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This paper presents a heavy traffic analysis of the behavior of multi-
class acyclic queueing networks in which the customers have deadlines.
We assume the queueing system consists ofJ stations, and there are
K different customer classes. Customers from each class arrive to the network
according to independent renewal processes. The customers from each class
are assigned a random deadline drawn from a deadline distribution associated
with that class and they move from station to station according to a fixed
acyclic route. The customers at a given node are processed according to the
earliest-deadline-first (EDF) queue discipline. At any time, the customers
of each type at each node have a lead time, the time until their deadline
lapses. We model these lead times as a random counting measure on the
real line. Under heavy traffic conditions and suitable scaling, it is proved that
the measure-valued lead-time process converges to a deterministic function
of the workload process. A two-station example is worked out in detail,
and simulation results are presented to illustrate the predictive value of the
theory. This work is a generalization of Doytchinov, Lehoczky and Shreve
[Ann. Appl. Probab. 11 (2001) 332–379], which developed these results for
the single queue case.

1. Introduction. The last decade has brought dramatic developments in com-
munication technology. There are now a wide range of types of communication
services available and an ever increasing demand for those services. An impor-
tant component of this demand is for real-time applications, that is, applications
with specific timing requirements. Examples are video-conferencing and video-
on-demand, in which the timely delivery of packets must be maintained to ensure
continuity of the image and sound. Networks servicing real-time applications also
arise in production systems where the orders have due dates or in control systems
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where there are upper bounds on the latency between the occurrence of an event
and the control system’s response to it.

For queueing networks, the measures of performance are often related to system
stability, to queue lengths (e.g., the adequacy of buffer space or the amount of
work-in-process in those buffers) or to waiting times (e.g., the delay at a node
in the system). For real-time applications, in addition to standard measures of
stability, queue length and delay, one must also be concerned whether individual
applications are meeting their timing requirements. Determining the waiting time
distribution is not sufficient to determine whether a particular queue scheduling
policy can satisfy real-time application (customer) timing requirements under
various workload conditions.

To model customer timing requirements, we assume that each customer arriving
to the system has an initial lead time�. If the customer arrives at timet , then its
deadline is met if it exits the network not later thant + �. To determine whether
customers meet their timing requirements, one must dynamically keep track of
each customer’s lead time, where the lead time is the time remaining until the
deadline elapses, that is,

lead time= initial lead time − time elapsed since arrival.

In the study of real-time systems three different types of timing requirements are
usually distinguished: hard, firm and soft deadlines. Hard deadlines must be met
or a system failure is considered to occur. These applications arise in many control
systems, especially in avionics systems or automobile engine control applications.
For a computer system to meet hard deadlines, there must be essentially no
stochastic aspects associated with the arrival or servicing of an application or
these quantities must be bounded above. The subsequent analysis is based on those
bounds with service times taking their longest possible value and interarrival times
taking their shortest possible value. This worst case approach can result in systems
functioning at very low levels of average case utilization to ensure they can meet
application deadlines under worst case conditions.

Applications with firm or soft deadlines are permitted to miss their deadlines,
usually with some bound on the size or rate of misses. This class of examples
include audio and video transmissions, where the end user is able to tolerate a small
lack of continuity in the sound or image being transmitted. A firm deadline is one
which can be missed and there is no value in completing a task whose deadline has
expired, while a soft deadline permits lateness and uses the task completed after
the deadline. In this paper we study the soft deadline case but wish to control the
fraction of customers that will miss their deadlines and to model the amount of
lateness as a function of the workload and the scheduling policies used.

As noted earlier, to study queueing systems in which the customers have
deadlines, one must attach a lead-time variable to each customer in the system. It is
convenient to model the vector of customer lead times at any timet as a counting
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measure onR with a unit atom at the current lead time of each customer and total
mass equal to the number of customers in the system at timet . Exact analysis of
such a measure-valued process is intractable; however, a heavy traffic analysis can
be done. Doytchinov, Lehoczky and Shreve (DLS) [5] studied the single queue
case in which the customers are processed according to the earliest-deadline-first
(EDF) or the first-in-first-out (FIFO) queue disciplines. DLS proved that under
heavy traffic conditions, a suitably scaled version of the random lead-time measure
converges to a nonrandom function of the limit of the scaled workload process,
which in the case of aGI/G/1 queue, is a reflected Brownian motion with drift.
This paper is focused on generalizing the results of DLS to acyclic queueing
networks.

There is some other recent work on heavy-traffic approximations for systems
that handle real-time applications. Van Mieghem [15] studied a single server
multiclass queueing system. He considered control policies to minimize the total
delay cost incurred by customers over a finite time horizon. Markowitz and
Wein [12] studied the single machine scheduling problem in a manufacturing
context that included customer due dates along with other model features.
Lehoczky [10] gave an informal analysis of a singleM/M/1 queue by constructing
the generator for the lead-time vector and showing a scaled version converged
to a deterministic limit under the EDF or the processor sharing queue discipline.
Lehoczky [9] used these results to study the performance of a threshold access
control policy to reduce customer lateness. Lehoczky [11] informally extended the
analysis to Jackson networks.

In this paper we extend the approach and the results of DLS to the case of
acyclic queueing networks. We assume that a queueing system consists ofJ

stations, and there areK different customer classes. Customers from each class
arrive to the queueing network according to independent renewal processes. The
customers from each class are assigned a random deadline drawn from some
deadline distribution associated with that class, then each moves from station to
station according to a fixed route. TheK different routes are acyclic, meaning
that they visit any of theJ stations at most once. Upon completion of their
route, they exit the system. If the lead time of a customer at the time of exit
is negative, then that customer is late. While lateness is permitted, we wish to
determine (and ultimately to control) the fraction of customers that will exit late.
Each station will process some subset of theK different customer classes. At each
station, customers are queued in lead-time order and preemption (preempt-resume)
is allowed. We assume there is no overhead associated with preemption. In the
special case that all customers are assigned zero initial lead time, the EDF policy
used in this paper becomes first-in-system-first-out (FISFO). Our analysis thus
provides information about the time customers spend at various stations and in the
system when FISFO is used.

We study the behavior of these acyclic networks under heavy traffic conditions.
That is, we consider a sequence of queueing systems in which the traffic intensities
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at each node approach 1. We prove that if the suitably scaledJ -dimensional
workload process converges appropriately (see Assumption 2.1 and following
discussion), then a suitably scaled version of theK-dimensional lead-time measure
process converges to a deterministic function of the workload.

This paper is organized as follows. Section 2 presents the model, notation and
assumptions. Section 3 presents the measure-valued processes associated with
customer lead times and the concept of the frontier processes. This section also
states the relationship between the limiting workloads and the limiting frontiers,
a major result of this paper, which is proved in Section 6. The frontier process was
defined in DLS for the single-queue case and formed the basic methodology used
to analyze EDF and FIFO queues. This methodology is generalized to the network
case in Section 4, which provides several technical results needed for the analysis.
Section 5 shows how the equations which provide limiting workloads as a function
of limiting frontiers can be inverted, so that one can determine the frontiers as a
function of the workloads. Section 7 presents a simple but interesting worked-out
example. It also presents simulations which illustrate the accuracy of the heavy
traffic theory.

2. The model.

2.1. System topology. We consider a sequence of queueing systems indexed
by n. It is assumed that each system is composed ofJ stations, indexed by 1
throughJ , and K customer classes, indexed by 1 throughK . Each customer
class has a fixed route through the network of stations. Customers in classk,
k = 1, . . . ,K , arrive to the system according to a renewal process, independently
of the arrivals of the other customer classes. These customers move through
the network, never visiting a station more than once, until they eventually exit
the system. However, different customer classes may visit stations in different
orders; the system is not necessarily “feed-forward.” We define thepath of class k

customers as the sequence of servers they encounter along their way through the
network and denote it by

P (k) = (
jk,1, jk,2, . . . , jk,m(k)

)
.(2.1)

In particular, classk customers enter the system at stationjk,1 and leave it through
stationjk,m(k). If j is a member of the list of station indices inP (k), we shall write
j ∈ P (k).

For j = 1, . . . , J , we define

C(j) � {Indices of customer classes that visit stationj},(2.2)

K0(j) �
{

Indices of customer classes that enter
stationj from outside the system

}
.(2.3)
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We assume that for everyj ∈ {1, . . . , J }, C(j) �= ∅. For j = 1, . . . , J and
k ∈ C(j), we further define

S(k|j) �


Indices of stations visited by customer class
k before visiting stationj, or ∅ if customer
classk enters the system at stationj

 .(2.4)

We assume that the network is connected, in the sense that for any two stations,
there is a way of reaching one station from the other by following fragments of
paths of the form (2.1), not necessarily in the forward direction. The network
topology captured by (2.1)–(2.4) does not depend onn.

2.2. Arrival times, service times and lead times. The customer inter-arrival
times are a sequence of strictly positive, independent and identically distributed
random variablesui,(n)

k , i = 1,2, . . . , where the subscriptk indicates the customer
class and the superscript(n) indexes the queueing system. These are independent
acrossk as well asi. We assume that

λ
(n)
k �

(
Eu

i,(n)
k

)−1
, α

(n)
k �

(
Varui,(n)

k

)1/2(2.5)

are both defined and finite.
Thecustomer service times are a sequence of strictly positive, independent and

identically distributed random variablesvi,(n)
0,k,j , i = 1,2, . . . , wherej indicates the

station of service andk ∈ C(j) indicates the class of customer. The superscript
i indexes the order of arrival of customers of classk to the system, which may
be different from the order of arrival of classk customers to stationj . The
random variablesvi,(n)

0,k,j are independent acrossk and j as well asi, and they

are independent of the inter-arrival times. We denote byv
i,(n)
k,j the service times

of customers of classk at stationj , with indexi indicating the order of arrival to
stationj . The random variables{vi,(n)

k,j }∞i=1 are thus a random permutation of the

random variables{vi,(n)
0,k,j }∞i=1. Under the EDF service discipline described below,

the indexi of arrival at stationj of a customer of classk is independent ofvi,(n)
k,j .

Therefore,vi,(n)
k,j , i = 1,2, . . . , are also independent and identically distributed,

with the same distribution as the random variablesv
i,(n)
0,k,j . For j = 1, . . . , J and

k ∈ C(j), we assume that

µ
(n)
k,j �

(
Ev

i,(n)
0,k,j

)−1 = (
Ev

i,(n)
k,j

)−1
,

β
(n)
k,j �

(
Varvi,(n)

0,k,j

)1/2 = (
Varvi,(n)

k,j

)1/2
(2.6)

are both defined and finite.
Each customer in classk arrives with an initial lead time L

i,(n)
k having

distribution

P
{
L

i,(n)
k ≤ √

ny
} = Gk(y),(2.7)
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whereGk is a cumulative distribution function. These lead-times are independent
and identically distributed acrossi. They are independent acrossk and independent
of the interarrival and service times. Note thatGk does not depend onn; the lead-
time distributions dilate at rate

√
n asn → ∞. We assume that fork = 1, . . . ,K ,

y∗
k � sup{y ∈ R;Gk(y) < 1} < ∞.(2.8)

We also assume that for everyn, the sequences{ui,(n)
k }, {vi,(n)

0,k,j } and{Li,(n)
k } are

mutually independent overj ∈ {1, . . . , J }, k ∈ C(j) andi = 1,2, . . . .

2.3. EDF discipline. Customers are served at each station according to the
EDF discipline. That is, the customer with the shortest remaining lead time,
regardless of class, is selected for service. We give the analysis for the case of
no preemption. If preemption is permitted and we assume preempt-resume, then
an obvious simplification of the analysis gives the same results. There is no set-
up, switch-over or other type of overhead. Late customers (those with negative
lead times) stay in the system until served to completion. We assume the system is
empty at time zero.

2.4. Unscaled queueing processes. For each stationj = 1, . . . , J and cus-
tomer classk = 1, . . . ,K , we define

S
m,(n)
k �

m∑
i=1

u
i,(n)
k(2.9)

= Time of arrival to the system of themth customer of classk,

A
(n)
k (t) � max

{
m;S

m,(n)
k ≤ t

}
(2.10)

= Number of classk arrivals to the system by timet,

A
(n)
k,j (t) � Number of classk arrivals to stationj by time t ,(2.11)

Q
(n)
k,j (t) � Number of classk customers at stationj at timet,(2.12)

Q
(n)
j (t) �

∑
k∈C(j )

Q
(n)
k,j (t)(2.13)

= Number of customers at stationj at timet ,

V
(n)
0,k,j (t) �

�t	∑
i=1

v
i,(n)
0,k,j(2.14)

= Work for stationj associated with the first�t	 customers
of classk to arrive to the system,
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V
(n)
k,j (t) �

�t	∑
i=1

v
i,(n)
k,j(2.15)

= Work associated with the first�t	 customers of classk
to arrive at stationj .

(Here and elsewhere we use the convention
∑0

i=1 = ∑
k∈∅ = 0.) We further define

thenetput at station j to be

N
(n)
j (t) �

∑
k∈C(j )

V
(n)
k,j

(
A

(n)
k,j (t)

) − t,(2.16)

and thecumulative idleness at station j to beI
(n)
j (t) � − inf0≤s≤t N

(n)
j (s), which

is nonnegative becauseNj(0) = 0. Finally, theworkload at station j is the amount
of time it would take to serve all customers at stationj to completion, assuming
no new customers arrive, and this isW

(n)
j (t) � N

(n)
j (t) + I

(n)
j (t).

