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SPANNING TREE SIZE IN RANDOM BINARY SEARCH TREES

BY ALOIS PANHOLZER AND HELMUT PRODINGER
Technische Universitat Wien and University of the Witwatersrand

This paper deals with the size of the spanning tree mndomly chosen
nodes in a binary search tree. It is shown via generating functions methods,
that for fixed p, the (hormalized) spanning tree size converges in law to
the Normal distribution. The special cape= 2 reproves the recent result
(obtained by the contraction method by Mahmoud and Neininigen[Appl.
Probab. 13 (2003) 253-276]), that the distribution of distances in random
binary search trees has a Gaussian limit law. In the proof we use the fact that
the spanning tree size is closely related to the number of passes in Multiple
Quickselect. This parameter, in particular, its first two moments, was studied
earlier by Panholzer and Proding&gndom Structures Algorithm8 (1998)
189-209]. Here we show also that this normalized parameter has for fixed
p-order statistics a Gaussian limit law. Fee= 1 this gives the well-known
result that the depth of a randomly selected node in a random binary search
tree converges in law to the Normal distribution.

1. Introduction. In the papers [7] and [1] the distances between nodes in
random search trees, respectively, random recursive trees were studied. It was
proven in [7] that the (edge) distancag between two randomly selected nodes
in random binary search trees of sizeare asymptotically normally (Gaussian)
distributed, where the so-called random permutation model was used as the model
of randomness for the trees. This means that every permutation of length
assumed to be equally likely when generating a binary search tree; furthermore,
for selecting nodes, all)) pairs of nodes are assumed to be equally likely.

In [1] it was shown that the distribution of the distanté€, n) between a fixed
nodei and the node: in a random recursive tree of sizeis (for a fixed ratio
p = with 0 < p < 1) asymptotically normally distributed. A related parameter
to the distance between two randomly selected nodes iS$Mbaer indexof a
graph, which is defined to be the sum of all distances between pairs of nodes in the
considered graph. The Wiener index was studied for certain families of graphs
and, although the scaled mean of this parameter must coincide with the mean
distance of two randomly selected nodes, it turned out that the Wiener index was
asymptoticallynot normally distributed for random recursive trees and random
binary search trees (see [8] and [5]).

In this paper we concentrate on random binary search trees and study a natural
extension of the distance between two randomly selected nodes, namely the size
of the spanning tree gp randomly chosen nodes in the tree. Again, we use the
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random permutation model for the generation of the binary search trees and also
that all (") possibilities to selecp nodes in a tree of size are equally likely.

The selection of thep nodes will thus be independent of the chosen tree. The
random variable’, ,, which counts the size of the spanning treepafandomly
selected nodes in a random binary search tree ofrigiethen a direct extension

of A,, since the edge distance between two nodes is nothing else than the size of

the spanning tree of these two nodes minus one andAlyub Y,2 — 1, where

£ denotes equality in distribution.

In the mathematical analysis of, , we use the fact that it is closely related
to the random variablé,, ,, which counts the number of passes required in the
Multiple Quickselect algorithm to find a randoprorder statistic in a data file of
lengthn (see [9] and the references cited therein for a description of this divide and
conquer algorithm); the natural probability model for the data is, that their ranks
form a random permutation ¢1, .. ., n} and we assume further that (agl,l) sets of
p-order statistic§1 <i; < --- < i, < n} are equally likely. Then by well-known
relations between binary search trees and Quicksort-like algoritkimsis equal
to the number of ascendantspfandomly chosen nodes in arandom binary search
tree of sizen or, equivalently, to the size of the spanning tree, spanned by the root
and p randomly chosen nodes (where of course the root could have been chosen
as well) in arandom binary search tree of siz&ee Figure 1 for a comparison of
both parameters.

The parameteX, , was studied already in [9], where exact formulee for the
expectation and the variance were given. Here we show additionallkthatis,
for fixed p > 1, asymptotically normally distributed (Philippe Flajolet mentioned
that to Helmut Prodinger in 1998 without working out the details).

