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Multi-sample microarray experiments have become a standard experi-
mental method for studying biological systems. A frequent goal in such stud-
ies is to unravel the regulatory relationships between genes. During the last
few years, regression models have been proposed for the de novo discov-
ery of cis-acting regulatory sequences using gene expression data. However,
when applied to multi-sample experiments, existing regression based meth-
ods model each individual sample separately. To better capture the dynamic
relationships in multi-sample microarray experiments, we propose a flexible
method for the joint modeling of promoter sequence and multivariate expres-
sion data.

In higher order eukaryotic genomes expression regulation usually involves
combinatorial interaction between several transcription factors. Experiments
have shown that spacing between transcription factor binding sites can sig-
nificantly affect their strength in activating gene expression. We propose an
adaptive model building procedure to capture such spacing dependent cis-
acting regulatory modules.

We apply our methods to the analysis of microarray time-course experi-
ments in yeast and in Arabidopsis. These experiments exhibit very different
dynamic temporal relationships. For both data sets, we have found all of the
well-known cis-acting regulatory elements in the related context, as well as
being able to predict novel elements.

1. Problem formulation and review of methods. Two important sources
of high-throughput data have become available to modern biology: microarrays,
which allow measurement of genome-wide gene expression patterns over multiple
biological conditions, and sequenced genomes, which allow computational search
of any sequence pattern of interest in any genomic region of interest. This wealth of
resources has triggered attempts to computationally learn the regulatory grammar
within the promoters of genes through combined analysis of expression and pro-
moter sequence data. The logic that underlies such efforts is that gene expression
is initiated by the binding of transcription factors to upstream sequences (called
cis-acting regulatory elements), and thus, gene expression patterns should be cor-
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related with the presence of certain cis-acting regulatory elements in the promoter
sequence.

Not long after the advent of microarray technology, gene expression data was
used to locate known or putative transcription factor binding sites (TFBS). Ini-
tially, most methods were based on the prespecification of a set of hypothesized
co-expressed genes, which can be obtained through cluster analysis of gene ex-
pression profiles. Statistical methods have been developed to find enriched motifs
in the promoters of such pre-specified gene sets [Bailey and Elkan (1994) and Liu,
Brutlag and Liu (2002)]. Such methods can model degenerate motifs through po-
sition specific weight matrices or graph-based motif representations [Fratkin et al.
(2006)]. Models that incorporate interactions between motifs have also been devel-
oped [Zhou and Wong (2004)]. However, all of these methods are very sensitive to
the pre-specified gene list. It is usually unclear how to obtain such a gene list from
microarray data, because clustering methods are often unreliable and most genes
are not part of a tight cluster. Also, these methods make use of the expression data
only to the extent of obtaining the set of hypothesized coregulated genes, and do
not explicitly model the relationship between promoter sequence content and gene
expression.

Regression based approaches have been proposed to more directly model the
relationship between the expression pattern of genes and the repertoire of motifs in
their promoters. Bussemaker, Li and Siggia (2001) proposed the following simple
linear model between Xg,m, the count of a motif m in the promoter of gene g, and
Yg , the expression of gene g:

Yg = ∑
m

Xg,mβm + εg,

where the summation is over the set of all motifs that is believed to contribute to
the expression of genes in the sample. This basic model has since been expanded
to utilize position specific weight matrices (PSWM) instead of counts [Conlon et
al. (2003) and Das, Nahlé and Zhang (2006)], as well as to model interactions
between motifs that appear together in the same promoter sequence [Das, Nahlé
and Zhang (2004) and Keles, Van der Laan and Vulpe (2004)]. Notably, Keles,
Van der Laan and Vulpe (2004) used logic regression to model combinatorial motif
interactions and Das, Nahlé and Zhang (2004) used linear splines to capture the
hypothesized log-sigmoidal relationship between transcription response and motif
strength. All of the methods so far mentioned have attained some degree of success
with data from yeast, but with the exception of Das, Nahlé and Zhang (2006), the
applicability of these methods in higher order organisms is still unproven.

At present, all of the existing regression based methods model only univariate
expression data. For example, Bussemaker, Li and Siggia (2001), Das, Nahlé and
Zhang (2004), Keles, Van der Laan and Vulpe (2004) and Conlon et al. (2003)
all analyzed the yeast cell cycle time series [Spellman et al. (1998)] by doing a
separate regression at each time point. However, it is also clear from these studies
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that, for the cell cycle experiments, the known biological motifs have a meaningful
time-varying pattern, while the false positive motifs have a pattern across time that
is not recognizable or that is typical of experimental artifacts. Multivariate gene
expression data, measured across different biological conditions, times and treat-
ments, convey much more information than single chip data. However, at present
there is no clear method to combine information across samples. It is often unclear,
when multiple samples are available, how to quantify whether a gene’s expression
profile is “interesting.” Yet, to capture dynamic regulatory relationships and to re-
spond to the growing availability of multi-chip data, it is necessary to combine
information across samples in modeling cis-acting regulatory elements. In this pa-
per we present a linear model for this purpose.

We also propose in this paper a new framework for modeling interactions be-
tween cis-acting regulatory elements that takes into consideration the distance be-
tween the elements in the promoter sequence. Transcription factors, when bound
to the promoter sequence, interact with other transcription factors and nuclear pro-
teins to initiate or inhibit transcription. The distance between the binding sites af-
fects the strength of such interactions. For example, Rushton et al. (2002) showed
using synthetic plant promoters that the distance between the binding sites of the
WRKY transcription factors causes a pronounced difference in the strength of the
module. Another example is given in Segal and Berk (1991), where they showed
that in vivo transcription stimulation by Sp1 transcription factor binding sites in
the adenovirus type 2 early region 1B promoter is strongly dependent on its dis-
tance from the TATA box. In an analysis of 4 yeast species, Chiang et al. (2003)
found that pairs of jointly conserved motifs exhibit nonrandom relative spacing.
In this paper we give a computational method to incorporate this effect into motif
detection.

A critical step in all regression based methods is the selection of the best subset
of motifs to be included in the model. The initial set of motifs under consideration
can be quite large, especially for de novo motif finding. Most previous methods
[Bussemaker, Li and Siggia (2001), Conlon et al. (2003), Keles, Van der Laan and
Vulpe (2004)] resorted to simple stepwise variable addition to search the space.
Das, Banerjee and Zhang (2004), Das, Nahlé and Zhang (2006), which uses the
multivariate adaptive regression splines (MARS) algorithm [Friedman (1991)],
used a forward stepwise search followed by model pruning. In this paper we exam-
ine two different model selection methods with the aim of obtaining a simple, in-
terpretable model. We use a permutation study to evaluate the effectiveness of our
model selection procedure and to estimate the expected number of false positives.
Most previous studies on this problem have not done such specificity evaluations,
which we believe to be critical to the understanding and assessment of models.

The paper is organized as follows: To motivate our methods, we begin by de-
scribing two different multi-sample gene expression experiments in Section 2. We
present our model and methods in Section 3. Methods of statistical validation are
important for interpretation of the results, and thus, in Section 4 we describe three
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validation methods, including a new approach based on flanking sequence infor-
mation content that has never been applied in previous published studies. In Sec-
tion 5 we present the results for the experiments described in Section 2. Finally,
we conclude with a few remarks in Section 6.

