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THE ASYMPTOTIC DISTRIBUTIONS OF THE LARGEST ENTRIES
OF SAMPLE CORRELATION MATRICES

BY TIEFENG JIANG
University of Minnesota

Let X, = (x;;) be am by p data matrix, where therows form a random
sample of size: from a certainp-dimensional population distribution. Let
Ry = (pij) be the p x p sample correlation matrix ok,; that is, the
entry p;; is the usual Pearson’s correlation coefficient betweerttheolumn
of X,, and jth column of X,,. For contemporary data both and p are
large. When the population is a multivariate normal we study the test that
Hy: the p variates of the population are uncorrelated. A test statistic is chosen
asL, =max; |p;j|. The asymptotic distribution af,, is derived by using
the Chen—Stein Poisson approximation method. Similar results for the non-
Gaussian case are also derived.

1. Introduction. Let X, = (x;;) be ann by p data matrix, where the rows
are observations from a certain multivariate distribution and eagh @flumns
is ann observation from a variable of the population distribution. pgtbe the
Pearson correlation coefficient betweenttieandjth columns ofX,,. That is

P ZZ:l(xk,i —Xi) (X, j — X))
pl] - " = 2 ~ = 2’

wherex; = (1/n) Yy _q xr.;- ThenR, := (p;;) is ap by p symmetric matrix. It is
called the sample correlation matrix generateddyy

Suppose the population is a multivariate normal distribution with mean
vector u, covariance matrixx and correlation coefficient matriR. When the
sample sizen and the dimensiorp are large and comparable, Johnstone [14]
studied the test with null hypothesidy: X = | under assumption that = 0,
where | is the identity matrix. The null hypothesis is equivalent to that the
population distribution is the product pfunivariate standard normal distributions.
The test statistic is chosen as the maximum eigenvalue of the sample covariance
matrix X/, X,, according to the method principal component analysis (PCA). It is
proved that the asymptotic distribution of the maximum eigenvalue is the Tracy—
Widom law.

When bothw and p are large we consider the test with null hypothesis

(1.2) Ho:R=1.

(1.1)
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Equivalently, the population distribution is a product of univariate normal
distributionN (14;, ol_z) 's for some unknown;'s and unknowrs;’s. The difference
between this test and the one in [14] mentioned above is that alido not have
to be identical and alb;’'s do not have to be identical, either. Besides, we do
not assume that;’s ando;’s are known. Our test seems to be more natural and
practical. The maximum eigenvalag,ax of the sample correlation matrik,, can
be taken as the test statistic according to PCA. But the distributiam,gfis not
clear so far, although there is evidence thaix may also follow the Tracy—Widom
law asymptotically as shown in [13].

In this paper we do not pursue the maximum eigenvajyig as the test statistic
because of its complexity. Instead we choose the following intuitive one:

L,= lsrlrlé}ép pijl,

where p;; is as in (1.1). Barbour and Eagleson [6] provided a general idea of
dealing with the tail ofL,, by using the Poisson approximation method. In this
paper we will derive the strong law and limiting distributionlof via this method.
In fact, we will prove more general results; the observatign's do not have to
be Gaussian. Our results will be precisely stated next.

Suppose{t,x;j, i,j =1,2,...} are iid. random variables. Lek, =
(xij)1<i<n1<j<p. Let x1,x2,...,x, be the p columns of X,,. Then X, =
(x1, X2, ...,xp). Letx; be the sample average of, that is,x; = (1/n) } /1 Xik.
We write x; — X; for x; — X;e, wheree = (1, 1,...,1)T € R". Then, p;;, the
Pearson correlation coefficient in (1.1) betwagandx; can be rewritten as

=) g = %))
- - - )
i — Xill - llxj — Xl

(1.3) Pij 1<i,j=p,

where|| - || is the usual Euclidean norm. Obviousty; = 1 for eachi.
First, we obtain a strong limit theorem as follows.

THEOREM1.1. Suppose E|£]30¢ < oo foranye > 0. Ifn/p — y € (0, 00),

then
lim | " L,=2 as.
n—o0\l logn

The above strong law af, does not depend op althoughX, is ann by p
matrix. For the limiting distribution the following holds.