2.5. Scaled queueing processes. In order to obtain a limit asn → ∞, it is
necessary to scale and sometimes center the above processes. We define

Â
(n)
k (t) � 1√

n

[
A

(n)
k (nt) − λ

(n)
k nt

]
, Â

(n)
k,j (t) � 1√

n

[
A

(n)
k,j (nt) − λ

(n)
k nt

]
,

Q̂
(n)
k,j � 1√

n
Q

(n)
k,j (nt), Q̂

(n)
j (t) �

∑
k∈C(j )

Q̂
(n)
k,j (t),

V̂
(n)
0,k,j (t) � 1√

n

�nt	∑
i=1

(
v

i,(n)
0,k,j − 1

µ
(n)
k,j

)
, V̂

(n)
k,j (t) � 1√

n

�nt	∑
i=1

(
v

i,(n)
k,j − 1

µ
(n)
k,j

)
,

Ŵ
(n)
j (t) � 1√

n
W

(n)
j (nt).

2.6. Heavy traffic and convergence assumptions. For j = 1, . . . , J and
k ∈ C(j), thetraffic intensity of class k customers at station j is ρ

(n)
k,j � λ

(n)
k /µ

(n)
k,j ,

and the traffic intensity at stationj is ρ
(n)
j � ∑

k∈C(j ) ρ
(n)
k,j . It is assumed that for

all j ,

γj � lim
n→∞

√
n
(
1− ρ

(n)
j

)
(2.17)

exists. Furthermore, it is assumed that for allk andj satisfyingk ∈ C(j),

λk � lim
n→∞λ

(n)
k , µk,j � lim

n→∞µ
(n)
k,j ,

αk � lim
n→∞α

(n)
k , βk,j � lim

n→∞β
(n)
k,j

(2.18)
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are all defined andλk andµk,j are positive. We define the limiting traffic intensities
ρk,j � λk/µk,j andρj � ∑

k∈C(j ) ρk,j . We impose the usual Lindeberg condition
on the inter-arrival and service times: forj = 1, . . . , J andk ∈ C(j),

lim
n→∞ E

[(
u

i,(n)
k − (

λ
(n)
k

)−1)2I{|ui,(n)
k −(λ

(n)
k )−1|>c

√
n }

]
= lim

n→∞ E
[(

v
i,(n)
k,j − (

µ
(n)
k,j

)−1)2I{|vi,(n)
k,j −(µ

(n)
k,j )−1|>c

√
n }

]
(2.19)

= 0 ∀ c > 0.

In what follows, the symbol⇒ denotes weak convergence of measures on the
spaceDS[0,∞) of right-continuous functions with left limits from[0,∞) to a
Polish spaceS. The topology on this space is a generalization of the topology
introduced by Skorokhod forDS[0,1]. See [2] for details. We takeS = R (or Rd ,
with appropriate dimensiond , for vector-valued functions) unless explicitly stated
otherwise.

Theorem 3.1 [14], together with (2.19) and the independence assumptions of
Section 2.2, implies that for everyj = 1, . . . , J andk ∈ C(j) and everyy ≤ y∗

k ,
we have

T̂
(n)
0,k,j (t;y) � 1√

n

�nt	∑
i=1

[
v

i,(n)
0,k,j I{Li,(n)

k ≤√
ny} − 1

µ
(n)
k,j

Gk(y)

]
⇒ T ∗

k,j (t;y),(2.20)

where T ∗
k,j (t;y) is continuous int . Putting y = y∗

k into (2.20) and using the

fact that the sequences{vi,(n)
0,k,j }∞i=1 and{vi,(n)

k,j }∞i=1 have the same distribution, we
conclude that forj = 1, . . . , J andk ∈ C(j),

V̂
(n)
0,k,j ⇒ V̂ ∗

k,j , V̂
(n)
k,j ⇒ V̂ ∗

k,j ,(2.21)

whereV̂ ∗
k,j is a continuous process. In fact, ifβk,j > 0, thenV̂ ∗

k,j is a Brownian
motion. Similarly, Theorem 3.1 of [14] and Theorem 14.6 of [2] imply that, for
everyk, there exists a continuous processA∗

k such that

Â
(n)
k ⇒ A∗

k.(2.22)

By (2.21), (2.22) and a standard argument (see, e.g., [8], Corollary 3.2), we have

M̂
(n)
0,k,j (t) � 1√

n

[
V

(n)
0,k,j

(
A

(n)
k (nt)

) − nρ
(n)
k,j t

] ⇒ M∗
k,j (t),(2.23)

whereM∗
k,j is continuous. We also make the following convergence assumption:

ASSUMPTION 2.1. For everyj and k ∈ C(j), there exists a continuous
processA∗

k,j such that

Â
(n)
k,j ⇒ A∗

k,j .(2.24)
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There exists aJ -dimensional continuous process(W ∗
1 ,W ∗

2 , . . . ,W ∗
J ) such that(

Ŵ
(n)

1 , Ŵ
(n)

2 , . . . , Ŵ
(n)
J

) ⇒ (W ∗
1 ,W ∗

2 , . . . ,W ∗
J ).(2.25)

In feed-forward networks, (2.24) and (2.25) hold under FIFO (see [13]) and
EDF (see [17]). Because our network is not of the feed-forward type, there
are no known general conditions which guarantee (2.24) and (2.25). However,
the literature contains a number of special cases of our model in which
(2.24) and (2.25) hold. Rather than take one of these special cases as a starting
point, we choose to begin with Assumption 2.1 because this is all we shall need in
order to obtain convergence of scaled lead-time profiles.

3. Measure-valued processes and frontiers. Our goal is to obtain a charac-
terization of the lead-time profiles of the customers queued at theJ stations in
the system in terms of the limiting workload process(W ∗

1 ,W ∗
2 , . . . ,W ∗

J ) in (2.25).
These lead-time profile processes are measure-valued. More precisely, they take
values in the spaceM of finite, nonnegative measures onB(R), the Borel
σ -algebra onR, equipped with the weak topology. In what follows, we shall de-
note byMJ theJ -fold product ofM (with the product topology). For a Borel set
B ⊂ R, we set

W
j,(n)
k,� (t)(B) �


Work for station� represented by
classk customers at stationj with
lead times inB at timet

 ,(3.1)

W
j,(n)
� (t)(B) �

{
Work for station� represented by customers
at stationj with lead times inB at timet

}
.(3.2)

Then W (n)
k,j (t)(B) � W

j,(n)
k,j (t)(B) is the work at stationj represented by class

k customers at that station with lead times inB at time t , and W (n)
j (t)(B) �

W
j,(n)
j (t)(B) is the work at stationj corresponding to all customers at that station

with lead times inB at timet . We also define

Q(n)
j (t)(B) �

{
Number of customers at stationj
with lead times inB at timet

}
,(3.3)

A(n)
k (t)(B) �


Number of classk customers arriving
to the system by timet and having
lead times at timet in B, whether or
not still in the system at timet

(3.4)

and

V(n)
0,k,j (t)(B) �


Work for stationj associated with customers
of typek arriving to the system by timet and
having lead times at timet in B, whether or
not still in the system at timet

 .(3.5)
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The scaled versions of these processes are

Ŵ
j,(n)
k,� (t)(B) � 1√

n
W

j,(n)
k,� (nt)

(√
nB

)
,

Ŵ
j,(n)
� (t)(B) � 1√

n
W

j,(n)
� (nt)

(√
nB

)
,

Ŵ (n)
k,j (t)(B) � 1√

n
W (n)

k,j (nt)
(√

nB
)
,

Ŵ (n)
j (t)(B) � 1√

n
W (n)

j (nt)
(√

nB
)
,

Q̂(n)
j (t)(B) � 1√

n
Q(n)

j (nt)
(√

nB
)
,

Â (n)
k (t)(B) � 1√

n
A(n)

k (nt)
(√

nB
)
,

V̂(n)
0,k,j (t)(B) � 1√

n
V(n)

0,k,j (nt)
(√

nB
)
.

We introducefrontier processes

F
(n)
k,j (t) �


Largest lead time of any classk customer
who has ever been in service at stationj ,
or

√
ny∗

k − t if no such customer exists or
if this quantity is larger than the former one

 ,(3.6)

F
(n)
j (t) � max

k∈C(j )
F

(n)
k,j (t).(3.7)

The scaled versions of these processes are

F̂
(n)
k,j (t) = 1√

n
F

(n)
k,j (nt), F̂

(n)
j (t) � 1√

n
F

(n)
j (nt).(3.8)

The next step is to define a setD which contains theJ -dimensional vector-
valued process(F̂ (n)

1 , F̂
(n)
2 , . . . , F̂

(n)
J ). To do this, we begin with a permutation

π = (π1, π2, . . . , πJ ) of the integers(1,2, . . . , J ). Given such a permutation and
an integerm ∈ {1, . . . , J }, we define

Kπ
m−1(j) �

{
k ∈ C(j);S(k|j) ⊂ {π1, . . . , πm−1}},(3.9)

Jπ
m−1 � {j;Kπ

m−1(j) �= ∅} \ {π1, . . . , πm−1}.(3.10)

By convention, ifm = 1, then{π1, . . . , πm−1} = ∅, Kπ
0 (j) = K0(j), the set of

indices of customer classes which enter the system at stationj , andJπ
0 = J0,

the set of stations which serve as the entry point for at least one external arrival
process. These two sets do not depend on the permutationπ . Subsequent sets do.
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The setKπ
m−1(j) is the set of all customer classes that visit stationj and visit only

stations in the set{π1, . . . , πm−1} before arriving at stationj . We say it is theset
of customer classes which reach station j through {π1, . . . , πm−1}. The setJπ

m−1
is the set of all stationsj not in the set{π1, . . . , πm−1} which are visited by at
least one customer class of the type just described. We say thatJπ

m−1 is theset of
stations which can be reached through {π1, . . . , πm−1}. Note that bothKπ

m−1(j)

andJπ
m−1 depend only on(π1, . . . , πm−1), not the full permutation. Thus, we shall

sometimes writeK(π1,...,πm−1)

m−1 (j) andJ
(π1,...,πm−1)

m−1 instead ofKπ
m−1(j) andJπ

m−1.
Finally, we define

	 �
{
π;π is a permutation of 1, . . . , J

andπm ∈ Jπ
m−1 for all m = 1, . . . , J

}
.

(3.11)

In other words,	 is the set of all permutationsπ = (π1, . . . , πJ ) such that, for
eachm, the stationπm can be reached through{π1, . . . , πm−1}. Forπ ∈ 	, we set

Dπ �
{
y ∈ RJ ;yπ1 ≥ · · · ≥ yπJ

andyπm ≤ max
k∈Kπ

m−1(πm)
y∗
k ∀m

}
,(3.12)

D �
⋃

π∈	

Dπ.(3.13)

LEMMA 3.1. For all t ≥ 0, the random vector (F̂
(n)
1 (t), F̂

(n)
2 (t), . . . , F̂

(n)
J (t))

takes values in the set D.

PROOF. We must construct a permutationπ = (π1, . . . , πJ ) ∈ 	 such that
F̂

(n)
π1 (t) ≥ F̂

(n)
π2 (t) ≥ · · · ≥ F̂

(n)
πJ (t) and F̂πm(t) ≤ maxk∈Kπ

m−1(πm) y
∗
k for everym.

We do this by induction.
We note first that because customer classk visits consecutive stationsjk,1, jk,2,

. . . , jk,m(k) in P (k),
√

ny∗
k ≥ F

(n)
k,jk,1

(nt) ≥ F
(n)
k,jk,2

(nt) ≥ · · · ≥ F
(n)
k,jk,m(k)

(nt).(3.14)

This implies that the largest frontier must be at a station which is inJ0, the set
of stations that have arrivals from outside the system. We select a stationπ1 ∈ J0

whose frontierF (n)
π1 (nt) is maximal. If this maximal frontier is the lead time of a

customer which has been in service, we may chooseπ1 to be the station where
that customer entered the system. If the maximal frontier is not the lead time of
a customer who has been in service, then it is of the form

√
ny∗

k
− nt for some

customer classk. In this case, we chooseπ1 to be the station where this customer
class enters the system, so thatk is in K0(π1), the set of customer classes that
enter the system at stationπ1. In either case, we obtain

max
k∈K0(π1)

√
ny∗

k ≥ F (n)
π1

(nt) ≥ max
j �=π1

F
(n)
j (nt).(3.15)
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For the induction hypothesis, we assume for somem ∈ {2, . . . , J } that we have
constructedπ1, . . . , πm−1 such that:

(i) for eachi ≤ m − 1, stationπi is reached through{π1, . . . , πi−1},
(ii) for eachi ≤ m − 1,

max
k∈K

(π1,...,πi−1)

i−1 (πi)

√
ny∗

k ≥ F (n)
πi

(nt),(3.16)

(iii) we have

F (n)
π1

(nt) ≥ · · · ≥ F (n)
πm−1

(nt) ≥ max
j /∈{π1,...,πm−1}

F
(n)
j (nt).(3.17)

If the maximal frontier amongF (n)
j (nt) for j /∈ {π1, . . . , πm−1} is the lead time of

a customer that has been in service, we may chooseπm to be the station where
that customer first reaches a station not in{π1, . . . , πm−1}. If this maximal frontier
is not the lead time of a customer who has been in service, then it is of the form√

ny∗
k

− nt for some customer classk. In this case, we chooseπm to be the first
station not in{π1, . . . , πm−1} reached by this customer class. In either case, we
obtain

max
k∈K

(π1,...,πm−1)

m−1 (πm)

√
ny∗

k ≥ F (n)
πm

(nt) ≥ max
j /∈{π1,...,πm}F

(n)
j (nt).(3.18)

The induction step is complete.
Once the induction has concluded, we have constructed a permutation satisfying

properties (i)–(iii) form = J +1. Dividing (3.16) and (3.17) by
√

n, we obtain the
desired properties for the scaled frontiers.�

Fork = 1, . . . ,K , we define

Hk(y) �
∫ ∞
y

(
1− Gk(x)

)
dx, y ∈ R.(3.19)

This function is strictly decreasing on(−∞, y∗
k ], mapping this half-line onto

[0,∞). We next define
 = (
1, . . . ,
J ) :RJ → [0,∞)J by


j(y1, . . . , yJ ) �
∑

k∈C(j )

ρk,j

[
Hk(yj ) − Hk

(
min

i∈S(k|j)
yi

)]+
,

(3.20)
j = 1, . . . , J.