2. Description of experiments. We begin by describing two multi-sample
gene expression experiments which will be used to illustrate our methods. Both
are time-course experiments. The first is a periodic time course representing the
self-regenerating process of cellular growth and division. The second is a non-
periodic time course representing an organism’s response to a biotic stimulus (a
pathogen).

2.1. Yeast cell cycle. The cell cycle is a tightly coordinated set of processes
by which cells grow, replicate their DNA, segregate their chromosomes, and di-
vide into daughter cells. Checkpoints during the cycle ensure that at specific time
points, specific processes must have been completed. Such coordination requires a
complex network of regulatory relationships. We apply our methods to learn these
relationships from a set of gene expression measurements captured at time-points
during the cell cycle. The data set we use comes from the α-factor synchronized
cultures from Spellman et al. (1998), and can be downloaded from the website
http://cellcycle-www.stanford.edu.

The samples of the α-arrest experiment are taken at 7 minute intervals after
synchronization of the cell culture. There are a total of 18 samples, spanning two
cell cycles. Thus, many genes related to the cell cycle have a periodic expression
with two periods captured in this data set. Much is known about the regulatory
mechanisms involved, and a list of the transcription factors that is known to play a
crucial role can be found in Spellman et al. (1998). For the yeast analyses, we in-
cluded 1600 genes: 800 defined by Spellman as cell-cycle related genes [Spellman
et al. (1998)] and 800 genes selected at random from genes that did not exhibit a
cell-cycle related pattern. In this way we are able to determine whether cis-acting
regulatory elements associated with specific gene expression patterns emerge from
a mixed dataset. Details about data pre-processing are given in Section A.1.

2.2. Systemic acquired response in plants. Plant are commonly exposed to
bacterial, fungal and viral pathogens. In response to certain pathogens, plants acti-
vate defensive responses resulting in enhanced resistance to subsequent pathogen
exposure. This acquired resistance response can be both local and systemic (oc-
curring in uninfected parts of the plant). The small molecule 2-hydroxybenzoic,
commonly known as salicylic acid (SA), is required for this local and systemic re-
sistance response. Wildermuth et al. (2001) showed that this SA is synthesized via
isochorismate synthase (AtICS1) in Arabidopsis thaliana. Null ics1 mutant plants
do not synthesize SA in response to pathogen, are more susceptible to pathogens
and compromised in local and systemic acquired resistance (SAR) responses.

http://cellcycle-www.stanford.edu
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To investigate the specific components and processes of plant defense mediated
by SA, Wildermuth et al. (2007) infected wild type and ics1 mutant Arabidopsis
plants with the powdery mildew fungal pathogen Golovinomyces orontii. In this
replicated time-course experiment, samples were harvested at 0 (just prior to in-
fection), 6, 24, 48, 72, 120 and 168 hrs post infection (hpi). This timing focuses
on the progressive growth and reproduction of the fungus. Analysis of this ATH1
Affymetrix dataset indicates that the majority of genes with a significant differ-
ence in expression in the ics1 mutant compared with wild type exhibit an increase
in expression in response to the powdery mildew in wild type plants with abol-
ished or reduced expression in the mutant. A number of these are known to act
downstream of SA in SAR. In addition, there are genes that exhibit enhanced ex-
pression in the ics1 mutant vs. wild type in response to powdery mildew. In our
analysis of this data, we would like to capture this dynamic time-relationship in
finding regulatory TFBS related to SA-mediated SAR. The details of the regula-
tory networks mediating SAR are an area of active investigation. Binding sites for
a few key transcription factors involved in plant defense have been determined;
however, much is still unknown. For the Arabidopsis analysis, we included the top
1500 genes that exhibited differential expression between the wild type and ics1
mutant in response to pathogen and the bottom 1500 genes exhibiting no difference
in expression between wild type and mutant. The inclusion of an equal subset of
genes with unaltered expression serves as a control, allowing us to determine if we
are able to identify genes specifically associated with altered expression patterns.
Details of the data pre-processing are given in Section A.1.

3. Model and method. Figure 1 shows a flow-diagram of our proposed
method. The main steps of the analysis follow: (A) Dictionary construction,
(B) Adaptive distance-based model building, and (C) Model pruning. We start
in Section 3.1 with a description of our model and loss function, which will be
integral to steps (B–C).

3.1. Model and loss function specification. The observed data are Y def=
{Yg,t : 1 ≤ g ≤ G,1 ≤ t ≤ T }, where Yg,t is the log2 expression intensity for gene

g in sample t , and S def= {Sg,i : 1 ≤ g ≤ G,1 ≤ i ≤ R}, where Sg,i is the DNA
base at position −i from the start of gene g in the 5′ to 3′ template DNA strand,
which we refer to as gene g’s promoter. More specific definitions of the pro-
moter sequence of a gene are given in Appendix A.1. We denote the expression
and promoter sequence of a gene g respectively by Yg = {Yg,1, . . . , Yg,T } and
Sg = (Sg,1, . . . , Sg,R).

Our model assumes that Yg is a sum of two orthogonal components:

Yg = Zg + εg,(1)
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FIG. 1. Flow diagram of the analysis process. We start with the multivariate expression data for a
filtered set of genes and the counts of all nondegenerate motifs of pre-specified lengths in the upstream
promoter sequence of these genes. Linear contrasts uj of the expression data are used to build the
dictionary (step A), and subsequently build the model (step B). The model is then pruned (step C)
for parsimony. The steps labeled A, B and C are detailed in Sections 3.2, 3.3 and 3.4, respectively.

where Zg is the signal that the experiment is designed to measure, and εg is the
error component due to technical or biological noise. Note that εg may be system-
atic error with a biologically meaningful trend in t , but that is not of interest in the
context of the given experiment. By orthogonality of εg and Zg , we mean that the
covariance matrix Cov[Zg,εg] = 0.

We model the dependence of Yg on Sg through the signal component Zg .
Specifically, let Zg reside in a d dimensional linear subspace of RT , with linear
decomposition

Zg =
d∑

j=1

uj,gvj(2)

on basis vectors v1, . . . ,vd . We assume the following linear model:

uj,g = β0,j + ∑
e∈E

βj (e)Xg(e) + εj,g, j = 1, . . . , d,(3)
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where E is a set of promoter elements. Section 3.3 defines the concept of promoter
element in detail, while here we simply describe it intuitively as a collection of
DNA letters that satisfy a certain arrangement. The variables Xg(e), defined in
Section 3.3, quantify the presence of promoter element e in Sg . We assume that
the errors εj,g are independent across g and j with mean 0 and equal variance.

Note that in the model defined in (3), the set of promoter elements E is common
to all basis functions {vj : j = 1, . . . , d}. Alternatively, one could fit a separate
model with a different set E for each basis function. This would be meaningful if
the basis functions were contrasts that individually represent a quantity of interest.
However, with model (3), we are looking for a set of promoter elements that play
a significant role in the systemic context of the experiment (represented by the
signal component Zg), without being specific to the choice of basis. The goal is
then to choose E and parameters βE = {βj (e) : e ∈ E ,1 ≤ j ≤ d} that are the most
effective in explaining the variance in Zg . For each gene g, assume that we have
the fitted values {ûj,g : j = 1, . . . , d}, which gives us Ẑg = ∑d

j=1 ûj,gvj , the fitted
value for Zg . The loss function is defined as

L(E ,βE ) =
G∑

g=1

‖Ẑg − Zg‖2.(4)

If E , the set of promoter elements in the model, were fixed, the goal would be
to find βE that maximizes (4). However, for varying E , the loss function would
of course need to be penalized for the degrees of freedom of the model specified
by E . Section 3.4 discusses possible penalty functions.