THEOREM 1.2. Suppose that E|£|3%¢ < 0o for somee > 0. If n/p — y,

then
P(nL2 — 4logn + log(logn) < y) — e K¢

asn — oo for any y € R, where K = (y24/8r)~L.
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The limiting distribution appearing in Theorem 1.2 is called the extreme
distribution of type I.

For constants;; € R andb; e R, i =1,2,..., p, it is easy to see that
the matrix(ayxy + bie, apxo + boe, ..., apx, + bpe) and X, = (x1,x2,...,xp)
generate the same correlation matix. Also, if £ ~ N(0, 1), then Ee'? < o
forall r < 1/2. We immediately have the following result.

CoROLLARY 1.1. Suppose {x;;;i > 1, j > 1} are independent and x;; ~
N(Mj,ajz) for some ; and o # O for all i and j. Let the sample correlation
matrix R, be obtained from X, := (x;;;1 <i <n,1<j < p). Then the
conclusions of Theorems 1.1 and 1.2 also hold.

The above corollary gives the distribution of the test statistiaunder the null
hypothesis in (1.2).

Theorem 1.3 below is used in the proof of Lemmas 3.1 and 3.2. These two
lemmas are key to prove Theorems 1.1 and 1.2. It is a nonasymptotic inequality on
the moderate deviation of partial sums of independent random variables. Though
sums of independent random variables are well understood, we did not notice a
similar result in the literature, for example, [19] and [20]. The usual moderate
results such as those in [15] and Theorem 3.7.1 on page 109 from [8] are not
applicable in our case. The reason is that we do not have identical distribution
assumption. Second, asymptotic bounds do not work in our proof because our case
involves an uniform bound of infinitely many such probabilities. This is evident
from Lemma 2.1 in Section 3. There is a similar situation in the large deviation
case. The Chernoff bound (see, e.g., (c¢) of Remarks on page 27 from [8]) is a
nonasymptotic bound of sums of i.i.d. random variables. But the classicaéGram
type large deviation is a limiting result. The Chernoff bound is used in the proof of
theorems in [10] and [11] for the same reason of proving our Theorems 1.1 and 1.2
via the following Theorem 1.3.

THEOREM 1.3. Let {n;,1 <i < n} be independent random variables with
mean zero. Assume max <; < E|ni|? < oo for some B > 2. Then for any p > 0
andr > 0,

1 2 M
n: n
i=1

where

12 3nr—1/2) o—(1/2)
M, :==5 " E|n;|* for s € (0, and K, :=expl ——— 2" /M2
s » ; 7 O, 8] n p{ 3M§

andt, =1 — Mﬁnp(l—ﬁ)+(1/2).
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In our applicationsk, ~ 1, ¢, ~t and M, = 1. Also, M,g/npﬁ—1 in (1.4) is

smaller than the term next to it. So the probability is roughly boundeaszyz.

The main tool used in proving Theorems 1.1 and 1.2 are the Chen—Stein Poisson
approximation method and probabilities of moderate deviations by Amosova [1]
and Rubin and Sethuraman [21]. They are listed in the Appendix.

In traditional random matrix theories, eigenvalues are the primary concern. See,
for example, [18] and [5]. This paper together with [12], in which the maxima of
entries of certain Haar-distributed matrices were studied for an imaging analysis
problem, suggests that the study of entries of matrices are also important.

Now we state the outline of this paper. A couple of lemmas are given in
Section 2 for the preparation of the proofs of main results. We prove all main
results in Section 3. In the last section some known results used in the proofs of
our theorems are listed.

2. Auxiliary lemmas. Three lemmas are needed before we go to the proof
of main results. The proof of the following relies on Theorem 1.3, which will be
proved at the end. There is no circular reasoning.

