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MOMENTS AND TAILS IN MONOTONE-SEPARABLE
STOCHASTIC NETWORKS

BY FRANÇOIS BACCELLI1 AND SERGUEI FOSS2

INRIA-ENS, Institute of Mathematics and Heriot-Watt University

A network belongs to the monotone separable class if its state vari-
ables are homogeneous and monotone functions of the epochs of the arrival
process. This framework, which was first introduced to derive the stability
region for stochastic networks with stationary and ergodic driving sequences,
is revisited. It contains several classical queueing network models, including
generalized Jackson networks, max-plus networks, polling systems, multi-
server queues, and various classes of stochastic Petri nets. Our purpose is
the analysis of the tails of the stationary state variables in the particular case
of i.i.d. driving sequences. For this, we establish general comparison rela-
tionships between networks of this class and theGI/GI/1/∞ queue. We
first use this to show that two classical results of the asymptotic theory for
GI/GI/1/∞ queues can be directly extended to this framework. The first
one concerns the existence of moments for the stationary state variables. We
establish that for allα ≥ 1, the(α + 1)-moment condition for service times
is necessary and sufficient for the existence of theα-moment for the station-
ary maximal dater (typically the time to empty the network when stopping
further arrivals) in any network of this class. The second one is a direct ex-
tension of Veraverbeke’s tail asymptotic for the stationary waiting times in the
GI/GI/1/∞ queue. We show that under subexponential assumptions for ser-
vice times, the stationary maximal dater in any such network has tail asymp-
totics which can be bounded from below and from above by a multiple of the
integrated tails of service times. In general, the upper and the lower bounds do
not coincide. Nevertheless, exact asymptotics can be obtained along the same
lines for various special cases of networks, providing direct extensions of Ver-
averbeke’s tail asymptotic for the stationary waiting times in theGI/GI/1/∞
queue. We exemplify this on tandem queues (maximal daters and delays in
stations) as well as on multiserver queues.

1. Introduction. We show in the present paper that properties which have
been known for a long time for the tail asymptotics of isolated single server
queues can be extended to the class of stochastic networks which aremonotone
and separable. This class, which was introduced in [6], contains several classical
queueing network models like generalized Jackson networks, max-plus networks,
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polling systems and multiserver queues. This is also related to the class of topical
(monotone and nonexpansive) maps of [18].

Section 2 summarizes the definition and main results that are known on this
class of networks, and in particular the ergodic theorems that allow one to
determine their stability region. The notion of maximal dater is recalled. In a
generalized Jackson network, the maximal dater is the time to empty the network
when stopping further arrivals. In aG/G/1 queue, this is just workload. In a FIFO
tandem queue, this is end-to-end delay.

Section 3 focuses on the proof of the moment theorem. The assumptions that are
needed here are limited to independence. We establish the following generalization
of the classicalGI/GI/1 queue moment theorem, which seems to be new within
this setting: for allα ≥ 1, the(α + 1)-moment condition for service times in any
monotone and separable network is necessary and sufficient for the existence of
theα-moment for the stationary maximal dater.

The subexponential tail asymptotic theorems are given in Sections 4 and 5. For
surveys on the state of the art for this kind of asymptotics, see [20].

Section 4 gives generic upper and lower bounds which hold for all subexpo-
nential monotone separable networks and which only differ in the multiplicative
constants.

Section 5 elaborates on the bounds established in Section 4. A corollary of
Veraverbeke’s theorem already proved in, for example, [1] and [2] states that, in
theGI/GI/1 queue, large workloads occur on a typical event where a single large
service time has taken place in the distant past, and all other service time are close
to their mean. The main new result within our setting is Theorem 8 which extends
the notion of typical event to subexponential monotone separable networks; large
maximal daters occur when a single large service time has taken place in one of
the stations and all other service time are close to their mean.

To the best of our knowledge, among the various classes of networks listed
above, exact asymptotics are only known for irreducible max-plus networks [10].
The aim of Section 6 is to illustrate how the typical event theorem can be exploited
to solve open questions on the exact asymptotics of other monotone separable
networks. This is done for tandem queues in Section 6.1.1 and for multiserver
queues in Section 6.2.

A first natural question is whether such asymptotics can be obtained for the
maximal daters of all subexponential monotone separable networks. We have no
general answer to this question yet. However, the choice of the tandem queue
example to illustrate the potential use of the method was made on purpose;
a tandem queue is both a generalized Jackson network and a reducible max-plus
network. Exact asymptotics can be obtained along the same lines for the maximal
daters of generalized Jackson networks and of reducible max-plus networks. These
exact asymptotics require a lot of extra technical work, which go beyond the scope
of the present paper and will be the object of two companion papers [7] and [8].
The exact asymptotics in polling systems is under investigation, too.
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A second interesting question is whether such asymptotics can be extended to
other characteristics than maximal daters. As it was shown in, for example, [21]
maximal daters and individual waiting times may have fundamentally different
asymptotics. This question is addressed in Section 6.1.2 where we show how to
use the typical event theorem for monotone separable networks in order to derive
the exact asymptotics for the stationary waiting or response times in individual
queues of the tandem queue example.

2. Basic results on the monotone-separable networks.

2.1. Framework. Consider a stochastic network described by the following
framework.

1. The network has a single input point processN , with points {Tn}; for all
m ≤ n ∈ N, let N[m,n] be the[m,n] restriction ofN , namely the point process
with points{Tl}m≤l≤n.

2. The network has a.s. finite activity for all finite restrictions ofN ; for all
m ≤ n ∈ N, let X[m,n](N) be the time of the last activity in the network, when
this one starts empty and is fed byN[m,n]. We assume that for all finitem andn

as above,X[m,n] is finite.

We assume that there exists a set of functions{fl}, fl :Rl × Kl → R, such that

X[m,n](N) = fn−m+1{(Tl, ζl), m ≤ l ≤ n},(1)

for all n,m andN , where the sequence{ζn} is that describing service times and
routing decisions.

We say that a network described as above is monotone separable if the functions
fn are such that the following properties hold for allN .

1 (Causality). For allm ≤ n,

X[m,n](N) ≥ Tn.

2 (External monotonicity). For allm ≤ n,

X[m,n](N ′) ≥ X[m,n](N),

wheneverN ′ def= {T ′
n} is such thatT ′

n ≥ Tn for all n, a property which we will
write N ′ ≥ N for short.

3 (Homogeneity). For allc ∈ R and for allm ≤ n,

X[m,n](c + N) = X[m,n](N) + c.

4 (Separability). For allm ≤ l < n, if X[m,l](N) ≤ Tl+1, then

X[m,n](N) = X[l+1,n](N).
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REMARK 1. Single-server queues, tandem queues, and generalized Jackson
networks satisfy properties 1–4 above (see [5] and [6] for details).

REMARK 2. Using the terminology of the literature on idempotency (see,
e.g., [18]), the monotone-separable framework can be rephrased in terms of so-
called topical forms. Indeed, for allm ≤ n, X[m,n] can be seen as function of the
bi-infinite vector(. . . , T−2, T−1, T0, T1, T2, . . .) of R

Z. SinceX[m,n] :RZ → R is
monotone and homogeneous, according to this terminology, the familyX[m,n],
−∞ ≤ m ≤ n < ∞, is a family of topical forms onRZ. The link between these
forms is established via the separability assumption, which allows one to study the
asymptotic formsX(−∞,n], which are the main objects of interest. Of particular
interest to us are the statistical properties (moments, tail behavior, etc.) or the
projective properties of the sequence(Tn,X(−∞,n]) ∈ R

2.

2.2. Maximal daters. By definition, the[m,n] maximal dater is

Z[m,n](N)
def= X[m,n](N) − Tn = X[m,n](N − Tn).

Note thatZ[m,n](N) is a function of{ζl}m≤l≤n and{τl}m≤l≤n−1 only, whereτn =
Tn+1 − Tn. In particular,Zn(N)

def= Z[n,n](N) is not a function of{τl}−∞<l<∞.

LEMMA 1 (Internal monotonicity ofX andZ). Under the above conditions,
the variables X[m,n] and Z[m,n] satisfy the internal monotonicity property; for
all N ,

X[m−1,n](N) ≥ X[m,n](N),

Z[m−1,n](N) ≥ Z[m,n](N), m ≤ n.

In particular, the sequence{Z[−n,0](N)} is nondecreasing inn. Put

Z ≡ Z(−∞,0] = lim
n→∞Z[−n,0](N) ≤ ∞.

LEMMA 2 (Subadditive property ofZ). Under the above conditions, {Z[m,n]}
satisfies the following subadditive property: for all m ≤ l < n, for all N ,

Z[m,n](N) ≤ Z[m,l](N) + Z[l+1,n](N).

2.3. Stochastic assumptions and main stability results. Assume the variables
{τn, ζn} are random variables defined on a common probability space(�,F ,P, θ),
whereθ is an ergodic, measure-preserving shift transformation, such that(τn, ξn)◦
θ = (τn+1, ξn+1). The following integrability assumptions are also assumed to
hold:

Eτn
def= λ−1 def= a < ∞, EZn < ∞.

We summarize the main results of [6].
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LEMMA 3 (0–1 law). Under the foregoing ergodic assumptions, either Z = ∞
a.s. or Z < ∞ a.s.

The network is stable ifZ < ∞ a.s. and unstable otherwise.
Denote byQ = {T ′

n} the degenerate input process withT ′
n = 0 a.s. for alln.

LEMMA 4. Under the foregoing ergodic assumptions, there exists a nonnega-
tive constant γ (0) such that

lim
n→∞

Z[−n,−1](Q)

n
= lim

n→∞
EZ[−n,−1](Q)

n
= γ (0) a.s.

The main result on the stability region is the following theorem.

THEOREM 1. If λγ (0) < 1, then Z < ∞ a.s. If Z < ∞ a.s., then λγ (0) ≤ 1.

2.4. Further assumptions. Most of the new results of the present paper will be
obtained under the following independence assumption.

(IA). The sequences{ζn} and {τn} are mutually independent and each of them
consists of i.i.d. random variables.

For certain results, we shall make the following additional assumption.