In the above definition and in all that follows, the minimum taken over the empty
set should be interpreted as∞. The main results of this paper are the following
two theorems.
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THEOREM 3.2 (Convergence of scaled frontiers).The function 
 is a
homeomorphism of D onto [0,∞)J . With

(F ∗
1 , . . . ,F ∗

J ) � 
−1(W ∗
1 , . . . ,W ∗

J ),(3.21)

we have (
F̂

(n)
1 , . . . , F̂

(n)
J

) ⇒ (F ∗
1 , . . . ,F ∗

J ).(3.22)

We define W∗(t) = (W∗
1 (t), . . . ,W∗

J (t)) and Q∗(t) = (Q∗
1(t), . . . ,Q

∗
J (t)),

which take values inMJ , the set ofJ -dimensional vectors of measures onR,
by specifying their values on half-lines of the form(y,∞) for all y ∈ R. This is
done forj = 1, . . . , J by the formulas

W∗
j (t)(y,∞) �

∑
k∈C(j )

ρk,j

[
Hk

(
y ∨ F ∗

j (t)
) − Hk

(
min

i∈S(k|j)
F ∗

i (t)

)]+
,(3.23)

Q∗
j (t)(y,∞) �

∑
k∈C(j )

λk

[
Hk

(
y ∨ F ∗

j (t)
) − Hk

(
min

i∈S(k|j)
F ∗

i (t)

)]+
.(3.24)

THEOREM 3.3 (Convergence of scaled workloads and queue lengths).We
have (

Ŵ (n)
1 , . . . , Ŵ (n)

J

) ⇒ W∗,
(
Q̂(n)

1 , . . . , Q̂(n)
J

) ⇒ Q∗.(3.25)

The weak convergence in (3.25)takes place in DMJ [0,∞).

4. Customers behind the frontiers. In this section we prove the crucial
observation that both the number of customers at each stationj with lead times
smaller than or equal to the current frontierF

(n)
j (t) and the work for the system

associated with these customers are negligible. This is done in several steps,
leading to Corollary 4.7. Along the way, we show tightness of the scaled frontier
processes (Lemma 4.6). Both these results will be used in Section 6 to prove
Theorem 3.2.

PROPOSITION4.1. Let j = 1, . . . , J , k ∈ C(j), −∞ < y0 < y∗
k and T > 0 be

given. As n → ∞,

sup
y0≤y≤y∗

k

sup
0≤t≤T

∣∣V̂(n)
0,k,j (t)(y,∞) + ρk,j

[
Hk

(
y + √

nt
) − Hk(y)

]∣∣ P→ 0,(4.1)

sup
y0≤y≤y∗

k

sup
0≤t≤T

∣∣Â (n)
k (t)(y,∞) + λk

[
Hk

(
y + √

nt
) − Hk(y)

]∣∣ P→ 0.(4.2)
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The processes in Proposition 4.1 do not take departures into account. Because
this proposition is concerned only with arrivals, its proof can be given following the
proof of Proposition 3.4 of [5]. We do not repeat that proof here, but instead give
a heuristic argument. Let us first consider (4.2), which asserts that asymptotically,
the “density” of the measure-valued processÂ (n)

k (t) is the same as the density

λ
(n)
k

[
H ′

k

(
y + √

nt
) − H ′

k(y)
] = λ

(n)
k

[
Gk

(
y + √

nt
) − Gk(y)

]
.(4.3)

In order for a classk customer to have lead timêy at time t̂ , it must arrive at
some timet̂ − ŝ prior to t̂ and be assigned lead timêy + ŝ upon arrival. IfGk

has a density, then the density of the assigned lead-time distribution is1√
n
G′

k(
ŷ+ŝ√

n
)

[see (2.7)], and multiplying by the arrival rateλ(n)
k , we obtain the density of classk

customers with lead timeŝy:

λ
(n)
k√
n

∫ t̂

0
G′

k

(
ŷ + ŝ√

n

)
dŝ = λ

(n)
k

[
Gk

(
ŷ + t̂√

n

)
− Gk

(
ŷ√
n

)]
.

The heavy traffic scaling considers the density of1√
n

times the actual number

of customers whose lead times arey = ŷ√
n

at scaled timet = t̂
n
. This density is

the right-hand side of (4.3). (The Jacobiandŷ
dy

= √
n is canceled when we divide

the customer count by
√

n.) Under the heavy traffic scaling, the work brought by
customers of classk to stationj is the average work per customer,(µ

(n)
k,j )

−1, times

the number of customers. Multiplying the right-hand side of (4.3) by(µ
(n)
k,j )

−1, we
obtainρ

(n)
k,j [Gk(y + √

nt) − Gk(y)], which explains (4.1).

COROLLARY 4.2. Let j = 1, . . . , J , k ∈ C(j), −∞ < y0 < y∗
k and T > 0 be

given. As n → ∞,

sup
y0≤y≤y∗

k

sup
0≤t≤T

V̂(n)
0,k,j (t){y} P→ 0,

sup
y0≤y≤y∗

k

sup
0≤t≤T

Â (n)
k (t){y} P→ 0.

(4.4)

This corollary is a consequence of the fact that the limiting measures for
V̂(n)

0,k,j (t) and Â (n)
k (t) have densities and, hence, do not charge points. Its proof

is similar to the proof of Corollary 3.5 of [5], and we refer the reader there for
details.

Lemma 4.3 and Corollary 4.4 generalize Proposition 3.6 in [5] to the case of
acyclic networks. We provide the details of these proofs.

LEMMA 4.3. For all k and j ∈ P (k), we have

Q̂(n)
j

(−∞, F̂
(n)
k,j

) ⇒ 0, Ŵ (n)
j

(−∞, F̂
(n)
k,j

) ⇒ 0,(4.5)
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and for every station � satisfying j ∈ S(k|�),
Ŵ

j,(n)
�

(−∞, F̂
(n)
k,j

) ⇒ 0.(4.6)

The weak convergences in (4.5)and (4.6) take place in DR[0,∞).

PROOF. We fix k0 and prove (4.5) and (4.6) by induction alongP (k0). Let
j0 ∈ P (k0) be given and make the induction hypothesis that (4.5) and (4.6) hold
for k = k0 and everyj ∈ S(k0|j0). If j0 is the first station inP (k0), this hypothesis
is vacuous.

From the induction hypothesis (4.6) we have

Ŵ
j,(n)
j0

(−∞, F̂
(n)
k0,j

) ⇒ 0

for everyj ∈ S(k0|j0). For such a stationj , we haveF̂ (n)
k0,j

≥ F̂
(n)
k0,j0

and, hence,

Ŵ
j,(n)
j0

(−∞, F̂
(n)
k0,j0

) ⇒ 0.(4.7)

We now prove (4.5) and (4.6) fork = k0 andj = j0. Toward this end, we define

τ
(n)
k0,j0

(t) = sup
{
s ≤ t;Q(n)

j0
(ns)

(−∞,F
(n)
k0,j0

(ns)
) = 0

}
= sup

{
s ≤ t; Q̂(n)

j0
(s)

(−∞, F̂
(n)
k0,j0

(s)
) = 0

}
,

and note that

Q(n)
j0

(
nτ

(n)
k0,j0

(t)−)(−∞,F
(n)
k0,j0

(
nτ

(n)
k0,j0

(t)
)) = 0.(4.8)

Indeed, from the definition ofτ (n)
k0,j0

(t),

Q(n)
j0

(
nτ

(n)
k0,j0

(t)−)(−∞,F
(n)
k0,j0

(
nτ

(n)
k0,j0

(t)−)) = 0(4.9)

and the only way in whichF (n)
k0,j0

can jump up at timenτ
(n)
k0,j0

(t) is that a customer
of classk0 with lead time greater than any customer of this class who has ever been
in service at stationj0 begins to receive service at timenτ

(n)
k0,j0

(t). But then, by the
EDF service discipline,

Q(n)
j0

(
nτ

(n)
k0,j0

(t)
)(−∞,F

(n)
k0,j0

(
nτ

(n)
k0,j0

(t)
)) = 0

and, consequently, the value ofQ(n)
j0

(·)(−∞,F
(n)
k0,j0

(·)) remains zero at least until

the next arrival to serverj0 after timenτ
(n)
k0,j0

(t), which contradicts the definition of

τ
(n)
k0,j0

(t). Thus,F (n)
k0,j0

cannot jump up at timenτ
(n)
k0,j0

(t), so (4.8) follows from (4.9).

For τ (n)
k0,j0

(t) ≤ s ≤ t , we have

F
(n)
k0,j0

(ns) = F
(n)
k0,j0

(
nτ

(n)
k0,j0

(t)
) − n

(
s − τ

(n)
k0,j0

(t)
)
.(4.10)
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The first step is to prove

t − τ
(n)
k0,j0

(t) ⇒ 0,(4.11)

and, subsequently, to upgrade this convergence to
√

n
(
t − τ

(n)
k0,j0

(t)
) ⇒ 0.(4.12)

The convergences in (4.11) and (4.12) are inDR[0,∞). The key inequality is

W (n)
j0

(nt)
(−∞,F

(n)
k0,j0

(nt)
)

≤ H(n)(nt) + ∑
j∈S(k0|j0)

J
(n)
j (nt) + D(n)(nt)

+ ∑
k∈C(j0)

k �=k0

K
(n)
k (nt) − n

(
t − τ

(n)
k0,j0

(t)
) + R(n)(nt),

(4.13)

where the terms on the right-hand side are defined below. The first term,

H(n)(nt) � W (n)
j0

(
nτ

(n)
k0,j0

(t)
)(−∞,F

(n)
k0,j0

(
nτ

(n)
j0,k0

(t)
))

,

accounts for the work arriving to stationj0 by timenτ
(n)
k0,j0

(t). A typical summand
in the second term,

J
(n)
j (nt) � W

j,(n)
j0

(
nτ

(n)
k0,j0

(t)
)(−∞,F

(n)
k0,j0

(
nτ

(n)
k0,j0

(t)
))

,

is the work for stationj0 at upstream stationj which is ahead ofF (n)
k0,j0

(nτ
(n)
k0,j0

(t))

at timenτ
(n)
k0,j0

and, hence, has the potential to arrive at stationj0 by timent ahead

of F
(n)
k0,j0

(nt). If j0 is the first station inP (k0), these terms do not appear. The third
term,

D(n)(nt) =
∞∑
i=1

v
i,(n)
0,k0,j0

I{nτ
(n)
k0,j0

(t)<S
i,(n)
k0

≤nt}I{Li,(n)
k0

−(nt−S
i,(n)
k0

)≤F
(n)
k0,j0

(nt)},

is the work of typek0 arriving to the system during the time interval(nτ
(n)
k0,j0

, nt]
with lead time upon arrival that puts it ahead ofFk0,j0(nt) at timent . A typical
summand in the fourth term,

K
(n)
k (nt) =

∞∑
i=1

v
i,(n)
k,j0

I{Ak,j0(nτ
(n)
k0,j0

(t))<i≤A
(n)
k,j0

(nt)},

is the work of typek �= k0 arriving to stationj0 during the time interval
(nτ

(n)
k0,j0

, nt]. The fifth term,−n(t − τ
(n)
k0,j0

(t)), is the work accomplished by the

server during the time interval(nτ
(n)
k0,j0

(t), nt], some of which may be devoted to

a customer already in service at timenτ
(n)
k0,j0

(t) whose lead time is greater than or
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equal toF
(n)
k0,j0

(nτ
(n)
k0,j0

(t)) and the remainder of which at each times ∈ (τ
(n)
k0,j0

, t]
must be devoted to customers with lead times less thanF

(n)
k0,j0

(ns). The final term,

R(n)(nt) � max
{
v

i,(n)
k,j0

;1≤ i ≤ A
(n)
k,j0

(nt), k ∈ C(j0)
}
,

is an upper bound on the amount of work that can be devoted to a customer already
in service at timenτ

(n)
k0,j0

(t). If there is preemption, this final term does not appear.
We fix T > 0 and estimate the terms appearing on the right-hand side of (4.13).

The termso(
√

n ), O(
√

n ) andO(n−1/2) in the following argument depend onT
but not ont ∈ [0, T ]. For t ∈ [0, T ], (4.8) implies

H(n)(nt) ≤ max
0≤s≤T

[
W

(n)
j0

(ns) − W
(n)
j0

(ns−)
]

= √
n max

0≤s≤T

[
Ŵ

(n)
j0

(s) − Ŵ
(n)
j0

(s−)
] = o

(√
n

)(4.14)

becauseW ∗
j0

in (2.25) is continuous. Furthermore,

J
(n)
j (nt) ≤ max

0≤s≤T
W

j,(n)
j0

(ns)
(−∞,F

(n)
k0,j0

(ns)
)

= √
n max

0≤s≤T
Ŵ

j,(n)
j0

(s)
(−∞, F̂

(n)
k0,j0

(s)
) = o

(√
n

)(4.15)

because of (4.7). The last term,R(n)(nt), satisfies

R(n)(nt) ≤ max
0≤s≤T

[
W

(n)
j0

(ns) − W
(n)
j0

(ns−)
] = o

(√
n

)
(4.16)

as in (4.14). We also have

K
(n)
k (nt) =

A
(n)
k,j0

(nt)∑
i=1

(
v

(n)
k,j0

− 1

µ
(n)
k,j0

)
−

A
(n)
k,j0

(nτ
(n)
k0,j0

(t))∑
i=1

(
v

(n)
k,j0

− 1

µ
(n)
k,j0

)

+ 1

µ
(n)
k,j0

[
A

(n)
k,j0

(nt) − A
(n)
k,j0

(
nτ

(n)
k0,j0

(t)
)]

= √
n

[
V̂

(n)
k,j0

(
1

n
A

(n)
k,j0

(nt)

)
− V̂

(n)
k,j0

(
1

n
A

(n)
k,j0

(
nτ

(n)
k0,j0

(t)
))]

+
√

n

µ
(n)
k,j0

[
Â

(n)
k,j0

(t) − Â
(n)
k,j0

(
τ

(n)
k0,j0

(t)
)] + ρ

(n)
k,j0

n
(
t − τ

(n)
k0,j0

(t)
)

= √
n

[
V̂

(n)
k,j0

(
1√
n
Â

(n)
k,j0

(t) + λkt

)
− V̂

(n)
k,j0

(
1√
n
Â

(n)
k,j0

(
τ

(n)
k0,j0

(t)
) + λkτ

(n)
k0,j0

(t)

)]

+
√

n

µ
(n)
k,j0

[
Â

(n)
k,j0

(t) − Â
(n)
k,j0

(
τ

(n)
k0,j0

(t)
)] + ρ

(n)
k,j0

n
(
t − τ

(n)
k0,j0

(t)
)
.

