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LOCAL LIMIT THEORY AND LARGE DEVIATIONS
FOR SUPERCRITICAL BRANCHING PROCESSES

By PETERE. NEY AND ANAND N. VIDYASHANKAR
University of Wisconsin and University of Georgia

In this paper we study several aspects of the growth of a supercritical
Galton—Watson proced€,, :n > 1}, and bring out some criticality phenom-
ena determined by the Schréder constant. We develop the local limit theory
of Z,, that is, the behavior oP (Z,, = v,) asv, / oo, and use this to study
conditional large deviations ¢tz :n > 1}, whereY,, satisfies an LDP, par-

ticularly of {Z,;lzn+1:n > 1} conditioned orz, > vj,.

1. Introduction. In this paper we study the large deviations of a “random
average” indexed by a supercritical branching process and related aspects of
the growth rate of the branching process. We introduce “conditional large
deviation theory” and establish that certain functionals based ortlhgeneration
population size satisfy the conditional large deviation principle. In the process we
also establish a phase transition in the rate of growth of the branching process
based on the values of a parametethe so-called Schréder constant. The main
technical tool is a local limit theorem which substantially unifies, sharpens and
extends the existing results in the literature.

We begin by considering the single type Galton—Watson branching process
{Z,,n > 1} initiated by a single ancestor, that 53 = 1. We denote the offspring
distribution by{p; : j > 0}, the mean of the offspring distribution by (> 1), and
the probability generating function bg(s) for 0 <s < 1, that is,

PlZy=jl1=pj, jz0,  f=) s/p; and m=)_jp;.
Jj=1 j=>1

Lety = f'(g), whereq = P(Z,, =0 for somen > 1) is the extinction probability.
Let {&,;:i > 1,n > 1} be i.i.d. random variables witl? (¢, ; = k) = px, and
interpret them as the number of offspring of ttie parent in the:th generation.
Thenzn+1 = Z/filgn,k-

The focus of the paper is on the the large deviation behavior of the ratio
R, = Zn—lan and some of its generalizations. By the branching property, this
ratio can be expressed as
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where{&;,i > 1} are i.i.d. with P(é1 = k) = pg, k > 0. Its behavior sheds light
on the evolution of branching populations and is also important in statistical
inference for branching processes since it is the maximum likelihood estimator
of the meanm when (Z,, Z,+1) are observed. It is thus relevant to study its
rate of convergence; doing so, via Bahadur efficiency, leads to questions about
large deviations oR,,. FurthermoreR,, being a random average of i.i.d. random
variables, it is natural to enquire whether it has large deviation properties along the
lines of Cramér’s theorem.

Large deviations of R, :n > 1} were previously investigated by Athreya [1]
and Athreya and Vidyashankar [4]. It was established in those papers that, under
an exponential moment hypothesisgit- m andy > 0, then

1
Q) O< lim —logP(R, >alZ,>0)=—logy.
n—o0o p

Thus the sequenck, satisfies the LDP (see [10] for definition) with the constant
rate function/ (x) = —logy. The limit is “degenerate” in the sense that the rate
function is independent af.

It is also puzzling, at first sight, that thougt, = Z;* Zizz"l & is a “sample
mean,” the Cramér rate functidn= A* (the convex conjugate of the logarithmic
generating function of1) does not appear in the rate. A heuristic explanation of
this behavior comes from the fact that the contribution®{®,, > a) come from
small values ofZ,,. More precisely, a straightforward argument shows that

(2) nli_)mooP(Zn =k|R, >a) =a(k),

where {a(k):k > 1} is a probability distfpution. Thus, even thougl,, grows

like m™ when conditioned oR,, > a, Z, stays small in the sense that it converges
(conditionally, in probability) to a proper random variable; that is, the “large”
deviations ofR,, favor “small” values ofZ,,. Thus if one forcesZ, to be large,

then it is conceivable thak, may exhibit a “typical” large deviation behavior

as described by Cramér’s theory. This motivates studying the large deviations of
{R,, :n > 1} by conditioning onZ,, > v, wherev,, ' co. A simple Bayes formula

for the conditional probability then leads to studying in detail the behavior of
P(Z, =v,) for various choices of,,.

Conditioning as a technique to improve the precision of confidence intervals
has long been used in the statistical literature. It has been argued by Efron,
Hinkley and others (see [16, 26, 27]) that when one seeks to construct confi-
dence intervals for an unknown parameter it should be conditioned on the observed
Fisher information. Motivated by this, Sweeting [28] considered the problem of
maximum likelihood estimation of the offspring mean when the underlying off-
spring distribution is geometric. Indeed, Sweeting establishes that the statistic
Th=(X"_9Zj-1) 'Y"_yZ;, conditioned ory"_o Z;_1 = V,, whereV, ~ m",
appropriately centered and normalized converges to a Gaussian random variable
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with mean 0 and variance equal to the Fisher information. Furthermore, Sweet-
ing [29] demonstrates the improved performance of these conditional confidence
intervals through simulations. For further work on conditioning in the context of
branching processes, see [6, 18, 17]. We of course focus on the stRfisfite
observed conditional Fisher information in this case i¥Z,,.

A further motivation for the present study comes from a class of conditioned
limit laws similar to Gibbs conditioning. In its simplest form the latter describes
the behavior of the conditional distributions

1 n
P{(Xl,...,Xk) e -‘—in e A},
niz1
whereXq, X», ... arei.i.d. random variables andis a Borel set. Extension of this
concept to branching processes suggests studying the branching distributions

12
3) P{(Zl,...,zk)e-‘Z—an,,-eA}.
ni=1

Since the conditioning event {R,, € A}, or more generally can be taken of the
form {(Z,, Z,11) € A x B}, behavior of (3) yields information about thgast
structure of the branching population, based on the information abguriegant
(namelyZ, and Z,11). This formulation has practical significance, for example,
in the area of molecular evolution [9, 10, 23, 30]. Now the analysis of (3) requires
a careful study of the large deviations {@&, :n > 1} which is carried out in the
present paper. The behavior of (3) itself requires additional technical tools which
are developed and treated separately in another paper.

The rest of the paper is organized as follows: Section 2 contains a summary
of results and related discussions, while Section 3 contains proofs. Section 4 is
devoted to some concluding remarks.

2. Summary of results and related discussions. In this section we state the
main results of the paper. We begin by describing the relevant branching process
background so as to ease the discussion and exhibit the significance of our results.