(AA). For all i,

Zi = Z[i,i] = Y
(1)
i + · · · + Y

(r)
i ,(2)

where the r.v.’sY (j)
i are nonnegative, independent of interarrival times, and

such that the sequence of random vectors(Y
(1)
i , . . . , Y

(r)
i ) is i.i.d; general

dependences between the components of the vector(Y
(1)
i , . . . , Y

(r)
i ) are

allowed. In addition,

Z[n,0](Q) ≥ max
j=1,...,r

0∑
i=n

Y
(j)
i a.s.(3)

2.5. Upper and lower bound G/G/1/∞ queues. The results of this section
are new. We assume stability, namelyγ (0) < a. We pick an integerL ≥ 1 such
that

EZ[−L,−1](Q) < La,(4)

which is possible in view of Lemma 4. Without loss of generality, one can assume
T0 = 0.

To the input processN , we associate the following lower and upper bound
processes:N− = {T −

n }, where, for allk andn in Z such thatn = (k −1)L+1, . . . ,
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kL, T −
n = T(k−1)L, and similarly,N+ = {T +

n }, whereT +
n = TkL if n = (k −1)L+

1, . . . , kL. Then for alln,

X[−n,0](N−) ≤ X[−n,0](N) ≤ X[−n,0](N+) ≡ Z[−n,0](N+).(5)

In other words, both upper and lower bound processes have batch arrivals (of
sizeL).

Note that if (IA) holds, the r.v.’sZ[−n,0](N−) = X[−n,0](N−) − T−L and
Z[−n,0](N+) have the same distribution and that the r.v.’sZ[−n,0](N−) andT−L

are independent.

2.5.1. Upper bound queue. The next lemma, which establishes a first connec-
tion between monotone-separable networks and theG/G/1/∞ queue, directly
follows from the monotonicity and the separability assumptions.

LEMMA 5. Assume T0 = 0. For any m < n ≤ 0,

Z[m,0](N) ≤ Z[n,0](N) + max
(
0,Z[m,n−1](N) − τn−1

)
.

PutZn = Z[n,n](N). Then the sequence{Zn} does not depend onN and forms
a stationary and ergodic sequence.

COROLLARY 1. Assume T0 = 0. For any m < 0,

Z[m,0] ≡ Z[m,0](N) ≤ max
m≤k≤0

( 0∑
i=k

Zi −
0∑

i=k+1

τi

)

with the convention
∑0

1 = 0.

The main weakness of this upper bound comes from the fact that the
corresponding queue may be unstable whereas the initial network is stable. This is
taken care of by the upper bound described below.

COROLLARY 2. The stationary maximal dater Z ≡ Z(−∞,0](N) is bounded
from above by the stationary response time R̂ in the G/G/1/∞ queue with service
times

ŝn = Z[L(n−1)+1,Ln](Q)(6)

and interarrival times τ̂n = TLn − TL(n−1), where L is the integer defined in (4).
Since b̂ = E ŝn < E τ̂n = La, this queue is stable.
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PROOF. We have

Z = lim
n→∞Z[−n,0] = lim

k→∞Z[−kL+1,0] = sup
k≥0

Z[−kL+1,0]

≤ sup
k≥0

Z[−kL+1,0](N+) ≤ sup
k≥0

max−k≤i≤0

(̂
s0 +

−1∑
j=i

(̂sj − τ̂j+1)

)

= ŝ0 + sup
k≥0

−1∑
i=−k

( ŝi − τ̂i+1) = R̂.

In these relations, (5) was used to derive the first inequality, Corollary 1 was used
in the last inequality; we also used the fact that

Z[L(n−1)+1,Ln](N+) = Z[L(n−1)+1,Ln](Q)

and the convention
∑−1

0 = 0. �

The queue of Corollary 2 will be referred to as theL-upper-boundG/G/1/∞
queue associated with the network.

Note that when (IA) holds, this queue is aGI/GI/1/∞ queue. In this case,
R̂ = Ŵ + ŝ0, whereŴ is a stationary waiting time and̂W andŝ0 are independent.

Notice that under (AA),

max
j=1,...,r

Ln∑
i=L(n−1)+1

Y
(j)
i ≤ ŝn ≤

r∑
j=1

Ln∑
i=L(n−1)+1

Y
(j)
i a.s.(7)

where the second inequality follows from the subadditive property ofZ.
The following result does not require (AA) and holds for all monotone separable

networks such that the sequence{Zi} is i.i.d.
We say that a nonnegative r.v.X is light tailed if there exists a positive numberc

such thatE exp(cX) is finite.

COROLLARY 3. If Z0 is light tailed and λγ (0) < 1, then Z(−∞,0] is light
tailed too.

PROOF. From Corollary 2, it is enough to prove that the response timeR̂ in the
L-upper-bound queue is light tailed. From well-known results on theG/GI/1/∞
queue, in the stable case, the stationary response timesR̂ are light tailed when the
service times are light tailed. But from the subadditive inequality, we have

ŝ1 = Z[1,L](Q) ≤
L∑

i=1

Zi,(8)

which proves that̂s1 is light tailed if Z0 is. �
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2.5.2. Lower bound fork-join queue. The following result is immediate.

LEMMA 6. Under Condition (AA),

Z(−∞,0] ≥ R = max
j=1,...,r

sup
n≤0

( 0∑
n

Y
(j)
i −

−1∑
n

τi

)
.(9)

The queue with service times{Y (j)
i } and interarrival times{τi} will be referred

to as thej -lower-boundG/G/1/∞ queue associated with the network. LetR(j)

denote the stationary response time in this queue:

R(j) = sup
n≤0

( 0∑
n

Y
(j)
i −

−1∑
n

τi

)
.

Then the lower boundR defined in (9) is the stationary response time in
the r-dimensionalfork-join queue with service times{Y (j)

i }, j = 1, . . . , r and
interarrival times{τi}.

2.6. Examples.

2.6.1. Tandem queues. Consider a stableG/G/1/∞ → ·/G/1/∞ tandem
queue. Denote by{σ (i)

n } the sequence of service times in stationi = 1,2 and
{τn} the sequence of interarrival times at the first station. Putb(i) = Eσ (i), a = Eτ

andρ(i) = b(i)/a < 1. We haveγ (0) = max(b(1), b(2)).

Tandem queues fall in the class of open Jackson networks, and in the class
of open max-plus systems which both belong to the class of monotone separable
networks (see below). We have the following representation for the maximal dater
(see, e.g., [10])

Z[−n,0] = sup
−n≤p≤0

sup
p≤q≤0

( q∑
m=p

σ (1)
m +

0∑
m=q

σ (2)
m − (T0 − Tp)

)
,(10)

Z = Z(−∞,0] = sup
p≤0

sup
p≤q≤0

( q∑
m=p

σ (1)
m +

0∑
m=q

σ (2)
m − (T0 − Tp)

)
.(11)

Assumption (IA) is satisfied if the sequences{τn} and {ζn ≡ (σ
(1)
n , σ

(2)
n )}

are i.i.d. and mutually independent (we may allow a dependence between
σ

(1)
n andσ

(2)
n ). Assumption (AA) is also satisfied here withr = 2 andY

(i)
n = σ

(i)
n ,

i = 1,2.
The maximal dater with indexn is the sojourn time of customern in the

network, namely the time which elapses between its arrival in station 1 and its
departure from station 2.
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As for theL-upper-bound queue associated with this network, the expression
for ŝn is here

ŝn = max
1≤j≤L

( j∑
i=1

σ
(1)
(n−1)L+i +

L∑
i=j

σ
(2)
(n−1)L+i

)
.(12)

2.6.2. Multiserver queues. Let

Wn = (
W(1)

n , . . . ,W(m)
n

)
be the Kiefer–Wolfowitz workload vector in theGI/GI/m/∞ queue with
interarrival times{τn} and service times{σn}. Heren is the customer index and
W

(i)
n , i = 1, . . . ,m, are the workloads of the servers at thenth arrival time,

arranged in nondecreasing order. More precisely, we assumeW0 = (0, . . . ,0) and

Wn+1 = R(Wn + e1σn − iτn)
+(13)

for i ≥ 0, wheree1 = (1,0, . . . ,0) andi = (1,1, . . . ,1) arem-dimensional vectors
and the operatorR permutes the components of a vector in nondecreasing order.
For a multiserver queue,γ (0) = Eσ0/m.

Assumption (IA) is satisfied under the assumption that the service times are
i.i.d. Assumption (AA) is not satisfied here.

The maximal dater associated with customern is the time which elapses
between its arrival and the time when all customers still present at its arrival time
have left the system (including customern),

Z[0,n] = max
(
W(1)

n + σn,W
(m)
n

)
.

2.6.3. Generalized Jackson networks. Consider a generalized Jackson net-
work with r stations. We denote by:

1. {σ (k)
n } the i.i.d. sequence of service times in stationk.

2. {µ(i)
n } the i.i.d. sequence of routing decisions from stationi; with values in the

set{1, . . . , r}.
3. {µn} the i.i.d. sequence of routing decisions for the input process; also with

values in the set{1, . . . , r, r + 1}, whereµ
(j)
n = r + 1 means that a customer

takingnth service at stationi leaves then the network.
4. {τn} the i.i.d. sequence of interarrival time.

Under these assumptions, both (IA) and (AA) are satisfied. We have

Y
(j)
1 =

ν(j)∑
1

σ (j)
n(14)

with ν(j) the total number of visits of customer 1 (the customer arriving at timeT1)
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to stationj in the [1,1] restriction of the network, namely when this customer is
the only one to enter the network. The random variablesν(j), j = 1, . . . , r , are
obtained from the sequences of routing decisions (see [5]).

In this caseZ[−n,0] is the time which elapses between the arrival of customer 0
and the time when all customers have left the system, given that arrivals are stopped
afterT0.

2.6.4. Max-plus networks. The class of open max-plus networks also falls in
this framework (see, e.g., [6]). A typical example of this class is that of tandem
queues. Tandem queues form a reducible open max-plus network. For examples of
irreducible networks of this class, see [10].

3. Integrability of stationary maximal daters. We assume (IA) and stabil-
ity, namelyλγ (0) < 1.

Let Ŵ denote the stationary waiting time in theL-upper-boundGI/GI/1/∞
queue of the network. The following result is well known.

LEMMA 7. For any α > 1, EŴα−1 is finite if and only if E ŝ α
0 is finite.

Therefore,R̂ = Ŵ + ŝ is such thatER̂α−1 is finite if and only ifE ŝ α
0 is finite.

COROLLARY 4. If EZα
0 < ∞, then EZα−1

(−∞,0] < ∞.

PROOF. We have

ŝ0 ≤
0∑

−L+1

Zi.

Therefore ifEZα
0 < ∞, thenE ŝ α

0 is finite. Thus,EŴα−1 andER̂α−1 are finite,
too. We conclude the proof by using the boundZ(−∞,0] ≤ R̂ (see the proof of
Corollary 2). �

Under condition (AA),EZα
0 is finite if and only if for allj , E[(Z0(j))α] is finite.

