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SPANNING TREE SIZE IN RANDOM BINARY SEARCH TREES

BY ALOIS PANHOLZER AND HELMUT PRODINGER

Technische Universität Wien and University of the Witwatersrand

This paper deals with the size of the spanning tree ofp randomly chosen
nodes in a binary search tree. It is shown via generating functions methods,
that for fixedp, the (normalized) spanning tree size converges in law to
the Normal distribution. The special casep = 2 reproves the recent result
(obtained by the contraction method by Mahmoud and Neininger [Ann. Appl.
Probab. 13 (2003) 253–276]), that the distribution of distances in random
binary search trees has a Gaussian limit law. In the proof we use the fact that
the spanning tree size is closely related to the number of passes in Multiple
Quickselect. This parameter, in particular, its first two moments, was studied
earlier by Panholzer and Prodinger [Random Structures Algorithms13 (1998)
189–209]. Here we show also that this normalized parameter has for fixed
p-order statistics a Gaussian limit law. Forp = 1 this gives the well-known
result that the depth of a randomly selected node in a random binary search
tree converges in law to the Normal distribution.

1. Introduction. In the papers [7] and [1] the distances between nodes in
random search trees, respectively, random recursive trees were studied. It was
proven in [7] that the (edge) distances�n between two randomly selected nodes
in random binary search trees of sizen are asymptotically normally (Gaussian)
distributed, where the so-called random permutation model was used as the model
of randomness for the trees. This means that every permutation of lengthn is
assumed to be equally likely when generating a binary search tree; furthermore,
for selecting nodes, all

(n
2

)
pairs of nodes are assumed to be equally likely.

In [1] it was shown that the distribution of the distance�(i,n) between a fixed
nodei and the noden in a random recursive tree of sizen is (for a fixed ratio
ρ := i

n
with 0 < ρ < 1) asymptotically normally distributed. A related parameter

to the distance between two randomly selected nodes is theWiener indexof a
graph, which is defined to be the sum of all distances between pairs of nodes in the
considered graph. The Wiener index was studied for certain families of graphs
and, although the scaled mean of this parameter must coincide with the mean
distance of two randomly selected nodes, it turned out that the Wiener index was
asymptoticallynot normally distributed for random recursive trees and random
binary search trees (see [8] and [5]).

In this paper we concentrate on random binary search trees and study a natural
extension of the distance between two randomly selected nodes, namely the size
of the spanning tree ofp randomly chosen nodes in the tree. Again, we use the
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random permutation model for the generation of the binary search trees and also
that all

(n
p

)
possibilities to selectp nodes in a tree of sizen are equally likely.

The selection of thep nodes will thus be independent of the chosen tree. The
random variableYn,p, which counts the size of the spanning tree ofp randomly
selected nodes in a random binary search tree of sizen, is then a direct extension
of �n, since the edge distance between two nodes is nothing else than the size of
the spanning tree of these two nodes minus one and thus�n

L= Yn,2 − 1, where
L= denotes equality in distribution.

In the mathematical analysis ofYn,p we use the fact that it is closely related
to the random variableXn,p, which counts the number of passes required in the
Multiple Quickselect algorithm to find a randomp-order statistic in a data file of
lengthn (see [9] and the references cited therein for a description of this divide and
conquer algorithm); the natural probability model for the data is, that their ranks
form a random permutation of{1, . . . , n} and we assume further that all

(n
p

)
sets of

p-order statistics{1 ≤ i1 < · · · < ip ≤ n} are equally likely. Then by well-known
relations between binary search trees and Quicksort-like algorithms,Xn,p is equal
to the number of ascendants ofp randomly chosen nodes in a random binary search
tree of sizen or, equivalently, to the size of the spanning tree, spanned by the root
andp randomly chosen nodes (where of course the root could have been chosen
as well) in a random binary search tree of sizen. See Figure 1 for a comparison of
both parameters.

The parameterXn,p was studied already in [9], where exact formulæ for the
expectation and the variance were given. Here we show additionally thatXn,p is,
for fixed p ≥ 1, asymptotically normally distributed (Philippe Flajolet mentioned
that to Helmut Prodinger in 1998 without working out the details).

