k}.
Since for any solution (¢) to (8)
E(xl] (1) —x' (Hx’) (1)) = —(x" (1) — x' ()x (1)) 2p,

x4 (1) — x' (t)x’ (t) converges exponentially to zero. Hence, all compact connected
internally chain recurrent sets lie in the Hardy—Weinberg manifold. On the Hardy—
Weinberg manifold, the dynamics of (8) are determined by the Hardy—Weinberg
relationsx’/ = x’x/ and the differential equation

dx'

9 .7 =y —x'y.
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This differential equation is the continuous-time selection equations with selection
parametery;; and, consequently, the mean fertilityis a strict Lyapunov function

for (9) (see, e.g., [9]). Hence, all compact connected internally chain recurrent sets
correspond to compact connected sets of equilibria. Since we have assumed that
there are only a finite number of equilibria, the only compact connected internally
chain recurrent sets are individual equilibria. Applying Theorem 1 completes
the proof of this theorem.d

4. Growth and convergence with positive probability. Theorem 1 helps to
determine the limiting behavior of the genotypic composition of a population on
the event of growth. However, it does not indicate which limiting behaviors occur
with positive probability and sheds no insight into conditions that ensure that the
population grows with positive probability. The goal of this section is to show
that when the mean limit ODE admits an attractor at which growth is expected,
the population growswith positive probability ad its genotypic composition
converges to the attractor with positive probability. Prior to stating and proving
this result, we prove the following proposition that estimates the rate of growth on
the event of convergence to a set where growth is expected.

PrRoOPOSITION 1. Let z, be a generalized urn process satisfying assump-
tions(Al) and(A2). Let K C Sy be a compact self

A= inf ; Puw(X)a(w) > 0,

then

Iiminf@zk

n—oo n

on the evenfL ({x,})n>0 C K} N {lim,_ « |2, = 00}.

REMARK. If K is an equilibrium, Iiminx_wo% = ) on the event
{L({xn})nzo C K} N {Ilmn—>oo |Zn| = OO}

ProOF oFPrROPOSITION1. Let
6 = L(txuhaz0 € K) 1| fim_fon] = oo,

We will show that liminf,_. o |z,|/n > A — ¢ on the eveni& for everye > 0.
Lete > 0 be given. The definition of, compactness ok, continuity of p,, and
assumption (A2) imply that there exist an integeand compact neighborhodd
of K such thatE[|z,,+1] — |znllzn = z]1 > A — &, whenevelz| > I andz/|z| € U.
For each natural numbgr define the ever&; = {|z,| > I, z,/|z,| € U forn > j}.
Notice thaté C Uj?ozl &€;. Define a sequence of random variables\gy= 0 and

|Zn1l — |znl, if |z,] > I andz, /|z,| € U,

N,i1=
t A, otherwise,
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forn > 0. Let
"1
M, =" =(N; — E[N;|F;_1]).
i=1!
M, is a martingale that satisfies
1
SUPE[MZ] < 4m? " =,
n i>1 l

as |N;| < 2m. Therefore, by Doob’s convergence theor¢m,},>1 converges
almost surely. By Kronecker’'s lemma,

n—-oonp 4

1 n
(10) lim =) Ni — E[N;i|Fi-1]1=0
i=1

almost surely. Sianj?:j+1 N; = |zn| — |zj| for all n > j on the even§€; and
E[N;|Fi_1] = »—eforalli > 1, (10) implies that liminf_, o 2%l > i —¢ almost

surely on the everg;. It follows that liminf, o, %2 > 3 — ¢ almost surely on
the eventt. O

Let ¢,(x) denote the flow of the mean limit ODE in (4). A compact
invariant set4A C S; is called anattractor provided that there is an open
neighborhood’ C Sy of 4 such that

U osU = .
t>0s=t

The basin of attractionB(4) of A is the set of pointsx € S; satisfying
infyc llp:x — yll = 0 ast — oo.

Define the set ofttainable pointsAtt,,(X), as the set of points € S; such
that, for allM € N and every open neighborhodtof x

P[|z,| = M andx, € U for somen] > 0.
THEOREM7. Letz, be ageneralized urn process satisfying assumptiat}

and(A2). Let 4 be an attractor for mean limit ODE with basin of attracti@®i4).
Assume that

A= XIQL Xw: Pw(X)a(w) >0

and define

C= {Iiminf 2]
n

n—oo

> A} N{L({xn}n=0) C A}.
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If U is an open setwhose closure is contained iB(+4A), then there exists
a constantk > 0 such that for allM € N,

K
PlC] > <1— M)P[Izﬂ > M andx, € U for somen].