The following theorem is then an immediate consequence of Lemmas 6 and 7.

THEOREM 2. Under assumptions (IA) and (AA), if E[Zα−1
(−∞,0]] is finite, so

is EZα
0 .

EXAMPLES. All results are given under the assumption that the system under
consideration is stable.

1. Tandem queues. The system response time has a moment of orderα − 1 iff the
service times in both stations admit a moment of orderα.
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2. Multiserver queues. In steady state, the time to empty the system has a moment
of orderα − 1 if the service times admit a moment of orderα.

3. Generalized Jackson networks. The stationary maximal dater has a moment of
orderα − 1 iff all service times have moments of orderα. Since the stationary
maximal dater is not less than the residual workload at any station, we get if all
service times have moments of orderα, then the stationary residual workloads
and the stationary queue lengths at all stations have moments of orderα − 1.
Since the number of customer services has a geometrical tail, one also deduces
from this that stationary sojourn times also have moments of orderα − 1.

4. Bounds for subexponential tail asymptotics.

4.1. Assumptions and notation. Here and later in the paper, for strictly
positive functionsf and g, the equivalencef (x) ∼ dg(x) with d > 0 means
f (x)/g(x) → d as x → ∞. This equivalence may also be rewritten asf (x) =
dg(x)(1+ o(1)) = dg(x) + o(g(x)) = dg(x) + o(f (x)), whereo(1) is a function
which tends to 0 asx tends to ∞, and o(g(x)) is a function such that
o(g(x))/g(x) → 0 asx → ∞. By convention, the equivalencef (x) ∼ dg(x) with
d = 0 meansf (x) = o(g(x)). We will also use the following notation:

1. f (x) = �(g(x)) to mean lim supf (x)/g(x) < ∞ and lim inff (x)/g(x) > 0,
2. f (x) = O(g(x)) to mean lim supf (x)/g(x) < ∞.

4.1.1. Tails. Let ξ be a nonnegative r.v. with distribution functionF such that
P(ξ > x) ≡ 1− F(x) ≡ F(x) > 0 for all x. Let ξ1, ξ2 be independent copies ofξ .

DEFINITION 1. ξ has aheavy-tailed distribution (HT), if, for anyc > 0,

E exp(cξ) ≡
∫ ∞

0
exp(cx) dF (x) = ∞.

DEFINITION 2. ξ has along-tailed distribution (LT), if, for anyy > 0,

F(x + y) ∼ F(x) asx → ∞.

Any LT distribution is HT.

DEFINITION 3. ξ has asubexponential distribution (SE), if

P(ξ1 + ξ2 > x) ∼ 2F(x) asx → ∞.

Any SE distribution is LT. For basic properties of subexponential distributions,
see, for example, [13].
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4.1.2. Network assumptions. Consider a distribution functionF on R
+ such

that the following hold:

(a) F is subexponential, with finite first momentM = ∫ ∞
0 F(u)du, where

F(u) = 1− F(u) denotes the tail ofF .
(b) The integrated tail distributionF s ,

F s(x) = 1− min
{

1,

∫ ∞
x

F (u) du

}
≡ 1− F

s
(x),

is subexponential.

Here are a few properties satisfied byF that will be needed later on and that
follow from the fact thatF s is long tailed.

Whenx → ∞,

F(x) = o
(
F

s
(x)

)
.(15)

As a corollary, there exists a nondecreasing integer-valued functionNx → ∞ and
such that, for all finite real numbersb,

Nx∑
n=0

F(x + nb) = o
(
F

s
(x)

)
, x → ∞.(16)

In particular,

NxF(x) = o
(
F

s
(x)

)
.(17)

Such a c.d.f.F being given, consider a monotone separable network satisfying
(IA) and (AA) and such that the following equivalence holds whenx tends to∞:

(c) For allj = 1, . . . , r ,

P
(
Y

(j)
1 > x

) ∼ d(j)F (x)

with
∑

j d(j) ≡ d > 0.
For a monotone separable network, the three assumptions (a)–(c) will be

referred to as (SE). Under (SE), the following holds:∫ ∞
x

P
(
Y

(j)
1 > y

)
dy ∼ d(j)F

s
(x) asx → ∞.(18)

ASSUMPTION(H). We also introduce the following assumption (H):

P

(
r∑
1

Y
(j)
1 > x

)
∼ P

(
max

1≤j≤r
Y

(j)
1 > x

)
(19)

∼
r∑
1

P
(
Y

(j)
1 > x

) ∼
r∑
1

d(j)F (x).
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Note that the very last equivalence follows from (SE). Assumption (H) is,
for instance, satisfied in the particular case when the random variablesY

(j)
1 are

mutually independent; in Section A.2, we give sufficient conditions for (H) to hold
that go beyond this particular case.

Take any 1≤ i1, i2 ≤ r , i1 
= i2. Since

P
(

max
j

Y
(j)
1 > x

)
≤ ∑

j

P
(
Y

(j)
1 > x

) − P
(
Y

(i1)
1 > x,Y

(i2)
1 > x

)
,

we deduce from (19) that

P
(
Y

(i1)
1 > x,Y

(i2)
1 > x

) = o
(
F(x)

)
.(20)

REMARK 3. In what follows, we will not need i.i.d. assumptions on the
interarrival times{τn}. As it follows from Theorem 14, the results we prove will
hold also in the more general situation when these variables satisfy the following
three conditions:

1. {τn} forms a stationary ergodic sequence with a finite positive meanEτ1 = a.

2. {τn} is independent of{Y (j)
n , j = 1, . . . , r}.

3. For allã < a,

P

(
sup
n≥0

(
nã −

−1∑
i=−n

τi

)
> x

)
= o

(
F

s
(x)

)
.

(See [4] for the proof in the single-server queue case.)

4.2. Tail asymptotics for the supremum of a random walk with subexponential
increments. We now remind the well-known result from [14] and [22]. We use
negative indices in order to link the result with queueing applications.

THEOREM 3. Let {ξn} be an i.i.d. sequence with negative mean Eξ1 = −α,
S0 = 0,S−n = ∑n

1 ξ−i and S = supn≥0 S−n. Assume that there exists a distribution
function F on [0,∞) such that F s is subexponential and P(ξ1 > x) ∼ dF(x) with
d > 0 as x → ∞. Then, as x → ∞,

P(S > x) = (
1+ o(1)

) d

α
F

s
(x).

In particular, consider a GI/GI/1/∞ queue with i.i.d. service times {σn} (with
mean b) and i.i.d. interarrival times {τn} (with mean a > b) and put ξn = σn − τn.
Assume that P(σ1 > x) ∼ dF(x), with F as above. Then the stationary waiting
time W and the stationary response time R of customer 0 are such that

P(R > x) ∼ P(W > x) = (
1+ o(1)

) d

a − b
F

s
(x).

In particular, if the distribution function of σ is F , then P(R > x) ∼ P(W > x) =
(1+ o(1)) 1

a−b
F

s
(x).
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The following lower bound is also known (see, e.g., [4]) and was obtained by
the use of the strong law of large numbers (SLLN):

THEOREM 4. Consider a G/G/1/∞ queue with i.i.d. service times {σn} (with
mean b) and independent stationary ergodic interarrival times {τn} (with mean
a > b). Assume that P(σ1 > x) ∼ dF(x), where d ≥ 0 and where the integrated
distribution F s is long tailed. Then

P(R > x) ≥ P(W > x) ≥ d

a − b
F

s
(x) + o

(
F

s
(x)

)
.

4.3. Bounds.

4.3.1. Upper bound. Let Z = Z(−∞,0] and let L be the integer defined
in Section 2.5 and let̂s be the service time in the associatedL-upper-bound
GI/GI/1/∞ queue.

Put b̂ = E ŝ and note thatE τ̂ = La. Thenρ̂ = b̂
La

= λγ (0)(1 + δ) < 1 where
δ may be chosen as small as possible. We deduce from (7) and (H) that

P( ŝ1 > x) ∼ dLF(x).

Thus, from Theorem 3,

P(R̂ > x) ∼ 1

La − b̂

∫ ∞
x

P( ŝ > y)dy

∼ 1

La − b̂

∫ ∞
x

dLF(y) dy = d

a − b̂/L
F

s
(x).

Hereb̂/L → γ (0) asL → ∞. We have proved the following.

THEOREM 5. Under the (IA), (AA), (SE) and (H) assumptions,

lim sup
x→∞

P(Z > x)

F
s
(x)

≤ lim
L→∞ lim

x→∞
P(R̂ > x)

F
s
(x)

= d

a − γ (0)
.(21)

REMARK 4. The assumptions of Theorem 5 bear on the random vari-
ablesY

(j)
1 . These can be weakened by considering conditions on the random

variablesZn = Z[n,n] as follows: If the random variablesZn are i.i.d. with distrib-
ution G such that bothG andGs are subexponential, and if the random variables
τn are i.i.d. and independent of the{Zn} sequence, then

lim sup
x→∞

P(Z > x)

G
s
(x)

≤ 1

a − γ (0)
.(22)

The proof of this is based on Corollary 2 and on coupling arguments.



626 F. BACCELLI AND S. FOSS

4.3.2. Lower bound. From (9),

Z = Z(−∞,0] ≥ R = max
j

sup
n≤0

( 0∑
i=n

Y
(j)
i −

−1∑
i=n

τi

)
≡ max

j
R(j).

Then from Theorem 3,

P
(
R(j) > x

) ∼ d(j)

a − b(j)
F

s
(x),

with b(j) = EY
(j)
1 . Note that∑

j

P
(
R(j) > x

) ≥ P
(

max
j

R(j) > x

)
(23) ≥ ∑

j

P
(
R(j) > x

) − ∑
i1 
=i2

P
(
R(i1) > x,R(i2) > x

)
.

Since, for anyi1 
= i2,

P
(
R(i1) > x,R(i2) > x

) = o
(
F

s
(x)

)
(24)

(see Section A.1 for the proof), we get

P(R > x) = ∑
j

P
(
R(j) > x

) + o
(
F

s
(x)

)
.

Thus, the following theorem holds.

THEOREM 6. Under Assumptions (IA), (AA), (SE) and (H),

lim inf
x→∞

P(Z > x)

F
s
(x)

≥ lim
x→∞

P(R > x)

F
s
(x)

=
r∑

j=1

d(j)

a − b(j)
.(25)

REMARK 5. The asymptotics for the lower and upper bounds are the same up
to multiplicative constants. So Theorems 5 and 6 implyP(Z > x) = �(F

s
(x)).