For Yn,p we also derive exact formulæ for the expectation and the variance
and show thatYn,p is, for fixedp ≥ 2, asymptotically normally distributed, where
the special casep = 2 reproves that the distances�n between two randomly
selected nodes in random binary search trees of sizen are asymptotically normally
distributed. Our approach uses generating functions, singularity analysis and a

Spanning tree of the nodes7, 9and10 5passes of the Multiple Quickselect algorithm

is of size4 to find the ranks7, 9and10

FIG. 1. A binary search tree with the two parameters under consideration.
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central limit theorem for combinatorial structures due to Hwang and avoids the
difficulties which occur in [7] when showing the asymptotic normality for�n

using the contraction method which arises due to the degenerate nature of the
distributional limit equation forXn,1 (that was studied there to obtain the result
for �n).

2. Passes in Multiple Quickselect and spanning tree size in binary search
trees. First we want to translate the close relation betweenXn,p andYn,p into an
equation for suitable generating functions as described below.

Here we denote withϕn,p,m := P{Xn,p = m} the probability that exactly
m passes of the Multiple Quickselect algorithm are required in order to find a
random set ofp-order statistics in a data file of lengthn and with Fn,p,m :=
P{Yn,p = m}, the probability that the size of the spanning tree ofp randomly
chosen nodes in a binary search tree of sizen is exactlym. Using the recursive
structure of the search trees, we obtain for the generating functionsφp(z, v) =∑

n,m≥0
(n
p

)
ϕn,p,mznvm, respectively,Fp(z, v) = ∑

n,m≥0
(n
p

)
Fn,p,mznvm for p ≥ 1

the recurrences

∂

∂z
φp(z, v) = v

p∑
i=0

φi(z, v)φp−i (z, v) + v

p−1∑
i=0

φi(z, v)φp−1−i(z, v)(1)

and

∂

∂z
Fp(z, v) = v

p−1∑
i=1

φi(z, v)φp−i(z, v) + v

p−1∑
i=0

φi(z, v)φp−1−i(z, v)

+ 2F0(z, v)Fp(z, v),

(2)

with the initial functionsφ0(z, v) = F0(z, v) = 1
1−z

. The difference in the above
recurrences reflects the difference between both parameters coming from the
instance where the root is not selected and also the left (i = 0), respectively, right
(i = p) subtree of the root does not contain a selected node.

Introducing the trivariate generating functions�(z,u, v) = ∑
p≥0 φp(z, v)up

andF(z,u, v) = ∑
p≥0Fp(z, v)up, we obtain first from (1) a Riccati differential

equation

∂

∂z
�(z,u, v) = v(1+ u)�2(z, u, v) + 1− v

(1− z)2 ,(3)

with the initial value�(0, u, v) = 1. The solution of this equation is already given
in [9],

�(z,u, v) = � + 1− 2v + (1− z)�(� − 1+ 2v)

(� + 1− 2v(1+ u) + (1− z)�(� − 1+ 2v(1+ u)))(1− z)
,(4)

with

� = √
1− 4(1+ u)v(1− v).(5)
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ForF(z,u, v) we get from (2) the differential equation

∂

∂z
F (z,u, v)

= v(1+ u)�2(z, u, v) − 2v

1− z
�(z,u, v) + 2

1− z
F (z,u, v) + v − 1

(1− z)2

or

∂

∂z
F (z,u, v)

= ∂

∂z
�(z,u, v) − 2v

1− z
�(z,u, v) + 2

1− z
F (z,u, v) + 2(v − 1)

(1− z)2
,

with F(0, u, v) = 1.
This equation then has the solution

F(z,u, v) = 1+ 2z(v − 1)

(1− z)2

+ 1

(1− z)2

∫ z

0

[
∂

∂t
�(t, u, v) − 2v

1− t
�(t, u, v)

]
(1− t)2 dt,

(6)

with �(z,u, v) given by (4).