2.1. Branching process background. Let {Z,:n > 1} be a single type su-
percritical branching process withp = 1 and meann. The sequencéW, =
m~"Z,;n > 1} plays an important role in the study of the limit theory of super-
critical branching processes. It is well known tH3k, :n > 1} is a nonnegative
martingale sequence and, hence, converges with probability one to a nonnegative
random variabléV ; under the further assumption thatZ,log Z1) < oo, the limit
random variable is nontrivial with an absolutely continuous density, except
for a possible atom at 0 (see [3] for details). The behavior of the density near 0
has been investigated by Dubuc [13] who showed that fari0< 1 there exists
universal constants @ C1 < C» < oo such that

4) Crx* P <w(x) < Cx® Y,
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whereq is a solution toy = m~* and is assumed to be finite. The finiteness of

is equivalent topg + p1 > 0 and, drawing on the functional iterations literature,
offspring distributions with this property are said to belong to $hler6der case.

A further refinement of the above estimate has been considered by Biggins and
Bingham [7]. The process with = oo grows exponentially fast at all times and

as such has a different probabilistic structure and is frequently referred to as the
Bottcher case.

The guantitye shows up in several deep results in the theory of supercritical
branching processes and will play a critical role in our study as well. Karlin
and McGregor [21, 22] studied the problem of embeddability of discrete-time
branching processes into continuous-time branching processes. The Karlin—
McGregor function

K(s)=s*Q(¢(s))  whereg(s)=E(e*")

and its constancy has been the subject of much study (see [14] and the references
therein). For the definition 0 (-) see below. Karlin and McGregor conjectured
thatK (-) is constant exactly when the the discrete-time process is embeddable into
a continuous-time process. Building on their work, Dubuc [13] established that a
discrete-time branching process [satisfyifZ, log Z1) < oo] is embeddable into
continuous-time Markov branching process if and only if

1-«

lim w(x)x exists and is finite
BN

He further established that this is equivalent to the existence of the limija4
of Q(s)(1— )%, whereforO<s <1,
fu(s) —q

y}’l

The function Q(-) satisfies the functional equatio@(f(s)) = yQ(s) and
Q(g) =0andQ(1) = oo; it can be extended to an analytic function in the interior
of the unit disc and hence has the power series representation

(6) Q@)= gqjs! for0O<s<1.
j=0

©) 0(s) = lim_0,(s) = lim_

In the work on large deviations of branching processes (and in other contexts
as well; see [19, 20]) it has been established [1, 24] that the integrability of
Q() near 1, that is, finiteness déf= fol Q(s)ds, plays an important role. In the
embeddable situation9 « < 1 and the above-mentioned result of Dubuc readily
yields that/ < oo. Of course, one can establish the finitenesd otinder the
assumptionr < 1, without invoking any embeddability issues [1, 24, 25].

In this paper we make a detailed study ®tZ,, = v,)) for various ranges of
values ofv,,. This problem was studied in the 1970s for the extreme cases when
v, ~ m" for a complicated restriction on the range of values @r whenv, is a
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constant [2, 13, 14]. The behavior 8 Z,, = v,) for the entire range of values of

v, = O(m™) and the entire range of values@has been open since that time. We
will present a unified solution to this problem and show that this rate is intimately
connected to the rate of convergencé,pt fcl Ou(s)dstol = fcl Q(s)ds,where
O<c< 1.

2.2. Local limit theorem. We begin this section by recalling the known local
limit results. For the sake of simplicity, we will assume thgt= 0 (see Remark 4).
Whenv,, is a constant, one can use the analyticityXgf) in the interior of the unit
disc to show that

. P(Z,=]
7) lim 2 =0 _

n—00 Pﬁ 4

whereg;’s are defined in (3). A natural question is the behaviore¥, = v,)

whenwv, grows withn. If one assumesE(Z%) < o0, then Athreya and Ney [2]

(see also [13]) have established the rate of convergence to 0 of the difference

im"P(Z, = j) — w(jm™")|, whenj(n) ~ m". Assuming only the finiteness of

the mean, Dubuc and Seneta [15] proved a weaker form of the above result. It is

unclear from these works i plays any role in the behavior @t(Z,, = v,). For

the early history of the local limit theorem, see the paper of Athreya and Ney [2].
Our first result is a new local limit theorem which provides the asymptotic

behavior of P(Z,, = v,) in the entire range,, = O(m™), and demonstrates the

critical role of«. The theorem covers both the Schroder and Boéttcher cases.

THEOREM 1. Assumethat E(Z1logZ;) < oo. Let {v, :n > 1} be a sequence
of integers such that v, / oo asn — oo and v, = O(m™). Then there exists
constants 0 < C1 < C2 < oo such that

P(Zy = vy) P(Z, = vp)

C1 <liminf ———= <limsup < (Co,
n—o00 An n—>00 n
where
pfv,‘f_l, if <1,
An= knp?, if Ot=1,
m", if @ > 1 (possibly co),

andk, =[n— %"Tz +1]. Furthermore, if v,, = m" % for some sequence of integers
k, = O(n) asn — oo, then lim,_ A;lP(Zn = v,) exists and is positive and
finite.

REMARK 1. WhenE(Z1logZ,) = oo butm < oo, the rate of convergence
will depend on the Senata constants. The extension of Theorem 1 to this general
case is difficult and will be taken up separately.
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REMARK 2. Observe that when is fixed ande < 1, P(Z,, = v,)) increases
if v, decreases; thus, roughly speakiRgZ, = z) favors smaller values af. This
phenomenon will reappear in different guises later. It is further suggested by the
fact that from (1) [whenE (Z1log Z1) < o¢], the mode of the distribution d¥ is
closer to 0. The case = 1 is somewhat surprising, since such an argument using
the density does not hold.

The following uniform estimate on the behavior of sup P(Z, = j) is of
interest in its own right and will be used in the proof of our large deviation
theorems. The result covers both the Schréder and Béttcher cases.

THEOREM 2. Under the conditions of Theorem 1, the following prevail:

1. If o < 1, then there exist universal constants 0 < C; < C2 < oo such that
(8) C1p} < supj*tP(Z, = j) < Cap}.

J=Un

2. If « =1, then there exist universal constants 0 < C3 < C4 < oo such that

©) C3pikn < SUPP(Zy = j) < Caplkn,
J=Un
wherek,, =[n — %’Tz] ([x] refersto the largest integer in x).

3. If a > 1 (possibly c0), then there exist universal constants 0 < Cs < Cg < 00
such that
(10) Csm™" < supP(Z,=j)<Cem™".