In the single-server isolated queue case,γ (0) = b = M , b̂ = Lb and d = 1.
Therefore, in this case the upper and lower bounds coincide.

4.4. Examples.

4.4.1. Tandem queues. The definitions and notation are those of Section 2.6.1.
We assume that

F i(x) = P
(
σ (i) > x

) ∼ d(i)F (x),(26)

that d ≡ d(1) + d(2) > 0 and that bothF andF s are subexponential. Assump-
tion (H) is valid if we assume in addition thatσ

(1)
n andσ

(2)
n are independent.
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Denote byZ the stationary sojourn time in the network. We look for the
asymptotic behavior of the functionP(Z > x) asx → ∞.

The lower bound (25) is

lim inf
x→∞

P(Z > x)

F
s
(x)

≥ d(1)

a − b(1)
+ d(2)

a − b(2)
.

Sinceγ (0) = b ≡ max(b(1), b(2)), the upper bound (21) reads

lim sup
x→∞

P(Z > x)

F
s
(x)

≤ d

a − b
.

This upper bound was proved in [10].

4.4.2. Generalized Jackson networks. The definitions are notation and those
of Section 2.6.3 and of Section A.2 in the Appendix. We assume thatP(σ (i) >

x) ∼ l(j )F (x), that
∑

j l(j ) > 0 and that bothF and F s are subexponential.
Put π(j) = Eν(j) andb(j) = EY (j) ≡ π(j)Eσ (j). Without loss of generality we
may assumeb(j) to be positive for allj . The network is stable ifγ (0) < a, where
γ (0) = b ≡ max(b(1), . . . , b(r)) (see, e.g., [5]). Assumption (H) is valid (see the
example at the end of Section A.2).

Denote byZ the stationary maximal dater. Then, from (25), the lower bound for
P(Z > x) is

lim inf
x→∞

P(Z > x)

F
s
(x)

≥
r∑
1

l(j )π(j)

a − b(j)

and the upper bound (21) reads

lim sup
x→∞

P(Z > x)

F
s
(x)

≤
∑

l(j )π(j)

a − b
.

4.4.3. Max-plus networks. Similar bounds were studied within the framework
of open, irreducible max-plus networks in [10]. As in the single-server isolated
queue case (which is an instance of such networks), the upper and lower bounds
coincide, which yields the exact asymptotics. However, the exact asymptotics are
not known for reducible max-plus networks, even for the particular case of tandem
queues.

5. Typical event of a subexponential monotone-separable network.

5.1. Typical event of a subexponential GI/GI/1 queue. This section contains
qualitative indications on how rare events occur in subexponentialGI/GI/1 queues
in terms of asymptotic equivalences involving the so-called typical event.

Results of the same nature were first stated by Anantharam in [1] in the regularly
varying case (see Theorem 3.1 therein) and by Asmussen and Klüppelberg in [2].
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However, we could not find the equivalences (Corollary 5) precisely needed for
the extension to monotone separable networks (Theorem 8) in any earlier paper.
Some notation and ideas of the proof of Corollary 5 will be used in Theorem 8.

Consider aGI/GI/1/∞ queue with mean interarrival timesa = Eτn and mean
service timesb = Eσn, wherea > b. Denote byF the distribution function ofσ
and assume thatF satisfies (b) of (SE) (i.e.,F s is subexponential), and letNx be
the associated function defined in Section 4.1.2. Let

ξn = σn − τn, Sτ
n =

n∑
1

τ−i , Sσ
n =

n∑
1

σ−i , Sn =
n∑
1

ξ−i ≡ Sσ
n − Sτ

n .

COROLLARY 5. Let W (resp. R) denote the stationary waiting (resp.
response) time of customer 0 in the FIFO GI/GI/1/∞ queue. For any x, let {Kn,x}
be a sequence of events such that:

(i) For any n, the event Kn,x and the random variable σ−n are independent;
(ii) P(Kn,x) → 1 uniformly in n ≥ Nx as x → ∞.

For any sequence ηn → 0, let

An,x = Kn,x ∩ {σ−n > x + n(a − b + ηn)} and Ax = ⋃
n≥Nx

An,x.(27)

Then, as x → ∞,

P(W > x) ∼ P(W > x,Ax) ∼ P(Ax)

∼
∞∑

n=Nx

P(W > x,An,x) ∼
∞∑

n=Nx

P(An,x)
(28)

and

P(R > x) ∼ P(W > x).(29)

PROOF. Simple calculations using the fact thatF s is long tailed show that, as
x → ∞, ∑

n≥Nx

P(An,x) = ∑
n≥Nx

P(Kn,x)P
(
σ−n > x + n(a − b + ηn)

)
∼ ∑

n≥Nx

F
(
x + n(a − b + ηn)

) ∼ 1

a − b
F

s
(x).

Thus, if the sequences{Kn,x} and{ηn} are such that, for all sufficiently largex:

(a) the eventsAn,x are disjoint for alln ≥ Nx ;
(b) An,x ⊆ {W > x} for all n ≥ Nx ;
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then

P(W > x) ≥ P(W > x,Ax) = P(Ax)

= ∑
n≥Nx

P(W > x,An,x) = ∑
n≥Nx

P(An,x) ∼ 1

a − b
F

s
(x).

Combining this with Theorem 3, we get the equivalences (28).
We now construct two specific sequences{Kn,x} and{ηn} satisfying (a), (b) and

the assumptions of the corollary. Due to the SLLN, there exists a nonincreasing
sequenceεn → 0 such thatnεn → ∞ and, asn → ∞,

P
(∣∣∣∣Sτ

k

k
− a

∣∣∣∣ ≤ εk,

∣∣∣∣Sσ
k

k
− b

∣∣∣∣ ≤ εk+1 ∀ k ≥ n

)
→ 1.

Putηn = 3εn and

Kn,x =
{∣∣∣∣Sτ

k

k
− a

∣∣∣∣ ≤ εk ∀Nx ≤ k ≤ n

}
∩

{∣∣∣∣Sσ
k

k
− b

∣∣∣∣ ≤ εk+1 ∀Nx ≤ k < n

}
.(30)

Clearly, the conditions of the corollary are satisfied. Sincenεn > b for all
sufficiently largen, on the eventAn,x ,

W ≥ Sn > x + nηn − (2n − 1)εn − b ≥ x.

In addition, the eventsAn,x , n ≥ Nx , are disjoint ifεNx ≤ (a −b)/2. Indeed, on the
eventAn,x , we then haveSn > x andS∗

n−1 = max0≤j≤n−1Sj ≤ max0≤j≤n−1 j (b−
a + 2εNx ) ≤ 0; and the events{S∗

n−1 ≤ 0} ∩ {Sn > x} are obviously disjoint.

Take now any other sequences{K̃n,x} and{η̃n} satisfying the conditions of the
corollary and denote the corresponding events by{Ãn,x} andÃx . Then∣∣P(Ax) − P(Ãx)

∣∣
≤ P

( ⋃
n≥Nx

{
σ−n > x + n

(
a − b + min(ηn, η̃n)

)})

− P

( ⋃
n≥Nx

Kn,x ∩ K̃n,x ∩ {
σ−n > x + n

(
a − b + max(ηn, η̃n)

)})

≤ ∑
n≥Nx

P
(
σ−n > x + n

(
a − b + min(ηn, η̃n)

))
− ∑

n≥Nx

P
(
Kn,x ∩ K̃n,x ∩ {

σ−n > x + n
(
a − b + max(ηn, η̃n)

)})
≤ �x

∑
n≥Nx

F
(
x + n

(
a − b + max(ηn, η̃n)

))
+ ∑

n≥Nx

(
F

(
x + n

(
a − b + min(ηn, η̃n)

))
− F

(
x + n

(
a − b + max(ηn, η̃n)

)))
,
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where�x = supn≥Nx
(P(Kc

n,x) + P(K̃c
n,x)) → 0 asx → ∞. Thus, both terms in

the last expression areo(F
s
(x)), and the equivalences (28) hold for sequences

{K̃n,x} and{η̃n}.
Finally, the equivalence (29) follows from the relationR = W + σ0, the

independence and the fact that the tail ofW is heavier than that ofσ [see (15)].
�

The eventAx (which will be referred to as thetypical event of the subexponen-
tial GI/GI/1 queue in what follows) occurs if there is only one big service time
and all other service times or interarrival times follow the SLLN.

5.2. Key equivalences for the maximal dater of a subexponential monotone-
separable network. In this section, we consider a monotone-separable network
satisfying (IA), (AA), (H) and (SE). The functionNx is that associated with the
reference distribution functionF of the (SE) assumptions.

THEOREM 7. Let Z be the stationary maximal dater of some monotone
separable network. Denoting Âx the typical event of the L-upper-bound queue
(more generally we will add a hat to indicate that a variable pertains to the upper
bound queue), we have

P(Z > x) ∼ P
(
Z > x, Âx

) ∼
∞∑

n=Nx

P(Z > x, Ân,x)(31)

and

P
(
Z > x, Âx

) = �
(
F

s
(x)

)
.(32)

Also, for any random variable Z̃ such that Z̃ ≤ Z a.s.,

P(Z̃ > x) = ∑
n≥Nx

P
(
Z̃ > x, Ân,x

) + o
(
F

s
(x)

)
.(33)

PROOF. SinceZ ≤ R̂ a.s.,

P(Z > x) = P
(
Z > x, Âx

) + P
(
Z > x; R̂ > x, (Âx)

c)
= P

(
Z > x, Âx

) + o
(
F

s
(x)

) = ∑
n≥Nx

P
(
Z > x, Ân,x

) + o
(
F

s
(x)

)
from Corollary 5.

From Theorems 5 and 6,P(Z > x) = �(F
s
(x)). Thus,

P
(
Z > x, Âx

) = P(Z > x) − o
(
F

s
(x)

) = �
(
F

s
(x)

) − o
(
F

s
(x)

) = �
(
F

s
(x)

)
and both (31) and (32) follow.�
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The main result of the paper concerning subexponential monotone separable
networks is the following theorem, which can be seen as a network extension of
Corollary 5 and which gives the shape of the typical event creating a large maximal
dater in such a network.