3. Expectation and variance of the spanning tree size. From (6) it is easy
to obtain exact formulæ for the expectation

En,p = E(Yn,p) = 1(n
p

) [znup] ∂

∂v
F (z,u, v)

∣∣∣∣
v=1

and the second factorial moment

M(2)
n,p = E

(
Yn,p(Yn,p − 1)

) = 1(n
p

) [znup] ∂2

∂v2
F(z,u, v)

∣∣∣∣
v=1

(and thus also for the varianceVn,p) of Yn,p, the size of the spanning tree of
p randomly selected nodes in a random binary search tree of sizen.

Differentiating (6) with respect tov and evaluating atv = 1 gives the following
equation forE(z,u) := ∂

∂v
F (z,u, v)|v=1:

E(z,u) = 2z

(1− z)2
+ 1

(1− z)2

∫ z

0

[
4(1− t)(1 + u)u2

(1− t (1+ u))3
log

1

1− t

+ X

(1− t (1+ u))3

]
dt,

(7)

with X = (−2 + u) + (6 + 3u − 3u2 − 4u3)t + (1 + u)(2u2 − 3u − 6)t2 + (2 +
u)(1+ u)2t3.
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This can be simplified to

E(z,u) = 2u(1+ u)

(1− z(1+ u))2 log
1

1− z
− 2u

(1− z)2(1+ u)2 log
1

1− z(1+ u)

+ zu(1− 2z − 3u + z2 + uz − 2u2 + 2uz2 + 3u2z + u2z2)

(1− z)2(1+ u)(1− z(1+ u))2
.

(8)

To extract coefficients we use here and in the sequel the general formulæ (see,
e.g., [3])

[zn] 1

(1− z)m+1 log
1

1− z
=

(
n + m

n

)
(Hn+m − Hm),

[zn] 1

(1− z)m+1 log2 1

1− z
=

(
n + m

n

)(
(Hn+m − Hm)2 − (

H
(2)
n+m − H(2)

m

))
,

where Hn = ∑n
k=1

1
k

and H
(2)
n = ∑n

k=1
1
k2 denote the first and second order

harmonic numbers.
By lengthy, but routine calculations, we finally get forEn,p = 1

(n
p)

[znup]E(z,u)

an exact formula, which is given in the next lemma:

LEMMA 1. The expectationEn,p = E(Yn,p) of the size of the spanning tree
of p randomly chosen nodes in a random binary search tree of sizen is for p ≥ 1
given by

En,p = 2p(n + 1)2

(n + 2− p)(n + 1− p)
(Hn − Hp) + 2(2p − 1)(n + 1)

(n + 2− p)(n + 1− p)
+ 3+ 2p

− 2pn

n + 1− p
+ 2p(n + 1)(−1)p(n

p

) Hn + 2p(n + 1)(−1)p(n
p

) p−1∑
k=1

(−1)k

k

(
n

k

)
,

and asymptotically for fixedp ≥ 2 by

En,p = 2p logn + 2pγ − 2pHp + 3− 2p − 2p

p − 1
+ O

(
logn

n

)
.

Forp = 1, the formula simplifies toEn,1 = 1 as it should.
We remark that

Hn =
n∑

k=1

(−1)k−1

k

(
n

k

)
,

and so one can give the alternative formula

En,p = 2p(n + 1)2

(n + 2− p)(n + 1− p)
(Hn − Hp) + 2(2p − 1)(n + 1)

(n + 2− p)(n + 1− p)
+ 3+ 2p

− 2pn

n + 1− p
+ 2p(n + 1)(−1)p(n

p

) n∑
k=p

(−1)k−1

k

(
n

k

)
.
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When we differentiate equation (6) twice with respect tov and evaluate atv = 1,

we finally obtain the following formula forM2(z, u) := ∂2

∂v2F(z,u, v)|v=1:

M2(z, u) = − 8u

(1− z)2

∫ z

0

1

1− t (1+ u)
log

1

1− t
dt

+ 4u(1+ u)2(1− z + 2u − uz)

(1− z(1+ u))3 log2 1

1− z

+ 12u

(1− z)2(1+ u)2
log

1

1− z(1+ u)
(9)

+ 4u	1

(1− z)(1− z(1+ u))3 log
1

1− z

+ 2u2z	2

(1− z)2(1− z(1+ u))3(1+ u)
,

with the abbreviations

	1 = −z2u2 − 3z2 − 5z2u + u3z2 + 6z + 9zu + 2u2z − u3z − 3u2 − 4u − 3,

	2 = −z3u3 + 3u3z2 − 2u3z − 19u2z + 22z2u2 + 6u2 − 3z3u2

+ 14u − 3z3u − 46zu + 35z2u + 14− 29z − z3 + 16z2.