In particular, if
B(A) N Attoo(X) # @,
thenP[C] > 0.

REMARK. Theorem 7 simultaneously provides a condition that ensures that
the population grows with positive probability and that the distribution of
the population converges to an “attainable” attractor. Consequently, this result
significantly improves ([12], Theorem 2.6) that proved convergence with positive
probability to “attainable” attractor under the strong assumption of population
growth with probability one.

PROOF OFTHEOREM 7.  Assumption infc.4 >, pw(x)x(w) > 0 means that
the population grows in a neighborhood of the attragtarhen the population size
is sufficiently large. It implies that there exigt, a, > 0 and a neighborhood/
of A such thatE[|z,+1] — |zallzn] = @1l{x,en,|z.|=a0)- The proof relies on the
following principle: remaining in a neighborhood of the attractor increases the
population size and this increase in population size increases the likelihood of
remaining near the attractor. LEtbe an open set such thiétis a compact subset
of B(4). AssumeM € N and p € N are such thatP[|z,| > M,x, € U] > 0.
Choose a neighborhood of # such thatV is a compact subset of’ N B(A).
Since A is an attractor there exists a tinig > 1 such that the trajectories
coming fromU U V rejoin the neighborhood after time Tp. More precisely,
there exists$ > 0 such that, ifX, e U UV, T > Tp and ||¢7(X;) — X417 <6,
thenX,,r € V.

To avoid double subscripts, we letr) denotez,, t(r) denoter,, etc.
Definerg = p and

re =inf{r > rr_1, t(r) — t(rr—1) > To}

for all k > 1. Sincet,+1 — t > m for all n wherem is the integer in
assumption (Al), lim, o 17, = oo andr, < +oo for all n. Define A = 70",
B = 3A and the following events for ald > 1:

E1(k): |z(r)| = ¢* 1B~ M,

Es(k): forall r € [rg, rgy1l, x, €V,

where¢ = 1+ a1To/2B. Let E(0) be the even{|z,| > M,x, € U}. Fork > 1,
define E(k) = E(k — 1) N E1(k) N Ex(k). We will show that there exists
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a constantF > 0 such thatP[E (k + 1)|E(0)] > P[E(k)|E(0)] — F/Mc* for

all k > 0. The proof of this estimate relies on three lemmas. The first consists
in observing that the population size-| remains bounded on time intervals of
order Tp, namely betweemB~1|z(rx)| and B|z(rx)| on [rk, rk+1]. The second
one makes use of this claim to underestimate probability of being ingide
on [rr+1, rer2] if x(ry) € U U V. The third lemma estimates the probability that
the population grows sufficiently.

LEMMA 2. For enough larggz(r)|:

1. Blz(rp)| > |zr| = B7Yz(rp)| for all r € [rg, retal,
2. To < t(rk+1) — t(r) < 27,
3. ToB7Yz(re)| < i1 — 1 < ToBlz(re)|.

PROOF  Supposéz(ry)| > Am. Letu =inf{n € N: |z(rx +n)| < A7 Lz(r0) |}
Then

1
A7 Yz(r)| +mj

T(re+u) —t(r) = >

0<j<lz(r)|(1=A~1Y)/m

>

/|z(rk)|(1—A—1>/m dx
0 A= z(rp)| + mx

1
= ZIn(A) = To.
m

This proves thatt ~|z(rx)| < |z(r)| for all ¥ € [rx, re41), Which implies for suf-
ficiently large|z(r¢)| that B=1|z(rx)| < |z(r)| for all r € [r, rr+1]. One can show
similarly that 2A|z(rx)| = |z(r)| for all r € [ry, rr+1]. The definition ofr;, imme-
diately implies thatr (ry+1) — t(rx) > Tp. SinceTp>1landt(n+1) —t(n) <1
for all n, the definition ofr, also implies thatr (ry4+1) — t(ry) < To+ 1 < 2Tp.