THEOREM 8. The assumptions are the same as in Theorem 7. Put b = γ (0).
For any x and for j = 1, . . . , r , let {K(j)

n,x} be a sequence of events such that:

(i) For any n and j , the event K
(j)
n,x and the random variable Y

(j)
−n are

independent;
(ii) For any j , P(K

(j)
n,x) → 1 uniformly in n ≥ Nx as x → ∞.

For all sequences η
(j)
n , j = 1, . . . , r , tending to 0, put

A(j)
n,x = K(j)

n,x ∩ {
Y

(j)
−n > x + n

(
a − b + η(j)

n

)}
,

A(j)
x =

∞⋃
n=Nx

A(j)
n,x and Ax =

r⋃
j=1

A(j)
x .

(34)

Then, as x → ∞,

P(Z > x) ∼ P(Z > x,Ax) ∼
r∑
1

P
(
Z > x,A(j)

x

)
∼

r∑
j=1

∞∑
n=Nx

P
(
Z > x,A(j)

n,x

)
.

(35)

Similarly, for any random variable s.t. Z̃ ≤ Z,

P(Z̃ > x) = P(Z̃ > x,Ax) + o
(
F

s
(x)

)
=

r∑
1

P
(
Z̃ > x,A(j)

x

) + o
(
F

s
(x)

)
(36)

=
r∑

j=1

∞∑
n=Nx

P
(
Z̃ > x,A(j)

n,x

) + o
(
F

s
(x)

)
.

If P(Z̃ > x) = �(F
s
(x)), one can replace the last equalities by equivalences and

delete the o(F
s
(x)) terms in the last relation.

The equivalences (31) and (35) will be the key relationships for the exact
asymptotics of the examples of Section 6. They show that for the monotone
separable network also, whenever the maximal dater is large, at most one of the
service times is large whereas all other ones are moderate.
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PROOF. We will only prove the equivalence

P(Z > x) ∼
r∑

j=1

∞∑
n=Nx

P
(
Z > x,A(j)

n,x

)
.(37)

The other equivalences in (35) may be obtained similarly.
We start the proof with the following three reductions.
First, it is sufficient to prove the equivalence (37) when replacing each of

the eventsK(j)
n,x by the whole probability space�. Indeed, putÃ(j)

n,x = {Y (j)
−n >

x + n(a − b + η
(j)
n )}. We know from Theorem 7 thatP(Z > x) = �(F

s
(x)).

Suppose that

P(Z > x) ∼
r∑

j=1

∑
n≥Nx

P
(
Z > x, Ã(j)

n,x

)
.

Then
r∑

j=1

∑
n≥Nx

P
(
Z > x,A(j)

n,x

)

=
r∑

j=1

∑
n≥Nx

P
(
Z > x, Ã(j)

n,x

) −
r∑

j=1

∑
n≥Nx

P
(
Z > x, Ã(j)

n,x \ A(j)
n,x

)
.

The result then follows from the fact that the last subtracted sum is nonnegative
and is not bigger than∑∑

P
(
Ã(j)

n,x

)
P

((
K(j)

n,x

)c) ≤ �(x)�
(
F

s
(x)

) = o
(
F

s
(x)

)
since�(x) ≡ max1≤j≤r supn≥Nx

P((K
(j)
n,x)

c) → 0 asx → ∞.

Second, it is sufficient to consider the caseη
(j)
n = 0 for all n andj . This follows

from the following bound whereδx = maxj supn≥Nx
(η

(j)
n )+:

r∑
j=1

∑
n≥Nx

P
(
Z > x,Y

(j)
−n > x + n(a − b)

)
− P

(
Z > x,Y

(j)
−n > x + n

(
a − b + (

η(j)
n

)+))
≤

r∑
j=1

∑
n≥Nx

P
(
Y

(j)
−n ∈ (

x + n(a − b), x + n(a − b + δx)
))

= (
1+ o(1)

)
dF

s
(x)

(
1

a − b
− 1

a − b + δx

)
= o

(
F

s
(x)

)
and a symmetrical bound for the negative part ofη

(j)
n . Thus it is enough to prove

the equivalence

P(Z > x) ∼
r∑

j=1

∑
n≥Nx

P
(
Z > x,Y

(j)
−n > x + n(a − b)

)
.(38)
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Third, if there exists a sequenceεL ∈ (0, a − b), εL → 0 such that, for anyL,
the following equivalence takes place (wherebL = b + εL):

P(Z > x) ∼
r∑

j=1

∑
n≥Nx

P
(
Z > x,Y

(j)
−n > x + n(a − bL)

)
,(39)

then (38) holds. Indeed, takeεL < (a − b)/2. Then

r∑
j=1

∑
n≥Nx

P
(
Z > x,Y

(j)
−n > x + n(a − bL)

)
− P

(
Z > x,Y

(j)
−n > x + n(a − b)

)
≤

r∑
j=1

∑
n≥Nx

P
(
Y

(j)
−n ∈ [x + n(a − bL), x + n(a − b)])

= (
1+ o(1)

)
dF

s
(x)

(
1

a − bL

− 1

a − b

)
≤ (

1+ o(1)
) 2εLd

(a − b)2F
s
(x).

LettingL → ∞, we derive (38) from (39).
Before proving (39), we recall that, from conditions (SE) and (H),

P( ŝ1 > x) ∼ P

(
r⋃

j=1

L⋃
l=1

{
Y

(j)
l > x

}) ∼
r∑

j=1

L∑
l=1

P
(
Y

(j)
l > x

)
.

SinceF is long tailed, we can replace the latter equivalences by

P( ŝ1 > x) ∼ P

(
r⋃

j=1

L⋃
l=1

{
Y

(j)
l > x + l(a − bL)

})

∼
r∑

j=1

L∑
l=1

P
(
Y

(j)
l > x + l(a − bL)

)
.

(40)

More precisely, when denoting the event in the left-hand side byCx and the event
in the center byDx , we getCx ⊆ Dx and

sup
y≥x

P(Dy \ Cy)

F(y)
= o(1),(41)

whenx → ∞, while P(Cx) = �(F(x)).
We now prove (39). For anyL, putÑx = Nx/L (more precisely the integer part

of this ratio) and note that̃Nx also satisfies condition (16). TakeL sufficiently
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large and setbL = E ŝ0/L ≡ b + εL. For theL-upper queue, one can take the
typical event of the form

Âx = ⋃
n≥Ñx

{ ŝ−n > x + nL(a − bL)} ≡ ⋃
n≥Ñx

Ân,x.

From Theorem 7,

P(Z > x) ∼ ∑
m≥Ñx

P
(
Z > x, ŝ−m > x + mL(a − bL)

)
.

From (40) and (41),∑
m≥Ñx

P
(
Z > x, ŝ−m > x + mL(a − bL)

)
= (

1+ o(1)
)

× ∑
m≥Ñx

r∑
j=1

L∑
l=1

P
(
Z > x,Y

(j)
−mL+l > x + mL(a − bL) + l(a − bL)

)
,

where the uniformity inm required to obtain the termo(1) follows from the
uniformity in y in (41). So

P(Z > x) ∼
r∑

j=1

∑
n≥Nx

P
(
Z > x,Y

(j)
−n+1 > x + n(a − bL)

)

∼
r∑

j=1

∑
n≥Nx

P
(
Z > x,Y

(j)
−n > x + n(a − bL)

)
.

�

6. Two examples of exact tail asymptotics. This section gives two illustra-
tions of the use of Theorem 8 in order to derive exact asymptotics. Without loss
of generality we can assume interarrival times to be constants and equal toa (see
Section A.3).

6.1. Tandem queues. For tandem queue, the assumptions on the tails of the
service times are those of Section 4.4.1. HereY

(j)
n = σ

(j)
n , so that (H) trivially

holds, since the service times are independent. The results are stated for the two-
station case, but the extension to tandems (or treelike networks) of any dimension
is immediate.

Choose a sequenceNx satisfying (16). LetW(j)
n be the stationary waiting time

of customern in queuej = 1,2, andτ
(2)
n be the interarrival time between thenth

and (n + 1)st customers to the second queue. Letξ
(1)
n = σ

(1)
n − τn ≡ σ

(1)
n − a,

ξ
(2)
n = σ

(2)
n − τ

(2)
n andξ̃n = σ

(2)
n − σ

(1)
n+1. We will also use the following notation:

S̃n =
n∑

i=1

ξ̃−i, S(j)
n =

n∑
i=1

ξ
(j)
−i , S(σ,j)

n =
n∑

i=0

σ
(j)
−i , j = 1,2.
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The following relations hold:

W
(j)
n+1 = max

(
0,W(j)

n + ξ (j)
n

)
, j = 1,2,(42)

and

τ (2)
n = −min

(
0,W(1)

n + ξ (1)
n

) + σ
(1)
n+1 ≥ σ

(1)
n+1(43)

so thatτ (2)
n = σ

(1)
n+1 if W

(1)
n + ξ

(1)
n ≥ 0. In addition,

Z = W
(1)
0 + σ

(1)
0 + W

(2)
0 + σ

(2)
0 .(44)

Also, from (11),

Z = sup
−∞<p≤q≤0

( q∑
m=p

σ (1)
m + S(σ,2)

q + pa

)
.(45)

Similarly, for anyn, the stationary response timeZ(−∞,−n] of customer(−n)

satisfies the relations

Z(−∞,−n] = W
(1)
−n + σ

(1)
−n + W

(2)
−n + σ

(2)
−n

= sup
−∞<p≤q≤−n

( q∑
m=p

σ (1)
m +

−n∑
m=q

σ (2)
m + (p + n)a

)
.

(46)

6.1.1. End-to-end delay. In this section, we prove the following exact asymp-
totic, which refines the bounds of Section 4.4.1 (these bounds do not coincide in
general).

THEOREM 9. Under the assumptions of Section 4.4,

P(Z > x) ∼
(

d(1)

a − b
+ d(2)

a − b(2)

)
F

s
(x),(47)

where b = max(b(1), b(2)) ≡ γ (0).

REMARK 6. As a corollary of Theorem 9 and of results from [3] and [16], one
can easily derive sharp asymptotics for the stationary queue lengthQ = Q1 + Q2
in the tandem queue. Also, the result may be easily extended to queues in tandem
of any finite length.

PROOF OFTHEOREM 9. From Theorem 8, we get

P(Z > x) ∼
2∑

j=1

P
(
Z > x,A(j)

x

) ∼
∞∑

n=Nx

2∑
j=1

P
(
Z > x,A(j)

n,x

)
.