For Y, , we also derive exact formulee for the expectation and the variance
and show that,, , is, for fixed p > 2, asymptotically normally distributed, where
the special casep = 2 reproves that the distances, between two randomly
selected nodes in random binary search trees ofisaze asymptotically normally
distributed. Our approach uses generating functions, singularity analysis and a

Spanning tree of the nod@s 9and 10 5passes of the Multiple Quickselect algorithm
is of sized to find the ranks/, 9and 10

FiG. 1. A binary search tree with the two parameters under consideration
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central limit theorem for combinatorial structures due to Hwang and avoids the
difficulties which occur in [7] when showing the asymptotic normality ftof

using the contraction method which arises due to the degenerate nature of the
distributional limit equation forX, 1 (that was studied there to obtain the result
for A,).

2. Passesin Multiple Quickselect and spanning tree size in binary search
trees. First we want to translate the close relation betwg&gn, andY,, , into an
equation for suitable generating functions as described below.

Here we denote withp, , . := P{X, , = m} the probability that exactly
m passes of the Multiple Quickselect algorithm are required in order to find a
random set ofp-order statistics in a data file of lengthand with F,, ,, ,, :=
P{Y,,, = m}, the probability that the size of the spanning treepofandomly
chosen nodes in a binary search tree of &ize exactlym. Using the recursive
structure of the search trees, we obtain for the generating funatipisv) =
> nm=0 (Z)wn,p,mz”vm, respectivelyF,(z,v) =, m>0( )Fu, pmz"v™ for p > 1
the recurrences

p—1
1) —¢p<z v)—vaz VGp—i (2, 0) +v > ¢i(z, V)pp-1-i(2, V)
i=0 i=0
and
p—1 p—1
@ —F . 0)=v Y i@ V)P,i(Z. ) +v Y $i(z.V)pp-1-i(z, V)
i=1 i=0

+ 2Fo(z, v) Fp(z, v),

with the initial functionsgg(z, v) = Fo(z,v) = 1 . The difference in the above
recurrences reflects the difference between both parameters coming from the
instance where the root is not selected and also theileftQ), respectively, right
(i = p) subtree of the root does not contain a selected node.

Introducing the trivariate generating functiodsz, u, v) = 3_,-q¢,(z, v)u?
andF(z,u,v) = szo F,(z,v)u?, we obtain first from (1) a Riccati differential
equation

] 1—
(3) a—ZCD(z,u,v)=v(l+u)<l>2(z,u,v)+(1_7;)2,
with the initial value® (0, u, v) = 1. The solution of this equation is already given
in [9],
Q+1-20+(1—-2)%(QL—1+2v)
QR+1-20A+u)+1-2)Q—1+2v(1+u))(l—2z)’

4) oGz u,v)=
with
(5) Q=vV1-4A0+u)v(d—v).
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For F(z, u, v) we get from (2) the differential equation

) Feeou,v)
az Z,Uu,v
= 0L @22, ) — (e, V) o Fztt0) +
=V u Z,u,v 1—Z ,u,v 1—Z ,u,v (1—1)2
or
8F( )
5 P
) o)~ @)+ o Fleu ) + D
= — Z,u,v) — — Z,Uu,v D ,u,v P ——
0z 1-¢ 1-z (1—2)?
with F(O, u,v) =1.
This equation then has the solution
1+2z(v—-1
F(z,u,v):va)
1-2)
(6)
. /Z[BQDO‘ )~ 2 o )](1 H2di
PV . ,u,v) — —— , U,V - )
1-2)2Jo Lot 1—+¢

with ®(z, u, v) given by (4).