The proof of claim 1 and the fact thdp > 1 imply that lz’é‘;;jl_Brfl > 1(res1) —

() > To and% <t(r)—1(ry) < Toforall r € [rg, rr11). Claim 3 follows
for sufficiently large|z(ry)|. O

LEMMA 3. There exists & > 0 depending only op,,, Ty , 8, a1 andm such
that

C
PlE>(k +1)|E1(k),x(rpr) eUUV]>1— M—§k

forall k > 0and M > 0 sufficiently large

PROOFE SupposeE1(k) is satisfied andc(r;) € U U V. Lemma 2 implies
that for large enoughM, |z(r)| = B~?|z(ri)| for r € [rk, rk42], 4To > ©(r) —
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t(ry) = To for r € [ris1, ris2] andrgio — ri < 2B?To|z(ry)|. Define

g) =D puw()(w — xa(w)).
w
Let L be the Lipschitz constant for and | g|lo = supllg(x)||. Using Gronwall’'s
inequality, we prove the following estimate:

(12) SUP || pr(r—reX (k) — x(1) || < e TO(C1(rk, ris2) + D2k, 142)),
re€lriy1.rk+2]

where
! :
UGi+1)
Ca(re, res2) = sup :
T szt ,-;k |2()]
and
2supjlg(x)|l L b(i+1)
Co(rg, riy2) = - + sup - )
i infy <y <r o 12(r)] rk<I<ry2—1 Z |z(@)]

i=rg
To prove (11), letX (r) = X, denote the continuous time version xf defined
in (5) andc(¢t) =supn € Z, :t > t(n)}. Notice that for any: > 0 andr > 0,
X(t+h)—X@)
c(t+h)—1
=x(ct+m)—xc@)= Y x(+1)—x@)

i=c(t)

~ c(tJth%—l g +UG+D+bG+1)
- |2(D)]

i=c(t)

T(c(t+h)) =1 yG + 1) +bG + 1)

= [ exends+ 3

(e(t) iZe0) lz@)]

T(e(t+h)—t Y +1) + b6 +1
= g(X@+s))ds+ Z ( ) - ( ).
T(e(0)—t i) 12(0)]

Sinceg, X (1) = X(t) + [5’ g(@sX (1)) ds, the previous equalities imply that
lon(X (@) — X1+ h)l

h 0
< [ ls@ex @) —sxatlas+ [ a0+ o)]ds

2 |z(1)]

i=c(t)

U=y + D) + b6 + 1) ”

h
+/ le(X(+s))|ds +
T(c(t+h))—t
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h gllo
L o (X —X
< /O I6.X(0) = X+l ds + 50
Igllo ”“*Zh)‘l UG+1)+bG+1) H
elet+ml | 2G)]

Choosing = t(r;) and applying Gronwall’s inequality to the previous inequality
over the interval G< 1 < t(ryr2) — (1) gives the desired estimate.

SinceE1 (k) holds,|z(r)| = |z(rx)|B~2 = ck¥"1B=3M for all r € [rg, rrso]. This
observation, plus the fact that there exigts> 0 such thal|b(n + 1)|| < Iz(n)l
imply that e*.7oT5(ry, req2) < § for M sufficiently large. On the other hand,
Doob’s inequality and Lemma 1 imply that

/ . 2 o
Ui+1) ) 1
E su ——— | |z2(rp) | £ 16m°E — 7z (r
|:rk<l<rk5)2 1 er;( |Z(l)| ‘ ’ ( k)i| |: i;( |Z(l)|2’ ( k)i|
- 16171234E[ .
Fre2 — rilz(r
= e T

- 32m2TyB® - 32m2B'T,
lzr)l T Mgkt

Therefore,
UGi+1 _ 128n2TyB’e8LT0
(12) P[ sup Z H > ¢ 4LToZ ‘z(rk)} < il
n<l<rg2-1) /=, 120 82M¢
Define
€= sup  d(Prry—r(r)x (1), x(r)) < 3}.
relrpa.res2]

Sincet(ryr1) — () > To and x(rx) € U U V, our choice ofTy implies that

x(r) € V for all r € [rk41, re+2] on the even€. Inequalities (11) and (12) imply
that P[€]>1— % for M sufficiently large. O