We have to find appropriate sequences{K(j)
n,x} and{η(j)

n }.
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Start withj = 1. For any{K(1)
n,x} andη

(1)
n → 0,

∑
n≥Nx

P
(
Z > x,A(1)

n,x

) ≤ ∑
n≥Nx

P
(
σ

(1)
−n > x + n(a − b) + η(1)

n

) ∼ d(1)

a − b
F

s
(x).

For the lower bound, consider the events

K(1)
n,x = {

S
(σ,1)
n−1 ≥ n

(
b(1) − η(1)

n

)
, S(σ,2)

n ≥ n
(
b(2) − η(1)

n

)}
and choose a sequenceη

(1)
n → 0 such thatP(K

(1)
n,x) → 1 uniformly in n ≥ Nx as

x → ∞. Then, from (45),

P
(
Z > x,A(1)

n,x

) ≥ P
(
σ

(1)
−n + max

(
S

(σ,1)
n−1 , S(σ,2)

n

) − na > x,A(1)
x,n

)
≥ P

(
σ

(1)
−n + n

(
max

(
b(1), b(2)

) − η(1)
n − a

)
> x

)
P(K(1)

n,x)

= (
1+ o(1)

)
P

(
σ

(1)
−n > x + n

(
a − b + η(1)

n

))
,

and the lower bound forP(Z > x,A
(1)
x ) is asymptotically equivalent to the upper

one.
Considerj = 2. The lower bound

P
(
Z > x,A(2)

x

) ≥ P
(
W

(2)
0 > x,A(2)

x

) = (
1+ o(1)

) d(2)

a − b(2)
F

s
(x)

follows from Theorem 4.
For the upper bound, put

Un = sup
−∞<p≤0

sup
max(p,−n)<q≤0

( q∑
m=p

σ (1)
m + S(σ,2)

q + pa

)

and note that, from (45) and (46),

Z ≤ max
(
Z(−∞,−n−1] + S(σ,2)

n − na,Un

)
≡ max

(
Z(−∞,−n−1] + S

(σ,2)
n−1 + σ

(2)
−n − na,Un

)
,

where the random vector(Z(−∞,−n−1],Un,S
(σ,2)
n−1 ) is independent ofσ (2)

−n .
Since Un ≤ Z a.s., P(Un ≤ x) → 1 uniformly in n as x → ∞. Since

the distribution ofZ(−∞,−n−1] does not depend onn, Z(−∞,−n−1]/n → 0 in
probability. Due to the SLLN,S(σ,2)

n−1 /n → b(2) a.s. Therefore, there exists a
sequenceεn ↓ 0, nεn → ∞ such that

P
(
Un ≤ x, Z(−∞,−n−1] ≤ nεn, S

(σ,2)
n−1 ≤ n

(
b(2) + εn

)) → 1
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uniformly in n ≥ Nx asx → ∞. Denote the latter event byK(2)
n,x and recall that it

is independent ofσ (2)
−n . Putη(2)

n = −2εn. Then

P
(
Z > x,A(2)

n,x

) ≤ P
(
σ

(2)
−n + n

(
b(2) − a

) + 2nεn > x,A(2)
n,x

)
= P

(
σ

(2)
−n > x + n

(
a − b(2) + η(2)

n

)
,K(2)

n,x

)
= (

1+ o(1)
)
P

(
σ

(2)
−n > x + n

(
a − b(2) + η(2)

n

))
,

and the desired asymptotics follow.�

6.1.2. Delay at the second queue. In this section, we focus on the asymptotics
for the stationary waiting timeW(2) ≡ W

(2)
0 of customer 0 at the second queue.

The assumptions are the same as in Section 6.1.
Results on the matter were obtained by Huang and Sigman in [19] in the case

where the tail ofσ (2) is heavier than that ofσ (1). The results of the present section
are more general in that such an assumption is not required.

First, let us see how the results of [19] follow from what we have here. Under the
assumptions of Section 4.4.1, we get from (36) of Theorem 8 (forZ̃ = W(2) ≤ Z)
that

P
(
W(2) > x

) = P
(
W(2) > x,A(1)

x

) + P
(
W(2) > x,A(2)

x

) + o
(
F

s
(x)

)
.(48)

Then

P
(
W(2) > x,A(2)

x

) = d(2)

a − b(2)
F

s
(x) + o

(
F

s
(x)

)
.(49)

The lower bound follows from Theorem 4 and the upper one from the inequality
P(W(2) > x,A

(2)
x ) ≤ P(Z > x,A

(2)
x ) and from the partj = 2 of the proof of

Theorem 9. For the first term in the right-hand side of (48), we have

0≤ P
(
W(2) > x,A(1)

x

) ≤ P
(
Z > x,A(1)

x

) = d(1)

a − b
F

s
(x) + o

(
F

s
(x)

)
from the proof of Theorem 9. Thus, ifd(1) = 0 < d(2), then

P
(
W(2) > x

) ∼ d(2)

a − b(2)
F

s
(x)(50)

which is the result of [19].
We now successively consider the three casesb(1) > b(2), b(1) = b(2) and

b(1) < b(2).

Case b(1) > b(2). For the following theorem, we do not need any assumption
on the tail ofσ (1). In fact, we do not even need to assume thatF is subexponential,
the only required assumption being thatF s is subexponential.
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THEOREM 10. Assume a > b(1) > b(2) and P(σ (2) > x) ∼ d(2)F (x) where
d(2) > 0, and the integrated tail distribution F s is subexponential. Then, as
x → ∞,

P
(
W(2) > x

) ∼ d(2)

a − b(2)
F

s
(x).(51)

PROOF. We already established the right lower bound in (49). Thus, it is
enough to derive an upper bound which is asymptotically equivalent to the lower
one.

For this, we use the notation from the beginning of Section 6.1. Since
σ

(2)
i andτ

(2)
i are independent andF s is long tailed, asx → ∞,∫ ∞

x
P

(
ξ

(2)
i > t

)
dt ∼

∫ ∞
x

P
(
σ

(2)
i > t

)
dt ∼ d(2)F

s
(x).(52)

PutS(2) = supn≥0 S
(2)
n andS̃ = supn≥0 S̃n. Sinceτ

(2)
i ≥ σ

(1)
i+1, W(2) = S(2) ≤ S̃ a.s.

Sinceb(1) > b(2), S̃ < ∞ a.s. So, we have

P
(
S(2) > x

) = P
(
S(2) > x, S̃ > x

)
(53) ≤ ∑

n

P
(
S(2) > x, ξ̃−n > x + nc̃

) + o
(
F s(x)

)
,

where (53) follows from Corollary 5 which implies that

{S̃ > x} = ⋃
n

{̃ξ−n > x + nc̃ } ∪ Bx whereP(Bx) = o
(
F

s
(x)

)
.

Setc = a − b(2) andc̃ = b(1) − b(2). For all ε ∈ (0, c̃), R > 0 andn, define the
event

Dn,ε,R = {
S

(2)
i ≤ R − i(c − ε), S̃i ≤ R − i(c̃ − ε), i = 1,2, . . . , n − 1;

S̃n+j − S̃n ≤ R − j (c̃ − ε), j = 1,2, . . .
}
.

By the SLLN, for anyε > 0, there existsR > 0 such that, for anyn = 1,2, . . . ,

P(Dn,ε,R) ≥ 1− ε. From (53), we have

P
(
S(2) > x

) ≤ ∑
n

P
(
S(2) > x, ξ̃−n > x + nc̃

) + o
(
F s(x)

)
≤ ∑

n

P
(
(Dn,ε,R)c, ξ̃−n > x + nc̃

)
(54) + ∑

n

P
(
Dn,ε,R, S(2) > x

) + o
(
F s(x)

)
≡ �1 + �2 + o

(
F s(x)

)
.
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Also,

�1 ≤ (
1+ o(1)

)
ε

∑
n

P(̃ξ−n > x + nc̃ ) = (
1+ o(1)

)εd(2)

c̃
F

s
(x).

On the intersection of the eventsDn,ε,R and{ξ (2)
n ≤ x − 2R + (n − 1)(c − ε)}, we

haveS
(2)
n ≤ x − R. In addition,S(2)

i < R for i = 1, . . . , n − 1 and, for allj ≥ 1,

S
(2)
n+j = S

(2)
n+j + S(2)

n − S(2)
n ≤ S̃n+j − S̃n + S(2)

n ≤ R − j (c̃ − ε) + x − R ≤ x.

Thus, on this intersection,S(2)
m ≤ x for all m if x ≥ R. Therefore,

P
(
Dn,ε,R, S(2) > x

) = P
(
Dn,ε,R, S(2) > x, ξ (2)

n > x − 2R + (n − 1)(c − ε)
)

≤ P
(
ξ (2)
n > x − 2R + (n − 1)(c − ε)

)
.

Hence,

�2 ≤ ∑
n

P
(
ξ (2)
n > x − 2R + (n − 1)(c − ε)

)
= (

1+ o(1)
) d(2)

c − ε
F

s
(x − 2R) = (

1+ o(1)
) d(2)

c − ε
F

s
(x),

asx → ∞, because of (52). Sinceε > 0 is arbitrary, the result follows.�

Case b(1) = b(2). We assumev2
i = Var(σ (i)) to be finite fori = 1,2 and we

use the notationv =
√

v2
1 + v2

2.

THEOREM 11. Assume a > b(1) = b(2) ≡ b and P(σ (i) > x) ∼ d(i)F (x) as
x → ∞ with d(1) + d(2) > 0, where both F and F s are subexponential. Then, as
x → ∞,

P
(
W(2) > x

) = 2d(1)
∫ ∞

0
F

(
x + y(a − b)

)
�

(
x

v
√

y

)
dy

(55)

+ d(2)

a − b
F

s
(x) + o

(
F

s
(x)

)
,

where � is the tail of the standard normal distribution. In particular, if either:

(i) d(2) > 0 or
(ii) d(2) = 0, d(1) > 0 and

lim inf
x→∞ F

s
(x2)/F

s
(x) > 0,(56)

then one can replace the equality in (55) by an equivalence and delete the term
o(F

s
(x)) in this equation.



640 F. BACCELLI AND S. FOSS

REMARK 7. Under condition (56), the integral in the right-hand side of (55)

is of order�(F
s
(x2)) = �(F

s
(x)). Condition (56) is satisfied if the tailF

s
(x)

is “extremely heavy,” for example,F
s
(x) ∼ (logx)−K , K > 0. However, if

lim supx→∞ F
s
(x2)/F

s
(x) = 0 (the latter holds for Pareto, log-normal and

Weibull distributions), then the integral is of ordero(F
s
(x)).