(4.17)
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From (2.21) and (2.24), we obtain

K
(n)
k (nt) = ρ

(n)
k,j0

n
(
t − τ

(n)
k0,j0

(t)
) + O

(√
n

)
.(4.18)

Finally, we estimateD(n)(nt). For this we choosey ≤ y∗
k0

and divide the
analysis into the two cases

t − τ
(n)
k0,j0

(t) <
1√
n

(
y∗
k0

− y
)

(4.19)

and the complementary case

nτ
(n)
k0,j0

(t) + √
n
(
y∗
k0

− y
) ≤ nt.(4.20)

In the former case,t − τ
(n)
k0,j0

(t) = O(n−1/2). We show this is also true in the latter

case. Under condition (4.20), because

F
(n)
k0,j0

(nt) = F
(n)
k0,j0

(
nτ

(n)
k0,j0

(t)
) − n

(
t − τ

(n)
k0,j0

(t)
) ≤ √

ny∗
k0

− n
(
t − τ

(n)
k0,j0

(t)
)
,

we have

D(n)(nt)

≤
∞∑
i=1

v
i,(n)
0,k0,j0

I{nτ
(n)
k0,j0

(t)<S
i,(n)
k0

≤nτ
(n)
k0,j0

(t)+√
n(y∗

k0
−y)}

+
∞∑
i=1

v
i,(n)
0,k0,j0

I{nτ
(n)
k0,j0

(t)+√
n(y∗

k0
−y)<S

i,(n)
k0

≤nt}I{Li,(n)
k0

≤√
ny}

= V
(n)
0,k0,j0

(
Ak0

(
nτ

(n)
k0,j0

(t) + √
n
(
y∗
k0

− y
))) − V

(n)
0,k0,j0

(
Ak0

(
nτ

(n)
k0,j0

(t)
))

+
A

(n)
k0

(nt)∑
i=1

[
v

i,(n)
0,k0,j0

I{Li,(n)
k0

≤√
ny} − 1

µ
(n)
k0,j0

Gk0(y)

]

−
A

(n)
k0

(nτ
(n)
k0,j0

(t)+√
n(y∗

k0
−y))∑

i=1

[
v

i,(n)
0,k0,j0

I{Li,(n)
k0

≤√
ny} − 1

µ
(n)
k0,j0

Gk0(y)

]
(4.21)

+ Gk0(y)

µ
(n)
k0,j0

[
A

(n)
k0

(nt) − A
(n)
k0

(
nτ

(n)
k0,j0

(t) + √
n
(
y∗
k0

− y
))]

= √
n

[
M̂

(n)
0,k0,j0

(
τ

(n)
k0,j0

(t) + 1√
n

(
y∗
k0

− y
)) − M̂

(n)
0,k0,j0

(
τ

(n)
k0,j0

(t)
)]

+ √
n

[
T̂

(n)
0,k0,j0

(
1

n
A

(n)
k0

(nt);y

)
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− T̂
(n)
0,k0,j0

(
1

n
A

(n)
k0

(
nτ

(n)
k0,j0

(t) + √
n
(
y∗
k0

− y
));y

)]

+
√

nGk0(y)

µ
(n)
k0,j0

[
Â

(n)
k0

(t) − Â
(n)
k0

(
τ

(n)
k0,j0

(t) + 1√
n

(
y∗
k0

− y
))]

+ nGk0(y)ρ
(n)
k0,j0

(
t − τ

(n)
k0,j0

(t)
) + √

n
(
1− Gk0(y)

)
ρ

(n)
k0,j0

(
y∗
k0

− y
)
.

From (2.20), (2.22) and (2.23), we obtain

D(n)(nt) ≤ nGk0(y)ρ
(n)
k0,j0

(
t − τ

(n)
k0,j0

(t)
)

+ √
n
(
1− Gk0(y)

)
ρ

(n)
k0,j0

(
y∗
k0

− y
) + O

(√
n

)
.

(4.22)

Substitution of (4.14)–(4.16), (4.18) and (4.22) into (4.13) yields

0 ≤ W (n)
j0

(nt)
(−∞,F

(n)
k0,j0

(nt)
)

≤ n
(
t − τ

(n)
k0,j0

(t)
)[ ∑

k∈C(j0)

ρ
(n)
k,j0

− 1− (
1− Gk0(y)

)
ρ

(n)
k0,j0

]
+ O

(√
n

)
≤ −n

(
t − τ

(n)
k0,j0

(t)
)(

1− Gk0(y)
)
ρ

(n)
k0,j0

+ O
(√

n
)
,

(4.23)

where the last inequality follows from (2.17). Assume for the moment thaty < y∗
k0

.

Then(1−Gk0(y))ρ
(n)
k0,j0

is strictly positive and bounded away from zero uniformly
in n. This implies

t − τ
(n)
k0,j0

(t) = O(n−1/2).

Hence, (4.11) holds.
Armed with (4.11), we return to the weaker assumptiony ≤ y∗

k0
and use the

differencing theorem in (4.17) (see, e.g., Theorem A.3 of [5]), (2.21) and (2.24) to
obtain

K
(n)
k (nt) = ρ

(n)
k,j0

n
(
t − τ

(n)
k0,j0

(t)
) + o

(√
n

)
(4.18′)
in place of (4.18). Similarly, (4.22) becomes

D(n)(nt) ≤ nGk0(y)ρ
(n)
k0,j0

(
t − τ

(n)
k0,j0

(t)
)

+ √
n
(
1− Gk0(y)

)
ρ

(n)
k0,j0

(
y∗
k0

− y
) + o

(√
n

)
.

(4.22′)

If (4.20) holds, we may substitute (4.14)–(4.16), (4.18′) and (4.22′) into (4.13)
to obtain

0 ≤ W (n)
j0

(nt)
(−∞,Fk0,j0(nt)

)
≤ −n

(
t − τ

(n)
k0,j0

(t)
)(

1− Gk0(y)ρ
(n)
k0,j0

− ∑
k∈C(j0),k �=k0

ρ
(n)
k,j0

)

+ √
n
(
1− Gk0(y)

)
ρ

(n)
k0,j0

(
y∗
k0

− y
) + o

(√
n

)
.

(4.24)
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Assume for the moment thaty < y∗
k0

. Then (4.24) implies

√
n
(
t − τ

(n)
k0,j0

(t)
) ≤ Cn

(
y∗
k0

− y
) + o(1),(4.25)

where

Cn = (1− Gk0(y))ρ
(n)
k0,j0

1− Gk0(y)ρ
(n)
k0,j0

− ∑
k∈C(j0),k �=k0

ρ
(n)
k,j0

.

The constantsCn converge to a finite limit asn → ∞, which is bounded uniformly
in y < y∗

k0
. Sincey may be arbitrarily close toy∗

k0
, by (4.25), if (4.20) holds,

then (4.12) holds also. Similarly, if (4.19) holds, then we have (4.25) withCn ≡ 1
and again (4.12) follows.

From (4.12) we immediately obtain (4.5) fork = k0 andj = j0, because

Q(n)
j0

(nt)
(−∞,F

(n)
k0,j0

(nt)
)

≤ ∑
k∈C(j0)

[
A

(n)
k,j0

(nt) − A
(n)
k,j0

(
nτ

(n)
k0,j0

(t)−)]
= √

n
∑

k∈C(j0)

[
Â

(n)
k,j0

(t) − Â
(n)
k,j0

(
τ

(n)
k0,j0

(t)−)] + n
(
t − τ

(n)
k0,j0

(t)
) ∑

k∈C(j0)

λ
(n)
k .

We divide this by
√

n and use the differencing theorem, (2.24) and (4.12) to obtain
the first relation in (4.5). For the second part of (4.5), we sety = y∗

k0
, so that

case (4.19) is vacuous. Then (4.20) implies (4.24), which we divide by
√

n. The
conclusion follows.

It remains to prove (4.6) fork = k0, j = j0 and � satisfying j0 ∈ S(k0|�).
From (4.8) and (4.10) we see that all work at stationj0 for station� present and
having lead time in(−∞,F

(n)
k0,j0

(nt)) at timent must arrive in the time interval

[nτ
(n)
k0,j0

(t), nt]. It follows that

W
j0,(n)
� (nt)

(−∞,F
(n)
k0,j0

(nt)
) ≤ H

(n)
� (nt) + ∑

k∈C(j0)∩C(�)

K
(n)
k,� (nt),(4.26)

where

H
(n)
� (nt) � W

j0,(n)
�

(
nτ

(n)
k0,j0

(t)
)(−∞,F

(n)
k0,j0

(
nτ

(n)
k0,j0

(t)
))

accounts for station� work arriving to stationj0 at timenτ
(n)
k0,j0

(t), and

K
(n)
k,� (nt) �

∞∑
i=1

v
i,j0,(n)
k,� I{Ak,j0(nτ

(n)
k0,j0

(t))<i≤A
(n)
k,j0

(nt)}

is the classk, station � work arriving to stationj0 during the time interval
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(nτ
(n)
k0,j0

(t), nt]. The random variablesvi,j0,(n)
k,� , i = 1,2, . . . , are a random permu-

tation of the classk, station� service time random variablesvi,(n)
0,k,�, i = 1,2, . . . .

The latter are indexed in order of arrival to the system; the former are indexed in
order of arrival to stationj0. Because the indexi of arrival of a customer of classk
to stationj0 is independent of the service timevi,j0,(n)

k,� of that customer, the se-

quencevi,j0,(n)
k,� , i = 1,2, . . . , is independent and identically distributed, with the

same distribution asvi,(n)
0,k,�, i = 1,2, . . . .

We bound the terms appearing on the right-hand side of (4.26). We have first of
all that

1√
n
H

(n)
� (nt)

≤ ∑
k∈C(�)

max
0≤i≤A

(n)
k (nT )

1√
n
v

i,(n)
0,k,�

≤ ∑
k∈C(�)

max
0≤s≤T

(
V̂

(n)
0,k,�

(
1

n
A

(n)
k (ns)

)
− V̂

(n)
0,k,�

(
1

n
A

(n)
k (ns−)

)
+ 1√

nµ
(n)
k,�

)
.

But the process

V̂
(n)
0,k,�

(
1

n
A

(n)
k (ns)

)
= V̂

(n)
0,k,�

(
1√
n
Â

(n)
k (s) + λ

(n)
k s

)
converges weakly inDR[0,∞) to the continuous procesŝV ∗

k,�(λks) [see (2.21)
and (2.22)] and, thus, its maximum jump overs ∈ [0, T ] converges to zero. It
follows that

max
0≤t≤T

1√
n
H

(n)
� (nt) ⇒ 0.(4.27)

Let us now define

V̂
j0,(n)
k,� (t) � 1√

n

�nt	∑
i=1

(
v

i,j0,(n)
k,� − 1

µ
(n)
k,�

)
,

which satisfiesV̂ j0,(n)
k,� ⇒ V̂ ∗

k,�, whereV̂ ∗
k,� is a continuous process [cf. (2.21)].

Then
1√
n
K

(n)
k,� (nt) = V̂

j0,(n)
k,�

(
1

n
A

(n)
k,j0

(nt)

)
− V̂

j0,(n)
k,�

(
1

n
Ak,j0

(
nτ

(n)
k0,j0

(t)
))

+ 1√
nµ

(n)
k,�

(
A

(n)
k,j0

(nt) − A
(n)
k,j0

(
nτ

(n)
k0,j0

(t)
))

= V̂
j0,(n)
k,�

(
1√
n
Â

(n)
k,j0

(t) + λ
(n)
k t

)
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− V̂
j0,(n)
k,�

(
1√
n
Â

(n)
k,j0

(
τ

(n)
k0,j0

(t)
) + λ

(n)
k τ

(n)
k0,j0

(t)

)

+ 1

µ
(n)
k,�

(
Â

(n)
k,j0

(t) − Â
(n)
k,j0

(
τ

(n)
k0,j0

(t)
)) + ρ

(n)
k,j0

√
n
(
t − τ

(n)
k0,j0

(t)
)
.

The right-hand side converges weakly to zero inDR[0,∞) because of (4.11),
(4.12), the continuity of̂V ∗

k,� and Assumption 2.1. In particular,

max
0≤t≤T

1√
n
K

(n)
k,�(nt) ⇒ 0 ∀ k ∈ C(j0) ∩ C(�).(4.28)

From (4.26)–(4.28), we have

max
0≤t≤T

Ŵ
j0,(n)
� (t)

(−∞, F̂
(n)
k0,j0

(t)
) = max

0≤t≤T

1√
n
W

j0,(n)
� (nt)

(−∞,F
(n)
k0,j0

(nt)
) ⇒ 0.

This gives us (4.6) fork = k0, j = j0 and� satisfyingj0 ∈ S(k0|�). �

COROLLARY 4.4 (Crushing). For every j , we have

Q̂(n)
j

(−∞, F̂
(n)
j (t)

) ⇒ 0, Ŵ (n)
j

(−∞, F̂
(n)
j (t)

) ⇒ 0.(4.29)

PROOF. From (4.5) we have

Q̂(n)
j

(−∞, F̂
(n)
j (t)

) = max
k∈C(j )

Q̂(n)
j

(−∞, F̂
(n)
k,j (t)

) ⇒ 0,

Ŵ (n)
j

(−∞, F̂
(n)
j (t)

) = max
k∈C(j )

Ŵ (n)
j

(−∞, F̂
(n)
k,j (t)

) ⇒ 0. �

COROLLARY 4.5. For all stations j and � for which there exists a customer
class k such that j ∈ S(k|�), we have

Ŵ
j,(n)
�

(−∞, F̂
(n)
j

) ⇒ 0.