Extracting coefficients gives after a somewhat lengthy calculation an exact
formula for the second factorial momentM

(2)
n,p = 1

(n
p)

[znup]M2(z, u) and we get

via Vn,p = M
(2)
n,p + En,p − E2

n,p the following result:

LEMMA 2. The varianceVn,p = V(Yn,p) of the size of the spanning tree
of p chosen nodes in a random binary search tree of sizen is for p ≥ 2 given by

Vn,p = 4(−1)p(n + 1)(2pHn − 2pHp + 2− 3p2)

p
(n
p

) p−1∑
k=1

(−1)k

k

(
n

k

)

− 8(−1)p(n + 1)(n
p

) p−1∑
k=1

(−1)k

k2

(
n

k

)

+ 4(−1)p(n + 1)(n
p

) (
H 2

n − H(2)
n − 2HpHn

)

+ 4(−1)p(2− 3p2)(n + 1)

p
(n
p

) Hn − 4	3

(n + 4− p)4
(Hn − Hp)

+ 4p(n + 2)(n + 1)3(np + 2+ p)

(n + 4− p)4

(
(Hn − Hp)2 − (

H(2)
n − H(2)

p

))

+ 2	4

(n + 4− p)4 + En,p − E2
n,p,
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with

	3 = −2p4 − 6n2p3 + 16p3 − 2n3p3 − 45p2n − 58p2 − 4n2p2 + 2p2n4

+ 7n3p2 + 56p + 78np + 6n3p + 41pn2 − n4p − 8− 20n − 16n2 − 4n3,

	4 = −144− 6p5 − 3n4 − 152p3n + 2p4n2 + 25p4n − 234n + 78p + 10np

− 5n4p − 39n2p3 − 4n3p3 + 250p2n + 119n2p2 + 2p2n4 + 25n3p2

− 22n3p − 35pn2 + 155p2 −173p3 + 58p4 − 153n2 − 42n3.

Further we haveVn,1 = 0 and the following asymptotic expansion forn → ∞ and
fixedp ≥ 2:

Vn,p = 2p logn − 2p(Hp − γ ) − 4p2
(

π2

6
− H(2)

p

)

+ 2(−2+ 7p − 5p2 + 2p3)

(1− p)2
+ O

(
log2 n

n

)
.

Here we used the abbreviationxm := x(x − 1) · · · (x − m + 1) for the falling
factorials.

We remark again that an alternative representation of the variance would be
possible using the additional formula

1

2

(
H 2

n + H(2)
n

) =
n∑

k=1

(−1)k−1

k2

(
n

k

)
.

4. The limiting distribution of the number of passes in Multiple Quick-
select. We will show that both random variablesXn,p and Yn,p satisfy, for
fixedp, a Gaussian limit law. To do this, we will expand the coefficients atup (for
fixed p) of the trivariate generating functions�(z,u, v), respectively,F(z,u, v)

around their dominant singularityz = 1, where the expansion holds uniformly for
|v −1| < τ , for τ > 0. Singularity analysis (see [2]) of generating functions allows
then to translate these expansions into an asymptotic expansion of the moment
generating function (the Laplace transform) of the considered random variables.
Then we can apply the so called Quasi power theorem (see [4]) to establish the
weak convergence of the random variables to the normal distribution with certain
convergence rates.

In this section we will treat the random variableXn,p. As described above,
we are interested in an asymptotic expansion of1

(n
p)

[znup]�(z,u, v) for n → ∞
and fixedp uniformly for |v − 1| ≤ τ , where�(z,u, v) is given by the exact
formula (4).