3. Expectation and variance of the spanning tree size. From (6) it is easy
to obtain exact formulae for the expectation

1 0
EVL,P =E(Yn,p) = m[znup]aF(Zv u, U)
p

and the second factorial moment

v=1

1 92
MP, =E(Y,,p(Ynp — 1) = 1 S F v
p
(and thus also for the variandg, ,) of Y, ,, the size of the spanning tree of
p randomly selected nodes in a random binary search tree ot size
Differentiating (6) with respect to and evaluating at = 1 gives the following
equation forE (z, u) := 2 F(z, u, v)|y=1

v=1

E(z,u) =

2z 1 /z [4(1 — )1+ w)u? 1
0

(7) Q-2 A-22bo L @—r@vm@® P11

+ aA-r(1+ u))3] at,

with X = (=2+u) + 6+ 3u — 3u?2 — 4u®r + L+ u)(2u? — 3u — 6)12 + 2+
u)(L+ u)?es.
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This can be simplified to
2u(l+u) o 1 2u o 1
A—z@+w)? 91—z A-22A+w? 1-zd+u)

zu(l—2z — 3u + 224 uz —2u?+2uz?+ 3u?z + uzzz)
(1— 220+ u)(L—z(1+u))? '
To extract coefficients we use here and in the sequel the general formulee (see,

e.g., [3])
1 (n—l—m

[Z](l—z)mHIOgl_Z: ;

n 1 1 4

where H, = Y }_ 1,} and H® = > 1 > denote the first and second order
harmonic numbers.
By lengthy, but routine calculations, we finally get 8y , = (Tl)[z”ul’]E(z, )
p

E(z,u)=
(8)

ymm—%x

an exact formula, which is given in the next lemma:

LEMMA 1. The expectatioE, , = E(Y, ,) of the size of the spanning tree
of p randomly chosen nodes in a random binary search tree ofisigdor p > 1
given by

2p(n+1)°2 22p—-DH(n+1
Enp= p(n+1) (H, — H,) + @2p—-1Hn+1) +3+2p
(n+2-p)(n+1-p) (n+2-p)(n+1-p)
2pn  2p+D(=DP  2p(n+D(=D? K (=DF (n
) DD, | 20 (1),
n + 1 - p (P) (p) k=1 k

and asymptotically for fixeg > 2 by

2 logn
En.p=2plogn +2py — 2pH, +3—2p — p—p+(9( 3 )
For p =1, the formula simplifies t&, 1 = 1 as it should.

We remark that
1k 1
H, = Z( ) <>

and so one can give the alternatlve formula

2p(n + 1)2 22p —D(n+1)
Ey = H, — H 3+2
P (n+2—p)(n+l—p)( p)+(n+2—17)(n+1—17)+ e

2pn 2p(n+1)(-1P & (-1t oy
4 (k)

Cn41-p (Z) =k
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When we differentiate equation (6) twice with respeat tind evaluate at =1,
we finally obtain the following formula foM>(z, u) := ;-vzzF(z, U, v)|y=1:

Ma(z,u) = — u /Z ! log ! dt
1-22Jo 1—t(l+u) “1—¢
Au(14u)?(1 —z + 2u — uz) log? 1
(1—z(1+u) 1-z
12u 1
©) + 1—-22(1+u)? log 1-z(14+u)
+ 4uq log 1
1-2A—zA+u)® “1-z
ZMZZ\IJZ

RS e B W T
with the abbreviations
Yy = —72u% — 32 = 52%u 4+ u37% + 62 + zu + 2u’z — uz — 3u? — 4u — 3,
Wy = — 738 + 3u372 — 2u87 — 19?7 + 2272u? + 6u? — 3z3u?
+ 14u — 3z%u — 46zu + 35z%u + 14— 29 — 23 + 1622,
Extracting coefficients gives after a somewhat lengthy calculation an exact

formula for the second factorial momeM,S,zg, = (Tl)[z”uP]Mg(z, u) and we get
p

via V., =M3 +E, , — EZ , the following result:

LEMMA 2. The varianceV, , = V(Y, ,) of the size of the spanning tree
of p chosen nodes in a random binary search tree of siefor p > 2 given by

A=1)P(n+1)(2pH, — 2pH, + 2 —3p?) ”f (—D)k (n)

Vn’p =

P(Z) i1 K k
CB(-DP(n+ 1) (D <n>
() o kK

A-DP(n+1)
(»)

(H;f — H® — 2H), Hy)