PROOF. It suffices to show that for everyk ∈ C(j) ∩ C(�), we have

Ŵ
j,(n)
k,�

(−∞, F̂
(n)
j

) ⇒ 0.

For such ak, let I
(n)
k,j (nt) denote the indicesi, according to the order of arrival

to the system, of the classk customers at stationj at timent with lead times in
(−∞,F

(n)
j (nt)). Then

Ŵ
j,(n)
k,� (t)

(−∞, F̂
(n)
j (t)

) ≤ 1√
n

∑
i∈I

(n)
k,j (nt)

v
i,(n)
0,k,�.

Let |I(n)
k,j (nt)| denote the cardinality ofI(n)

k,j (nt). For each positive integerm,

let α
(n)
m = P{|I(n)

k,j (nt)| = m}. Let P(n)
0 be the zero measure, and for each
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positive integerm, let P(n)
m denote the measure induced onR by the random

variable 1
m

∑
i∈I

(n)
k,j (nt)

v
i,(n)
0,k,�. Conditioned on|I(n)

k,j (nt)| = m, the distribution of∑
i∈I

(n)
k,j (nt)

v
i,(n)
0,k,� is the same as the distribution of

∑m
i=1 v

i,(n)
0,k,�. Because the random

variablesvi,(n)
0,k,� do not enter the determination of the indices which below toI

(n)
k,j ,

the measure induced onR by 1
|I(n)

k,j |I{|I(n)
k,j (nt)|≥1}

∑
i∈I

(n)
k,j (nt)

v
i,(n)
0,k,� is

∑∞
n=0α

(n)
m P(n)

m .

The set of probability measure{P(n)
m } is tight because form ≥ 1 andK ≥ (µ

(n)
k,�)

−1,
we have

P

{
1

m

m∑
i=1

v
i,(n)
0,k,� ≥ K

}
≤ P

{
1

m

m∑
i=1

(
v

i,(n)
0,k,� − (

µ
(n)
k,�

)−1) ≥ K − (
µ

(n)
k,�

)−1
}

≤ 1

(K − (µ
(n)
k,�)

−1)2
E

[
1

m

m∑
i=1

(
v

i,(n)
0,k,� − (

µ
(n)
k,�

)−1)]2

= (β
(n)
k,�)

2

m(K − (µ
(n)
k,�)

−1)2
,

and this can be made arbitrarily small, uniformly inm andn, by the choice ofK .
Consequently, the set of probability measures{∑∞

m=0 α
(n)
m P(n)

m

}
n≥1 is also tight. In

particular, givenε > 0, there existsK > 0 such that

P

{
1

|I(n)
k,j (nt)|I{|I(n)

k,j (nt)|≥1}
∑

i∈I
(n)
k,j (nt)

v
(n)
0,k,� ≤ K

}
≥ 1− ε

for all n ≥ 1.
According to the first part of (4.29),1√

n
|I(n)

k,j (nt)| ⇒ 0, and hence there is an
integerN such that

P
{

1√
n

∣∣I(n)
k,j (nt)

∣∣ ≤ ε

K

}
≥ 1− ε

for all n ≥ N . Therefore, forn ≥ N ,

P
{
Ŵ

j,(n)
k,� (t)

(−∞, F̂
(n)
j (t)

) ≤ ε
}

≥ P

{
1

|I(n)
k,j (nt)|I{|I(n)

k,j (nt)|≥1}
∑

i∈I
(n)
k,j (nt)

v
i,(n)
0,k,j · 1√

n

∣∣I(n)
k,j (nt)

∣∣ ≤ ε

}

≥ 1− 2ε.

This establishes the corollary.�



ACYCLIC NETWORKS 1329

The following lemma gives a tightness bound for the scaled frontiers.

LEMMA 4.6. For every T > 0, ε > 0, j ∈ {1, . . . , J } and k ∈ C(j), there
exists y ∈ (−∞, y∗

k ) such that for all n,

P
{

inf
0≤t≤T

F̂
(n)
k,j (t) < y

}
< ε.(4.30)

PROOF. As in the proof of Lemma 4.3, we fixk and proceed by induction
alongP (k). Let � ∈ P (k) be given and assume that forj ∈ S(k|�), T > 0 and
ε > 0, the correspondingy satisfying (4.30) for alln can be found. In particular,
no assumption is necessary to analyze the first station inP (k).

We first argue that

Ŵ
(n)
� (t) ≥ V̂(n)

0,k,�(t)

(
F̂

(n)
k,� (t), min

j∈S(k|�) F̂
(n)
k,j (t)

)
+ o(1).(4.31)

Indeed, the workload at station� is at least as great as the workload brought to
station� by classk customers with lead times in(F (n)

k,� (nt),minj∈S(k|�) F (n)
k,j (nt)).

None of classk customers who have arrived to the system by timent and have
lead times at this time greater thanF

(n)
k,� (nt) has ever been in service at station�

by timent . Thus, every such customer is either in queue at station� or in queue at
some stationj0 ∈ S(k|�). By Lemma 4.3, for suchj0 we have

Ŵ
j0,(n)
� (t)

(
−∞, min

j∈S(k|�) F̂
(n)
k,j (t)

)
≤ Ŵ

j0,(n)
� (t)

(−∞, F̂
(n)
k,j0

(t)
) = o(1),

so the difference between̂V(n)
0,k,�(t)(F̂

(n)
k,� (t),minj∈S(k|�) F̂ (n)

k,j (t)) and the scaled
workload for station� associated with classk customers already present at�

with lead times in(F
(n)
k,� (nt),minj∈S(k|�) F (n)

k,j (nt)) is of the ordero(1). This
justifies (4.31).

Fix T > 0 andε > 0. By the induction hypothesis, there existsy1 < y∗
k such

that, for alln, P(An) ≥ 1− ε
4, where

An �
{

inf
0≤t≤T

min
j∈S(k|�) F̂

(n)
k,j (t) > y1

}
.

By (2.25) and the continuous mapping theorem,

sup
0≤t≤T

Ŵ
(n)
� (t) ⇒ sup

0≤t≤T

W ∗
� (t).

Inequality (4.31) and the fact that limy→−∞ Hk(y) = ∞ enables us to choose
y2 < y1 such that, for alln, P(Bn) ≥ 1− ε

4, where

Bn �
{

sup
0≤t≤T

V̂(n)
0,k,�(t)

(
F̂

(n)
k,� (t), min

j∈S(k|�) F̂
(n)
k,j (t)

)
≤ √

Hk(y2)

}
.
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OnAn ∩ Bn, for 0≤ t ≤ T , we have

sup
0≤t≤T

V̂(n)
0,k,�(t)

(
F̂

(n)
k,� (t), y1

] ≤ √
Hk(y2).(4.32)

By Proposition 4.1, we can findN such that for alln ≥ N , P(Cn) ≥ 1− ε
4, where

Cn �
{

sup
y2≤y≤y∗

k

sup
0≤t≤T

∣∣∣V̂(n)
0,k,�(t)(y,∞) + ρk,�

[
Hk

(
y + √

nt
) − Hk(y)

]∣∣∣
≤ ρk,�

2
Hk(y1)

}
.

Forn ≥ N , P(An ∩ Bn ∩ Cn) ≥ 1− 3ε
4 . By (4.32), onAn ∩ Bn ∩ Cn we have

sup
0≤t≤T

V̂(n)
0,k,�(t)(y2, y1]I{F̂ (n)

k,� (t)<y2} ≤ √
Hk(y2),

so
√

Hk(y2) + sup
0≤t≤T

V̂(n)
0,k,�(t)(y1,∞)I{F̂ (n)

k,� (t)<y2}

≥ sup
0≤t≤T

V̂(n)
0,k,�(t)(y2,∞)I{F̂ (n)

k,� (t)<y2}

≥ ρk,�

2
Hk(y2) max

0≤t≤T
I{F̂ (n)

k,� (t)<y2}

= ρk,�

2
Hk(y2)I{inf0≤t≤T F̂

(n)
k,� (t)<y2},

(4.33)

where the third line follows from the definition ofCn, the fact thaty2 < y1 < y∗
k

implies Hk(y2) > Hk(y1), and the inequalityF̂ (n)
k,� (t) ≥ y∗

k − √
nt (following

immediately from the definition of the frontier) resulting in

y∗
k < y2 + √

nt on
{
F̂

(n)
k,� (t) < y2

}
.(4.34)

Also, onAn ∩ Bn ∩ Cn,

sup
0≤t≤T

V̂(n)
0,k,�(t)(y1,∞)I{F̂ (n)

k,� (t)<y2}

= sup
0≤t≤T

[
V̂(n)

0,k,�(t)(y1,∞) + ρk,�Hk

(
y1 + √

nt
)]

I{F̂ (n)
k,� (t)<y2}

≤ 3ρk,�

2
Hk(y1) � c.

[The second line follows fromy2 < y1 and (4.34) and the third one from the
definition ofCn.] Thus, (4.33) yields, forn ≥ N , onAn ∩ Bn ∩ Cn,

ρk,�

2
Hk(y2)I{inf0≤t≤T F̂

(n)
k,� (t)<y2} ≤ √

Hk(y2) + c,
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and, therefore,

P
{

inf
0≤t≤T

F̂
(n)
k,� (t) < y2

}
− 3ε

4

≤ P
({

inf
0≤t≤T

F̂
(n)
k,� (t) < y2

}
∩ An ∩ Bn ∩ Cn

)

≤ 2(
√

Hk(y2) + c)

ρk,�Hk(y2)
<

ε

4

for y2 small enough. Thus, (4.30) holds fork, j = �, y = y2 andn ≥ N . Takingy

smaller, if necessary, we extend (4.30) tok, j = � and alln. �

COROLLARY 4.7. For every j , we have

Q̂(n)
j

(−∞, F̂
(n)
j (t)

] ⇒ 0, Ŵ (n)
j

(−∞, F̂
(n)
j (t)

] ⇒ 0.

Moreover, for all stations j and � for which there exists a customer class k such
that j ∈ S(k|�), we have

Ŵ
j,(n)
�

(−∞, F̂
(n)
j (t)

] ⇒ 0.

PROOF. This is just a restatement of Corollaries 4.4 and 4.5, except that the
half-line (−∞, F̂

(n)
j (t)] is now closed on the right. Corollary 4.2 asserts that if

F̂
(n)
j were bounded below, uniformly int ∈ [0, T ] andn, then the inclusion of this

endpoint would make no difference. Using Lemma 4.6, we can ensure thatF̂
(n)
j is

bounded below with probability arbitrarily close to 1, and the result follows.�

5. Inverting the frontier equations. In this section we show the first part of
Theorem 3.2, that is, that the function
 defined by (3.20) is a homeomorphism of
the setD given by (3.12) and (3.13) onto[0,∞)J (Proposition 5.5). It is clear that

 is continuous. Lemma 5.1 asserts that
 mapsD onto[0,∞)J . The proof of this
lemma contains an explicit algorithm for inverting
. Lemmas 5.2 and 5.3 show
that
 is one-to-one onD. Finally, Lemma 5.4, examining the limiting behavior
of 
(y) in D asy → ∞, is used to show that the mapping
 is open.

LEMMA 5.1. 
(D) = [0,∞)J .

PROOF. Let w = (w1, . . . ,wJ ) ∈ [0,∞)J be given. The aim is to findy =
(y1, . . . , yJ ) ∈ D such that
(y) = w, that is, to solve the frontier equations

wj = ∑
k∈C(j )

ρk,j

[
Hk(yj ) − Hk

(
min

i∈S(k|j)
yi

)]+
, j = 1, . . . , J,(5.1)
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for ay ∈ D. Note that ifk is a customer class entering the system at stationj , then
mini∈S(k|j) yi = mini∈∅ yi = ∞, so

Hk(yj ) − Hk

(
min

i∈S(k|j)
yi

)
= Hk(yj ).

We may rewrite (5.1) in the form

wj = ∑
k∈K0(j )

ρk,jHk(yj ) + ∑
k∈C(j )\K0(j )

ρk,j

[
Hk(yj ) − Hk

(
min

i∈S(k|j)
yi

)]+
.

For j ∈ J0 andy ∈ R, we define

K0,j (y) = ∑
k∈K0(j )

ρk,jHk(y) = ∑
k∈K0(j )

ρk,j

[
Hk(y) − Hk

(
min

i∈S(k|j)
yi

)]+
.

Although defined on all ofR, we shall be interested inK0,j restricted to a smaller
set. In particular,

K0,j :
(
−∞, max

k∈K0(j )
y∗
k

]
onto−→ [0,∞)

is strictly decreasing and has a strictly decreasing inverse

K−1
0,j : [0,∞)

onto−→
(
−∞, max

k∈K0(j )
y∗
k

]
.