J=vn

REMARK 3. Theorems 1 and 2 in the Bottcher case, thafgss inf{j: p; >
0} > 2, are interesting since the process has a different probabilistic behavior.
Of course,P(Z, = v,) = 0, wheneven, < jj. Thus the local limit theorem
yields nontrivial results wheng < v, andv, = O(m"). Dubuc [14] has given
a detailed analysis of the moment generating functioWoaind Bingham [8],
using a Tauberian argument, has elucidated the behaviBi(¥f < x) asx | O.
A crucial role is played by the parametgf= (logm)~!log jo] that relates the
minimum family size and the mean of the offspring distribution. By definition,
0 < B8 < 1. Then the result of Bingham [8] shows thata$ O,

T

(12) —logP(W < x) ~ PR
wheret is an interesting constant. The above result can be used to show that the
densityw(-) of the random varibléV decays to 0 as decreases to 0 exponentially
fast in a manner dictated by a function §f Thus it is reasonable to expect that
the behavior ofP (Z,, = v,), just as in the Schroder case, depends on the range of
values of 8. It turns out, however, that since the Bottcher case corresponds to a
situation wherw = oo, the rate is justs " (Casex > 1) and independent .
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REMARK 4. If pg > 0, then Theorems 1 and 2 will hold wiity replaced by
y=1@.

2.3. Large deviations. In this section we state our large deviation results.
Since R, is the mean of a random sum, one is motivated to ask more generally
about the large deviations behavior §tN,) where S(n) = >°7_; X; where
{X;:i > 1} is a sequence of i.i.d. random variables and(,~ oo in probability)
is a sequence of random variables. When one normalizes the seq$énge:

n > 1} by n then the large deviation behavior ef 1S(N,) is easily established
[see [11], Exercise 2.3.19(b)]. In fact, the conclusion is fwatlS(N,) :n > 1}
satisfies an LDP with the rate function being the Legendre—Fenchel transform of
A(Ax(0)), whereA x () is the logarithmic moment generating function’dfand

for somen — oo,

(12) A = lim }IogE(e“V"),
n—-oon

where the above limit is assumed to exist in a neighborhood of the origin.
The situation is quite different, however, when one normalizes the sequence
{S(N,):n > 1} by N, itself, which is the case witlR,,. Our first proposition
considers this problem in a slightly more general context.

PROPOSITIONL. Let {Y(n):n > 1} be a sequence of random variables that
satisfy the LDP with the rate function Iy (-) and speed (normalizing sequence) r (n)
and {N, :n > 1} denote a sequence of integer valued random variables such that
N, /' oo; assume further that for a, — co and 6 > 0,

(13) lim_ ai log E (e 7" V%) = A (6).
Let
(14) pn(:) =P(Y(N,) €-).

Then the sequence of measures {u, :n > 1} satisfy the LDP with rate function
—A(Iy(-)) and speed a,,.

The point of the proposition is that the rate function depends explicitly on the
behavior ofA(-). Indeed, ifA is a constant, then the rate function is degenerate in
the sense that the rate is “independent” of the set for which the large deviation
is studied. We have seen that this general phenomenon is exhibited when one
considers the large deviations Bjf.

Thus to bring out the dependence of the rate on the set being considered, we
condition onN,, > v, or more generallyN,,_r > v,_. The following form of
Proposition 1 brings out the ingredients necessary for the conditional analysis in
Theorem 3.
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PROPOSITION2. Let {Y(n):n > 1} denote a sequence of random variables
that satisfy the LDP with rate function Iy (-) and speed r(n), and {N,,:n > 1}
denote a sequence of integer valued random variables such that N, " oo and is
independent of Y,,. Let

(15) tn(-) =P(Y(Ny) € |Ny—f > Upi).
Let {an(k) :n > 1} denote the sequence of random variables with distribution
(16) P(Nj(k) = j) = P(Ny = jINy—k = va_s).
Assume that there exists a,, — oo such that, for all 8 > 0,
1
17) lim_— log E (exp(—6r (N (k)))) = K ()
n— an

and the limit is continuous. Then the sequence of measures {u,, :n > 1} satisfies
the LDP with rate function — K (Iy (-)) and speed a;,.

Of course, in order for the above proposition to have real substance in particular
cases, the speed sequereg} and the limit K(9) in (16) must be explicitly
determined. Indeed wheM, = Z,,, we can make these determinations using the
local limit theory and the results are stated in the following theorem.

THEOREM 3. Let {Y(i):i > 1} be any sequence of random variables that
satisfies the LDP with a “good” rate function 7(-) and speed n. Assume that
E(Z1logZy) <ocoand 0 < o < oo. Let

(18) tn i (A) = P(Y(Zy) € Al Zp— = vpt), n>k, ACR,

where {v, :n > 1} is a sequence of positive integers increasing to infinity.

1. 1flim,soon tv,_x =b,0 < b < oo, then the sequence 1, &, where k is fixed,
satisfiesthe LDP with rate 7 (x) and speed v,,_, where

(19) [(x) =—log fi(e '™) +bB

and B=—logp; ifa <1whileB=logm ifl<a < oco.

. 1fb=0, I reducesto — log fi(e ™! ™).

A limy,Ls vn‘_lkn — 00, then the sequence ., x, where k is fixed, satisfies the
LDP with constant rate function B and speed n. Furthermore, I(-) is a good
rate function.

wWnN

REMARK 5. The trichotomyb =0, 0 < b < oo, b = oo shows the critical
role of the ratev,, = n; namely whethew, grows faster or slower tham. The
limit described above may not exist if ljmn vn‘_lkn does not exist. In fact,
one can construct a sequenggsuch that the limit is different along different
subsequences. However, in these situations the large deviations upper bound and
lower bound will still hold.
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The above theorem when specialized to the branching case yields the large
deviations forR,. We have the following corollary.

COROLLARY 1. Assume E(¢?%1) < oo, lim,—eon tv,_x = b and 0 <
a < 00. Then sequence of measures

(20) wh =PRy€AlZyk Zvaer), n>k
satisfies the LDP with the good rate function 71(-) and speed v,,_¢, where
(21) I1(x) = —log fi(e ") 4+ bB;

here A*(-) is the convex conjugate of the cumulant generating function of the
randomvariable Z; and B isasin thetheorem. If n~1v,_; — oo, then I1(x) = B.

REMARK 6. Under an exponential moment condition 8n a sharper result
along the lines of [5] can be obtained.

Theorem 3 also sheds light on the large deviation#pf W. Namely, we have
the following corollary.

COROLLARY 2. Assume E(e?%1) < oo, limyoon tv,_x = b and 0 <
a < 00. Then the sequence of measures

@_p(W
(22) /’Ln,k = P(W €A

n

Zn—k = Un—k)7 n>k

satisfies the LDP with the good rate function I»(-) and speed v,,_¢, where
(23) I(x) = —log fi (e *W™) +bB,

where A}, (-) is the Legendre-Fenchel transform of the cumulant generating
function of the randomvariable W, and B is as in the theorem. If nlu,_p — oo
then I>(x) = B.

An upper bound for the rate of convergence|@f — W,| was obtained by
Athreya [1].
Our next theorem treags, ; in (18) whena = oo (the Bottcher case).