_ a2
4-DP@=3pHnt D, 4 ~(H, — H,)
p(3) (n+4—p)t
4p(n +2)(n+1)3(np + 2+ p) 2 ) )
+ (I’l T 4— p)é ((Hn - HP) - (Hn - Hp ))
2y 2
- (n+4—p)4+E"’p Eip
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W3 = —2p4 — 6nzp3 + 16p3 — 2n3p3 — 45p2n — 58p2 — 4112192 + 2p2n4
+ 7n3p? +56p + 781p + 6n°p + 41pn® — n*p — 8 — 20n — 16n° — 4n5,
W, = —144—6p° — 3n* — 152p°n + 2p*n? + 25p*n — 234n + 78p + 10np
— 5n4p — 39nzp3 — 4113p3 + 250p2n + 11912192 + 2p2n4 + 25n3p2
—22n3p — 35pn? + 155p% —173p° + 58p* — 1532 — 4215,
Further we havé/,, 1 = 0 and the following asymptotic expansion for> oo and
fixedp > 2:

2
T
Vn,p = 2p|OgI’l — ZP(Hp - )/) - 4]72(? — Hl()z))

2(—=2+7p —5p2 +2p3 log?
(=2+7p p+p)+(9<09n>.
(11— p)? n

Here we used the abbreviatia# := x(x — 1) --- (x — m + 1) for the falling
factorials.

We remark again that an alternative representation of the variance would be
possible using the additional formula

1 5 @)\ _ " (=Dt g
S(Hy+ H, )= i (k)

k=1

4. The limiting distribution of the number of passes in Multiple Quick-
select. We will show that both random variables, , and Y, , satisfy, for
fixed p, a Gaussian limit law. To do this, we will expand the coefficientg’affor
fixed p) of the trivariate generating functiorB(z, u, v), respectivelyF (z, u, v)
around their dominant singularity= 1, where the expansion holds uniformly for
lv—1| < 7, for T > 0. Singularity analysis (see [2]) of generating functions allows
then to translate these expansions into an asymptotic expansion of the moment
generating function (the Laplace transform) of the considered random variables.
Then we can apply the so called Quasi power theorem (see [4]) to establish the
weak convergence of the random variables to the normal distribution with certain
convergence rates.

In this section we will treat the random variahlg, ,. As described above,

we are interested in an asymptotic expansmn?—]?tz uP1®(z,u,v) forn - oo

and fixed p uniformly for |v — 1] <, wherecb(z u,v) is given by the exact
formula (4).
To expandd (z, u, v) we will use some auxiliary expansions of

(10) fu)=Q+1—2v+ 1A —2)%(Q -1+ 2v),
(11) gw)=Q+1-2vA+u)+(1—2)%(Q -1+ 201 +u))
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with  given by (5). All @-terms in the expansions given below are uniform
for |lv — 1| < t, as required. In the sequel, we will use the notatiéysfor the
differential operator w.r.tz andN,, for the evaluation operator at= 0.

Since
B 1/2 4U(1_U) k k
Q_(Zv—l)Z( k )(—m> o

k>0
we get
(1 _ Z)Q — teOg(l—Z)

=(1_Z)21}—1
N N 1/2 _MY k
xexp[(Zv 1)log(1 z)];( 1 )( T—ad—n) " |
and thus
(12) N,DP(1—2)%=0(1-2*tlog’(1-2z)).
We have
(13) fO=g0=01-2*"22v-1)
and we get further
(14a) N.D, f( )——M+(9((1— )2~ Llog(1 - z))
u Mf u)= 2(21]-1) Z g < )
2
_ _ z2v-1 _
(14b) NuDug() = —5—= +0((1 =)™ "log(1 ~2)),
» _ B 1/2) (_ dv(l—v) )p
wupp s = @ =1t (Y2) (-
14
(14c) +0((1- 22 Log’ (1 2)),
b o 1/2) (_ 4v(1—v) )P
NuDfs =@ =t (V2 ) (-

14d
(14d) +0(1-2%"tog’ (1 - 2)),

for p > 2. Furthermore, we want to expaf (g(u))~* (for p > 1) in terms of
falling powers of(g(x))~1, which gives

DP(g(u))™t
= (=1)P p!(gw) P 1(g ()P

1P Y(p—1p!
+ E IR )2 (50 2 0 + O((g0) 7+
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and hence we obtain the expansion
N,DJ(gu) ™

(—2v%/(2v — 1) + O (L - )% tlog(1 - 2)))”
(1 — )P+ @v=D2p+1(2y — 1)P+1

© 1
+ ((1 _ Z)p(Zv—l))

(=D pi(=202/(2v — 1))P of 1092
T (1= )PD@v=D2p+1(2y — 1)p+1 ((1 _ Z)p(Zv—l))'

This finally gives
N,DP®(z,u,v)

= (-D"p!