PROOF OFTHEOREM 11. We use again (48) and (49), and we are left with
the problem of finding the asymptotics for

P
(
W(2) > x,A(1)

x

) = ∑
n≥Nx

P
(
W(2) > x,A(1)

n,x

) + o
(
F

s
(x)

)
for an appropriate eventA(1)

x satisfying the assumptions of Theorem 8. Let
Sm,n = ∑m

i=1(b − σ
(1)
−n+i). Due to the LLN, max1≤m≤n Sm,n/n → 0 in probability

asn → ∞. Therefore, there exists a nonincreasing sequenceη
(1)
n → 0 such that

P(max1≤m≤n Sm,n/n > η
(1)
n ) ≤ η

(1)
n for all n. Take

K(1)
n,x =

{
max

1≤m≤n
Sm,n/n ≤ η(1)

n

}
∩ {

W
(2)
−n−1 + σ

(2)
−n−1 ≤ x + n

(
a − b + η(1)

n

)}
≡ K(1,1)

n,x ∩ K(1,2)
n,x .

Easy calculations based on the fact thatW
(1)
−n+m ≥ σ

(1)
−n + Sm,n − (m + 1)a show

that on the eventA(1)
n,x = K

(1)
n,x ∩{σ (1)

−n > x +n(a −b +η
(1)
n )}, one hasW(1)

−n+m > 0,

for all m = 1,2, . . . , n. Using the fact thatτ (2)
−n−1 ≥ σ

(1)
−n , one gets immediately

that on this event,W(2)
−n = 0. Therefore, on this event,τ (2)

j = σ
(1)
j+1 for all j =

−n + 1, . . . ,0 and

W(2) = W
(2)
0 = max

0≤j≤n
S̃j ≡ Vn.

From the central limit theorem for the reflected random walk,

Vn

v
√

n
→ ψ

weakly, whereψ has the following tail distribution:

P(ψ > x) = 2�(x) ≡ 2√
2π

∫ ∞
x

exp{−y2/2}dy.

Take anyc > 0. If Nx ≤ n ≤ cx2, then

P
(

Vn

v
√

n
>

x

v
√

n

)
≤ P

(
Vn

v
√

n
>

1

v
√

c

)
= (

1+ o(1)
)
2�

(
1

v
√

c

)
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asx → ∞. For any� > 0, choosec � 1 such that�( 1
v
√

c
) ≤ �. Then

cx2∑
Nx

P
(
W

(2)
0 > x,A(1)

n,x

) ≤
cx2∑
Nx

P(Vn > x)P
(
σ

(1)
−n > x + n

(
a − b + η(1)

n

))

≤ (
1+ o(1)

) d(1)

a − b
�F

s
(x).

If n > cx2, then

P
(

Vn

v
√

n
>

x

v
√

n

)
= (

1+ o(1)
)
2�

(
x

v
√

n

)
,

asx → ∞, since

P
(

Vn

v
√

n
> y

)
= (

1+ o(1)
)
2�(y)

uniformly in y on a compact set.
Therefore,

∞∑
n=cx2

P
(
W(2) > x,A(1)

n,x

)

=
∞∑
cx2

P
(
σ

(1)
−n−1 > x + n(a − b + ηn)

)
P

(
K(1,2)

n,x

)
P

(
Vn > x,K(1,1)

n,x

)

= (
1+ o(1)

)
d(1)

∞∑
cx2

F
(
x + n(a − b + ηn)

)(
P

(
Vn

v
√

n
>

x

v
√

n

)
− o(1)

)

= 2
(
1+ o(1)

)
d(1)

∞∑
cx2

F
(
x + n(a − b)

)
�

(
x

v
√

n

)
+ o

(
F

s
(x)

)

= 2d(1)
∫ ∞
cx2

F
(
x + y(a − b)

)
�

(
x

v
√

y

)
dy + o

(
F

s
(x)

)
= 2d(1)

∫ ∞
0

F
(
x + y(a − b)

)
�

(
x

v
√

y

)
dy

+ o
(
F

s
(x)

) − �
d(1)

a − b
O

(
F

s
(x)

)
.

Letting� to 0, we get the result.�
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Case b(1) < b(2).

THEOREM 12. Assume b(1) < b(2). Then

P
(
W(2) > x

) = d(2)

a − b(2)
F

s
(x) + d(1)

a − b(2)
F

s
(
x

a − b(1)

b(2) − b(1)

)
+ o

(
F

s
(x)

)
.(57)

In particular, if either:

(i) d(2) > 0 or
(ii) d(2) = 0, d(1) > 0 and

lim inf
x→∞ F

s
(2x)/F

s
(x) > 0,(58)

then one can replace in (57) the equality by an equivalence and delete the term
o(F

s
(x)) in the right-hand side.

PROOF. Take the notation from the beginning of Section 6.1 and from the
proof of Theorem 11. Recall that we consider the caseb(2) = b. Putnx = x

b−b(1)

and, for a fixedε ∈ (0,1), nx,1 = nx(1− ε), nx,2 = nx(1+ ε).
Recall that, from (48) and (49), we have to find the asymptotics for

∑
n≥Nx

P
(
W

(2)
0 > x,A(1)

n,x

) =
nx,1∑

n=Nx

+
nx,2−1∑

n=nx,1+1

+
∞∑

n=nx,2

≡ P1(x) + P2(x) + P3(x).

For Nx ≤ n ≤ nx,1, put K(1)
n,x = {W(2)

−n−1 + σ
(2)
−n−1 ≤ x}. Then, forη(1)

n = ηn ≥
−(a − b), on the eventA(1)

n,x = K
(1)
n,x ∩ {σ (1)

−n > x + n(a − b + ηn)},
W

(2)
−n = 0 and W

(2)
0 ≤ Vn,

sinceτj ≥ σ
(1)
j+1. Therefore,

P1(x) ≤
nx,1∑

n=Nx

P
(
σ

(1)
−n > x + n(a − b + ηn),Vn > x

)

=
nx,1∑

n=Nx

P
(
σ

(1)
−n > x + n(a − b + ηn)

)
P(Vn > x)

≤ (1+ o(1))d(1)

a − b
P

(
Vnx,1 > x

)
F

s
(x) = o

(
F

s
(x)

)
,

sinceVn/n → (b − b(1))−1 asn → ∞ and

Vnx,1

x
= Vnx,1

nx,1

nx,1

x
→ 1− ε < 1 a.s.

asx → ∞.
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ConsiderP2(x). For any sequenceηn → 0 and forx sufficiently large,

P2(x) ≤
nx,2−1∑

n=nx,1+1

P
(
σ

(1)
−n > x + n(a − b + ηn)

)

= (1+ o(1))d(1)

a − b

∫ x+nx,2(a−b)

x+nx,1(a−b)
F (x) dx

≤ (1+ o(1))d(1)

a − b

nx,2 − nx,1

nx,2
F

s
(x) = (

1+ o(1)
)2d(1)ε

a − b
F

s
(x),

sinceF(x) is nonincreasing.
Finally, considerP3(x). We will show that, for the appropriate sequences

{K(1)
n,x} and{η(1)

n },

P3(x) ∼ d(1)

a − b
F

s
(
x

(
a − b(1)

b − b(1)
+ ε(a − b)

b − b(1)

))
.(59)

Obviously,

P3(x) ≤ ∑
n≥nx,2

P
(
σ

(1)
−n > x + n

(
a − b + η(1)

n

))
,

where the right-hand side of the latter inequality is asymptotically equivalent to
the right-hand side of (59). Now we establish the lower bound.

From (10), (42), (44) and (45),

W
(2)
0 = Z − W

(1)
0 − σ

(1)
0 − σ

(2)
0

≥ Z[−n,0] − max
0≤j≤n

S
(1)
j − W

(1)
−n − σ

(1)
0 − σ

(2)
0

≥ σ
(1)
−n − na + max−n≤q≤0

( q∑
m=−n+1

σ (1)
m + S(σ,2)

q

)

− max
(
0, S

(1)
n−1 + σ

(1)
−n

) − max
0≤j≤n−1

S
(1)
j − W

(1)
−n − σ

(1)
0 − σ

(2)
0 .

Due to the SLLN, asn → ∞,

1

n
S

(1)
n−1 → b(1) − a,

1

n

(
max

0≤j≤n−1
S

(1)
j + W

(1)
−n + σ

(1)
0 + σ

(2)
0

)
≡ rn → 0

and

1

n
max−n≤q≤0

( q∑
m=−n+1

σ (1)
m + S(σ,2)

q

)
≡ un → b a.s.

Choose a sequenceδn ↓ 0, nδn → ∞ such that, for alln,

P
(
un ≥ b − δn, rn ≤ δn, S

(1)
n−1 ≤ n

(
b(1) − a + δn

)) ≥ 1− δn
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and denote the latter event byK
(1)
n,x (it does not depend onσ (1)

−n ). On this event,

W
(2)
0 ≥ σ

(1)
−n − n(a − b + 2δn) − max

(
0, σ

(1)
−n + n

(
b(1) − a + δn

))
≥ min

(
σ

(1)
−n − n(a − b + 2δn), n

(
b − b(1) − 3δn

))
.

Sincen ≥ (1+ε)x

b−b(1) , we get

n
(
b − b(1)

) − 3nδn ≥ x + ε(b − b(1))

1+ ε
n − 3nδn > x

for all sufficiently largex. Putη(1)
n = 2δn. Then, on the event

A(1)
n,x = {

σ
(1)
−n > x + n

(
a − b + η(1)

n

)} ∩ K(1)
n,x,

we getW(2)
0 > x, and (59) follows.

Letting ε to 0 completes the proof.�

6.2. Multiserver queues. The aim of this section is to derive upper and lower
bounds and sharp asymptotics for the tail of the stationary maximal dater of
multiserver queues. However, we do not obtain here asymptotics for the tail
distribution of the stationary waiting time. It is known (see, e.g., [17] and [21])
that these asymptotics may, in general, differ significantly.

Since (AA) does not hold, we cannot use the approach of Section 4. We show
how the ideas of Section 5.2 can be used to derive upper and lower bounds which
are specific to this queue.

Recall that we can consider aD/GI/m/∞ queue with constant interarrival
timesa. Let Eσ = b andρ ≡ b

ma
∈ (0,1). Assume further thatP(σ1 > x) = F(x),

where both distributionsF andF s are subexponential.

THEOREM 13. Under the foregoing assumptions, when x tends to ∞,

P(Z > x)

= (
1+ o(1)

)(1

a
F

s
(x) +

(
1

ma − b
− 1

a

)+
F

s
(

bx

b − (m − 1)a

))
.