THEOREM 4. Let {X(i):i > 1} be any sequence of random variables that
satisfy the LDP with a “good” rate function 7(-). Assumethat E(Z1log Z1) < oco.
Let

(24) Mk (A) = P(X(Zn) cAlZ,— > Un—k)a n>k,ACR,
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where {v,:n > 1} is a sequence of positive integers increasing to infinity. Let
jo=inf{j > 2:p; > O} If lim,_.cv;1j§ = b (> 0) then the sequence 1, «
(where k is fixed) satisfies the LDP with the good rate function /3(x) and speed
Un—k, Where

(25) I3(x) = =bG(fi(e™'™));

here for0<s <1,

1 1—p;
(26) G(s)=logs +logpj, + Y — Iog<l+ p"og(fj (s)))
j=0J0 Pjo
and
27) g(s) = > psiTh.

1= Pio j2 550

If »=0and v, = O(m") (again for fixed k) then the sequence w,, r, where k is
fixed, satisfies the LDP with the good rate function /3(x) and speed v,,_¢, where
(28) I3(x) = —log fi(e™' ).

A process valued result along the lines of Mogulski's theorem [11] can also be
obtained in our conditional setting. We state this as Corollary 3 for easex.
Let

[tZ,]
29 R,(t) = — i O<r<l1.
(29) n(t) - 12&,

n o ;_

When one viewsR,(r) as a random variable taking values In[0, 1], one
has the LDP for the sequence of measytgs(-) = P(R,(t) € -|Zp—k = Vn—k)
in Loo(0, 00).

COROLLARY 3. Thesequenceof measures i,  satisfiesthe LDP on L [0, 1]
with a good rate function

1

— / H _

Ty — { | n@war if geAC.9© =0,
00, otherwise,

where AC denotes the space of absolutely continuous functions and

(30) I3(x) = —log fi (e ™) — bB

and B isasinthe Theorem3 and A*(-) isasin Corollary 1.

REMARK 7. A -result similar to Corollary 3 also holds for the Béttcher case.
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3. Proofs. In this section we provide the proofs of results given in Section 2.
We begin by recalling thafy (s) = E (s%) is thekth iterate of £ (s). Let ¥ (s) =

E(W0) = fi(e™™ ) andy (u) = E (%) denote the characteristic functions of
Wi andW, respectively. By the inversion theorem (see [3], page 81),

(31) P(Z,=v,) = % /_7; e~ 0 £ (%) db.

Making a change of variabkv,, — u we have that

TTUn . .
/ e—lufn(em/vn)du.

—TUy,

(32) P(Z,=v,) =

21 v,

Sincev, < m", there exists, > 0 such thaw, = m' k| Let k, = [k,] , ay =
n — k, andn(n) = m* % _Then using functional iteration, we have that

(33) P(Zn = Un) = - /;n: e—iufkn (lﬁan(un(n)))du
1 0
= — /_nv e_lufkn(lﬁa,,(un(n)))du
1 TV,
Zm)/o e fio, (Va, (un(n))) du
(34) = 1D + 1n(2).

We make a detailed analysis §f(2). Note that

2v —/O e fio, (Va, (un(n))) du

1 Tup
2y / e fi, (Wa, (un(n))) du

We first state a “decompaosition lemma” that will help us deal witk2, 1).

Jn(2) =

(35)

LEMMA 1. For any positive integersr, s (s < r) the following decomposition
holds:

(37) /O+ e (@) du=m~ IV () + Y m 1P, 9),

=0
where
amt -
(38) 1Vs= [ e g ) du
and
2) _ ™ —ium™!
(39) 129 = [ e ) du
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PrROOF We first decompose the integral on the left-hand side into two
components, one over the intervél+, zm~"*+1) and then over the interval
(rm~tD 7). Let

7Tn17<r+l)

(40) JL = / e £, (s () du
o+

and

1) o= [ e ) du

Now making a change of variable— um ™" and using the definition af, ; ; (),
we get that

(42) Ir=m 1P, s).
We can further decomposk;’f’s as
o oaam—® .
(43) = [ e ).
= am—U+D

Now using the fact that

(44) I (s @) = fri (W51 (um'))

and the change of variablen' —> u, it follows that
1

o ' 172
45 e du=m~"1 .
(45) [ e ) du =m0 ) -

The next lemma provides a uniform estimate on the characteristic function of
the random variabl&,. The proof is similar to the proof of Lemma 2 in [15] and
hence is omitted.

LEMMA 2. Let{n(k):k > 1} be a bounded sequence of positive numbers such
that inf,>1n(n) > 0. Then for every ¢ > O there exists S, < 1 [independent of the
sequence 7(-)] such that

(46) sup{| vk un(k))|u > e,k > 1} < B.

Our next lemma gives the behavior ﬁjﬂr e~ f.(Ys(u))du whenr, s — oo
when O< o < 1.

LEMMA 3. Assume O < o < 1 and E(Z1logZ1) < oo. Let {n(r,s):
r > 1,5 > 1} be a sequence of positive numbers such that inf, ;~1n(r, s) > 0 and
lim, s— oo n(r,s) =1.Then
b4 .
(47) im_pi” | e (s tans) du =Y (pam)

r,8—> 00
=0
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where

(48) n= e ) du.

Tm-

Furthermore, there exists a universal constant C such that

(49) sup

r,s>1

i [ ie—"“fr(ws (wun(r, ) du| < C.

PROOF The finiteness of rendersp; # 0, and hence using the decomposi-
tion from Lemma 1 we have that

i’ [ : ¢ f, (s un (. 5)) du

0 = (prm) " 1D, 5) + i(plmrlp; P,
=0

where

(51) 1D, 5)= fo ™ e e (un(r, 5)) du

and

(52) 10 = [ e ) du

Note by uniform convergence on compacts/efun(r, s)), to ¢ (u) it follows
that

1

(53) lim 1P, s) = /0 ™ V() du.

r,s—>00
Thus the first term on the right-hand side of (50) converges to 0 sineel is
equivalent topym > 1. As for the second term, note first that

54)  p P05 = f e~ O (Wess (un(r. 5))) du.

nm_l

Now

f e 0 (Wi (un(r, ))) du

am~1

<[ O ilsitun(rs) ) du

-
<@ —mam 0, (B),
where 8 = sup,,,,~1<,<x rs>11¥s+1un(r, s))| < 1, by Lemma 2. Thus, by the

U=,
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monotonicity ofQ,(8) in r,

(55) supsu#

rs I<r

/ﬂ e—ium*l Qr—l(wﬁ-l (un(r, s)))dbt <CQO(B) <o0.

am~1
Thus, by the dominated convergence theorem, we have that
—(r=0) ;2
. ;ngwooz()(pm Py UL (s
(56)
=Y (pim)™ / L O ) du,

=0

thus concluding the proof of (47). Finally, note that by (50), (55) and the trivial
estimatgy ()| <1,

i [ Z e f, (s un (. 5))) du

since the right-hand side of the above equation is independent arid s,
(49) follows. [

(57) <(1-pm)t0B) +1;

Lemma 4 considers the cage= 1. The proof of the lemma depends on the rate
of convergence ofyl_(’_l)ll (r,s)t0 I;.