(15)

_nprJ®
T L -2)g(u)

1 1
=1 FON, D! (gu) ™t 4+ ——pf(ON,DF(gu))~?
-z 1-z

1 1
+1—0(ageoe)
_ (1=2*7122v = H(=1)? p!(=2v*/(2v — 1))”
o (1 — 7)(P+DRu-D+12p+1(2y — 1)P+1
p(—4v(1—v)/(22v — 1)) (=1~ L(p — D!(—2v?/(2v — 1))P~1
* (1—z)Pp@v=D+12p(2y — 1)P

. (9( log(1 — z) )

(1 _ Z)(p—l)(2v—l)-‘rl

(16)

=p!(v/(2v—l))2p_l ( log(1 — z) )

(1—z)p@v-D+1 (1—7)(P-D@-D+1
Singularity analysis leads then directly to
[Z"IN, D] ®(z,u, v)

| v 2p-1 np(Zv—l) 1
z”‘(zv — 1) C(pQv—1)+1) (”0(2))

(17) +0((logn)nP~D@-1)

_ P/ @u= ) Tar @D (1 1o (}» (1 +O ('Oﬂ))
. -
1

F(p2v-D+1)

_ Plv/(v = 1)?P~ipp@D
h F'p2v—1 +1) (1+(9<
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uniformly for ¢ > 0 and|v — 1| < 7 := § and also to the following expansion,
which is valid for fixedp > 1:
1
T[Znup]qD(Z’ u, U)
()
! 1
= Lo (1+0(; )
n? n

= i[z”]NuD,fCID(z, u, v)<1+ (9(1))
npb

n

_ p!(v/(2u — 1))2ripp@=2) 1
N '(pv—1+1) (1+(9<n1—8))

(18)

pl(v/(2v — 1>>2P—1)}

= exp|:p(2v —2)logn + IOg( F'(p(2v—1) +1)

<(rro(-1))

We give here the Quasi power theorem as proven in [4], which we want to apply
to our problem.

THEOREM 3 (H. K. Hwang). Let{,},>1 be a sequence of integral random
variables Suppose that the moment generating function satisfies the asymptotic
expression

My (s) :=E(e%) = 3" P{Q, = m}e™ = MO (14 0, 1),
m>0
the @-term being uniform fois| < t, s € C, T > 0, where
() H,(s) =u(s)p(n) + v(s), with u(s) and v(s) analytic for |s| <t and
independent of; u”(0) #0,
(i) ¢(n)— oo,

(iii) x, — oo.
Under these assumptiortle distribution of2,, is asymptotically Gaussian

P{Qn—u/(O)qb(n) } o )+(9<1 N 1 )
———— <x =P —+ —),
Ju”(0)¢ (n) Kn NP (n)
uniformly with respect ta, x € R. Here ® (x) denotes the distribution function of
the standard normal distributionv (0, 1).
Moreoverthe mean and the variance €, satisfy

E(2,) = u'(0)p(n) + v'(0) + O (i, D),
V(Q,) = u" (0)p(n) +v"(0) + Ok, Y.
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From (18) we get, with the notation in Theorem 3,

p!(eS/(ZeS-—-1>>2P-1)
C(pRes —1)+1) )

u(s) = p(2e° —2), v(s) = |Og<

¢ (n) =logn, Kn =nt7¢.
We find
(19) W' (0)=2p,  u"(0)=2p,
and

V(0 =-2p+1-2p¥(p+1)=—-2pH,+2py +1—2p,
(20)  V'(0)=22p—1)—2p¥(p+1) —4p>¥ (p +1)
=2(2p—1) —2pH, +2py — %nzpz +4p2H1(,2),

whereW (x) denotes the digamma functiowr:(x) := (logI'(x))’.
Hence, with equations (19) and (20), we get from Theorem 3 the following
result:

THEOREM4. The distribution of the random variablé, ,, which counts the
number of passes in the Multiple Quickselect algorithm that are required to find
a random order statistic op elements in a data file of size is for fixedp > 1

asymptotically Gaussiamvhere the convergence rate is of ordg¢ c}gn):

{Xn,p—Zplogn 1 )
J2plogn JViogn/)’

and the expectatiofi, , = E(X, ,) and the variancée/, , = V(X, ,) satisfy

<x}=d>(x)+(9<

1
E,,=2plogn+1—-2p—2pH, +2py —{—(9(”1_8),

2 1
Va,p=2plogn+4p —2—2pH, + 2py + 4p2Hl(,2) — énzpz + (9<n1_8).

The result forE, , andV, , already appeared in [9], but unfortunately there
was a typo in the formula fov,, ,.

For the casep = 1 we have thatX, ; counts the number of comparisons
encountered by a successful search in a random binary search tree and this is,
up to an additive constant, the same as the déptof a randomly selected node,

D, £ Xn.1— 1. The asymptotic normality of the distribution &f, 1 is well known
(see, e.g., [6]) and the convergence rate was recently established in [7].
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5. The limiting distribution of the spanning tree size in binary search
trees. In this section we will show that the normalized random variakle,,
as defined in Section 4, has for fixeda Gaussian limiting distribution. Hence we
are interested in an asymptotic expansioq&gf{z”uP]F(z, u,v) forn - oo and

fixed p uniformly for |[v — 1| < t, whereF (z, Z v) is given by (6).
To do this, we will first study the behavior near the singulatity 1 of the
expression

(21) &’(Z,M,U)=(iq>(z,u,v)—icb(z,u,v))(l—z)z,
0z 11—z
which we can write as
. _ fw)
22 P = G

where the functiory («) is defined by

3 f) =—Q(2 -1+ 2v)(1 - 2)%g )
+Q(Q =14+ 2014 u))A—2)%f ) + (1 —2v) f(u)g(w),

and®(z,u,v), Q, f(u) andg(u) are given by equations (4), (5), (10) and (11),
respectively.
The relevant expansions are now

f(0)=—4(2v— 131 - "2,
f/(o) = 8U2(2U -1 - Z)Zv—l + (9( log(1—z)(1— Z)4v_2),

8(v — v

_ _ -1
o1 + O (log(l—2z)(1—2)7"77)

) =
and

p -2 _ _1\P M (;)
NuD(g() ™" = (=D (p+ Dl 65055 + 0\ gyt )

which leads, forp > 2, eventually to
NMD,fCi)(z, u,v)
= f(ON, DL (gw) >+ p f (ON, DL (g(u)) 2

p(P - 1) 1/ — - 1
(24) +——/ (O)N, DP~%(g(u)) % + (9( 1_ Z)(p—l)(Zv—l))

_ (p-Dplv/@ -2 logd—2)
- (1—z)p@- <<1 - z,)<p—1><2v—1>>'
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This gives then

1
—~[Z"uP1F (z,u, v)
()
1
— T[ nup
<,,> -
—[ "]

(1—Z)2/ d>(t u,v)dt

(1—Z)2/ N,D? o, u, v)dt<l+(9<1>>

_l[n] 1
T A= )2

x / ‘ [<p—1>p!v<v/<2v—1>>2"—2
=0 (1—z)r@-D

log(1—z2) 1
+0 (e nas) | (1+0(5))

We get via singularity analysis

(25)

L @ (p—Dpo/@uv—1)%"2
o (1-2)? /z=o (1—z)P@-1 dt
— _ 2p-2
(26) — "] (p —Dplv(v/Qv — 1)<