We choosej1 ∈ J0 so thatK−1
0,j1

(wj1) = maxj∈J0 K−1
0,j (wj ) and we setyj1 =

K−1
0,j1

(wj1). Then

wj ≥ K0,j

(
yj1

)
(5.2)

= ∑
k∈K0(j )

ρk,j

[
Hk

(
yj1

) − Hk

(
min

i∈S(k|j)
yi

)]+
∀ j ∈ J0,

wj1 = K0,j1

(
yj1

) = ∑
k∈K0(j1)

ρk,j1

[
Hk

(
yj1

) − Hk

(
min

i∈S(k|j1)
yi

)]+
.(5.3)

Induction hypothesis. Suppose that form = 1, . . . ,M , we have chosen distinct
indices j1, j2, . . . , jM , have defined numbersyj1 ≥ yj2 ≥ · · · ≥ yjM

, and have
defined functions

Km−1,j (y) = ∑
k∈K

(j1,...,jm−1)

m−1 (j )

ρk,j

[
Hk(y) − Hk

(
min

i∈S(k|j)
yi

)]+
, y ∈ R,
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for j ∈ J
(j1,...,jm−1)

m−1 . Although defined on all ofR, each function

Km−1,j :
(
−∞, max

k∈K
(j1,...,jm−1)

m−1 (j )

(
y∗
k ∧ min

i∈S(k|j)
yi

)]
onto−→ [0,∞)

is strictly decreasing when restricted to the indicated set and, therefore, has a
strictly decreasing inverse

K−1
m−1,j : [0,∞)

onto−→
(
−∞, max

k∈K
(j1,...,jm−1)

m−1 (j )

(
y∗
k ∧ min

i∈S(k|j)
yi

)]
.(5.4)

Suppose further that form = 1, . . . ,M , we havejm ∈ J
(j1,...,jm−1)

m−1 and

K−1
m−1,jm

(
wjm

) = max
j∈J

(j1,...,jm−1)

m−1

K−1
m−1,j (wj ), yjm = K−1

m−1,jm

(
wjm

);
hence,

wj ≥ Km−1,j

(
yjm

)
= ∑

k∈K
(j1,...,jm−1)

m−1 (j )

ρk,j

[
Hk

(
yjm

) − Hk

(
min

i∈S(k|j)
yi

)]+
(5.5)

∀ j ∈ J
(j1,...,jm−1)

m−1 ,

wjm = Km−1,jm

(
yjm

)
(5.6) = ∑

k∈K
(j1,...,jm−1)

m−1 (jm)

ρk,jm

[
Hk

(
yjm

) − Hk

(
min

i∈S(k|jm)
yi

)]+
.

Induction step. If M = J , we terminate the construction. IfM < J , we
proceed to stepM + 1 as follows. Recall that the setJ(j1,...,jM)

M is the set of
all stationsj not amongj1, . . . , jM with the property that at least one customer
class visitsj and the previous stations visited by this customer class are among
the stationsj1, . . . , jM . If there were no such stationj , then all external arrivals
would be to the set of stations{j1, . . . , jM } and all customers exiting a station
from this set would either exit the system or else proceed to another station in this
set. In this situation, stations outside set{j1, . . . , jM } would not be connected to
these stations, a situation we have ruled out by assumption. Hence,J

(j1,...,jM)
M is

nonempty.
For j ∈ J

(j1,...,jM)
M andy ∈ R, we define

KM,j (y) = ∑
k∈K

(j1,...,jM )

M (j)

ρk,j

[
Hk(y) − Hk

(
min

i∈S(k|j)
yi

)]+
.
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Although defined on all ofR,

KM,j :
(
−∞, max

k∈K
(j1,...,jM )

M (j)

(
y∗
k ∧ min

i∈S(k|j)
yi

)]
onto−→ [0,∞)

is strictly decreasing when restricted to the indicated set and, therefore, has a
strictly decreasing inverse

K−1
M,j : [0,∞)

onto−→
(
−∞, max

k∈K
(j1,...,jM )

M (j)

(
y∗
k ∧ min

i∈S(k|j)
yi

)]
.

We choosejM+1 ∈ J
(j1,...,jM)
M so that

K−1
M,jM+1

(
wjM+1

) = max
j∈J

(j1,...,jM )

M

K−1
M,j (wj )

and setyjM+1 = K−1
M,jM+1

(wjM+1). Then

wj ≥ KM,j

(
yjM+1

)
= ∑

k∈K
(j1,...,jM )

M (j)

ρk,j

[
Hk

(
yjM+1

) − Hk

(
min

i∈S(k|j)
yi

)]+
(5.7)

∀ j ∈ J
(j1,...,jM)
M ,

wjM+1 = KM,jM+1

(
yjM+1

)
(5.8) = ∑

k∈K
(j1,...,jM )

M (yjM+1)

ρk,jM+1

[
Hk

(
yjM+1

) − Hk

(
min

i∈S(k|jM+1)
yi

)]+
.

To complete the induction step it remains only to show thatyjM
≥ yjM+1.

We divide the analysis into two cases.

CASE I. jM+1 ∈ J
(j1,...,jM−1)

M−1 .

In this case (5.5) implies that

wjM+1 ≥ ∑
k∈K

(j1,...,jM−1)

M−1 (jM+1)

ρk,jM+1

[
Hk

(
yjM

) − Hk

(
min

i∈S(k|jM+1)
yi

)]+
.(5.9)

Fork ∈ K
(j1,...,jM)
M (jM+1) \ K

(j1,...,jM−1)

M−1 (jM+1), we havejM ∈ S(k|jM+1), so

min
i∈S(k|jM+1)

yi = yjM
.(5.10)



ACYCLIC NETWORKS 1335

It follows that ∑
k∈K

(j1,...,jM )

M (jM+1)\K (j1,...,jM−1)

M−1 (jM+1)

ρk,jM+1

[
Hk

(
yjM

)

− Hk

(
min

i∈S(k|jM+1)
yi

)]+
= 0.

(5.11)

Summing (5.9) and (5.11), we obtain

wjM+1 ≥ KM,jM+1

(
yjM

)
,

and, hence,

yjM
≥ K−1

M,jM+1

(
wjM+1

) = yjM+1.

CASE II. jM+1 ∈ J
(j1,...,jM)
M \ J

(j1,...,jM−1)

M−1 .

In this caseK(j1,...,jM)
M (jM+1) �= ∅ but K(j1,...,jM−1)

M−1 (jM+1) = ∅. This implies

that for everyk ∈ K
(j1,...,jM)
M (jM+1), we must havejM ∈ S(k|jM+1). Hence, for

everyk ∈ K
(j1,...,jM)
M (jM+1), equation (5.10) holds. Equation (5.8) becomes

wjM+1 = ∑
k∈K

(j1,...,jM)

M (jM+1)

ρk,jM+1

[
Hk

(
yjM+1

) − Hk

(
yjM

)]+
.

If wjM+1 > 0, thenyjM+1 < yM . If wjM+1 = 0, we have by definition

yjM+1 = K−1
M,jM+1

(0)

= max
k∈K

(j1,...,jM )

M (jM+1)

(
y∗
k ∧ min

i∈S(k|jM+1)
yi

)
= max

k∈K
(j1,...,jM )

M (jM+1)

(
y∗
k ∧ yjM

) ≤ yjM
,

where the third equality follows from (5.10). The induction step is complete.

When this construction terminates withM = J , we have chosenj1, . . . , jJ ,
a permutation of 1, . . . , J , and we have defined numbersyj1 ≥ yj2 ≥ · · · ≥ yjJ

,
such that (5.6) holds form = 1, . . . , J . Let j ∈ {1, . . . , J } be given, and choosem
so thatj = jm. For k ∈ C(j) \ K

(j1,...,jm−1)

m−1 (j), the setS(k|j) is not a subset of
{j1, . . . , jm−1} and, hence, mini∈S(k|j) yi ≤ yjm = yj . It follows that

∑
k∈C(j )\K (j1,...,jm−1)

m−1 (j )

ρk,j

[
Hk(yj ) − Hk

(
min

i∈S(k|j)
yi

)]+
= 0.(5.12)
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Summing (5.6) withjm = j and (5.12), we obtain (5.1).
It remains to show thaty = (y1, . . . , yJ ) ∈ D. Let π = (j1, . . . , jJ ). By

construction, form = 1, . . . , J , jm ∈ J
(j1,...,jm−1)

m−1 = Jπ
m−1, soπ ∈ 	. Moreover,

yj1 ≥ yj2 ≥ · · · ≥ yjJ
and, by (5.4),

yjm = K−1
m−1,jm

(
wjm

)
≤ max

k∈K
(j1,...,jm−1)

m−1 (jm)

(
y∗
k ∧ min

i∈S(k|jm)
yi

)

≤ max
k∈Kπ

m−1(jm)
y∗
k .

Thus,y ∈ Dπ and, hence,y ∈ D. �

LEMMA 5.2. Let w = (w1, . . . ,wJ ) ∈ [0,∞)J be given. Let y = (y1, . . . , yJ )

be the solution to (5.1) constructed in Lemma 5.1 and let ỹ = (ỹ1, . . . , ỹJ ) be
another solution to (5.1).Then, for i = 1, . . . , J , we have

yi ≤ ỹi .(5.13)

PROOF. The proof proceeds by induction. Namely, letπ = (j1, . . . , jJ ) be the
permutation constructed in the proof of Lemma 5.1. We assume that (5.13) holds
for i = j1, . . . , jM with someM < J (in particular, forM = 0, no assumption is
needed). We want to show that (5.13) holds fori = jM+1. By (5.8) and the fact
that ỹ satisfies (5.1), we have

KM,jM+1

(
yjM+1

)
= wjM+1

= ∑
k∈C(jM+1)

ρk,jM+1

[
Hk

(
ỹjM+1

) − Hk

(
min

i∈S(k|jM+1)
ỹi

)]+

≥ ∑
k∈K

(j1,...,jM )

M (jM+1)

ρk,jM+1

[
Hk

(
ỹjM+1

) − Hk

(
min

i∈S(k|jM+1)
ỹi

)]+
.

(5.14)

For k ∈ K
(j1,...,jM)
M (jM+1), S(k|jM+1) ⊆ {j1, . . . , jM}, so by the induction

hypothesis,

min
i∈S(k|jM+1)

yi ≤ min
i∈S(k|jM+1)

ỹi .(5.15)

This, together with (5.14) and the monotonicity ofHk , yields

KM,jM+1

(
yjM+1

) ≥ ∑
k∈K

(j1,...,jM )

M (jM+1)

ρk,jM+1

[
Hk

(
ỹjM+1

) − Hk

(
min

i∈S(k|jM+1)
yi

)]+

= KM,jM+1

(
ỹjM+1

)
.
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Thus, by the monotonicity property ofKM,jM+1, either

yjM+1 ≤ ỹjM+1(5.16)

or

max
k∈K

(j1,...,jM )

M (jM+1)

(
y∗
k ∧ min

i∈S(k|jM+1)
yi

)
≤ ỹjM+1 < yjM+1.(5.17)

However, (5.17) contradicts the definition ofyjM+1:

yjM+1 = K−1
M,jM+1

(
wjM+1

) ∈
(
−∞, max

k∈K
(j1,...,jM )

M (jM+1)

(
y∗
k ∧ min

i∈S(k|jM+1)
yi

)]
,

so (5.16) holds. �

LEMMA 5.3. The mapping 
 :D → [0,∞)J is one-to-one.

PROOF. Let w = (w1, . . . ,wJ ) ∈ [0,∞)J be given and letỹ = (ỹ1, . . . ,

ỹJ ) ∈ D be a solution to (5.1). Let̃π = (j̃1, . . . , j̃J ) ∈ 	 be such that̃y ∈ Dπ̃ ,
in particular,

ỹ
j̃1

≥ ỹ
j̃2

≥ · · · ≥ ỹ
j̃J

.(5.18)

In light of Lemma 5.2, it suffices to show that̃y and π̃ can be constructed
as the outputy = (y1, . . . , yJ ), π = (j1, . . . , jJ ), of the algorithm described in
Lemma 5.1. Once again, we proceed by induction. We assume that for some
M < J and allm ≤ M we have chosen in the above-mentioned algorithmjm = j̃m

andyjm = ỹjm (for M = 0, nothing is assumed). We want to show that it is possible
to choose in this algorithmyM+1 andjM+1 as ỹM+1 and j̃M+1, respectively. By
the induction hypothesis,K(j1,...,jM)

M (j) = K π̃
M(j) for all j andJ

(j1,...,jM)
M = Jπ̃

M .

In particular,j̃M+1 ∈ J
(j1,...,jM)
M becausẽπ ∈ 	. By assumption,

w
j̃M+1

= ∑
k∈C(j̃M+1)

ρ
k,j̃M+1

[
Hk

(
ỹ
j̃M+1

) − Hk

(
min

i∈S(k|j̃M+1)

ỹi

)]+
.(5.19)

If k ∈ C(j̃M+1) \ K
(j1,...,jM)
M (j̃M+1), thenS(k|j̃M+1) � {j̃1, . . . , j̃M } and, hence,

by (5.18), min
i∈S(k|j̃M+1)

ỹi ≤ ỹjM+1. Thus, (5.19) reduces to

w
j̃M+1

= ∑
k∈K

(j1,...,jM )

M (j̃M+1)

ρ
k,j̃M+1

[
Hk

(
ỹ
j̃M+1

) − Hk

(
min

i∈S(k|j̃M+1)

ỹi

)]+

= ∑
k∈K

(j1,...,jM )

M (j̃M+1)

ρ
k,j̃M+1

[
Hk

(
ỹ
j̃M+1

) − Hk

(
min

i∈S(k|j̃M+1)

yi

)]+

= K
M,j̃M+1

(
ỹ
j̃M+1

)
.

(5.20)
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The second equation follows from the fact that

S(k|j̃M+1) ⊆ {j1, . . . , jM} = {j̃1, . . . , j̃M} for k ∈ K
(j1,...,jM)
M (j̃M+1)(5.21)

and, hence, by the induction hypothesis,yi = ỹi for i ∈ S(k|j̃M+1). But ỹ ∈ Dπ̃ ,
so

ỹ
j̃M+1

≤ max
k∈K

(j1,...,jM )

M (j̃M+1)

y∗
k .

By (5.18), (5.21) and the induction hypothesis, fork ∈ K
(j1,...,jM)
M (j̃M+1), we have

ỹ
j̃M+1

≤ ỹ
j̃M

= min
{
ỹ
j̃1

, . . . , ỹ
j̃M

} = min
{
yj1, . . . , yjM

} ≤ min
i∈S(k|j̃M+1)

yi.