(60)

Note that the second term in the right-hand side of (60) disappears when
b ≤ (m − 1)a.

The proof consists of three steps:

First, we get a lower bound by using the SLLN.
Then we get an upper bound by using results from Section 4.3.1.
Finally, Theorem 7 gives us the tool to derive the exact asymptotics.



MOMENTS AND TAILS 645

LOWER BOUND. Clearly,

P(Z > x) ≥ (
1+ o(1)

)
P

( ∞⋃
n=0

{σ−n > x + na}
)

∼ ∑
n

P(σ−n > x + na) ∼ 1

a
F

s
(x).

UPPER BOUND. Take a sufficiently largeL and consider theL-upper-bound
D/GI/1/∞ queue with interarrival timesLa and service times{ ŝn} with mean
b̂ = E ŝ1. Since

max
1≤i≤L

σi ≤ ŝ1 ≤
L∑
1

σi,

we getP( ŝ1 > x) ∼ LP(σ1 > x) = LF(x) asx → ∞. Note that, for the multi-
server queue,γ (0) = b/m. Therefore, we get a natural analogue of Theorem 5,

lim sup
x→∞

P(Z > x)

F
s
(x)

≤ lim
L→∞ lim sup

x→∞
P(R̂ > x)

F
s
(x)

= 1

a − b/m
F

s
(x).(61)

Thus, we are in a position to make use of Theorem 7. The rest of the proof is quite
technical and in the same spirit as that of Theorem 9. Because of that, it is omitted.

APPENDIX

A.1. Proof of (24). Putb = min(b(i1), b(i2)). From Corollary 5, we know that,
for r = 1,2, {

R(ir ) > x
} ⊂ ⋃

mr≥1

(
A(ir )

mr
∪ B(ir )

)
,

where

A(ir )
mr

= {
Y (ir )

mr
> x + mr

(
b(ir ) − a

)}
and P

(
B(ir )

) = o
(
F

s
(x)

)
.

Therefore,

P
(
R(i1) > x,R(i2) > x

)
≤

∞∑
m1=1

∞∑
m2=1

P
(
Y (i1)

m1
> x + m1

(
b(i1) − a

)
, Y (i2)

m2
> x + m2

(
b(i2) − a

))
+ o

(
F

s
(x)

)
≤ ∑

m1 
=m2

P
(
Y

(i1)
1 > x + m1

(
b(i1) − a

))
P

(
Y

(i2)
1 > x + m2

(
b(i2) − a

))
(62)
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+
∞∑

m=1

P
(
min

(
Y

(i1)
1 , Y

(i2)
1

)
> x + m(b − a)

) + o
(
F

s
(x)

)
≤ ∑

m1

P
(
Y

(i1)
1 > x + m1

(
b(i1) − a

))∑
m2

P
(
Y

(i2)
1 > x + m2

(
b(i2) − a

))

+
∞∑

m=1

o
(
F(x + mb)

) + o
(
F

s
(x)

)
= �

((
F

s
(x)

)2) + o
(
F

s
(x)

) = o
(
F

s
(x)

)
.

A.2. Relaxing the independence assumptions. The aim of this section is to
give conditions under which assumption (H) of Section 4.1 is satisfied, although
the r.v.’sY (j) are not independent.

We assume that there exists a random variableν taking values in an arbitrary
measurable space(Y,BY ) and such that:

• Givenν, the random variablesY (j)
1 , j = 1, . . . , r , are conditionally independent.

• For anyj = 1, . . . , r ,

P
(
Y

(j)
1 > x

∣∣ν) ∼ d(j)
ν F (x),(63)

Pν -a.s., whered(j)
ν is a nonnegative random variable with a finite meand(j).

Then

d̃ (j )
ν ≡ sup

x

P(Y
(j)
1 > x|ν)

F (x)
(64)

is an a.s. finite random variable, too.
Assume in addition that, for any 1≤ j1 ≤ j2 ≤ r ,

E
j2∏

j=j1

d̃ (j )
ν < ∞.(65)

LEMMA 8. Under the foregoing assumptions, for any 1≤ j1 ≤ j2 ≤ r ,

P

( j2∑
j=j1

Y
(j)
1 > x

)
∼ P

(
max

j1≤j≤j2
Y

(j)
1 > x

)

∼
j2∑

j=j1

P
(
Y

(j)
1 > x

) ∼
j2∑

j=j1

d(j)F (x).

(66)

PROOF. Without loss of generality, we prove the result forj1 = 1, j2 = r .
Note that

P(
∑r

1Y
(j)
1 > x|ν)

F (x)
→

r∑
1

d(j)
ν ← P(maxj Y

(j)
1 > x|ν)

F (x)
,
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Pν -a.s. and, for allx,

0≤ P(maxj Y
(j)
1 > x|ν)

F (x)
≤ P(

∑r
1 Y

(j)
1 > x|ν)

F(x)
≤

r∏
1

d̃ (j )
ν · sup

x

F
∗r

(x)

F (x)
,

where the latter supremum is finite. Then the dominated convergence theorem
implies that

P(
∑r

1Y (j) > x)

F(x)
≡ E

(
P(

∑r
1Y

(j)
1 > x|ν)

F(x)

)
→ d ≡ ∑

j

Ed(j)
ν ≡ ∑

j

d(j)

and
P(maxj Y

(j)
1 > x)

F (x)
→ d. �

Consider the following example, which covers the generalized Jackson network
case. Assume that there are given:

• Some random vectorν = (ν(1), . . . , ν(r)) with nonnegative integer-valued
components, such thatE exp(cν(j)) < ∞ for some c > 0 and for all j =
1, . . . , r ;

• r sequences{σ (j)
n } of i.i.d. subexponential random variables that are mutually

independent and independent ofν, and such thatP(σ
(j)
1 > x) ∼ l(j )F (x). We

do not make the assumption that the r.v.’sν(1), . . . , ν(r) are independent.

PutY (j)
1 = ∑ν(j)

i=1 σ
(j)
i . The above conditions imply that

E exp

(
c

r

∑
j

ν(j)

)
≤ E exp

(
c max

j
ν(j)

)
≤ ∑

j

E exp
(
cν(j)

)
< ∞

and that for allj = 1, . . . , r ,

u(j) ≡ sup
t

P(σ
(j)
1 > t)

F(t)
< ∞.

Due to subexponentiality, forj = 1, . . . , r ,

P
(
Y

(j)
1 > x|ν) ∼ ν(j)l(j )F (x).

It is known (see, e.g., [13], page 41) that, for anyε > 0, one can chooseK(j) ≡
K(j)(ε) such that

P
(
Y

(j)
1 > x|ν) ≤ K(j)(1+ ε)ν

(j)

P
(
σ

(j)
1 > x

)
.

The right-hand side of the latter inequality is not bigger thanK(j)u(j)(1 +
ε)ν

(j)
F (x).

Take ε > 0 such that log(1 + ε) ≤ c′. Then the conditions of Lemma 8 are
satisfied withd(j)

ν = ν(j)l(j ), d(j) = l(j )Eν(j) andd̃
(j )
ν = K(j)u(j)(1+ ε)ν

(j)
.
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A.3. Deterministic interarrival times. We extend to the monotone separable
framework the approach used in [4] for single server queues to show that there may
be no loss of generality in assuming that a network has deterministic interarrival
times when one wants to evaluate the tail asymptotics of its stationary maximal
dater.

The framework is that of Section 2. Fix{ζn}, {fl} and consider a family of
networks with different “input sequences”{Tn} such thatEτ1 > γ (0). Without
loss of generality assumeT0 = 0.

In particular, a network with constant interarrival times (saya) belongs to this
family. For such a network, we use the notationZ(a) andZ

(a)
[−n,0].

For any{Tn} and for anỹa < Eτ1, set

ψ({τn}, ã) = sup
n≥0

(nã + T−n) ≡ sup
n≥0

( −1∑
i=−n

(ã − τi)

)
.

THEOREM 14. Assume that there exist a continuous and strictly positive
function h : (γ (0),∞) → (0,∞) and a subexponential distribution G such that,
for any a > γ (0),

P
(
Z(a) > x

) ∼ h(a)G(x) as x → ∞.(67)

Then, for any network with random interarrival times {τn}, such that Eτ1 =
a > γ (0), the following is valid: If {τn} and {ζn} are independent and if, for any
ã < a,

P
(
ψ({τn}, ã) > x

) = o(G(x)) as x → ∞,(68)

then

P(Z > x) ∼ h(a)G(x) as x → ∞.(69)

REMARK 8. In particular, condition (68) is satisfied if theτn’s are i.i.d.
Indeed, thenψ({τn}, ã) has either a bounded [ifP(ã ≥ τ1) = 0] or exponential
tail, which is lighter than any long tail.

PROOF OFTHEOREM 14. Take anyε ∈ (0, a − γ (0)). Due to the monotonic-
ity,

Z[−n,0] ≤ Z
(a−ε)
[−n,0] + max

0≤j≤n

( −1∑
i=−j

(a − ε − τi)

)+
.

Therefore,

Z ≤ Z(a−ε) + ψ({τn}, a − ε) ≡ Z(a−ε) + ψ,

whereZ(a−ε) andψ are independent. Therefore,

P(Z > x) ≤ P
(
Z(a−ε) + ψ > x

) ∼ P
(
Z(a−ε) > x

) ∼ h(a − ε)G(x).



MOMENTS AND TAILS 649

Thus

lim sup
x→∞

P(Z > x)

G(x)
≤ h(a − ε)

for anyε ∈ (0, a − γ (0)). Lettingε go to 0, we get the upper boundh(a).
For the lower bound, we use the monotonicity, the SLLN for theτ ’s, the LT and

the independence assumptions. For anyε > 0, one can choose a sufficiently large
C ≡ C(ε) such that

P
(
T−n ≥ −n(a + ε) − C ∀n ≥ 0

) ≥ 1− ε.

Denote the latter event byDε . Then

P(Z > x) ≥ P(Z > x,Dε) ≥ P
(
Z(a+ε) − C > x,Dε

)
≥ P

(
Z(a+ε) − C > x

)
(1− ε) ∼ h(a + ε)(1− ε)G(x + C)

∼ h(a + ε)(1− ε)G(x).

Thus, for anyε ∈ (0,1),

lim inf
x→∞

P(Z > x)

G(x)
≥ h(a + ε)(1− ε).

Letting ε go to 0, we get the lower bound with coincides with the upper one.�
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