(p(2v—1) — 1)(1— z)p@-D+1

_ (p=Dplo(v/@u -1 2D (1
T @ -1 - DI (p@v-1+1) (+ (E»

and
1= [ (o)
_(9<kzl[zn 4 . 1Z)2[ k]/;o @ _IC;?((pl_;(tZ)v_l) dr)
@) =o(nmaxi T maxi [ D i)

2r.n ‘ |Og(l—l) —1)(2v-1)
:O(n [2"] =0 (1 —t)(p~D@-1) dt>:(9((|09”)”(p " )

1
_ 2v-1)
=0 )

uniformly fore > 0 andjv — 1| <7 :=§.
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Thus we obtain by combining the results (25)—(27) for 2 the asymptotic
expansion

1
—["uP1F(z, u,v)

()
_(p—Dplo(v/(2v — 1)?P~2pr@—2 Lo 1
T (@ -1 -Dr(pv—1) + 1) ( + (,21_5))-

To apply the Quasi power theorem, we write (28) as

(28)

1
—["uP1F(z,u,v)

()
(29) = exp[p(Zv —2)logn + log <

(o))

and then get, with the notation used in Theorem 3,

(p — Dplef(e* /(25 — 1))2P2 )
(p2es —1) — DI (p(2es —1)+ 1))’

(p —Dplv(v/(u — 1))2P—2 ):|

u(s) = p(2e* —2), v(s) = |Og(

¢ (n) =logn, Ky =nte.
We have
(30) u'(0) =2p, u”(0) =2p,
and
/ 2p
v(O0)=-2p¥(p+1D+3-2p— -1
2p
=—2pHp+2py +3-2p - —,
p—1

31
(31) 2(2p% —5p2+7p—2)

V'(0)=—2pW(p+1) —4p>W (p+1) +

(p—12
2 2(2p® —5p°+7p —2)
= —2pH, +2py — énzpz +4p*HP + -1 :

which leads now to the following result:

THEOREMS5. The distribution of the random variablg, ,, which counts the
size of the spanning tree @f randomly chosen nodes in a binary search tree of
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sizen, is for fixedp > 2 asymptotically Gaussianwhere the convergence rate is
of order @ (——).

Vlogn
Y, , —2plogn } < 1 )
, —
{ /2plogn =7 x)+0 J1logn

and the expectatiofi,, , = E(Y, ,) and the variancé/, , =V (Y, ,) satisfy

2p 1
E, ,=2plogn —2pH, + 2 3-2p———+0(——).
»=2plogn —2pHy +2py +3-2p— = + <n1_8>

2
Vi, p =2p logn — 2pH, +2py — énzpz + 4p2HI(,2)

2(2p% —5p%+7p —2) (9( 1 )
(p—l)z nl—¢ )’

Of course, the casg =1 is trivial, since we hav®{Y,, 1 = 1} = 1 due to the fact
that the spanning tree of a single node is the node itself.

The casep = 2 is of particular interest, sinck, » is as described earlier, up to
an additive constant, the distangg between two randomly selected nodes in a

binary search tree of sizg viz. A, £ 2.2 — 1. This parameter was studied already
in [7], where the asymptotic normality of the distribution was shown by means of
a refined contraction method.

As an insightful referee remarks, one could also obtain the Gaussian limit law
for Y, , (without the precision of the order of convergence obtained here) by
studying the difference betweexy, , andY, ,, which is the length of the path
from the root of the binary search tree to the root of the minimal spanning tree.
This quantity is very short, for example, it can be shown, that it is zero with
probability 1— 2/(p + 1) asymptotically forn — oo and p > 2. Since we gave
already a detailed analysis @f, , in this section, we will only describe, very
briefly, how one could proceed alternatively. It follows by comparing Theorem 4
and Lemma 1, thd& (X, , — Yu.,) = 4+2p/(p — 1)+ O(1/n'~¢). One gets thus,
that P{X, , — Y., > (logn)¥4} = @ ((logn)~/*%). This bound finally suffices
to transfer the limiting distribution result fronX, , to Y, , by considering

P{(Ys,, —2plogn)//2plogn < x} =P{(X,,, —2plogn)/+/2plogn — (X, , —
Yu p)/v/2plogn < x}.
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