LEMMA 4. There existsD > 0, depending only orp,,, To, 8, a1 and m
such that

D
P[Ei(k+ DU Ex(k)|E1(k)] = 1 — —
forall k > 1and M > 0 sufficiently large

ProoE Define
N(@@) =z@@)| — |z = D, D(@i) =N(i)— E[N(i)|z(i — 1]
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and

Tk+1

1
Ghk+l)=—— ) DGO.
Tkl =Tk jmpy 1

Observe thatD(n)| < 2m. Therefore,

B2 re+ToBlz(re)| 2
E[G(k+ D?|z(r)] < ﬁE[( > D(z‘)ﬂ{,-_kw)
Tglz(ri)l i=r+1

Z(Vk)}

B2 rk+TOB|Z(rk)|E[D(')2| o] < mZBB
1 \Irg)l = ,
Tolz(rr)l

< -
= TRlz(ro)|? 2

i=rp+1

where we have used the fact th&B1|z(ry)| < ris1 — rx < ToBlz(rp)]. It

2
follows that P[G(k +1) < =91 < PIG(k+ D2 > 1 < 12; with D = 16;"227{;44.
Since¢ = 1+ a1Ty/2B, it follows that '
E1(k+1)°NE1(k) N Ex(k) C{Gk+ 1) < —a1/2}. O

These three lemmas imply that there exiBts 0 depending only op,,, Ty, §,
a1 andm such that

PIE(k+ DIEO)] = P[E(K)|EQ)] - Mk

for all k > 0 and M > 0 sufficiently large. Indeed, due to the fact that for
all k > 1 E(k) equals the disjoint union of (k + 1), E1(k + 1) N E(k), and
Ex(k+ 1N Ey(k+ 1) N E(k), we get
Pl[E(k+ 1)|E(0)]
= P[E(k)|E(0)] — P[E2(k +1)° N E1(k +1) N E(k)|E(0)]
— P[E1(k+ 1) NE(k)|E(0)]
> P[E(K)|E(O)]
— P[E2(k+1) N Ew(k) N{x(rx) e U UV} E(O)]

F
— P[E1(k+ 1) N E2(k)|E(0)] > P[E(K)|E(0)] — Mk
where the first inequality follows from the inclusioBsk) N E1(k + 1) C E1(k) N
{x(rr) e UUV}andE (k) C E»(k), and the second equality follows from Lemmas
3 and 4 withF = C 4+ D. These inequalities remain true fbr= 0, sinceE1(1)
always holds.
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It follows that
. > F ¢F
P [lemoo E(k)] > P[E(0)] (1 — k; M—g“"> > P[E(0)] (1 — m)
The definition ofE (k) implies that

cF
Ple)= PIEOI(1- o).
M -1
whereC = {liminf,_, - % >0}N{x, e UUVio.l. Onthe event, Theorem 1
implies thatL ({x,}) is a compact internally chain recurrent set for the mean limit
ODE. SinceL ({x,}) N B(A) # & on the event?, a basic result about internally
chain recurrent sets (see, e.g., [4], Corollary 5.4) implies I@t,}) C 4 on

the eventC. SettingK = WF—D and applying Proposition 1 completes the proof
of the first assertion of the theorem. To prove the second assertion, assume that
p € Attoo(X) N B(4A), choosey an open neighborhood gfsuch thaty C B(+4),

and apply the first assertion of the theorerm]

5. Nonconvergence. In this section we show that there are two types
of invariant sets of the mean limit ODE toward which the generalized urn process
does not converge. The first type corresponds to a compact set where growth of
the process is not expected, and the second type corresponds to a “nondegenerate”
equilibrium or periodic orbit.

PROPOSITION2. Letz, be a Markov process oﬁ’fF satisfying assumptions
(A1) and (A2).If K C Sk is a compact set satisfying

(13) sup) ~ pu(x)a(w) <0,

xekK w

thenP[{L(x,) Cc K}N{lim,_  |z:| = +o0}] =0.