LEMMA 4. Assume o = 1 and E(ZilogZi) < oo. Let {n(,s):
r>1,s > 1} be a sequence of positive numbers such that inf, ;>17n(r, s) > 0 and
lim, s 00 n(r,s) =1.Then

68 lm iy e o) du= [ o du.

Tm-

Furthermore, there exists a universal constant C such that

(59) sup|rLpy” [ e i (s (un(r. ) dn| < €

r,s>1

PrROOF From (50) and usingym = 1, we have that

T /o e (5 du
(60)

-
_ r—l](l)(r’ s)+ l’_lZpI(r_l)Il(Z)(l’, 5),
=0

wherep; " 1127, 5) is as in (54). From (53) it follows that lim _, oo ¥ 11 D,
s) = 0. Now for each fixed, using (55) and the dominated convergence theorem,

T

(61) lim e Oy (Wssa (un(r.5))) du = I,

rs—>00 Jorm l
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where I; is as in (48). Furthermore, first by Lemma 2 and then the bounded
convergence theorem,

(62) Jim =" oww)du.
Thus,
(63) _IZ = Z)I(Z)(r s)=r" Z(pl_(r_l)ll(z)(r, S)—I[)+F_1ZI[.
=0 —
By (62),
(64) lim r~ 131 = / O (u))du.
r—00 = Tm—

We will now show that lim s, ~ r1 Z;:O(pl_(’_’) Il(l) (r,s)—1I;) =0. Tothis end,

(65) Y (TP 0y 5) — ) = Talr, ) + T, ),
[=0

where

,
— 2
Ti(r, ) =r 1y [705),
=0

,
— 2
To(r.s) =rt Y [[5(r.s),
=0

69 130.= [ e Qi (Wstun(r ) = Qi @) du

and
6 18ew=[ 0 - 0 w) du

We first show lim s, T2(r, s) = 0. By using the change of variable in the index
of summation, one has

(68) [T2(r,9)| < (r —7m™ 12 sup @, 1(Y () — QW (w))l;

=0mm l<u<m

now since sufdy (u)| aml<u < m} < 1, letting r,s — oo and using the
uniform convergence of, () to Q(-) in the interior of the unit disk one has that
lim, s T2(r, s) = 0. In fact, it also follows that there exists a constansuch
that

(69) sup|Tz(r,s)| < C.

r,s>1
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We now move on to establish that gy, o, 71(r, s) = 0. Note that, by monotonic-
ity of Ql.(s)inr,

B <Y [ 10t @) = Qi (W) du
1=0 Tm

Tm-

<r OB [ Wi -yl du,
=0

whereg = suf |8y (un(r, s)) + (L — 8y (u)|:0<68 <1, am~1 <u<m,r,s>
1} <1 by Lemma 2. ThusTi(r, s) converges to 0 as s — oo due to the uniform
convergence, in the intervikm =1, 7], of ¥, () to ¥ (1) asr — oco. The above
calculation also yields

(70) sup |T1(r,s)| < C

r,s>1

for some universal constaat Thus (58) follows by letting,, s — oo in (60) and
using (64). Further (59) also follows since by (69) and (70),

.
(71) suplr 2> pr PP s < C
r,s>1 /=0
and
(72) Sup|r_1l(1)(r, s)| < 2.
r,s>1 O

Our next lemma gives the behavior ﬁjﬂr e~ f.(Ys(u))du whenr, s — oo
wheno > 1.

LEMMA 5. Assume o > 1 and E(Z1logZy) < oo. Let {n@r,s):r > 1,
s > 1} be a seguence of positive numbers such that inf, ;~17(r,s) > 0 and
lim, s— oo n(r,s) =1.Then
b

(73) lim m” A e £ (s un(r, 5))) du = K,
+

r,§— 00

where

s am~1
e [ ow@ndu+ [ pdu.  ifa<oo,

K = >0
1

/onm_ Yv(u)du, if @« =o0.
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Furthermore, there exists a universal constasuch that

(74) sup

r,s>1

w [ ze_i“fr(ws(un(r, $))) du

<C.

PROOF Whena < oo, multiplying (50) by(p1m)” one gets

i [ g ) d

0+

(75)

,
-1 _—(r=1) ;2
=190, + Y (pm) " pr T 1P (),
=0

wherep; " 112 (r, s) and 1D (r, s) are as defined in (52) and (51), respectively.
Now,

.
—1 . —@r=0) 51
Tir, ) =Y (prm) " pr 1M iy 5)

[=0
= (pm)! ( [ e 0t (rs) du>11<r-
120 Tm

Thus, by the dominated convergence theorem [using (55pamd< 1],

(76) Jm T = Y (pum)! [

>0 T

T

Q) du.

Finally (73) follows by lettingr, s — oo in (75) and using (53). We now consider
the caser = co. Using (37) and multiplying byn" one gets

77 m fo " e (s (. 9)) du = 1V 5) + 3 m 12 ),
=0

where
wm™1 -

(78) I(l)(r,s)zf e "M Aoy (un(r, s)) du
0

and

(79) 1P = [ e (i) du

Using (53), it follows that lim_, o IV (r, 5) = 5”"71 V(1) du. We now have to
deal Withll(z)(r, s); sincea = oo, let jo=inf{j > 2:p; > 0}. Then for anys < 1,
we have

(80) fa(B) < CBYO";
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the above estimate can easily be proved from Proposition 3 of [1] or from
Theorem 24.1 of [14]. Thus, it follows that there exists a universal constant
such that

(81) 1P 5)| < g,

where g = sup|vx ()| :norm™t < u < 7w,k > 1} < 1 and no = inf{n(r, s):

r,s > 1} (which is positive by assumption). Now, using the estimate (81) and the
dominated convergence theorem, it follows that

7,8—> 00

(82) im_ > m 1P, 5)=0.
=0

The next lemma provides a uniform estimate/d’ e~/ Q, (V5 (u)) du.