To expand�(z,u, v) we will use some auxiliary expansions of

f (u) = � + 1− 2v + (1− z)�(� − 1+ 2v),(10)

g(u) = � + 1− 2v(1+ u) + (1− z)�
(
� − 1+ 2v(1+ u)

)
(11)
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with � given by (5). All O-terms in the expansions given below are uniform
for |v − 1| ≤ τ , as required. In the sequel, we will use the notationsDu for the
differential operator w.r.t.u andNu for the evaluation operator atu = 0.

Since

� = (2v − 1)
∑
k≥0

(
1/2
k

)(
− 4v(1− v)

1− 4v(1− v)

)k

uk,

we get

(1− z)� = e� log(1−z)

= (1− z)2v−1

× exp

[
(2v − 1) log(1− z)

∑
k≥1

(
1/2
k

)(
− 4v(1− v)

1− 4v(1− v)

)k

uk

]
,

and thus

NuD
p
u (1− z)� = O

(
(1− z)2v−1 logp(1− z)

)
.(12)

We have

f (0) = g(0) = (1− z)2v−12(2v − 1)(13)

and we get further

NuDuf (u) = −4v(1− v)

2(2v − 1)
+ O

(
(1− z)2v−1 log(1− z)

)
,(14a)

NuDug(u) = − 2v2

2v − 1
+ O

(
(1− z)2v−1 log(1− z)

)
,(14b)

NuD
p
u f (u) = (2v − 1)p!

(
1/2
p

)(
− 4v(1− v)

1− 4v(1− v)

)p

(14c) + O
(
(1− z)2v−1 logp(1− z)

)
,

NuD
p
u g(u) = (2v − 1)p!

(
1/2
p

)(
− 4v(1− v)

1− 4v(1− v)

)p

(14d) + O
(
(1− z)2v−1 logp(1− z)

)
,

for p ≥ 2. Furthermore, we want to expandD
p
u (g(u))−1 (for p ≥ 1) in terms of

falling powers of(g(u))−1, which gives

Dp
u (g(u))−1

= (−1)pp!(g(u))−p−1(g′(u))p

+ (−1)p−1(p − 1)p!
2

(g(u))−p(g′(u))p−2g′′(u) + O
(
(g(u))−p+1)
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and hence we obtain the expansion

NuD
p
u (g(u))−1

= (−1)pp!(−2v2/(2v − 1) + O((1− z)2v−1 log(1− z)))p

(1− z)(p+1)(2v−1)2p+1(2v − 1)p+1

(15)
+ O

(
1

(1− z)p(2v−1)

)

= (−1)pp!(−2v2/(2v − 1))p

(1− z)(p+1)(2v−1)2p+1(2v − 1)p+1
+ O

(
log(1− z)

(1− z)p(2v−1)

)
.

This finally gives

NuD
p
u �(z,u, v)

= NuD
p
u

f (u)

(1− z)g(u)

= 1

1− z
f (0)NuD

p
u (g(u))−1 + 1

1− z
pf ′(0)NuD

p−1
u (g(u))−1

+ 1

1− z
O

(
1

(1− z)(p−1)(2v−1)

)
(16)

= (1− z)2v−12(2v − 1)(−1)pp!(−2v2/(2v − 1))p

(1− z)(p+1)(2v−1)+12p+1(2v − 1)p+1

+ p(−4v(1− v)/(2(2v − 1)))(−1)p−1(p − 1)!(−2v2/(2v − 1))p−1

(1− z)p(2v−1)+12p(2v − 1)p

+ O

(
log(1− z)

(1− z)(p−1)(2v−1)+1

)

= p!(v/(2v − 1))2p−1

(1− z)p(2v−1)+1 + O

(
log(1− z)

(1− z)(p−1)(2v−1)+1

)
.