PROOF Equation (13) implies that we can choose a neighbortidaaf K,
N e N ande > 0 such that

(14) sup  Ellzp41l — lznllze =21 < —e.
|z|>N,z/|z|eU

Given anyl € N such thaty; € U and|z;| > N, define the stopping time
T=infiln>1:x,¢Uor|z| <N}
For anyn > [, we get

TAn

0< E[|zTAn|]=E[ > |zi|—|zi_1|} + E[lz]

i=l+1
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n
= > Ellziar| = |zi-par|] + Ellzil]
=111

n
<—-&¢ Y PIT =il+ E[lz]].
i=l+1
Taking the limit as: — oo, we getthad 2, ., P[T > i] < E[|z|]/¢. The Borel-
Cantelli lemma implies thaP[T = oo] = 0. It follows that P[{L(x,) C K} N
{Ilmn—>oo |Zn| = +OO}] =0. O

If A is a subset ofR¥, then we let Spam) c R* denote the vector space
spanned by the points iA. Given a compact subsé&t C int(S;), we say that
the proces$z, } is nondegenerate atl if for all x € U,

Sparjw € Z*: p,,(x) > 0} = R¥.
Recall, a periodic orbit or an equilibrium of an ODE ligearly unstable
provided that one of its characteristic exponents is greater than zero.

THEOREM 8. Let{z,} be a generalized urn process satisfying assumptions
(Al) and (A2). Let U C int(S;) be a linearly unstable periodic orbit or
equilibrium for the mean limit ODEAssume the following

(a) There existg > 1/2 such that the functiong,, are C1*# in a neighborhood
of U.
(b) {z,} is nondegenerate atl.

ThenP[(L(x,) C U) N {liminf,_o 2 > 0}]=0.

PROOF Let N(U) be a neighborhood (. The event

{L(xn) c uand liminf 2l o 0}
n—oo n

is contained in the event

U  Ewa.

N€Z+,)\.€Qj_
whereQ’ denotes the positive rationales and
Enj ) ={L(x,) CcU}N{VYn> N |z,| >nirandx, € N(U)}.

In order to prove Theorem 8 it then suffices to prove thatXotarge enough
andi € Q7

P[EN;]1=0.
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Let ¥, denote the sigma field generateddy. . ., z, andV,+1 = |z, |(xn+1 — x5).

Let F denote the vector field a$} defined byF (x) =", pw(x)(w —xa(w)). Let

{e,} denote a sequence of bounded, zero-mean i.i.d. random variables taking
values in

TS = {u ERk:Zui IO},

whose covariance matrix is nondegenerate (i.e., haskrank).
Define the sequendg, },>y as follows:

XN = XN,
1 -
2] (F(xn) + Vig1— F(xn)),
n
(15) Rppl — K = if x, € N(U) and|z,| > n,
A—(F()?n) + Ent1)s otherwise
n

The processefs;, } and{x,} coincide on the everff y ;. On the other hand,
P[ lim dist(x,, U) = 0} =0
n—oo

in view of the following theorem whose proof is an easy adaptation of [13],
Theorem 2.

THEOREMY9. Let{#,},cz+ denote a nondecreasing sequence of stelgeb-
ras of # and (x,) a sequence of adapted random variables given by

(16) in—i—l - in = ﬂn(F(in) + Un+1 + l;n+1)7

whereF is aC1*# vector fieldwith 1/2 < g < 1,{U,}, {b,} and{B,} are adapted
random variables } )

We definé/n+1 =F(x,)+ Ups1+ bpt1.

Assume the following

() 3K >0,VneZy |U,| <K and E(U,41|F,) =0.
(i) There exista, b > 0 and a deterministic sequende,} of nonnegative
numbers having infinitely positive terpssich thatvn € Z.., ay, < B, < by,.
(i) Y b? < +oo.
(iv) U c Int(Sy) is a linearly unstable periodic orbit or equilibrium faf .
(v) There exist a neighborhool (U) of U and ¢ > 0 such that for all unit

vectorsv € R™, E(|{Vy+1, V) |1 Fn) = Lz, encuy)-

ThenP[L(x,) C U] =0.
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Let
A, ={x, € N(UW) and|z,| > nA}.

Using the notation of Lemma 1 set

Un+1 =Uy11, bn+l = bn—i—l’ Bn = 1/|Zn| onA,

and

Un+1 =&n+1, bn+1 = O, ﬂn S 1/)»1’1 on A;

Then, by Lemma 1, the proce$s,} defined by (15) verifies recursion (16) and
assertions (i)—(iv) of Theorem 9 are satisfied.