LEMMA 6. Let{n(r,s):r > 1, s > 1} bea sequence of positive numbers such
that inf, ;>1n(r,s) > 0andlim, s n(r, s) = 1. Thereexistsa universal constant
C such that

(83) sup

r,s>1

m C
/ e 0, (i un(r,5))) du| =

™ It

ProOOF The proof uses the following estimate whose proof can be constructed
using methods similar to the one in [31], page 45, (4.2). Dubuc ([13], page 481)
and Dubuc and Senata ([15], page 494) have used this estimate extensively in their
work. For anyh € Lya, b],

(84)

b .
/e””h(u)du‘f
a

Ihllocr  (b—a) (n)
+ h\ )
7] 2 I]
wherewy, (6) is the modulus of continuity of obtained using intervals of lengéh
Lettingh = Q, s = O, (Y5 (un(r, s)), we have

/ 7 Q, (Y (un(r, 5))) du

T

1Qrslloom  7(m—=1) (=
=T T2 me<H)
0B  Tm-1 (7

=T T2 me<|t|)’

whereg = sud |y ()| :mtno <u <mm, k > 1} < 1 (by yet another application of
Lemma 2) andjg = inf, ;=1 n(r, s) which is positive by assumption. Also by the
mean value theorem and the estimate

Sup{ ¥ (u1) — Ys(u2)| :now < u1 <up <mm,

-1 -1
lug —uz| <mlt|™*} < Cle| ™7,

(85)
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it follows that there exists a universal constahsuch that

o ()2

Finally the estimate (83) follows from the uniform continuity $f(z) and the
uniform estimate suw; (u)|:nor <u1 <up <mm,s >1}<C. O

Our next lemma considers the the behavioy‘;Z)Ts e f (Y (u)) du.

LEMMA 7. Assume E(Z1logZ1) < oco. Let {n(r,s):r >1,s > 1} be a se-
quence of positive numberssuch that inf, ;>1n(r, s) > 0and lim, ;_, o n(r,s) = 1.
ThenforanyO<a <1,

mm
T

@) L lm o [ e s@du= Yo [ e 0 ) du

>0
Furthermore, there exists a universal constant C such that

(88) supp;” <C.

r,s>1

/ e f (s () d

PrROOF We begin with the decomposition similar to the one in Lemma 1, that
is,
s—1 L gpmit+l

/ e fr (Ws (un(r, 5))) du = Z/ e f (s (un(r, s))) du

T =0 Tm!
s—1 _ aml=t o
= [ e (e n, ) du
1=0 T

where the last identity follows from the change of variable— um” and the
identity ¥, (sm') = fi(¥u—i(s)). Thus,

mm

T

am$ . s—1 .
@9 i’ [ e du= Y (pun) [ e 0y (i) du
T 1=0

Now (88) follows from Lemma 6 . Finally, Lemma 6 and the dominated
convergence theorem yield (87)

LEMMA 8. Assume E(Z1logZi) < oo and « = 1. Let {n(,s):

r>1,s > 1} be a sequence of positive numbers such that inf, ;~17(r, s) > 0 and
lim, s— o0 n(r,s) = 1. Then,

(90) r,!@oos_lpl_r /ﬂm e_iufr(lﬁs (ur](r, S)))du —o.
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Furthermore, there exists a universal constant C such that

/ = f, (s (un(r. 5))) du| < C

T

(91) sups~py”

r,s>1

PrROOF Using (89) and (72),

s [ e s anr5) du

T

(92)
/ e O (Wi Cun(r. 5))) du

and the (90) follows by Lemma 6 and taking the limitssas- co. Equation (91)
follows from Lemma 6. O

Our next lemma considers the case 1.

LEMMA 9. Assume E(Z1logZ1) < oo. Let {n(r,s):r > 1,s > 1} be a se-
quence of positive numberssuch that inf, ;~1n(r,s) > 0and lim, s, n(r,s) =1
Thenfor any o > 1,

93) lim m" / " e (s (u)) du = O,

r,5—>00 T

Furthermore, there exists a universal constant C such that

(94) sup|m”

r,s>1

[ e <

T

PrROOF When p1 > 0 multiplying (89) by (mp1)" and using Lemma 6,
(93) and (94) follows. When = oo, then using the decomposition

m /N e~ £, (W (un(r, 5))) du
(95) s—1 Tm .
:mr Zmlf e_lum fr—i—l(lﬁs—l(un(”a S))) du
1=0 T

and the estimate
™ ium! Go)t!
(96) [ e fra s, s) du| < P
s
[where 8 = suf|yx(u)|:mno < u < mm,k > 1} (<1 by Lemma 2),jo =

inf{j >2:p; > 0} andC is a universal constant] one can complete the proof of
the lemma. O
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We are now ready to give a proof of Theorem 1.

PROOF OFTHEOREM1. Using the inversion theorem and change of variables
it follows that

(97) (27)v P(Zy =) = I + J2,

where

(98) Jnl=fi_v e fi, (Va, uvy, tm®)) du

and

(99) an = /mn e (Wan (u m )) du,
0+ Un

wherek, = [k,], k, is such tha"* = v,, anda, = n — k,. We will only deal
with JZ sinceJ?! can be handled similarly. First, decompose

R I )

Casea < 1. Whena < 1, we have by Lemma 3.3, whélivqani convergesto 1,

1 kn T —iu man
g e (n(457))

(101)
=Y (prm) ' < o0
>0
(102) - [ " QW w)) du,
0

where I; is defined as in (48); the last equality follows from the change of
variableum =" +— u, and usingy (um') = f;(¥ (1)), and the functional equation
O(filtvr(w))) = pllQ(w(u)). Now using Lemma 6 and similar arguments used in
establishing (102), it follows that

nll_)moo pin /N " e—iufkn (Wan (u l’:l)n" )) du
=Y (o) [ e @y w)) d

>0

(104) — /ooe_i”Q(lp(u))du < .

(103)
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Thus, usingp'{" = pivy, the definition ofQ(.), and the inversion theorem, we
have that

. P(Z, =vy,) —zu
(105) e = 57 = [ emowwan
(106) =Y q;w* (1) < oo,
j=1

thus proving the theorem whe@i—" converges to 1. Now wheﬁ’l% does not
converge, it oscillates between 1 andThus we have for k ¢ <m

Nt 1+ a20) = U < sup g (k) + ),
where ' o
(107) Jhe) = / T e o (Y ) du
and o
(108) TR = [ i (o) d
Using (101)—(106) it follows that for every<1 c<m,
(109) lim_pr" (J1() + J2(e) = Z qjw* (c) < o0,

]>1

Thus, WithCy = infrc<m 2 Y 2195w (¢) andCa = SUP < 2 Y21 qjw* (),
we have
Z, = . P(Z, =
(110) C1 < liminf (”711}") <Ilim sup("ill)") < Cy,
n—00 p’}_v,‘f— n—00 pfvg_

thus concluding the proof for Case< 1. .
Casea = 1. Whena = 1, we have by Lemma 4, ﬁ’i — 1, that

Jimpirigt [ et g (v, (w2 ) Jau= [ 0w du.

where| [T 1 Q¥ (1)) du| < oo. Furthermore, by Lemma 8,

Tm
dp

I|m kit k”/ e " fx, <1ﬂan<um ))du:O,
g Un

sincezt < 1. Thus, usmgp1 = pjv, and that’" — 1, we have

-1

 P(Z,=v, —m
lim Pz =) =/ QW) du+ | Q@) du

n—oo pgkn o

=/  (QWw)— QW (~u))du

Tm—
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The finiteness of the limit follows from Lemmas 4 and 7. To complete the proof we
need to establish the positivity of the limit. To this end, first note that there exists an
interval (a, b) € (tm~1, 7) such that[f(Q(w(u)) — QW (—u)))du # 0; for, if
not, that would implyy/ (r) =/ (—r) forall t € (wm ™1, ) and allj > 1, which
is impossible. Let(a, b) be the largest such interval. Thqﬁm_l(Q(w(u)) —
OW(—u)))du = ff(Q(z/f(u)) — QW (—u)))du # 0. Now When,% does not
have a limit as: — oo, we proceed exactly as in Case< 1.