Therefore,

ỹ
j̃M+1

≤ max
k∈K

(j1,...,jM)

M (j̃M+1)

(
y∗
k ∧ min

i∈S(k|j̃M+1)

yi

)
.(5.22)

By (5.20) and (5.22),

ỹ
j̃M+1

= K−1
M,j̃M+1

(
w

j̃M+1

)
.(5.23)

Sinceỹ is a solution to (5.1), forj ∈ J
(j1,...,jM)
M , we have

wj = ∑
k∈C(j )

ρk,j

[
Hk(ỹj ) − Hk

(
min

i∈S(k|j)
ỹi

)]+

≥ ∑
k∈K

(j1,...,jM)

M (j)

ρk,j

[
Hk(ỹj ) − Hk

(
min

i∈S(k|j)
ỹi

)]+
.

(5.24)

For k ∈ K
(j1,...,jM)
M (j), S(k|j) ⊆ {j1, . . . , jM}, so yi = ỹi for i ∈ S(k|j) by the

induction hypothesis. Thus, by (5.24),

wj ≥ ∑
k∈K

(j1,...,jM)

M (j)

ρk,j

[
Hk(ỹj ) − Hk

(
min

i∈S(k|j)
yi

)]+

≥ ∑
k∈K

(j1,...,jM)

M (j)

ρk,j

[
Hk

(
ỹ
j̃M+1

) − Hk

(
min

i∈S(k|j)
yi

)]+

= KM,j

(
ỹ
j̃M+1

)
.

(5.25)

The second inequality follows from the fact thatj ∈ J
(j1,...,jM)
M , soj /∈ {j1, . . . , jM }

and, hence, by (5.18) and the induction hypothesis,ỹj ≤ ỹ
j̃M+1

. Relation (5.25)
implies

K−1
M,j(wj ) ≤ K−1

M,j

(
KM,j

(
ỹ
j̃M+1

)) ≤ ỹ
j̃M+1

, j ∈ J
(j1,...,jM)
M .(5.26)
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By (5.23) and (5.26),jM+1 andyjM+1 in the algorithm of Lemma 5.1 may be
chosen as̃jM+1 andỹ

j̃M+1
. This is what we wanted to show.�

LEMMA 5.4. limy∈D,‖y‖→+∞ ‖
(y)‖ = +∞.

PROOF. We argue by contradiction. Suppose that the lemma is false. Then
there exists a sequenceyn = (yn

1, . . . , yn
J ) ∈ D, with ‖yn‖ → +∞ asn → +∞,

and a finite constantM such that

‖
(yn)‖ ≤ M, n = 1,2, . . . .(5.27)

By taking a subsequence (also denoted byyn), we may assume that for some
π = (j1, . . . , jJ ) ∈ 	, we haveyn ∈ Dπ , n = 1,2, . . . . Let

m0 = min
{
m ∈ {1, . . . , J } :

{
yn
jm

}
n=1,2,... is an unbounded sequence

}
.

By definition the setDπ is bounded above in each coordinate. Again extracting a
subsequence (still calledyn), if necessary, we may assume

lim
n→∞yn

jm0
= −∞.(5.28)

Let wn = (wn
1, . . . ,wn

J ) = 
(yn), n = 1,2, . . . . By (5.6) withm = m0, we have

wn
jm0

= ∑
k∈K

(j1,...,jm0−1)

m0−1 (jm0)

ρk,jm0

[
Hk

(
yn
jm0

)
− Hk

(
min

i∈S(k|jm0)
yn
i

)]+
.(5.29)

[Recall that, by the proof of Lemma 5.3, the permutation constructed in the
algorithm of Lemma 5.1 with inputwn = 
(yn), yn ∈ Dπ , may be chosen to beπ .]
Observe that

S
(
k|jm0

) ⊆ {
j1, . . . , jm0−1

}
for k ∈ K

(j1,...,jm0−1)

m0−1

(
jm0

)
,(5.30)

and by the definition ofm0,

lim sup
n→∞

∣∣yn
ji

∣∣ < +∞, i = 1, . . . ,m0 − 1.(5.31)

Relations (5.28)–(5.31) yield limn→∞ wn
jm0

= +∞, because limx→−∞ Hk(x) =
+∞ for all k. This contradicts (5.27).�

PROPOSITION5.5. The mapping 
 :D → [0,∞)J is a homeomorphism of D

onto [0,∞)J .

PROOF. By Lemmas 5.1 and 5.3, it suffices to prove that
 is open. The
main idea of the proof is to use the one-point (Alexandroff) compactification
of D and [0,∞)J (see, e.g., [3], pages 92 and 93). Recall that the topology on
the one point compactificationX = X ∪ {∞} of a locally compact Hausdorff
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spaceX consists of open subsets ofX and the complements, inX, of compact
subsets ofX. Let ∞ be a single point not belonging toRJ . Let D = D ∪ {∞}
andR

J

+ = [0,∞)J ∪ {∞} be the one-point compactifications ofD and[0,∞)J ,

respectively. Define
 :D → R
J

+ by


(y) �
{


(y), if y ∈ D,
∞, if y = ∞.

Lemma 5.4 implies the continuity of
 at∞. Thus,
 is a continuous mapping of
a compact space into a Hausdorff space and, therefore, by Corollary 2 on page 87
of [3], it is closed. In fact, by Lemmas 5.1 and 5.3,
 is a homeomorphism ofD

ontoR
J

+. To conclude, letU be an open subset ofD and, hence, ofD. Therefore,


(U) = 
(U) is open inR
J

+. But 
(U) ⊆ [0,∞)J , so
(U) is open in[0,∞)J .
�

6. Proofs of the main results.

PROOF OF THEOREM 3.2. By Proposition 5.5, only the second part of
Theorem 3.2 needs to be shown. Let us observe that forj = 1, . . . , J , we have
[using the convention(a, b] = ∅ if a ≥ b]

Ŵ
(n)
j (t) = Ŵ (n)

j (t)
(
F̂

(n)
j (t),∞) + o(1)

= ∑
k∈C(j )

[
Ŵ (n)

k,j (t)

(
F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]
+ Ŵ (n)

k,j (t)

(
F̂

(n)
j (t) ∨ min

i∈S(k|j)
F̂

(n)
i (t),∞

)]
+ o(1)

= ∑
k∈C(j )

Ŵ (n)
k,j (t)

(
F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]
+ o(1)

= ∑
k∈C(j )

[
V̂(n)

0,k,j (t)

(
F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]

− ∑
j0∈S(k|j)

Ŵ
j0,(n)
k,j (t)

(
F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]]
+ o(1)

= ∑
k∈C(j )

V̂(n)
0,k,j (t)

(
F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]
+ o(1)

= ∑
k∈C(j )

ρk,j

[
Hk

(
F̂

(n)
j (t)

) − Hk

(
min

i∈S(k|j)
F̂

(n)
i (t)

)]+
+ o(1)

= 
j

(
F̂

(n)
1 (t), . . . , F̂

(n)
J (t)

) + o(1).

(6.1)
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Indeed, the first equality in (6.1) holds by Corollary 4.7. The third one follows
from the fact that classk customers with lead times at timent greater than
mini∈S(k|j) F

(n)
i (nt) have not yet been in service at one of the stationsi ∈ S(k|j)

and, thus, have not yet arrived at stationj . Similarly, no classk customer with
lead time at timent greater thanF (n)

j (nt) has ever been in service at stationj , so
all such customers must be either in queue at stationj or at an upstream station
j0 ∈ S(k|j). This explains the fourth equality in (6.1). The fifth one follows from
the fact that, for everyk ∈ C(j) andj0 ∈ S(k|j), we have

0 ≤ Ŵ
j0,(n)
k,j (t)

(
F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]
≤ Ŵ

j0,(n)
j (t)

(−∞, F̂
(n)
j0

(t)
] ⇒ 0

by Corollary 4.7. Finally, the sixth equation in (6.1) follows from Proposition 4.1
and Lemma 4.6, together with the fact that, by definition, for every station
i ∈ P (k), F̂

(n)
i (t) + √

nt ≥ y∗
k and, hence,

Hk

(
F̂

(n)
j (t) + √

nt
) = Hk

(
min

i∈S(k|j)
F̂

(n)
i (t) + √

nt

)
= 0.

By Lemma 3.1,(F̂ (n)
1 (t), . . . , F̂

(n)
J (t)) ∈ D and, by Proposition 5.5,
 is a

homeomorphism ofD onto [0,∞)J . Thus, (2.25), (3.21) and (6.1), together with
the continuous mapping theorem, yield

(
F̂

(n)
1 (t), . . . , F̂

(n)
J (t)

) = 
−1((
Ŵ

(n)
1 (t), . . . , Ŵ

(n)
J (t)

) + o(1)
)

⇒ 
−1(
W ∗

1 (t), . . . ,W ∗
J (t)

) = (
F ∗

1 (t), . . . ,F ∗
J (t)

)
. �

PROPOSITION6.1. Let j = 1, . . . , J and T > 0 be given. As n → ∞, both

sup
y∈R

sup
0≤t≤T

∣∣∣∣∣Ŵ (n)
j (t)(y,∞)− ∑

k∈C(j )

ρk,j

[
Hk

(
y∨F̂

(n)
j (t)

)−Hk

(
min

i∈S(k|j)
F̂

(n)
i (t)

)]+∣∣∣∣∣
and

sup
y∈R

sup
0≤t≤T

∣∣∣∣∣Q̂(n)
j (t)(y,∞) − ∑

k∈C(j )

λk

[
Hk

(
y ∨ F̂

(n)
j (t)

) − Hk

(
min

i∈S(k|j)
F̂

(n)
i (t)

)]+∣∣∣∣∣
converge to zero in probability.
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PROOF. By an argument similar to that used to derive (6.1), we have,
uniformly in 0≤ t ≤ T ,

Ŵ (n)
j (t)(y,∞)

= Ŵ (n)
j (t)

(
y ∨ F̂

(n)
j (t),∞) + o(1)

= ∑
k∈C(j )

Ŵ (n)
k,j (t)

(
y ∨ F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]
+ o(1)

= ∑
k∈C(j )

[
V̂(n)

0,k,j (t)

(
y ∨ F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]

− ∑
j0∈S(k|j)

Ŵ
j0,(n)
k,j (t)

(
y ∨ F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]]
+ o(1)

= ∑
k∈C(j )

V̂(n)
0,k,j (t)

(
y ∨ F̂

(n)
j (t), min

i∈S(k|j)
F̂

(n)
i (t)

]
+ o(1)

= ∑
k∈C(j )

ρk,j

[
Hk

(
y ∨ F̂

(n)
j (t)

) − Hk

(
min

i∈S(k|j)
F̂

(n)
i (t)

)]+
+ o(1).

(6.2)

Moreover, theo(1) terms above may be chosen uniformly iny ∈ R. This needs a
justification only for the last equality in (6.2). Fory > y∗

k , thekth terms in the sums
in both the fifth and the sixth line of (6.2) are zero. Proposition 4.1 gives a uniform
bound fory0 ≤ y ≤ y∗

k , with y0 arbitrary but fixed. Finally, the uniform bound can
be extended to ally by Lemma 4.6. This proves the first part of Proposition 6.1;
the proof of the second part is analogous.�

PROOF OFTHEOREM 3.3. Let us define a mappingψ :RJ → MJ by ψ(x) =
(ψ1(x), . . . ,ψJ (x)), x = (x1, . . . , xJ ), where forj = 1, . . . , J andB ∈ B(R),

ψj(x)(B) = ∑
k∈C(j )

ρk,j

∫
B∩(xj ,mini∈S(k|j) xi ]

(
1− Gk(ξ)

)
dξ.

Observe thatψ is continuous. Indeed, forj = 1, . . . , J and x, y ∈ RJ ,
x = (x1, . . . , xJ ), y = (y1, . . . , yJ ), using the fact that

∑
k∈C(j ) ρk,j = 1, we have

sup
B∈B(R)

|ψj(x)(B) − ψj(y)(B)|

≤ ∑
k∈C(j )

ρk,j

∫
(xj ,mini∈S(k|j) xi ]�(yj ,mini∈S(k|j) yi ]

(
1− Gk(ξ)

)
dξ

≤ 2 max
l=1,...,J

|xl − yl|,



ACYCLIC NETWORKS 1343

where � denotes symmetric difference. Therefore, by Theorem 3.2 and the
continuous mapping theorem, we have

ψ
(
F̂

(n)
1 (t), . . . , F̂

(n)
J (t)

) ⇒ ψ
(
F ∗

1 (t), . . . ,F ∗
J (t)

)
.(6.3)

For j = 1, . . . , J , t ≥ 0 andy ∈ R,

ψj

(
F ∗

1 (t), . . . ,F ∗
J (t)

)
(y,∞)

= ∑
k∈C(j )

ρk,j

∫
(y∨F ∗

j (t),mini∈S(k|j) F ∗
i (t)]

(
1− Gk(ξ)

)
dξ

= ∑
k∈C(j )

ρk,j

[
Hk

(
y ∨ F ∗

j (t)
) − Hk

(
min

i∈S(k|j)
F ∗

i (t)

)]+

= W∗
j (t)(y,∞).

This shows that

ψ
(
F ∗

1 (t), . . . ,F ∗
J (t)

) = W∗(t).(6.4)

Proposition 6.1 yields

sup
y∈R

sup
0≤t≤T

∣∣Ŵ (n)
j (t)(y,∞) − ψj

(
F̂

(n)
1 (t), . . . , F̂

(n)
J (t)

)
(y,∞)

∣∣ P→ 0(6.5)

for every j = 1, . . . , J and T > 0. Combining (6.3), (6.4) and (6.5), we have
(Ŵ (n)

1 , . . . , Ŵ (n)
J ) ⇒ W∗. The proof of(Q̂(n)

1 , . . . , Q̂(n)
J ) ⇒ Q∗ is analogous. �

7. Simulation. In this section we use simulation methods to assess the
predictive value of the theory developed in the previous sections and to provide
a simple illustration of the methodology. In the previous sections we considered a
sequence of queueing networks, indexed byn, whereas here we want to consider a
single queueing network. We imagine that this single system is a member of such
a sequence of networks corresponding to a large value ofn, that is, a system with
traffic intensities close to one.