Singularity analysis leads then directly to

[zn]NuD
p
u �(z,u, v)

= p!
(

v

2v − 1

)2p−1 np(2v−1)

�(p(2v − 1) + 1)

(
1+ O

(
1

n

))

+ O
(
(logn)n(p−1)(2v−1))(17)

= p!(v/(2v − 1))2p−1np(2v−1)

�(p(2v − 1) + 1)

(
1+ O

(
1

n

))(
1+ O

(
logn

n2v−1

))

= p!(v/(2v − 1))2p−1np(2v−1)

�(p(2v − 1) + 1)

(
1+ O

(
1

n1−ε

))
,
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uniformly for ε > 0 and|v − 1| ≤ τ := ε
3 and also to the following expansion,

which is valid for fixedp ≥ 1:

1(n
p

) [znup]�(z,u, v)

= p!
np

[znup]�(z,u, v)

(
1+ O

(
1

n

))

= 1

np
[zn]NuD

p
u �(z,u, v)

(
1+ O

(
1

n

))
(18)

= p!(v/(2v − 1))2p−1np(2v−2)

�(p(2v − 1) + 1)

(
1+ O

(
1

n1−ε

))

= exp
[
p(2v − 2) logn + log

(
p!(v/(2v − 1))2p−1

�(p(2v − 1) + 1)

)]

×
(

1+ O

(
1

n1−ε

))
.

We give here the Quasi power theorem as proven in [4], which we want to apply
to our problem.

THEOREM 3 (H. K. Hwang). Let {�n}n≥1 be a sequence of integral random
variables. Suppose that the moment generating function satisfies the asymptotic
expression

Mn(s) := E
(
e�ns

) = ∑
m≥0

P{�n = m}ems = eHn(s)
(
1+ O(κ−1

n )
)
,

theO-term being uniform for|s| ≤ τ , s ∈ C, τ > 0, where:

(i) Hn(s) = u(s)φ(n) + v(s), with u(s) and v(s) analytic for |s| ≤ τ and
independent ofn; u′′(0) �= 0,

(ii) φ(n) → ∞,
(iii) κn → ∞.

Under these assumptions, the distribution of�n is asymptotically Gaussian

P

{
�n − u′(0)φ(n)√

u′′(0)φ(n)
< x

}
= �(x) + O

(
1

κn

+ 1√
φ(n)

)
,

uniformly with respect tox, x ∈ R. Here�(x) denotes the distribution function of
the standard normal distributionN (0,1).

Moreover, the mean and the variance of�n satisfy

E(�n) = u′(0)φ(n) + v′(0) + O(κ−1
n ),

V(�n) = u′′(0)φ(n) + v′′(0) + O(κ−1
n ).
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From (18) we get, with the notation in Theorem 3,

u(s) = p(2es − 2), v(s) = log
(

p!(es/(2es − 1))2p−1

�(p(2es − 1) + 1)

)
,

φ(n) = logn, κn = n1−ε.

We find

u′(0) = 2p, u′′(0) = 2p,(19)

and

v′(0) = −2p + 1− 2p	(p + 1) = −2pHp + 2pγ + 1− 2p,

v′′(0) = 2(2p − 1) − 2p	(p + 1) − 4p2	 ′(p + 1)(20)

= 2(2p − 1) − 2pHp + 2pγ − 2
3π2p2 + 4p2H(2)

p ,

where	(x) denotes the digamma function:	(x) := (log�(x))′.
Hence, with equations (19) and (20), we get from Theorem 3 the following

result:

THEOREM 4. The distribution of the random variableXn,p, which counts the
number of passes in the Multiple Quickselect algorithm that are required to find
a random order statistic ofp elements in a data file of sizen, is for fixedp ≥ 1

asymptotically Gaussian, where the convergence rate is of orderO( 1√
logn

):

P

{
Xn,p − 2p logn√

2p logn
< x

}
= �(x) + O

(
1√

logn

)
,

and the expectationEn,p = E(Xn,p) and the varianceVn,p = V(Xn,p) satisfy

En,p = 2p logn + 1− 2p − 2pHp + 2pγ + O

(
1

n1−ε

)
,

Vn,p = 2p logn + 4p − 2− 2pHp + 2pγ + 4p2H(2)
p − 2

3
π2p2 + O

(
1

n1−ε

)
.

The result forEn,p andVn,p already appeared in [9], but unfortunately there
was a typo in the formula forVn,p.