In practice, one would need to specify the basis functions {vj } of the signal
component Zg . This can sometimes be done a priori by using contextual knowl-
edge of the experiment. For example, for case-control experiments, vj can be set to
the contrasts of interest. However, for the two experiments that we study, there are
no obvious contrasts. For the yeast cell cycle experiment, an a priori meaningful
set of basis could be orthogonal periodic functions with peaks at different phases
of the cycle. For the powdery mildew infection experiment, a good choice of basis
is even harder to find without examination of the data.

A good method for choosing {vj } is to use the principal components of Y,
which proved effective on both the yeast and the Arabidopsis experiments. With
some overlap with previous notation, consider the singular value decomposition
Y = U�V′, where we let U be the matrix of score vectors [u1, . . . , uT ], � be the
diagonal matrix with diagonal elements [λ1, λ2, . . . , λT ], and V = [v1, . . . , vT ] be
the T × T square matrix that contains the loadings of the T principal component
vectors. Often, a visual examination of the loadings can yield meaningful linear
projections of the data, and good choices for {vj }. Using contextual knowledge
about the experiment, one may be able to identify a subset A ⊆ {1,2, . . . , T } of
principal components vectors to serve as the basis. Otherwise, one can choose the
top few principal components using a scree plot. With the basis vectors chosen
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using principal components, the loss function (4) would then be equivalent to the
weighted sum of losses over the principal component scores:

LA(E ,βE ) = ∑
j∈A

λ2
j‖uj − βjXE‖2,(5)

where βj = (βj (e) : e ∈ E). Note that the weight of each component in the above
loss function is exactly the variance of the data along that component.

If A were chosen to be the entire set of all T principal components, then the
minimum of LA(E ,βE ) over βE would be equivalent to the naive unweighted
sum of the squared error losses from a separate regression for each sample:

min
βE

LA(E ,βE ) =
T∑

j=1

min
βj (E)

‖Y·,j − βj (E)X.,E‖2.

In model (1), this would be equivalent to assuming εg = 0 for all genes g. By
selecting A to be a proper subset of {1, . . . , T }, we are performing weighted mul-
tivariate response regression on a reduced dimensional subspace of Y .

For time-course experiments, this method finds motifs that most significantly
affect the shape of the time course. In high dimensions many shapes are possible.
We focus on the shapes that are most meaningful to the experiment, or that are the
most effective in explaining the data, or both. The model gains power over previ-
ous methods by combining information across time-points to capture the dynamic
relationships that can only be observed across samples. In particular, this multivari-
ate cross-sample approach is preferable to the single-sample approach for finding
motifs related to pathways that have distinct time-related patterns of activity.

The principal components approach gives an automatic, data-based method of
weighting the residual sum-of-squares when multiple basis vectors (components)
are chosen. In both the yeast cell cycle and the Arabidopsis experiments, we found
more than one meaningful orthogonal projection of the data. One could, in princi-
ple, apply the methods described in the next few sections to each projection sepa-
rately, obtaining separate sets of motifs E . However, with the weighted loss func-
tion (4), we hope to capture motifs that may not be strongly correlated with any
single projection, but that are weakly correlated with many projections. Another
benefit of combined analysis of multiple orthogonal projections is in the detection
of interactions between TFBS. Transcription factors that are active in different
pathways may interact to assume a new role. Such interactions may be lost if one
limits the analysis to one-dimensional projections.

When there are multiple basis vectors, what determines which motifs get added
to the model? Some insights can be gained from examining the simple case where
E is a singleton {e}. Then, the weighted loss (5) has a simple representation

LA(e,βe) = ∑
j∈A

λ2
j (1 − ρ2

j,e),
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where ρj,e = corr[uj ,X(e)]. Thus, the promoter element e that has the maximum
weighted sum of squared correlation with the components in A would be added
to the model first, with the weights being the proportion of variance explained by
that component.

In the following sections we will assume that the basic vectors v = {v1, . . . , vd}
in (2) have been chosen, either through principal components or other methods.
We will use the notation

λj = ‖Yvj‖2, uj = Yvj /
√

λj .

3.2. Step A. Dictionary construction. We chose to represent motifs using non-
degenerate words. In the organisms that we study, a word and its reverse comple-
ment represent the same biological motif. This is because DNA is double stranded,
and the appearance of the reverse complement of the word in the 5′ to 3′ template
strand is equivalent to the appearance of the word in 5′ to 3′ orientation in the
coding strand. For example, in the diagram below, the top strand is the template
strand, the bottom is the coding strand, and TTGAC and GTCAA represent the same
biological motif presented 5′ to 3′:

5’...TTGAC...3’
3’...AACTG...5’.

We start our analysis with the set of all unique deterministic biological motifs of
a pre-chosen length L. The size of this set is [4L − 4L/2]/2 + 4L/2 if L is even,
or 4L/2, if L is odd. The above enumeration counts each word and its reverse
complement only once.

In the dictionary construction step, this initial set of words is reduced to a much
smaller set for subsequent model building. Although dictionary construction has
been viewed in such studies as a crude pre-filtering step to reduce the size of the
model search space, it is very important to the ensuing analysis. For a motif to be
selected in the final model, it must first be included in the dictionary. Therefore,
the dictionary must provide a rich enough starting set of motifs, while at the same
time reducing the set of initial exhaustive list of words to a more computationally
manageable set.

Here we chose to represent motifs as nondegenerate words. We also tried repre-
senting motifs as “consensus” sequences by including nondegenerate core letters
with degenerate outermost letters. Using a 4 letter core, we allowed the outer-
most 2 (or 4) letters to vary. This “consensus” sequence approach reduced per-
formance as it drastically increased the initial dictionary aggravating the multiple
testing problem and increased dependency between the motifs. One could also
use our approach to identify known TFBS PSWMs by setting the dictionary to a
known collection of PSWMs, as in Conlon et al. (2003) and Das, Nahlé and Zhang
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(2006). However, the availability of PSWMs is limited for many organisms, in-
cluding Arabidopsis. This is why we specifically developed a method that allows
one to identify known and novel motifs without prior knowledge.

Let D(0) be the set of all words of length within a pre-chosen range. For each
w ∈ D(0), let Xg(w) be the count of the number of occurrences of w in Sg . Let
X(w) = [X1(w), . . . ,XG(w)]′. For any set � of motifs, we will denote by X(�) =
[1 [X(w)]w∈�], with the vector of ones always included in the model matrix as the
intercept term. We start by constructing a smaller dictionary D(j) for each chosen
basis vector vj :

1. Let m = M , where M is a pre-chosen value. Let D(j) = ∅.
2. Repeat until m = 0:

(a) Compute

ξ(w) ← X(w) − X
(
D(j)

)[
X

(
D(j)

)′
X

(
D(j)

)]−1
X

(
D(j)

)′
X(w),

w ∈ D
(0)
L ,

r ← uj − X
(
D(j)

)[
X

(
D(j)

)′
X

(
D(j)

)]−1
X

(
D(j)

)′uj .