Case« > 1. Whena > 1, we have by Lemma 5’,’)1 — 1, that

X T . man
lim " i =K
Jim m o e fi, | Ya, | u ; du ,

n

where|K| < oo and is given in Lemma 5. Furthermore, by Lemma 7,

. U, . mbn
lim mke e " fr, (1//,1” (u ))du =0.
n—oo v

b/ n

Whenvn—lm“n does not converge to 1 the result is established arguing as in Cases
a<lande=1. O

PROOF OFTHEOREM 2. The lower bound follows from Theorem 1. Thus it
is enough to establish the upper bound. To this end, we first note that
(111) SUpPP(Z,=j)=SsupsupP(Z,=ruv, + j).
J=vn r>1j<v,
We will obtain estimates oP (Z,, = rv, + j). Using the inversion formula and
change of variables we have

(112) Qr)rv, + P (Zy=rva + j) = I+ J2,
where
0— .
(113) = e (Y, ) du
—n(rvp+j)
5 w(rvp+j) —iu ]
(114) 2= [ T W, . ) du,
. mn ru,
(115) ¢>(n,1)=( )( )
rvy, rv, +J
wheremkn = rv, andk, = [k,] anda, = n — k,. We first decompose
(116) JZ=T2 T2+ T2,
where
T
(117) 2a= | T (b, ) d

7 (rvy) .
(118) J2p= / e f (W, (u(n, ) du
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and

T(rop+j) .
(119) Jo= / " e fi (Ve 1)) du.

TTru,

A similar decomposition also holds fof'.
Case a < 1. Using the uniform estimate from Lemmas 4 and 7 it follows that
there exists a universal constant (independent of, n, j) such that

(120) (J2 4+ J2p) < Cipl.
Now, it can be shown that

2 pel aq MM .
(121) J2¢ = pi~tm® / e (a(ud(n, ) dut.
Vi

Nt

Thus, using the by now standard arguments, it follows that there exists a universal
constantC such that

(122) 112 el < Cpi~tma=t < phr.
Thus
(123) 72| < phr,

and a similar estimate holds fd,l}. Thus, it follows that (using the definition &f)
(124) P(Zy=rva + j) < Capf(roa + D,

whereCs> is a universal constant.

Case o = 1. Using the uniform estimate from Lemmas 5, 8 and an argument
similar to Casea < 1, it follows that there exist a universal constatit
(independent of, n, j) such that

(125) ) (rvp + J)P(Zn =rv, + j) < Caps'ky.
Now using the definition ok, it follows that
(126) P(Z,=rv,+j) =< C4p’{kn7

whereCy is a universal constant.

Case @ > 1. Using the uniform estimate from Lemmas 6 and 9, and an
argument similar to Case < 1, it follows that there exists a universal constant
Cs (independent of, n, j) such that

(127) (27)(rvg + j)P(Zp =rv, + j) < Csm*" .
Now using the definition ok, it follows that
(128) P(Z,=rv,+ j) <Cem™",

whereCg is a universal constant.[]
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PROOF OF PROPOSITION1. Follows from the proof below withy,, _; = 1.
O

PROOF OFPROPOSITION2. Using independence &f, andN,, the definition
of conditional probability and the definition of the random variab/lé(k), it
follows that
(129) P(Yn, € AlNu—k = vai) = Y P(Yi € A)P(NX(K) =1).

>0
Now, since{Y, :n > 1} satisfies an LDP with speedn), there exist constants
and O< § < 1 such that
P(Yy, € AINy—k 2 vap) < C " DI A= p(NL(k) = 1)
>0

= CE(exp(—¢r(N1(k)))).
where ¢ = Iy(A) — 8 and A is the closure of the sett. The result follows
by taking the logarithm, using (17) and letting~\, 0. The lower bound is
proved similarly. The fact thak (Iy(-)) is lower semicontinuous follows from
the assumed continuity & (-) and the lower semicontinuity df (-). [

We now move to prove the second main result of this paper, namely Theorem 3.

PROOF OF THEOREM 3. Using Proposition 2, it is enough to evaluate
for6 > 0,

(130) lim

log E (exp(—O N1 (k))) = K (6)

and check that it is continuous, whe{anl(k) :n >k} is a sequence of random
variables with distribution

(131) P(NYk)=1) = P(Zy=1U1Zn— = vu2)-
Using the defiition of conditional expeettions one can show that
E(exp(—ON1(k)))
= E(exq_eznﬂzn—k = Un—k)
—owj PZn—k=1J))
= Y (e =]

> onk P(Zy—k = Vn—p)

(ke
B P(Zy—k = vn—t)

S (fie™ ) P(Zy—i = j + vai)

j=0

Y (fele™)

j=0

_ (file™) Uk Ay
 P(Zy—k > Un—)

i P(Zn—k =]+ vn-t)
An—k ’
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where A,, is as given in Theorem 1. We now use Theorem 2 to establish the
following.

CLAIM 1. Forevery0< o < oo,

i P(Zn—k =]+ vn—t)
Ap_k

(132) —%)/ =0.

/>0

PrRoOF Case < a < 1.