For the casep = 1 we have thatXn,1 counts the number of comparisons
encountered by a successful search in a random binary search tree and this is,
up to an additive constant, the same as the depthDn of a randomly selected node,

Dn
L= Xn,1−1. The asymptotic normality of the distribution ofXn,1 is well known

(see, e.g., [6]) and the convergence rate was recently established in [7].
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5. The limiting distribution of the spanning tree size in binary search
trees. In this section we will show that the normalized random variableYn,p,
as defined in Section 4, has for fixedp a Gaussian limiting distribution. Hence we
are interested in an asymptotic expansion of1

(n
p)

[znup]F(z,u, v) for n → ∞ and

fixedp uniformly for |v − 1| ≤ τ , whereF(z,u, v) is given by (6).
To do this, we will first study the behavior near the singularityz = 1 of the

expression

�̃(z, u, v) =
(

∂

∂z
�(z,u, v) − 2v

1− z
�(z,u, v)

)
(1− z)2,(21)

which we can write as

�̃(z, u, v) = f̃ (u)

(g(u))2
,(22)

where the functionf̃ (u) is defined by

f̃ (u) = −�(� − 1+ 2v)(1− z)�g(u)

+ �
(
� − 1+ 2v(1+ u)

)
(1− z)�f (u) + (1− 2v)f (u)g(u),

(23)

and�(z,u, v), �, f (u) andg(u) are given by equations (4), (5), (10) and (11),
respectively.

The relevant expansions are now

f̃ (0) = −4(2v − 1)3(1− z)4v−2,

f̃ ′(0) = 8v2(2v − 1)(1− z)2v−1 + O
(
log(1− z)(1− z)4v−2),

f̃ ′′(0) = 8(v − 1)v3

2v − 1
+ O

(
log(1− z)(1− z)2v−1)

and

NuD
p
u (g(u))−2 = (−1)p(p + 1)! (g′(0))p

(g(0))p+2
+ O

(
1

(g(0))p+1

)
,

which leads, forp ≥ 2, eventually to

NuD
p
u �̃(z,u, v)

= f̃ (0)NuD
p
u (g(u))−2 + pf̃ ′(0)NuD

p−1
u (g(u))−2

+ p(p − 1)

2
f̃ ′′(0)NuD

p−2
u (g(u))−2 + O

(
1

(1− z)(p−1)(2v−1)

)

= (p − 1)p!v(v/(2v − 1))2p−2

(1− z)p(2v−1)
+ O

(
log(1− z)

(1− z)(p−1)(2v−1)

)
.

(24)
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This gives then

1(n
p

) [znup]F(z,u, v)

= 1(n
p

) [znup] 1

(1− z)2

∫ z

t=0
�̃(t, u, v) dt

= 1

np
[zn] 1

(1− z)2

∫ z

t=0
NuD

p
u �̃(t, u, v) dt

(
1+ O

(
1

n

))
(25)

= 1

np
[zn] 1

(1− z)2

×
∫ z

t=0

[
(p − 1)p!v(v/(2v − 1))2p−2

(1− z)p(2v−1)

+ O

(
log(1− z)

(1− z)(p−1)(2v−1)

)]
dt

(
1+ O

(
1

n

))
.

We get via singularity analysis

[zn] 1

(1− z)2

∫ z

t=0

(p − 1)p!v(v/(2v − 1))2p−2

(1− z)p(2v−1)
dt

= [zn] (p − 1)p!v(v/(2v − 1))2p−2

(p(2v − 1) − 1)(1− z)p(2v−1)+1(26)

= (p − 1)p!v(v/(2v − 1))2p−2np(2v−1)

(p(2v − 1) − 1)�(p(2v − 1) + 1)

(
1+ O

(
1

n

))

and

[zn] 1

(1− z)2

∫ z

t=0
O

(
log(1− t)

(1− t)(p−1)(2v−1)

)
dt

= O

(
n∑

k=1

[zn−k] 1

(1− z)2
[zk]

∫ z

t=0

log(1− t)

(1− t)(p−1)(2v−1)
dt

)

= O

(
n max

1≤k≤n
[zn−k] 1

(1− z)2
max

1≤k≤n
[zk]

∫ z

t=0

log(1− t)

(1− t)(p−1)(2v−1)
dt

)
(27)

= O

(
n2[zn]

∫ z

t=0

log(1− t)

(1− t)(p−1)(2v−1)
dt

)
= O

(
(logn)n(p−1)(2v−1)

)

= O

(
np(2v−1) 1

n1−ε

)
,

uniformly for ε > 0 and|v − 1| ≤ τ := ε
3.
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Thus we obtain by combining the results (25)–(27) forp ≥ 2 the asymptotic
expansion

1(n
p

) [znup]F(z,u, v)

(28)

= (p − 1)p!v(v/(2v − 1))2p−2np(2v−2)

(p(2v − 1) − 1)�(p(2v − 1) + 1)

(
1+ O

(
1

n1−ε

))
.