(b) For each w ∈ D
(0)
L , let pw be the t-test p-value for the univariate regres-

sion of r on ξ(w). Add the m words with smallest pw to D(j).
(c) Let m = �m/2	.

This greedy stepwise filtering approach adds to the dictionary not only those words
that are highly correlated with uj , but also those words that are highly correlated
with uj after accounting for the affects of the previously added words. Transcrip-
tion factor binding sites are usually degenerate, and thus, the words with the small-
est pw are often variations of the same TFBS. Therefore, at each step in the above
algorithm, the set of words that are added to D(j) is usually swamped by overlap-
ping words representing a single TFBS, thus reducing its richness. Since there is
a high correlation among these overlapping words, the stepwise filtering approach
mitigates this problem.

For the final dictionary, we set D = ⋃d
j=1 D(j).

3.3. Step B. Adaptive distance-based motif modeling. Let D be the dictionary
of motifs constructed using the method described in Section 3.2. Let 
 = {δi}ri=1,
where δi ∈ Z+, be a set of possible ranges of interactions. We define a promoter
element to be either a word from D , or an interaction of the form (e1, e2, δ), where
e1, e2 are themselves promoter elements, and δ ∈ 
. We call elements that are
words from D simple, and elements that contain interactions composite. Let e be
a promoter element. If e is simple and of length l, then for any gene g, we define
the locations of e in Sg as

Ag(e) = {i :Sg,i:i+l−1 = e}.
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If e is composite, then its locations are defined recursively by

Ag(e) =
{
i + j

2
: i ∈ Ag(e1), j ∈ Ag(e2), |j − i| ≤ δ

}
,

where e1 and e2 can be either simple or composite. We denote by I (·) the indicator
function for the event in its argument. Then, we define the variables Xg(e), which
are used as covariates in the model (3), as follows:

Xg(e) =
{ |Ag(e)|, e simple;

I
(|Ag(e)| ≥ 1

)
, e composite.(6)

In words, if e were a simple element, then Xg(e) would simply be its count in the
promoter of g, as done in Bussemaker, Li and Siggia (2001). If e were composite,
then Xg(e) would be an indicator of whether it exists in the promoter of g. We
define the order of a promoter element to be the number of interactions it contains:

order(e) =
{

0, e simple;
order(e1) + order(e2) + 1, e composite.

We denote X(e) = [X1(e), . . . ,XG(e)]′.
To learn the model defined in Section 3.1, we need to build the set E and esti-

mate the parameters β . The method we propose is a stepwise procedure, where
at each step we search over a variable pool V for the minimizer of the loss
function (4), and add it to the model. V is initialized to contain all elements
in the dictionary D . The model is initialized to contain only the intercept term
{β0,j : j = 1, . . . , d}. With each addition of an element form the variable pool to
the model, its interactions with all elements in the dictionary, at all distances in 
,
are added to the variable pool. Thus, the variable pool adaptively expands with the
model. The algorithm is described in detail below:

1. Initialize V = D, Ẽ = ∅,
2. Repeat until |Ẽ | = M :

(a) Compute

rj ← rj − X(Ẽ)[X(Ẽ)′X(Ẽ)]−1X(Ẽ)′rj , j = 1, . . . , d;
ξ(e) ← X(e) − X(Ẽ)[X(Ẽ)′X(Ẽ)]−1X(Ẽ)′X(e), e ∈ V,

where X(Ẽ) is a matrix containing columns {X(e) : e ∈ Ẽ}.
(b) Select e∗ ∈ V by the criterion

e∗ = arg min
e∈V

d∑
j=1

λ2
j min

β
‖rj − βξ(e)‖2.

(c) Ẽ ← Ẽ ∪ {e∗}.
(d) if order(e∗) < omax, V ← V ∪ {(e∗,w, δ) :w ∈ D, δ ∈ 
}.
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The above algorithm requires two tuning parameters: M , the maximum size of
the model, and omax, the maximum order of interactions. Limiting the maximum
order of interactions using omax is an effective way of restricting the growth of V .
Since with each addition of an element to the model, C = |D| × |
| elements are
added to the variable space, with omax = ∞, the size of the variable space would be
|V | = CẼ + |D| at each updating step. Even though the variable space increases
linearly with the model size, computational cost is still considerable for large C.
Furthermore, multiple testing problems can become quite severe even with linear
growth of |V |. We found that the algorithm works well when 
 is set to a small set
of integers using prior knowledge about the ranges of different types of biological
interactions, and omax is set to 2 or 3. The setting of 
 is organism-dependent. We
chose the values 
 = {30,100,400,1000} for yeast and 
 = {50,200,1000} for
Arabidopsis.

3.4. Step C. Model pruning. The stepwise procedure described in Step B re-
sults in a list of selected variables Ẽ of size M . The goal of the pruning step is
to eliminate some of the “false positives” in Ẽ through backward deletion of vari-
ables. Selecting the best overall model depends upon the choice of a lack-of-fit
function lof (·), which we describe in more detail below. First, we give the algo-
rithm for backward deletion:

1. Let EM = Ẽ .
2. For m = M − 1, . . . ,1, do

(a) For e ∈ Em+1, obtain model Em(e) by removing e from Em+1. Compute
lof [Em(e)].

(b) Let e∗ = arg minj lof [Em(e)].
(c) Let Em = Em(e∗), lof m = lof [Em].

3. Pick m∗ = arg minm lof m, and let E = Em∗ .

We explored two different methods for assessing a model’s lack of fit. The first
is a weighted generalized cross validation error (wGCV). For a given model E ,
let dreg(E) be the number of “regular” parameters in E , which is equivalent to
|E | + 1. Let dknot(E) be the number of “knot” parameters, which is equal to the
total number of distinct interactions in the model. Then, wGCV is defined as the
weighted sum of the GCV over each component:

wGCV(E) =
d∑

j=1

λ2
j RSSj /[1 − d(E)/G]2,

where

d(E) = dreg(E) + γ dknot(E)
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and

RSSj (E) = ‖uj − ûj (E)‖2

is the residual sum of squares of the least-squares fit of the model E . In using
wGCV , one needs to choose the smoothing parameter γ . Friedman (1991) dis-
cussed approaches for choosing this parameter for MARS, which is an adap-
tive model that also contains irregular knot parameters, and suggested using a
fixed value of γ = 2 or a data adaptive value chosen through cross-validation.
In our model, γ represents the degrees of freedom of interactions of the form
e1,2 = (e1, e2, δ). The choice of γ needs to account for the maximization of the
parameter δ over the set 
. For e ∈ E , let τe = ∑G

g=1 I ({Xg(e) > 0}) be the num-
ber of genes that contain at least one instance of e in its promoter region. We use
an adaptive rule of selecting a different γ = γ (e1,2) for each interaction term e1,2
through the following formula:

γ (e1,2) = 2[logR + log τe + log(G − τe) − logG]/ logG.(7)

The intuition for the formula comes from the derivation of a modified Bayes infor-
mation criterion for the model, described in Appendix A.2.