LEMMA 2.1. Let {&, n, m, k=1,2,...,n} bei.i.d. random variables with
mean O and variance 1. Let {u,; n > 1} be a sequence of positive numbers such
that u,//nlogn — a € (0, 00). If E|£1]7 < oo for some ¢ > (a? + 1)(a? + 2),
then
(2.2) P(

Zuna

n
> &
k=1

asn — oo foranyb > 0.

n
D &,
k=1

> un> = 0(n""

PrROOF The two events in (2.1) are conditionally independent giggs.
Denote byP! and E* such conditional probability and expectation, respectively.
Then the probability in (2.1) is

2
)]

(2.2) E[P1< > &
> (&I — El&l")
k=1

k=1

Set
{1
Ap(s) =1-—
n

.

for s > 2 ands € (0,1/2). Choosep € (a® + 2, q/(a?+ 1)) andr = a? + 1.
Lets = |&|°P — E|&|P fork=1,2,...,n. ThenE|¢1]” < oo. By the Chebyshev
inequality and Lemma A.1,

Zé“k

k=1

Z ol = O(H—f("))

k=1

(2.3) P(Au(B)) = P(

> n6> <md)E
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asn — oo, where f(r) =r/2ifr>=2, and f(r)=r —1if 1 <r <2 Let
{;,é; 1<k <n}beanindependentcopy ff;; 1 <k <n}. Thensince, from (2.3),
P(|> 71 ¢8| <nd/2) > 1/2 for sufficiently largen, it follows that

Z{k >n8) §2P<

k=1
by repeating (2.3). Given an integer> 1, let v =né/4;. Then by Lemma A.2,
there are positive constant§ andD; such that

g

(=)

k=1

(2.4) P(

> n8/2> =0(n ")

§xg—¢>>wm)
k=1

=p( >2jv)

< (g —ci=2) 0y

D =)

k=1

> @ =g

k=1

J
)

SinceE|¢1|” < 00, P(MaXi<k<n |8k — il > v) < nP(|t1—¢f| > v) = O(nt™").
By the same argument as the equality in (2.4), we obtain

n J
<P< G| > v)) = O(n= "),
k=1

Takej =[(r —1)/f(r)] + 1. It follows that

(2.5) P( Y@ =) > n5/2> =0
k=1

asn — oo. Combining (2.3) and (2.4) with (2.5), we obtain that
P(Au(B)) = O0(m*™")

asn — oo. By the same arguments the above still holdg ifs replaced by 2.

Consequently,
" 2
Z Eknk| > Mn) :|

E[Pl<
k=1
> &

< E[P1<
k=1

(2.6)

2
> un> IA,,(Z)HA,,(;S):| +0n*™").
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Now we apply Theorem 1.3 to the last probability in (2.6). N&t&&.n;) =0
and EY|&ne|* = |&|*(E|£1)%) for anys > 0. In particular, EX(&nx)? = £2. Thus

1 n
M, = —(Z |sk|~‘) -El&].
n\i=1

Sol-8<My=<1l+4+80nA,2).Sinces e (0,1/2), 1/2< M> <2 0nA,(2).
Moreover, Mg < (1 + E|£1|P)E|&1]? < 0o on A,(B). Chooset = u,//n and
p € ((@®+2)/(2B),1/2). Itis easy to verify thatl := —p(1— 8) — (1/2) > 0,

(1+ E|&1|P)E|&11P

_ p-1/2
- and K, <exp(2:3nP 124" )

|t_tp|§

onA,(2) N A,(B) for eachn > 1. Then there is a constant > 0, such that the
probability in (2.6) under the restrictiaf,, (2) N A,(B) is less than

C(n_“z/z + n—az/(2(1+8))) _ (n—az/(2+28))
for n sufficiently large, where the faghg > 1 + (¢?/2) is used. Note that
ont") = O(n‘az) sincer = 1+ a2. So the left-hand side of (2.6), hence, the

probability in (2.1) isO (n=%*/1+9) by (2.2). The desired conclusion then follows
by choosings small enough. O

For any square matriX = (a; ;), define||A[| = max<;+;<, la; j|; thatis, the
maximum of the absolute values of the off-diagonal entried .of

LEMMA 2.2. Recall x; in(1.3).Let h; = ||x; — X;||/+/n for eachi. Then
InRy — XTI X, ll < (b% + 2b1) Wyb3 2 + nb3%b3,

where
b1 = max |h; — 1], W, = max |x[x;l,
1<i<n 1<i<j<n
bz = min h;, bg= max |x;|.
1<i<n 1<i<n