To apply the Quasi power theorem, we write (28) as

1(n
p

) [znup]F(z,u, v)

= exp
[
p(2v − 2) logn + log

(
(p − 1)p!v(v/(2v − 1))2p−2

(p(2v − 1) − 1)�(p(2v − 1) + 1)

)]
(29)

×
(

1+ O

(
1

n1−ε

))

and then get, with the notation used in Theorem 3,

u(s) = p(2es − 2), v(s) = log
(

(p − 1)p!es(es/(2es − 1))2p−2

(p(2es − 1) − 1)�(p(2es − 1) + 1)

)
,

φ(n) = logn, κn = n1−ε.

We have

u′(0) = 2p, u′′(0) = 2p,(30)

and

v′(0) = −2p	(p + 1) + 3− 2p − 2p

p − 1

= −2pHp + 2pγ + 3− 2p − 2p

p − 1
,

(31)

v′′(0) = −2p	(p + 1) − 4p2	 ′(p + 1) + 2(2p3 − 5p2 + 7p − 2)

(p − 1)2

= −2pHp + 2pγ − 2

3
π2p2 + 4p2H(2)

p + 2(2p3 − 5p2 + 7p − 2)

(p − 1)2
,

which leads now to the following result:

THEOREM 5. The distribution of the random variableYn,p, which counts the
size of the spanning tree ofp randomly chosen nodes in a binary search tree of
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sizen, is for fixedp ≥ 2 asymptotically Gaussian, where the convergence rate is
of orderO( 1√

logn
).

P

{
Yn,p − 2p logn√

2p logn
< x

}
= �(x) + O

(
1√

logn

)

and the expectationEn,p = E(Yn,p) and the varianceVn,p = V(Yn,p) satisfy

En,p = 2p logn − 2pHp + 2pγ + 3− 2p − 2p

p − 1
+ O

(
1

n1−ε

)
,

Vn,p = 2p logn − 2pHp + 2pγ − 2

3
π2p2 + 4p2H(2)

p

+ 2(2p3 − 5p2 + 7p − 2)

(p − 1)2 + O

(
1

n1−ε

)
.

Of course, the casep = 1 is trivial, since we haveP{Yn,1 = 1} = 1 due to the fact
that the spanning tree of a single node is the node itself.

The casep = 2 is of particular interest, sinceYn,2 is as described earlier, up to
an additive constant, the distance�n between two randomly selected nodes in a

binary search tree of sizen, viz.�n
L= Yn,2−1. This parameter was studied already

in [7], where the asymptotic normality of the distribution was shown by means of
a refined contraction method.

As an insightful referee remarks, one could also obtain the Gaussian limit law
for Yn,p (without the precision of the order of convergence obtained here) by
studying the difference betweenXn,p andYn,p, which is the length of the path
from the root of the binary search tree to the root of the minimal spanning tree.
This quantity is very short, for example, it can be shown, that it is zero with
probability 1− 2/(p + 1) asymptotically forn → ∞ andp ≥ 2. Since we gave
already a detailed analysis ofYn,p in this section, we will only describe, very
briefly, how one could proceed alternatively. It follows by comparing Theorem 4
and Lemma 1, thatE(Xn,p −Yn,p) = 4+2p/(p−1)+O(1/n1−ε). One gets thus,
that P{Xn,p − Yn,p ≥ (logn)1/4} = O((logn)−1/4). This bound finally suffices
to transfer the limiting distribution result fromXn,p to Yn,p by considering
P{(Yn,p − 2p logn)/

√
2p logn < x} = P{(Xn,p − 2p logn)/

√
2p logn − (Xn,p −

Yn,p)/
√

2p logn < x}.
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