It remains to verify assertion (v). L&&(1) = {v € Si:||v|]| = 1}. Let G1: S x
B(1) > R, andG2: U x S; x B(1) - R, be the functions defined by

G1(X,v) = E(|(F (%) + &4, v)1)
and

Ga(x, %,v) =) [(F(X) = F(x) + Qx(e), v)| pe(x),

whereQ, denote the projection operator, : Sparx} & T Sy — T Sy.
Then it is not hard to verify that

E([(Vat1, )| Fn) = G1(%n, V)1 + G2(x, Xn, v) 14, + O(1/n).

By continuity of G1, G2 compactness of the setd, S;, B(1) and assump-
tion (A2), there existd > 0 and a neighborhoo¥ (U) such thatG1(x, v) > b,
Go(x,x,v)>bforallx e N(U), X € S,y andv € B(1)

Assumption (v) is thus verified for > N andN large enough. O

6. Nondegenerate processes with gradient-like mean limit ODEs. Using
the results from the previous two sections, we can prove the following result.

THEOREM 10. Let z, be a generalized urn process satisfying assump-
tions (A1) and (A2), p, are C'*# for somep > 1/2, z, is nondegener-
ate on S, Atto(X) = S; and the chain recurrent set for the mean limit
ODE consists of hyperbolic equilibria that satisfy) ", pw(¢)a(w) # 0. Then
Plliminf,_, 22l > 0] if and only if there exists a linearly stable equilibrium
such thaty",, py(¢)a(w) > 0. Furthermore P[{L(x,) = ¢}] > 0 for any linearly
stable equilibriuny satisfying)",, pw(¢)a(w) > 0, and P[{L(x,) = q}] =0 for
any equilibriumg which is linearly unstable
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PrROOF  Define § = {liminf, . |z4|/n > 0}. Since z, is nondegenerate,
Theorems 1 and 8 imply thaL(x,) is contained almost surely in the set
of linearly stable equilibria on the everg. If >, pu(¢)a(w) < O for all
linearly stable equilibriaz, then Proposition 2 implie®[4] = 0. Alternatively,
if ¢ is a linearly stable equilibrium ani’,, p,(¢)a(w) > 0, then Theorem 7
implies P[4 N {L(x,) =¢q}] > 0. Finally, if ¢ is an equilibrium which is linearly
unstable, then Proposition 2 impli#§L(x,) =q]=01if ), puw(g)a(w) < 0 and
Proposition 1 and Theorem 8 impB[L(x,) =¢q]=0if }_,, pw(g)x(w) > 0. O

As an application of this result, we consider additive fertility-selection proces-
sesz, with mutation, where (ij, rs) = E[G,(ij, rs)] is the expected number of
progeny produced by a mating between genotypes; andA, A, andu(ij, rs)
is the probability genotypd; A ; mutates to genotypg, A;.

COROLLARY 1. Letz, be an additive fertility-selection process with muta-
tion. Suppose

o Vi, j,r,se{l,...,k}, u(rs,ij) is strictly positive and sufficiently small when
{r.s}#A{i, j}.

e Vi, j,r,s €{l, ..., k} and such that the fertility-selection equati¢8) with-
out mutation has hyperbolic equilibrigz satisfying ), pw(g)a(w) # 0O,
P[G1(ij,rs) = 3] > 0.

Then P[liminf,_. 21 > 0], if and only if there exists a linearly stable equi-
librium ¢ such that}",, pw(¢)x(w) > 0. Furthermore P[{L({x,}) =q}] > O for
any linearly stable equilibriurg satisfyingd_,, pu(¢)x(w) > 0,and P[{L{x,} =
q}] = 0for any equilibriumg which is linearly unstable

PrROOF Since the mean limit ODE corresponding to the fertility-selection
process without mutation is gradient-like and has only hyperbolic equilibria,
the chain-recurrent set for this mean limit ODE equals the set of equilibria.
Consequently, the mean limit ODE corpesding to the fdility-selection process
with sufficiently small mutation rates also has a chain-recurrent set consisting
only hyperbolic equilibria. Due to the fathat all mutation rates are positive,
this process is nondegenerate on the entire simplex. $th6ég(ij,rs) >3] >0
forall 1 <i,j,rs <k, Atto(X) is the entire simplex. Applying Theorem 10
completes the proof.[]
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