The second lack-of-fit criterion that we examine is a weighted version of the
modified Bayes information criterion (wmBIC) given in Zhang and Siegmund
(2007), which has the form wmBIC(E) = ∑d

j=1 λ2
j mBICj (E), where mBICj for

each component j is defined as

mBICj (E)
def= 1

2

(
G − dreg(E) + 1

)
log

RSSj (E0)

RSSj (E)

+ log
�[(G − dreg(E) + 1)/2]

�[(G + 1)/2](8)

+ 1

2
dreg log RSS(E0) − ∑

e∈E

log τe + logG − dknot logR.

In the above formula, E0 is the model with only the intercept term. For derivation
of this formula, see Appendix A.2 and Zhang (2005).

The aim of wGCV is to reduce prediction error, with model parsimony as a
secondary concern. In contrast, wmBIC is derived under the Bayesian framework
of maximizing posterior model probability instead of prediction accuracy. Hence,
wmBIC, with a logn penalty for each degree of freedom, favors smaller models.
In Section 4.1 we see that wmBIC indeed selects a much smaller set of motifs than
wGCV .

4. Methods of validation. As with all studies of this type, there is no single
objective measure of performance. Experimental validation is the gold standard
that is also hard to come by. In the absence of experimental validation, previous



TRANSCRIPTION FACTOR BINDING SITE PREDICTION 345

studies have relied on anecdotal evidence from existing literature, and some have
used prediction error as a measure of performance. However, prediction error does
not add to one’s understanding of the model or interpretation of the results. For
this reason, we employ three additional validation approaches, the second, based
on flanking sequence analysis, is a new method.

A third method that we used to validate our results is gene list enrichment. If the
motifs were true, then the set of genes that have that motif should be enriched with
genes that are known to be related to the experiment. In Section 4.3 we describe
the method we used for gene list enrichment analysis.

4.1. Permutation analysis. Permutation analysis allows us to compare results
obtained using the real data with that performed on the randomly decoupled real
data in which the genes’ promoters are decoupled from their expression patterns
and then re-associated at random.

The permutation procedure that we use is as follows. Let π = (π1, . . . , πn) be
a random permutation of (1, . . . ,G). Pair the expression vector Yg of gene g with
the promoter sequence Sπg of gene πg . We call such a data set a randomly de-
coupled data set. The entire procedure detailed in Figure 1 (i.e., Steps A–C) is
performed on this randomly decoupled data set. The lof curves from N randomly
decoupled data sets is compared to the lof curve of the real data set.

In Section 5.2 we show the results of applying this procedure to the Arabidop-
sis powdery mildew experiment. We obtained better results in yeast, which is a
simpler organism with a higher signal to noise ratio.

4.2. Flanking sequences. An independent source of validation comes from the
flanking sequences. If a promoter element found by our method were noise instead
of signal, then the flanking sequences should not be any different from the back-
ground sequence. However, if the motif were in fact a real TFBS, then the flank-
ing sequences may have a distribution with lower entropy that is different from
the background sequence. This is because the promoter elements are composed
of short words with which we hope to capture only the core consensus sequence,
and binding sites often extend beyond the core sequence. This is especially true
for transcription factors that bind over-represented sequences in the promoters of
a particular genome, have binding sites with highly degenerate core sequences,
or are members of large transcription factor families that bind a common core se-
quence (as is the case for many Arabidopsis transcription factors). Therefore, if the
flanking sequences of a motif have lower entropy than their background sequences,
then this is independent evidence that the motif is biologically significant.

Let the word w be a component of the promoter element e. We find all locations
of w in S that appear as a component of some instance of e. Let Le,w be the set
of length 2L flanking sequences (L bases on each side) of these appearances of w.
Then, align the sequences in Le,w to form the matrix Me,w , where Me,w(i, a) =∑

l∈Le,w
I ({li = a}). Also compute the background base frequencies {πe(a) :a ∈
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A} for promoters of genes in the set {g :Xg(e) > 0)}. The sequence information
content Iseq of Me,w is defined as

Iseq =
2L∑
j=1

A∑
i=1

Me,w(i, j) log
Me,w(i, j)

πe(i)
.

The statistical significance of a given value of Iseq depends on the length of the
flanking sequence L and N(p,w), which is the number of instances of w that
appear in the context of e. We will use the large deviations method developed by
Hertz and Stormo (1999) for computing the p-value of N(p,w)Iseq.

4.3. Gene list enrichment. Gene list enrichment is our final method of valida-
tion. If the motifs identified were biologically real, then the set of genes that have
that motif should be enriched in the half of the dataset exhibiting a differential pat-
tern of expression compared with the control half of the dataset that did not exhibit
a process-associated pattern.

Gene Ontology (GO) analysis is a popular method of statistical validation. If
the set of genes that contain a motif is enriched for genes that belong to a GO-
category that is related to the experiment, then this is evidence that the motifs are
biologically meaningful. However, experiments usually perturb many pathways
that relate to each other in a complex way. The genes in these pathways often
belong to different GO categories, but may share common regulatory mechanisms.
In addition, for some organisms, process-specific GO annotation is limited. To get
around both of these issues, we use gene list enrichment as a validation method. If
one has a list of genes whose expression is significantly impacted in the experiment
(as we do), one can validate a given identified motif based on the probability of
it being enriched in the promoters of genes whose expression was significantly
impacted in the experiment compared with the entire data set. Let N be the total
number of genes used in the study, of which M belong to this list that contains
all genes whose expression changes significantly in the experiment. Let τe be the
number of genes that contain promoter element e, out of which me appears in
the list. The p-value for an observed value of me, based on the Fisher’s exact test
[Fisher (1922)], can be computed. A small p-value for this test is evidence that the
element e is a true regulatory element.

5. Results.

5.1. Yeast. We used the list of 1600 selected genes described in Section (2.1)
for our analyses. The principal components of the α-arrest experiments performed
on these 1600 genes are given in Supplementary Figure 1 (the first 3 principal
components are shown in Figure 2), with the scree plot given in Supplementary
Figure 2 [Zhang, Wildermuth and Speed (2008)]. By the scree plot, there seems
to be a drop in percent of variance explained from the third to fourth principal
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FIG. 2. First three principal components of the Spellman et al. (1998) yeast cell cycle experiment.

component. The first two principal components capture the periodic nature of the
data, peaking respectively during the G2/M and M/G1 phases of the cell cycle.
We choose as our basis set the first, second and third principal components, which
together explain 63% of the total variance.

Table 1 gives a partial list of the promoter elements found for this data set. The
complete list can be found in Supplementary Table 1(a) [Zhang, Wildermuth and
Speed (2008)]. Of the 39 promoter elements in the model, 35 remain after back-
ward deletion with BIC as the lack-of-fit criterion. Before deletion, the set of 39
motifs contain 7 singletons, 20 pairs and 12 triples. The table also shows, for each
promoter element reported for the α-arrest experiment, the number of genes that
have that element that also belong to Spellman’s 800 list. Note that Spellman’s 800
genes comprise exactly 50% of the gene set on which we conducted our analysis.
The gene list enrichment test results indicate that our method can extract promoter
elements that are enriched in genes associated with the cell cycle.