PROOF Asin (1.3), the(i, j)-entry of R, is

—_ - T [ —
(x,- —x,-)T(xj —x‘,-) . xi x]' — nxixj

:Oz/ frd — — =
i — Xill - llxj — Xl nhih;

The(, j)-entry of X! X, isx] x;. So

5 1)1

hi h;

Inpij —x] xj| < |(hihj)_l — 1] |x x;| +n
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Taking maximum for both sides, we obtain
lln Ry — X Xl

= 2

B

< max |(hl-hj)_l—1|-1max |x,.Tx,~|+n(max| ").
<i<j=n

1<i<j=<n 1<i<n hi
Write 1— (hih )™t = (hih ;)71 ((hi — D)(h; — 1) + (i — 1) + (h; — 1)). Then the
desired inequality follows. [

Next we estimat;’s.

LEMMA 2.3. Suppose that {&,x;;,i,j = 1,2,...} are i.i.d. random vari-
ables with E& = 0 and Var(¢) = 1. Suppose also n/p — y € (0,00). If
E|£|% 1= < o0 for some« € (0, 1/2), then

n“b1— 0 a.s, b3—1 as. and n*bs—0 a.s.

asn — o0.

PROOE The second limit follows from the first one. Easilyy; — %2 =

x!'x; —n|x;]%. Using the fact thafx — 1] < |x2 — 1| for anyx > 0, we have that

2
+ (n“/z max |)E,-|) .

1<i<n

T
Xj Xi —n

(2.7) n*b1 < max

1<i<n

nl-o

Notex!x; = Y7_, x2. By Lemma A.5 the first and the second maxima above go

to zerowherk |4 1-% < oo. So the first limit is proved. Under the condition that
E|£1%/ 1= < o0, the limit thatn®bs — 0 a.s. is proved by noting the relationship
betweem®b, and the right most term in (2.7).0

The analysis o#¥,, is given in the next section.

3. Proof of main results. Recall the definition of;; in (1.1) and (1.3). To
prove Theorems 1.1 and 1.2, we assume throughout this section, without loss of
generality, that

(&, x5, j=21,2,.. Jareiid. withE€ =0 and Vaté)=1.

The proofs of Theorems 1.1 and 1.2 rely on an analysis of the covariance matrix
XI'X,. The(, j)-entry of X1 X, is >7_; xxixxj. Recall

n
D ki

k=1

as in Lemma 2.2. The first step in proving our main theorems is approxim&jing
by XI'X, as shown in Lemmas 2.2 and 2.3. The second step is deriving the
corresponding results fof! X,,. We actually will prove the following two lemmas.

(3.1) W, = max

l<i<j<n
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LEMMA 3.1. Suppose that E|£]3%¢ < oo for any ¢ > 0. If n/p —
y € (0, 00), then:

- W,
() imsup——=—<2 as.

n— 00 nlogn

(i) liminf >2 a.s.

Wy
n—oo . /nlogn

Lemma 3.1 actually says th#t,//nlogn — 2 a.s. as — co. The reason we
did not combine (i) and (ii) as a single limit is that the proof of the combined one
is relatively long. We will prove the two parts separately.

LEMMA 3.2. Suppose that E|£|3%¢ < 0o for some e > 0. If n/p — y €
(0, 00), then

2
P(L/n —n < y) s K2
n

as n — oo for any y € R, where o, = 4nlogn — nlog(logn) and K =

(y2/8r)7 L.

Assuming Lemmas 3.1 and 3.2, we next prove Theorems 1.1 and 1.2. The proof
of the former two lemmas are given later.

PROOF OFTHEOREMS 1.1 AND 1.2. Choosex = 1/3. Under the condition
that E|£|% < oo, we have from the triangle inequality, Lemmas 2.2 and 2.3 that

(32)  |nL,— Wy <|InR, — XI'X, || <4nPw, + 223  as.

as n is sufficiently large. Applying Lemma 3.1, it follows thatY3w, =

O (nY%logn) almost surely. HenceL, — W, = O(n'/3) a.s. Theorem 1.1 then
follows immediately from Lemma 3.1. Now Theorem 1.1 and Lemma 3.1 imply
thatnL, + W, = O(y/nlogn ). Consequently,

2 WP 1
nlL; — 7 = ;(I’an — Wy (nL, +Wy)

= 0(n Y8(logn)¥/?)  as.
Theorem 1.2 then follows from Lemma 3.2]

Now we turn to prove Lemmas 3.1 and 3.2.