Z(f( _9)) P(Zn k=] +Vni)

j=0 An—k

) 1P(Zn k=J+ Vn—t)

. —0\\J( ;
—Z(fk(e )" (J + Vnk Ap—ik(j + vp—p)* 1

j=0

SUP 20, J* TP (Znk = J)

< a0 Y (file™)’

j=0 An—k
< C(op_p)t™ Z(fk(e_‘)))j by Theorem 2
j=0

Claim 1 follows by the finiteness Oijo(fk(e_e))j for & > 0. The other two
cases follow a similar pattern of proof]

Thus,
(133) lim vi log E (exp(—6 N1(k))) = log fi(e %) — bB = K (),
n—00 v, i

where we have used that ljm« - “logA, = bB and lim, . ;- 1 “log P(Z, >
v,) = 0 sincev, = O(m™) asn —> "s0. By continuity of fi(-) |t follows that
K (9) is continuous and pence the rate function is, by PropositiehR(I (x)) =
—log fi(e ™ '™) +bB = I (x).
Now for anyL < oo,
Vi = {x|Ii(x) < L}
= {x| —log fi(e7!™) +bB < L}
= {x|1(x) < —loggi(e™ 0B},

whereg;(-) is thekthjterate ofg(-), the functional inverse of (-). ThusifI(.) is
a good rate function(-) is also a good rate function]
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PROOF OFCOROLLARIES 1 AND 2. SinceR, = z_l,, Z,-Zz"lén,i, the LDP for

,ur(lli follows by takingY, = %27:15,1,,-. The LDP foru%{ follows by noting that

wooo1&
(134) — =YWV,
Wa Zn i=1
where W’s are i.i.d. random variables distributed &8 and takingY, =
lz:l LW O
3 2=

PROOF OFCOROLLARY 3. The proof follows by conditioning and using the
estimates as in [11], page 176

PROOF OFTHEOREM4. By Proposition 2 it is enough to show that foe- 0
andb > 0,
lim log E (e #M1®)) = bG (£ (6))

n—oo U}’l—k

and thatG(f;(0)) is continuous ind, Wherean(k) is a random variable with
distribution

P(NYK) = j) = P(Zu = j|Zn—k = va).
Now for 6 > 0, settings,, = P(Z, > v,), we have

E(eeNr}(k)) = Z E_QJP(ZVL = ]lZn—k Z Un—k)

j=0
=G0t Y (file™ ) P(Zyi=7);
J=Un—k
(135) ni—1
= Guat) ek (file™) = Y (file™ ) P(Zyik =)
. .n—k
J=Jo

= (fk(e_e))/é’*k (Sn—i)
% (ot (e (fee™) 8" = A, k).
whereA(n, &) = X8 T e ) P (Zuk = + 175,
CLAIM 2.

. 1
lim
n—>oo v}’l—k

logA(n, k) =0.
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PrRoOFE First note that

1
logA(n, k)
Un—k
1 Un—k_j(r)lik_l
= —log Yoo (@) P(Zuk=r+ 7Y
n— r=0
< klogZ(fk(e‘e))’,
n— r>0

and thus limsup., ., 7=—10g A(n, k) = 0. Furthermore,

logA(n, k)
Un—k

—k
Un—k_/g -1

1 r i
=—1og Y (fie PZusi=r+j"

Un—k r=0
> ——10g P(Zy—i = j§ ")
Un—k
n—k log
Vn—k Jo
Hence, liminf_ ﬁ log A(n, k) = 0, concluding the proof of the claim. Also,

l0g( fut(fele ) (fele™) )

Un—k
-n—k
= ——log fu—i(fi(e™) — 28— log(fi(e™")).
n—k Un—k
Now using (see [13])
(136) lim in log fu(s) = G(s) forO<s <1,

it follows that

log(fu—k (fie™)) (fi(e™) 70 )

lim
n—oo U}’l—k

=bG(f(e™) — blog fr(e™?). O

Finally, using Claim 2, it follows that ib > O, then

(137) lim log E (e~ "1 ®) = bG (fi(e™)).
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The continuity of the limit follows from the continuity of (-). If 5 = 0, then
from (128) it follows that

(138)  E(™®) = 8,0 (file )" S (fie™®) P(Znok =1 + vu_p).

r>0
CLAIM 3.

. 1 N
Jim, ——10g }_(file™")) P(Zyos =+ 0,0 =0

r>0

PROOF. Itis easy to see that limspp ., ﬁ log Zrzo(fk(e_e))’P(Zn_k =
r + v,—) = 0 using the trivial estimat® (Z,_; =r + v,—x) < 1. Also,

1 r
09> (fi(e ™) P(Zu—k =7+ va—i)
n—k r>0
z log P(Zy—k = vn—k)
Un—k
1 —k
= 10g(m"* P(Zp_t = va_t)) + — logm.
Un—k Un—k

Hence by Theorem 1, IiminLooﬁlogZ,zo(fk(e_‘)))’P(Zn_k =r +
v,—r) =0. Thus ifb =0, then

(139) lim

log E£(e?¥®) = log fi(e™?). .

Theorem 4 follows from Proposition 2. Finally, that the rate functions are good
follows a similar line of proof as Theorem 3

REMARK 8. Whenu,_; = jo%, thenb =1 and P(R, > a|Z,_ > j§)
satisfies an LDP with rate functionG ( fx (e~ ™)), wherel (x) is the Legendre—
Fenchel transform of log (¢?%1). However, since

(140) P(Ry>a)=P(Ry>alZy—i > j&™5),

the distributions of{R,:n > 1} satisfy the LDP with the good rate function
—G(fir(e71™)). In comparison with Case < oo, the rate function associ-
ated with the large deviations @, is not a constant. This brings out yet an-
other difference (in the probabilistic structure of the process) between Cases
a <oo anda = oo. It is also interesting to note thatoccurs additively in the
Schrdder case while it occurs multiplicatively in the Bottcher case.
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4. Concludingremarks. In this paper we studied the local limit problem and
the conditional large deviations of a general class of random variables indexed by
branching processes. We brought to the fore the role played by the pregduct
(or ym) in determining the asymptotic rates Bf Z,, = v,)) and its impact on large
deviations. The quantitpym can be viewed as a parameter that determines how
“fast” the supercritical process is growing.pim > 1, then the process is growing
slowly (since withm thought of as fixedp, is not very small) while ifp1m < 1
the process is growing fast (sinpe is very small). The “critical” case igym = 1.

One of the initial motivations for the topics in this paper was an interest in a
version of the Gibbs conditioning principle for branching processes. In the simplest
case of i.i.d. random variables the Gibbs principle determines the behavior of the
individual members of a set of i.i.d. random variables, conditioned on the average
of the whole ensembile.

In the branching context, the role of the average is playe#t bgnd one is led
to consider quantities such as

P((Zn;s---»Zn;) €-|1Ry € A)
or

P((&n;»--- 6n;) €-|Ry € A).

Since the random variabl®, depends only on the present (two “present”
generations) one could use the above formulation to make inferences on the history
of the population based on the present. Preliminary calculations suggest interesting
results in this direction, particularly in the multitype setting. In these calculations it
became apparent that careful estimates on the behavRy of terms of the local

limit estimates onZ,, would be needed and this led to the results in the present
paper.

Several questions arise from our work. The most interesting, from the large
deviation perspective, seems to be when one replaces the indexing sequence by a
“more general” sequence of random variables and allows dependences between the
indexed and the indexing sequences. These kinds of problems occur naturally in
sequential analysis, insurance and risk analysis areas. The authors are considering
these generalizations and will report the results in future publications.
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