Supplementary Table 1(b) [Zhang, Wildermuth and Speed (2008)] shows the
flanking sequence analysis results for the yeast α-arrest experiment. Note that most
of the p-values are quite small (Figure 3 shows a histogram). This is strong evi-
dence that many of the reported promoter elements are true positives.
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TABLE 1
Examples of promoter elements identified for the yeast α-arrest experiment. All of the elements
mentioned in the case studies of Section 5.1 are shown here. The complete list can be found in

Supplementary Table 1(a) [Zhang, Wildermuth and Speed (2008)]. Rank is reverse order of pruning
from model, with the higher ranks being pruned first. “Putative site” is the assignment of known

binding site names to the elements. If the element does not match exactly to any known motif, it is
labeled newx, where x is the order of appearance in the list. Many of the “new” motifs are similar
to and may be variations of known motifs. “Phase” is the phase of the cell cycle at which the effect
of the promoter element is strongest. The columns n and m are the number of genes in the training

set and in Spellman’s 800 list, respectively, that contain the element. The column “p-value” contains
the p-values for (n,m) computed using Fisher’s exact test

Rank Motif Putative site Phase n m p-value

1 CGCGT d-MCB G1 582 380 8 × 10−21

2 ACGCGT MCB G1 180 141 1 × 10−16

4 TTTCGCG SCB mixed 160 123 2 × 10−13

8 GCTGG SWI5 mixed 809 400 7 × 10−1

9 TTGTTT SFF S/G2 1131 610 4 × 10−7

12 GGCTCCG new8 G2/M/G1 38 25 3 × 10−2

14 GCCCGTT MCM1 M 59 27 8 × 10−1

17 (TGCTGGC,CGCGT,30) SWI5, d-MCB M/G1 7 7 8 × 10−3

18 (CGCGT,CGCGT,30) d-MCB,d-MCB G1 82 77 1 × 10−18

21 (TCGCGGG,TTGTTT,30) new13, SFF S, S/G2 5 5 3 × 10−2

29 (TTCGTGT,TTTCGCG,100) SCB, SCB G1 12 12 2 × 10−4

31 (TGGTCTG,TTTCGCG,400) new19, SCB S 9 6 3 × 10−1

35 (TTTCCTA,TTGTTT,400) MCM, SFF M 178 105 7 × 10−3

37 (TCCGAGC,CGCGT,100) CSRE or GAL4, S 9 7 9 × 10−2

d-MCB
38 (TGTTCTC,CGCGT,30) new2, d-MCB S 7 7 8 × 10−3

Table 2 shows, for a small subset of the reported elements, the plots of the cor-
relation coefficients between X(e) and Yt,· at each time point t , which we call
“effect curves.” We see that, because we considered projections on to principal
components 1–3 simultaneously, we have found promoter elements that are influ-
ential for each of the different phases of the cell cycle. Of the 7 singleton motifs
reported in Table 1, 5 are known motifs related to the cell cycle (d-MCB, MCB,
SCB, SWI5, SFF). The two “new” motifs are GGCTCCG and GCCCGTT. The
latter, GCCCGTT, is a putative MCM1 site, because it aligns with the M phase
and contains CCCGTT, which has been experimentally verified to be a MCM1 site
in CLN3, SWI4 and CLB2. The pair-wise interactions are also very interesting.
Below we list some noteworthy cases.

MCM1–SFF pair: Consider the motif (TTTCCTA,TTGTTT,400), rank 35. This
motif combination appears in a large set of genes (178 total), most of which
are categorized as M-phase genes by Spellman et al. (1998). Out of these 178
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FIG. 3. Histogram for p-values of information content NIseq in flanking region of motifs discovered
for yeast cell cycle. The flanking region of 20 bases (10 each on the left and right of the motif) is
selected.

genes, 105 appear in Spellman’s 800 list, which has a p-value of 0.007. These
178 genes include well-known players in the cell cycle, such as CDC10, SWI5,
MCM3, SWI4, STE2, MCM6, STE3, STE6, CLB4, CDC5 and BUB2. TTTC-
CTA is a sub-word of the MCM1 binding site, while TTGTTT is the core of
the SFF motif. This is strong evidence that this promoter element is a cooper-
ative binding site for MCM1 and SFF. Since the MCM1 binding site is highly
degenerate, we sough further evidence that TTTCCTA is part of an MCM1 site
by analyzing its flanking region. The flanking region has information content
Iseq = 0.44 for N = 193 instances, which has a highly significant p-value of
5 × 10−12.

dMCB–dMCB pair: (CGCGT,CGCGT,30), rank 18, is a short range interaction
of two degenerate MCB motifs. Out of the 82 genes that have this element
in their promoters, a highly significant 77 genes (p-value = 1 × 10−18) are in
Spellman’s 800 list. This motif is strongly aligned with the G1 phase, which is
consistent with existing knowledge about MCB activity. Comparing this with
the element containing only MCB (row 1 of table), we see that by including
the short-range interaction of CGCGT with itself, we can significantly reduce
the number of false positive appearances. A GO analysis of the list of 82 genes
that contains (CGCGT, CGCGT,30) returns significant hits to many GO cate-
gories, including DNA directed DNA polymerase activity. The list of 582 genes
that contain CGCGT, however, is so diluted with many different functions that
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TABLE 2
Plots of correlation coefficient between X(e) and Yt,g for a selected set of promoter elements. The

first column is the phase of the cell cycle during which the curve reaches its peak. The name
and sequence of each binding site is in column 2. The vertical lines in the plot denote

rough transition times between phases

Phase Element Effect curve

M/G1 (TGCTGGC,CGCGT,30)
SWI5, d-MCB

M/G1 GGCTCCG
new8

G1 (CGCGT,CGCGT,30)
d-MCB, d-MCB

G1 (TTCGTGT,TTTCGCG,400)
SCB, SCB

S (TCCGAGC, CGCGT,30)
UAS1, d-SCB

S (TGTTCTC, CGCGT,30)
UAS1, d-MCB

S/G2 TTGTTT
SFF

M (GCCCGTT)
MCM1

M (TTTCCTA,TTGTTT,400)
MCM1, SFF
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it is not significant for any one GO category. This shows that the distance-
based interaction model captures additional relevant information. Finally, we
look at the flanking sequences. Iseq for CGCGT alone is already highly signif-
icant, with a value of 0.18 and a p-value of 6 × 10−47. However, the Iseq for
(CGCGT,CGCGT,30) is far greater at 0.76, with a p-value that is essentially 0.

SCB–SCB pair: The element (TTCGTGT,TTTCGCG,100), rank 29, is an inter-
action of SCB motif TTTCGCG with the word TTCGTGT, which overlaps
with TTTCGTG, also an instance of SCB. To verify that TTCGTGT is in-
deed part of an SCB motif, we analyzed its flanking sequence. The position that
immediately precedes TTCGTG is indeed highly enriched for thymine. Thus,
we hypothesize that (TTCGTGT,TTTCGCG,100) is a putative SCB–SCB pair.
There are only 12 genes that contain this element, all of which belong to Spell-
man’s 800 list, and all but 1 of them peak in G1. This list of 12 genes contain
well-known cell cycle players CLN2, PCL1 and PCL2, and is enriched for the
GO category cyclin dependent protein kinase regulator activity.