PROOF OFLEMMA 3.1(i). Givens € (0,1), letw, = (2+8)+/nlogn. Define

yl.(Jl.) = ch:lxk,-xkj, i,j,l>1 Thenyl.(ﬁ) is a sum of i.i.d. random variables with
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mean zero and variance one. By Lemma A.3, under the conditioEflg#t < co
for somed > 2+ (2+ 8)2,

1

0

(3.3) 152?1(00P(|yl] | > wy) = O(12+8>

asl is large, where we also use the fact that

1 ®© 2 1 2

—tc/2 —x</2

— e dt ~ —e¢

N /x N 21 x

asx — +oo (see, e.g., page 49 from [7]). Review the expressioWpfin (3.1).
For any integem > 4/3,

max W;<  max ( max |y(1)|)

nm<[<(n+1)™ 1<i#j<(n+1)m \n"<I<(n+1)m
(3.5) ”
< ma +r ,
1<1;é/<(n+1)'"|y” | "
where
3.6 rp = max @ (n™)
(3.6) = A e ax i -y
By (3.3),

n™) 2m "y
P(1<z¢?1<<n+1)m|y’ > w"m> <+ D> P(lyz | > wan)

= 0n™m).
Since)_, n=m < o0, by the Borel-Cantelli lemma,
(n™)
(3.7) lim sup SEE0 T o4 s as.

n—00 J/n™log(n™) -
Now let us estimate, as in (3.6).
Let {z1, z2, ...} be ii.d. random variables with the same lawxagx;> with
partial sumsSy = 0 and.S; = Z _12i- Clearly, Ez; =0 andEzf = 1. Observe

that the distribution o&(l) yfj” ) is equal to that of;_,,» for all I > n™. Thus,
P(rn = 8v/n"log(n™))
(3.8) <+ 1)2"’19( max  |S¢| > 8vn" Iog(n’”))

1<k<(n+1)m—nm

< 2(n 4 12" P(|Sus1ym—nm | = (8/2)v/n™ log(n™) )

asn is sufficiently large, where Ottaviani's inequality (see Exercise 16 on page 74
in [7]) is used in the last inequality. Skt = (n + 1) — n™. Note that, for fixed
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m ands, (8/2) /n™log(n™) > (2+8)/k, l0gk, asn is sufficiently large. By (3.4)
and Lemma A.3, the last probability in (3.8) is equal@gexp(—(m — 1)(2 +
8)2(logn)/2)) providedE|&|? < oo for somed > 2+ (2 + 8)2. Therefore,

P(ry = 8+/n"log(n™)) = O(n™"),
whereu = (m — 1)(2+ 8)2/2 — 2m > 1, sincem is chosen such thai > 4/5. By
the Borel-Cantelli lemma again,

I'n

3.9 li —<3$ S.
39 Irrln_)solip nmlog(n’”)S &S

By (3.5), (3.7) and (3.9), we obtain that

. max,m m W,
limsup Xam <] <(n+1) 1
n—o00 /nm Iog(nm)

for any sufficiently smalb > 0. This implies inequality (i) in Lemma 3.1.00

<2+25 a.s.

PROOF OFLEMMA 3.1(ii). We continue to use the notations in the proof of
(i) of Lemma 3.1. For any € (0, 1), definev, = (2 — §)/nlogn. We first claim
that

(3.10) P(W,<v,) = O(H—](;,)

asn — oo for some positive constait depending oré and the distribution of
only. If this is true, take an integer such thain > 1/8'. ThenP(W,m < vm) =
0(1/n%™). SinceY., n%"" < oo, by the Borel-Cantelli lemma, we have that

. . an
3.11 Iminf ————>2-9 a.s.
( ) n—o0 . /nmlog(n™)

for any§ € (0, 1). Recalling the definition of, in (3.6), we have that

inf Wi = Wym — 1y,
n"<k<(n+1)™

By (3.9) and (3.11), we have that

o infum < inym Wi
liminf == >2-25 a.s.
n—00 n™log(n™)
for anyé small enough. This implies (ii) of Lemma 3.1.
Now we turn to prove claim (3.10) by Lemma A.4.
TakelI ={(i,j); 1<i<j<p}. Fora=(,j)el, setB, ={(k,I) eI,
oneofk and/ =i or j, but (k,]) # o}, ne = Iy,”)l t=v, andA, = A;; =
{|yl.(;’)| > v,}. By Lemma A.4,