Here we show how the theoretical lead-time profile can be constructed when the
system occupancy of thenth system is given for an EDF network. Suppressing the
time variablet , we recall that we denote the queue length of classk at stationj

by Q
(n)
k,j and its scaled version by

Q̂
(n)
k,j = 1√

n
Q

(n)
k,j .

We also denote the workload at stationj by W
(n)
j and its scaled version by

Ŵ
(n)
j = 1√

n
W

(n)
j .
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Recall that, by Assumption 2.1, the scaled workloads(Ŵ
(n)

1 , . . . , Ŵ
(n)
J ) converge

weakly to (W ∗
1 , . . . ,W ∗

J ). The lead-time measureQ(n)
k,j (y,∞) represents the

number of classk customers at stationj with lead-time greater thany and

Q̂(n)
k,j (y,∞) = 1√

n
Q(n)

k,j

(√
ny,∞)

.

Classk customers arrive with lead-time distribution given by

P
(
L

i,(n)
k ≤ √

ny
) = Gk(y).(7.1)

We defineG(n)
k (y) � Gk(

y√
n
) so that

P
(
L

i,(n)
k ≤ y

) = G
(n)
k (y)(7.2)

is the cumulative distribution function of the lead times of classk customers in
thenth system. The limits of the lead-time measure processes are in terms of the
functionsHk :

Hk(y) �
∫ ∞
y

(
1− Gk(η)

)
dη.(7.3)

We also define the function

H
(n)
k (y) �

√
nHk

(
y√
n

)
=

∫ ∞
y

(
1− G

(n)
k (η)

)
dη.(7.4)

Recall that the frontier at stationj is F
(n)
j , and the scaled frontier is

F̂
(n)
j = 1√

n
F

(n)
j .

According to Theorem 3.2,(
F̂

(n)
1 , . . . , F̂

(n)
J

) ⇒ (F ∗
1 , . . . ,F ∗

J ) � 
−1(W ∗
1 , . . . ,W ∗

J ),(7.5)

where
 = (
1, . . . ,
J ) :RJ → [0,∞)J is defined by


j(y1, . . . , yJ ) �
∑

k∈C(j )

ρk,j

[
Hk(yj ) − Hk

(
min

i∈S(k|j)
yi

)]+
,

(7.6)
j = 1, . . . , J.

We also define
(n) = (

(n)
1 , . . . ,


(n)
J ) :RJ → [0,∞)J by



(n)
j (y1, . . . , yJ ) �

∑
k∈C(j )

ρ
(n)
k,j

[
H

(n)
k (yj ) − H

(n)
k

(
min

i∈S(k|j)
yi

)]+
,

(7.7)
j = 1, . . . , J.
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Suppose that, in addition to (2.17), we have

λk − λ
(n)
k = O

(
1√
n

)
and ρk,j − ρ

(n)
k,j = O

(
1√
n

)
for k ∈ C(j), j = 1, . . . , J . Then, by (7.5) and the continuous mapping theorem,
we have, forj = 1, . . . , J ,

1√
n



(n)
j

(
F

(n)
1 , . . . ,F

(n)
J

) = ∑
k∈C(j )

ρ
(n)
k,j

[
Hk(F̂j ) − Hk

(
min

i∈S(k|j)
F̂i

)]+

= 
j

(
F̂

(n)
1 , . . . , F̂

(n)
J

) + O

(
1√
n

)

⇒ 
j(F
∗
1 , . . . ,F ∗

J ) = W ∗
j ≈ 1√

n
W

(n)
j .

Therefore,
(n)
j (F

(n)
1 , . . . ,F

(n)
J ) ≈ W

(n)
j , j = 1, . . . , J . [The difference between

these two quantities isO(1), but it is small relative to the number of customers
in the system.] Because
(n) has the same functional form as
, the proofs in
Section 5 apply to
(n) as well as
. In particular,
(n) is a homeomorphism of
D(n) � √

nD onto[0,∞)J (see Proposition 5.5). Therefore,(
F

(n)
1 , . . . ,F

(n)
J

) ≈ (

(n))−1(

W
(n)
1 , . . . ,W

(n)
J

)
�

(
F

(n)

1 , . . . ,F
(n)

J

)
.(7.8)

According to Theorem 3.3, for everyy ∈ R andj = 1, . . . , J , we have, by (7.4),
(7.5) and (7.8),

Q(n)
j (y,∞) ≈ √

nQ∗
j

(
y√
n
,∞

)

≈ ∑
k∈C(j )

λk

[
H

(n)
k

(
y ∨ F

(n)
j

) − H
(n)
k

(
min

i∈S(k|j)
F

(n)
i

)]+

≈ ∑
k∈C(j )

λ
(n)
k

[
H

(n)
k

(
y ∨ F

(n)

j

) − H
(n)
k

(
min

i∈S(k|j)
F

(n)

i

)]+
.

(7.9)

In particular,

Q
(n)
j = √

nQ∗
j (R)

≈ ∑
k∈C(j )

λ
(n)
k

[
H

(n)
k

(
F

(n)

j

) − H
(n)
k

(
min

i∈S(k|j)
F

(n)

i

)]+
,(7.10)

j = 1, . . . , J.

Equations (7.9) and (7.10) indicate that the lead-time profiles can be approximated
by a deterministic function in terms of the parameters of thenth system, while
the knowledge of the indexn is not required. The above approximations can be
verified by simulation.
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FIG. 1. A two node acyclic network with four customer classes.

7.1. A two station case. We consider a simple network with two stations
(J = 2) and four customer classes(K = 4). Flows 1 and 2 visit both stations
but in the opposite order, while flows 3 and 4 visit only one station (Figure 1).

7.2. Constant deadline. For illustrative purposes, we present the special case
in which customers in classk arrive at the system with constant deadliney∗

k , that

is, G
(n)
k (y) = I[y∗

k ,∞)(y). We also assume thaty∗
1 ≥ y∗

2 ≥ y∗
3 ≥ y∗

4. We simplify

notation by writingQj , Fj , D and λk in place ofQ(n)
j , F

(n)

j , D(n) and λ
(n)
k ,

respectively. It is easy to see that in the case under consideration the sets	

andD, defined by (3.11)–(3.13), are equal to{(1,2), (2,1)} andD(1,2) ∪ D(2,1),
respectively, where

D(1,2) = {(y1, y2) :y1 ≥ y2, y1 ≤ y∗
1, y2 ≤ y∗

1},(7.11)

D(2,1) = {(y1, y2) :y2 ≥ y1, y1 ≤ y∗
2, y2 ≤ y∗

2}.(7.12)

GivenQ1 andQ2, one can findF1 andF2 by inverting the system of approximate
equations (7.10), which in our case reads

Q1 ≈ λ1(y
∗
1 − F1) + λ2[(y∗

2 − F1)
+ − (y∗

2 − F2)
+] + λ3(y

∗
3 − F1)

+,(7.13)

Q2 ≈ λ1(F1 − F2)
+ + λ2(y

∗
2 − F2)

+ + λ4(y
∗
4 − F2)

+.(7.14)

Depending on values ofQ1 andQ2, there are five different formulas givingF1 and
seven forF2 presented in equations (7.15)–(7.26). These are

F1 ≈ y∗
1 − Q1

λ1
,(7.15)

F1 ≈ λ1y
∗
1 + λ2y

∗
2 − Q2 − Q1

λ1 + λ2
,(7.16)

F1 ≈ λ1y
∗
1 + λ3y

∗
3 − Q1

λ1 + λ3
,(7.17)

F1 ≈ λ1y
∗
1 + λ2y

∗
2 + λ3y

∗
3 − Q1 − Q2

λ1 + λ2 + λ3
,(7.18)
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F1 ≈ λ1y
∗
1 + λ3y

∗
3 − Q1

λ1 + λ2 + λ3
+ λ2(λ2y

∗
2 + λ4y

∗
4 − Q2)

(λ1 + λ2 + λ3)(λ2 + λ4)
,(7.19)

F2 ≈ y∗
2 − Q2

λ2
,(7.20)

F2 ≈ λ1y
∗
1 − Q2 − Q1

λ1
,(7.21)

F2 ≈ λ2y
∗
2 + λ4y

∗
4 − Q2

λ2 + λ4
,(7.22)

F2 ≈ λ1y
∗
1 + λ2y

∗
2 − Q2 − Q1

λ1 + λ2
,(7.23)

F2 ≈ λ1y
∗
1 + λ2y

∗
2 + λ4y

∗
4 − Q2 − Q1

λ1 + λ2 + λ4
,(7.24)

F2 ≈ λ1(λ1y
∗
1 + λ3y

∗
3 − Q1)

(λ1 + λ2)(λ1 + λ3)
+ λ2y

∗
2 − Q2

λ1 + λ2
,(7.25)

F2 ≈ λ1(λ1y
∗
1 + λ3y

∗
3 − Q1)

(λ1 + λ3)(λ1 + λ2 + λ4)
+ λ2y

∗
2 + λ4y

∗
4 − Q2

λ1 + λ2 + λ4
.(7.26)

To describe the function mapping the queue lengths(Q1,Q2) to the point
(F1,F2) ∈ D satisfying (7.13) and (7.14), we have divided the quadrant[0,∞)2 in
the(Q1,Q2)-plane into eight regions, I–VIII, which can be seen on Figure 2. Each
of these eight regions is mapped onto the corresponding region I′–VIII ′ of D (i.e.,
I ′ is the image of I, etc.) plotted on Figure 3. The regions in[0,∞)2 are defined by
the eight verticesA–H shown in Figure 2 and the images of these vertices inD

are denotedA′–H ′ in Figure 3.
Table 1 gives the appropriate pair of formulas for the different ranges of values

of (Q1,Q2), depending on the region in[0,∞)2 in which the point(Q1,Q2) is
located.

In the various simulation experiments, we simulate the two node queueing
network, as shown in Figure 1. The external inter-arrival times and service times

Region Formula for F1 Formula for F2

I (7.15) (7.21)
II (7.16) (7.20)

III (7.15) (7.23)
IV (7.15) (7.24)
V (7.18) (7.20)

VI (7.17) (7.25)
VII (7.19) (7.22)

VIII (7.17) (7.26)
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FIG. 2. Regions of the set [0,∞)2.

FIG. 3. Regions of the set D.
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are all assumed to follow exponential distributions. For each simulation run,
a particular queue length combination at each node,Qi = (Q1i ,Q2i ,Q3i,Q4i ),
i = 1,2, is chosen. NoteQ14 = Q23 = 0. The simulation run is initiated with
empty queues. Local time is accumulated when the queue length levels at node 1
and node 2 are exactly equal toQ1 andQ2, respectively. At the instant the local
time reaches a pre-specified value, 10 for the results presented in this paper, the
lead-time profiles for all the customer at each node are recorded and the local time
counter is reset to zero. The simulation continues until 50 lead-time profiles at each
node are recorded. The empirical lead-time profiles are expressed in the form of
empirical lead-time c.d.f.’s.

In the simulation we setλ1 = λ2 = λ3 = λ4 = 0.32, and µk,j = 1 for
all k, j , so that the total traffic intensity at each node is equal to 0.96. We
consider three cases with different combination of queue lengths and end-to-end
deadlines. The end-to-end constant deadline for the four customer classes are
denoted byD = (D1,D2,D3,D4). In Figures 4–6, the left-most dots indicate
the pointwise minimum empirical cumulative distribution function of the lead-
time profile for these 50 samples, the right-most dots indicate the pointwise
maximum, and the central dots are the average. As a function ofy, the ratio
(Q

(n)
j − Q(n)

j (y,∞))/Q
(n)
j [whereQ(n)

j (y,∞) is approximated by the right hand-
side of (7.9)] is plotted as a dashed curve in these figures. We obtained the solid
curves in Figures 4–6, by replacingλj in the right-hand sides of (7.9) and (7.10) by
λj/0.96. This normalization by the total traffic intensity causes the theory to have
better predictive value. Indeed, with this normalization the theoretical cumulative
distribution functions and the pointwise average empirical cumulative distribution
functions are in almost perfect agreement.

In Figures 4–6, the choice ofQ1 andQ2 is made to illustrate different profile
compositions at the two nodes. Figure 4 shows the profiles of the case when

Q1 = (50,0,0,0), Q2 = (20,38,0,0)

and

D = (400,300,200,100).

In this case only flow 1 is present at node 1, while only flows 1 and 2 are present
at node 2.(F1,F2) is solved by (7.15) and (7.23) (region III).

In Figure 5 the queue length levels are set at

Q1 = (40,10,10,0), Q2 = (0,30,0,0)

and the deadlines are

D = (200,200,110,100).

Here, all three flows are present at node 1, while only flow 2 is present at node 2.
In this case(F1,F2) is solved by (7.18) and (7.20) (region V).



1350 KRUK, LEHOCZKY, SHREVE AND YEUNG

FIG. 4. Profiles: Mean, Max, Min and Theory, Q1 = (50,0,0,0), Q2 = (20,38,0,0),
D = (400,300,200,100).

FIG. 5. Profiles: Mean, Max, Min and Theory, Q1 = (40,10,10,0), Q2 = (0,30,0,0),
D = (200,200,110,100).
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FIG. 6. Profiles: Mean, Max, Min and Theory, Q1 = (50,0,0,0), Q2 = (50,0,0,0),
D = (500,100,100,100).

The final case in Figure 5 shows the profiles when

Q1 = (50,0,0,0), Q2 = (50,0,0,0)

and

D = (500,100,100,100).

Only flow 1 is present at both nodes 1 and 2. In this case(F1,F2) is solved by
(7.15) and (7.21) (region I).

In each of these cases the figures show the excellent predictive accuracy of the
theory.
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