SWI5–dMCB pair: The first word in the element (TGCTGGC,CGCGT,30), rank
17, contains the SWI5 motif GCTGG, while the second word is dMCB. As
seen from the plot of the effect curve, this motif is strongly aligned with M/G1
transition, which is consistent with the fact that SWI5 regulation occurs during
this point of the cycle. A total of 7 genes contain this element, including the cell-
cycle related transcription factors ASH1 and WTM1. This gene list is enriched
for the GO categories hydrolase activity and beta-glucosidase activity.

The histone clusters: A striking result of applying our method to the yeast cell
cycle experiment is that, without supervision, it was able to detect promoter
elements associated with tightly regulated small sets of histone genes. These
promoter elements (ranks 21, 31, 37, 38), along with the genes that have them,
are listed in Table 3. Among the words contained in these promoter elements are
the degenerate MCB motif CGCGT, the SFF motif TTGTTT, the SCB motif
TTTCGCG, and some new motifs that are not commonly associated with the
cell cycle: TGTTCTC, TCGCGGG, TGGTCTG and TCCGAGC. Among these
“new” motifs, TTGTTCTC and TCCGAGC are parts of mapped UAS1/UAS2
elements [Osley (1991)].

5.1.1. Comparison with previous methods. All existing regression-based
methods find motifs at each time point separately, and look across samples mainly
for interpretation of already identified motifs. Therefore, in comparison to previ-
ous results, we emphasize that we do not expect to find exact concordance. The
most significant motifs that we identified by cross sample analysis, such as SWI5,
SFF, MCM1 and MCB, have also been identified by choosing the correct time
point and using one of the previous single-sample methods [Bussemaker, Li and
Siggia (2001), Das, Banerjee and Zhang (2004), Conlon et al. (2003) and Keles,
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TABLE 3
Promoter elements found for the yeast cell cycle experiment that are enriched with histone genes.

For each promoter element, the genes that contain it are listed, along with their process and function
annotations obtained from the Saccharomyces Genome Database (http://www.yeastgenome.org/ )

Motif ORF YPD Process Function Peak

(TGTTCTC,CGCGT,30)

YBL002W HTB2 chromatin structure histone H2B S
YBL003C HTA2 chromatin structure histone H2A S
YDR224C HTB1 chromatin structure histone H2B S
YDR225W HTA1 chromatin structure histone H2A S
YGR014W MSB2 bud emergence unknown G1
YOR317W FAA1 fatty acid metabolism long chain fatty acyl: M/G1

CoA synthetase
YPL127C HHO1 chromatin structure histone H1 S

(TCGCGGG,TTGTTT,30)

YBR009C HHF1 chromatin structure histone H4 S
YBR010W HHT1 chromatin structure histone H3 S
YDR261C EXG2 cell wall biogenesis exo-beta-1,3-glucanase S
YKL096W CWP1 cell wall protein beta-1,6-glucan acceptor S/G2
YKL096W CWP1 cell wall protein beta-1,6-glucan acceptor S/G2

(TGGTCTG,TTTCGCG,400)

YHR061C GIC1 bud emergence binds Cdc42p S
YLR056W ERG3 sterol metabolism C-5 sterol desaturase S/G2
YNL030W HHF2 chromatin structure histone H4 S
YNL031C HHT2 chromatin structure histone H3 S
YOR247W YOR247W unknown unknown; similar to Svs1p G1
YPL111W CAR1 arginine metabolism arginase G2/M
YLR162W
YDR015C
YNL323W

(TCCGAGC,CGCGT,100)

YBR009C HHF1 chromatin structure histone H4 S
YBR010W HHT1 chromatin structure histone H3 S
YDL037C YDL037C unknown similar to glucan G2/M

1,4-alpha-glucosidase
YER001W MNN1 protein glycosylation alpha-1, G1

3-mannosyltransferase
YNL030W HHF2 chromatin structure histone H4 S
YNL031C HHT2 chromatin structure histone H3 S
YOR084W YOR084W unknown unknown G1
YER060W
YER104W

http://www.yeastgenome.org/
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Van der Laan and Vulpe (2004)]. However, as expected, there is no single time
point that allows the identification of all of the motifs in our final set.

An interesting observation is that many of the previous methods found strong
signals for motifs related to stress response [CCCCT and AGGGG in Bussemaker,
Li and Siggia (2001)] and pheromone induction [STE12 motif in Conlon et al.
(2003) and Das, Banerjee and Zhang (2004)]. These motifs are active in the first
few time-points, and were hypothesized in Conlon et al. (2003) to be an experi-
mental artifact due to centrifugation. We did not identify these motifs, because our
approach uses linear projections to filter out processes that are not of interest.

Das, Banerjee and Zhang (2004) used MARS [Friedman (1991)] to find motif
pairs in the yeast cell cycle data. Their model does not consider distance effects,
but instead uses linear splines resembling a hockey stick to model what is hypoth-
esized to be a switch-like behavior in gene transcription control. They used only
the top 800 cell cycle related genes identified by Spellman et al. (1998), while we
also included 800 control genes. They used simple degenerate words, as well as
manually curated weight matrices. Their method also treats each time point sepa-
rately. Thus, in finding subtle second order effects, one would expect significantly
different models applied to different data to produce varying results illuminating
different aspects of a complicated process. However, of the list of interacting mo-
tif pairs reported in Das, Banerjee and Zhang (2004), our results agreed by exact
match in the motif pairs MCM1-SFF and SWI5-SFF, which are well-known pair-
wise interactions.

5.2. Powdery mildew infection in Arabidopsis thaliana. The Arabidopsis
response to the pathogen involves multiple transcription factor family mem-
bers. Though SA-dependent responses dominate systemic acquired resistance re-
sponses, ethylene (ET)- and jasmonic acid (JA)-dependent responses also play
critical roles in the Arabidopsis response to the pathogen with outcomes depen-
dent upon the complex interplay between these pathways. Table 4 shows the major
transcription factors with known binding domain consensus sequences that are
involved in the Arabidopsis defense response [e.g., review by Gurr and Rushton
(2005)]. The three most well-studied of these transcription factors are the WRKY
family- which mediate both SA- dependent and ET/JA-dependent responses [Ulker
and Somssich (2004)], the ERF family, key regulators of ET- and JA-dependent
defense-associated pathways [Gutterson and Reuber (2004)], and the TGA tran-
scription factors which are able to interact with the SAR master regulator NPR1
[e.g., Johnson, Boden and Arias (2003)].