(3.12) P(W, <v,) < ehn 4 b1y + b2y
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Evidently
-1
b = %P(Alz),
(3.13)
bin <2p°P(A12° and bz, <2p°P(A12419).
Remember thaﬁi’é) is asum of i.i.d. random variables with mean 0 and variance 1.

Recall (3.4). By Lemma A.3,
1 1
(2—68)/2nlogn n@2—9?/2
asn — oo providedE|n|® < co. Note thatP (A12A13) = P(|y\%| > va, [y{5 | >

vp) and v, //nlogn — 2 — 8. By Lemma 2.1,P(A12413) = O (nP~@%) for
anyb > 0 providedE |£]? < oo for someg > ((2 — 8)2 + 1)((2 — 8)% + 2) < 30.
Choosing bottb andé small enough, we obtain

(3.14) P(A12) ~

(3.15) en<e™ by, < and by, <

1 1
Jn Jn
for sufficiently largen. Then (3.10) follows from (3.12) and (3.15)0

PROOF OFLEMMA 3.2. We need to show that
(3.16) P( max |y;j| <oy —{—ny) — e_Ke_’v/z,
l<i<j=<p =

where y;; = Y j_1xkixkj. Now we apply Lemma A.4 to prove (3.16). Take
I ={Gj;l<i<j<p} Fora=(3,j el setX,=|y;|l and B, =
{(k,]) € I; one ofk andl =i or j, but(k,[) # «}. Choose = /o, + ny. We first
calculater = A, in the theorem. Sincgy;;; (i, j) € I} are identically distributed,

A=Y P(lyijl > Vo, +ny)

1<i<j=<p

2
pc—rp (a2l oy )
— p(22d . /2n .
2 <ﬁ>Vn+y

Observe thay1 is a sum of i.i.d. random variables with mean 0 and variance 1
Since./(a,/n) +y ~ 2/logn asn — oo, it follows from Lemma A.3 that

P(M2 - v m+y )

(3.17)

Jn
@18)  =p(Z>VamTy )+ p(ZE - Vaim )
e Y/2 )
~ n_

Vo
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providedE|£]9 < oo for someg > ¢? + 2=6. Thus

e V/2

y2J/8r

Obviously, X, is independent of Xg; 8 € I\B,} for anya = (i, j) € I. To

complete (3.16), by Lemma A.4, we have to verify thhat— 0 andb, — 0 as
n — oo. Itis easy to check that the size B, is less than 2. Thus

" 2 1
by < <p )2 P('f/l;' ,/%+y) :0(;)

by (3.18). Also, by symmetry,

(3.20) b2 < p(p?®— pP)P(Iy12l > van + 1y, |y13l > Jan +ny).

Here /o, +ny/+/nlogn — 2. By Lemma 2.1, the above probability B(n"*
for any b > 0, providedE|£]7 < oo for someq > (22 + 1)(22 + 2) = 30. Now
chooseb < 1, thenb, — 0. By Lemma A.4, (3.16) is concluded ]

(3.19) Do —

PROOF OFTHEOREM 1.3. Define
ni =nil(Inil <n”) — EniI(Ini| <n”)
for p > 0. It is easy to see that

P(%g”"zf>fp(< Zm)+rn_ )+i:ZIP<|m|znp>,

wherer, = (1//n) Y71 EniI(|n;| > n”) becausé&n; = 0. Clearly, by Markov’s
inequality,

P > nP < My d < My __
Xi (Inil =n") = —5= and |r,| < WP B—D—(1/2)
1

Thus, to prove the lemma, it suffices to show that

1
(3.21) («/7 an > tp> <Kpe ~15/(2M2)
By the Chebyshev inequality and independence, we obtain that
(3.22) ( Zm > ,p) ) H EbTi//n
[ i=1

for anyd > 0. Sincee* <1+ x + (x2/2) + (Ix|3/6)e! for anyx € R,

6%
(3.23) Ee9’7'/f<1+2 Ef 2+6 572 E (17 1° expl6 i |/ /).
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Obviously,E7? < En? and|#j;| < 2n”. It follows that
~ ~ —(1/2
E(171i1®exp(67ii //n)) < 2n7e®"" " E i 2.
Since 14+ x < ¢* for anyx € R, by (3.23), we have that

93E|r]l~ |2 82‘9”/)7(1/2)
3 B/2—p ’

Substituting this back to (3.22), we obtain

" 92
E0i/Vn < exp{z—E(niz) +
n

M>

03 M, ~a/2
2 20nf
(f = tp> < exp(—@tp + 50+ 3 )

for any6 > 0. Choosingy =1t,/M>, it follows that

n p—(1/2)
P ith > 1, | < e lo/@M2) gy L pr"”(l/z)/MZ}
V=t 3M3

< K, e '0/(@2M2)

sincet, <t andt > 0, where K, is as in the statement of Theorem 1.3. Then
(3.21) follows. The proofis complete [

APPENDIX

For the proofs of the main theorems we quote some results from literature in
this section.

The following is a corollary of the Marcinkiewicz—Zygmund inequality, see,
for example, Corollary 2 on page 368 fpr> 2 and Theorem 2 on page 367 for
p €[1,2) from [7].

LEmmA A.1. If {n,,n > 1} are i.i.d. random variables with En; = 0O,
E|m|? <oo, p>1,and S, =", n;. Then,
omr’?y, ifp=>2,

P —
EIS:I" = O(n), ifl<p<?2.

The following is Lemma 2.2 from [17], which is a useful version of the maximal
inequality of Hoffmann-Jggensen, see [9] or Proposition 6.7 from [16].

LEMMA A.2. Let {n,1 <k < n} be independent symmetric random vari-
ablesand S,, = Y"}_1 nx. Then, for eachinteger j > 1, thereexist positive numbers
C; and D; depending only on j such that for all # > 0,

P(S,122j0) = C;P( max injl = 1) + D;(PUS,| = 1))
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The following lemma is from [1]. It is a refinement of Theorem 2 from [21].
See also page 254 from [20].

LEMMA A.3. Let{n1, n2,...} beasequenceof independent randomvariables
with En; = 0and En? = o2 > Ofor all i. Define S, = Yy n; and B, = Y11 02,
Suppose

B 1
Iiminf{—"}>0 and limsup! =Y " En;i|? } <00
n n n nl.zl

for some g > 2. Let @ (x) = [*__(27)~Y2"*/24¢. Then

P(Sn/«/B_n>x) 1
1—-d(x)

uniformly on [0, c+/logn | for any ¢ € (0, \/qg — 2) asn — oo.

The following Poisson approximation result is essentially a special case of
Theorem 1 in [3], which is again a special case of the general Chen—Stein Poisson
approximation method. One application of the following lemma is studying
behaviors of maxima of random variables. See, for example, [10] and [11].

LEMMA A.4. Let ] beanindex set and {B,,a € I} be a set of subsets of I,
that is, B, C I for each « € I. Let also {n,, « € I} be random variables. For a
giventr eR, set A=), c; P(ny >1). Then

<A ALY b1+ b2+ b3),

ael

‘P(maxna < t) —e*
where

bi=Y) Y P(a>1Pg >0,

ael BeBy

bo=Y > P(a>tnp>1),
ael a#BeBy

b3=> E|P(ny >tlo(ng, B¢ By)) — P(ng > 1),
ael

ando (ng, B ¢ By) isthe o -algebragenerated by {ng, 8 ¢ B, }. In particular, if n,
isindependent of {ng, 8 ¢ B,} for each «, then b3 =0.

The following is Lemma 2 from [4].
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LEMMA A.5. Let{v,v;;, i,j=1,2,...} beadoublearray of i.i.d. random
variablesandlet o > 1/2, 8 > 0 and M > 0 be constants. Thenasn — oo,

n

n ¢ Z(v,-‘,- — Ev)

i=1

max

-0 as.,
1<j<Mnf

if and only if E|v|#TD/e < 0.
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