Figure 4 shows the first and second principal components of the powdery
mildew experiment performed on the 3000 selected genes described in Section 2.2.
The first principal component shows an increase in expression after infection in
wild type plants with a reduced/delayed response in the ics1 mutant. It also in-
cluded genes whose induced expression in wild type is abrogated in the ics1 mu-
tant. These expression patterns reflect powdery mildew-induced genes that are
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TABLE 4
Major transcription factors, and their corresponding binding sites, involved in Arabidopsis defense

against the pathogen. Note that most of these transcription factors represent a multi-gene family

Factor name Site name Site consensus Reference

WRKY W-Box (T)TGAC(T/C) Eulgem (2005)
ERF GCC-Box (A)GCCGCC Gurr and Rushton (2005)
TGA/OBF as1/ocs TGACG Gurr and Rushton (2005)
MYC bHLH G-Box CACNTG Gurr and Rushton (2005)
MYB MYB (T/C)AAC(T/G)G Eulgem (2005)

G(G/T)T(A/T)G(G/T)T Eulgem (2005)
SR genes CGCG-Box (A/C/G)CGCG(G/T/C) Gurr and Rushton (2005)

partially or fully SA-dependent [Wildermuth et al. (2007)]. The second princi-
pal component is very interesting, as it shows an increase in expression over time

FIG. 4. First two principal components of the Arabidopsis powerdery mildew infection experiment.
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in the ics1 mutant as compared to the wild type that exhibits little response to the
pathogen. Genes that have a high score for this component may be involved in
pathways that respond to the absence of ICS1 (and SA). Known genes associated
with PC2 include genes associated with ET/JA-dependent responses [Wildermuth
et al. (2007)]. We choose as our basis set the first and second principal components,
which together explain 94.1% of the total variance.

Table 5 gives a partial list of the motifs that were found by our method on
this data set. The complete list can be found in Supplementary Table 2(a) [Zhang,
Wildermuth and Speed (2008)]. The fourth column of the table shows whether
the motif has a strong effect in the direction of principal component 1 or 2. A
“strong effect” is declared if the list of genes that have that motif have a high
ranking in the considered linear combination, with Wilcoxon rank-sum test p-value
< 0.001. The table also lists the p-values of Fisher’s exact test for enrichment in

TABLE 5
Examples of promoter elements identified for the Arabidopsis powdery mildew infection experiment,
listed in reverse order of pruning from the model. All of the elements mentioned in the case studies
of Section 5.2 are shown here. The complete list can be found in Supplementary Table 2(a) [Zhang,
Wildermuth and Speed (2008)]. “Putative site” is the assignment of known binding site names to the
elements. Putative sites listed in Table 4 are specified by name as is the NFkB-like motif identified
by Lebel et al. (1998) and associated with innate immunity. All other identified motifs are listed as

new, though some of these exhibit significant overlap with known motifs [Higo et al. (1999)].
“Component” is the principal component with which the element has a strong effect, and “none” if
no principal component significantly dominates the other. The columns n and m are the number of

genes in the training
set and in the top 1500-list, respectively, that contain the element. The column “p-value”

contains the p-values for (n,m) computed using Fisher’s exact test

Rank Motif Putative site Component n m p-value

1 GACTTT NFκB-like 1,2 1672 909 5 × 10−8

2 TTGACT W-box 1,2 1629 914 2 × 10−13

4 (TGACTA,TTGACC,1000) W-box, W-box 1 445 268 2 × 10−6

5 AGTCTT NFκB-like 1,2 1460 802 9 × 10−8

8 TGACGT TGA none 711 398 2 × 10−4

11 (AGACTT,TTGACT,200) NFκB-like, W-box 1,2 478 313 8 × 10−14

12 (GTCGTC,TTGACT,200) new6, W-box 1 197 130 2 × 10−6

19 (CATGTG,GAATAT,1000) Myc, new11 1 665 320 9 × 10−1

21 (TTCGTC,TTGACT,200) new15, W-box 1 293 192 1 × 10−8

25 (CGCGTT,TTTCCA,200) CGCG-box, new8 1 72 42 9 × 10−2

26 (TCAAAC,TTGACC,200) new19, W-box 1 366 210 2 × 10−3

28 (GAGCTT,TTGACC,1000) new20, W-box none 376 200 1 × 10−1

29 TCAACG Myb 1 951 556 2 × 10−10

33 (TGTCGA,TTGACC,200) new23, W-box none 106 59 1 × 10−1

42 (GGCGGC,AATTTT,200) GCC-box, new3 2 145 76 3 × 10−1
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the top 1500 genes ranked by T̃ 2 out of the total of 3000 genes in the filtered list
(see Appendix A.1). Of the known TFBS, we found that most have strong effects
along the first principal component, with the exception that the ERF binding site
GCCGCC is aligned with the second principal component. Since the first principal
component explains much more of the variance in the data set than the second
principal component (80.7% compared to 13.4%), it is given a much larger weight
in the model. Thus, most of the reported promoter elements aligned with the first
principal component. The GCC-box, which has a very strong correlation with the
second principal component, squeezed in to the list at number 42.

Our findings were validated in four ways. First, as shown in Table 5, we iden-
tified all six defense-associated motifs listed in Table 4 as well as the NFkB-like
motif identified by Lebel et al. (1998). This motif is associated with innate im-
mune responses in mammals, is present in the promoter of AtICS1 [Wildermuth
et al. (2001)], and has been implicated in plant response to pathogens. Second,
we performed permutation analysis, the results of which are shown in Figure 5.

FIG. 5. Permutation analysis for the Arabidopsis powdery mildew infection data. The top and
bottom plots show, respectively, the wGCV and wmBIC curves for 10 randomly decoupled data sets
(gray lines) versus the real data set (black line). Vertical lines show the model size that minimizes
these curves.
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Comparing the top and bottom plot, we see that wmBIC is indeed a more conserv-
ative model selection criterion than wGCV . The permutation results also show that
our method decides upon a much larger model for the real data set than for the
randomly decoupled data sets. This fact gives confidence that some of the discov-
ered motifs for the real data set are biologically meaningful. Third, we analyzed the
flanking regions of the identified motifs and presented the p-values associated with
this analysis in Supplementary Table 2(b) [Zhang, Wildermuth and Speed (2008)].
Overall, these p-values were less significant than those for the yeast motifs, likely
due to the presence of large transcription factor families that bind a similar core
motif in Arabidopsis. However, a number of the identified motifs did exhibit sig-
nificant conservation of flanking sequences. Finally, the results of our gene list
enrichment analysis is shown in Table 5 . We include a detailed discussion for a
few interesting case studies extracted from the results below.

W-box clusters and interactions: WRKY transcription factors are critical regu-
lators of plant response to abiotic and biotic stress [Ulker and Somssich (2004)].
WRKY transcription factors bind the W-box core TGAC, with reported flank-
ing sequences in Arabidopsis involved in plant defense response biased to-
ward TTGAC(T) [e.g., Yu, Chen and Chen (2001)] and TTGACC [Laloi et al.
(2004)].
W-box containing elements are significantly aligned with both the first and sec-
ond principal components. This makes sense biologically, as WRKY factors
can modulate both SA-dependent and ET/JA-dependent pathways, the latter of
which are likely to be associated with principal component 2.
In our analyses, the TTGACT motif appeared alone (Rank 2), and in close prox-
imity (within 200 nt) to other motifs: NFκB-like motif AGACTTT (rank 11),
TCAACT (rank 12) and TTCGTC (rank 21). In addition, it appears within 1000
nt of TGACTA, which contains the W-box core (Rank 4). Enrichment of W-
boxes in promoters of genes with altered expression in response to biotic stress
is consistently observed [e.g., Maleck et al. (2000)], in agreement with our find-
ing of a W-box, W-box pair.
The TTGACC appeared in combination with other motifs in close proximity
[TCAAAC (rank 26) and TGTCGA (rank 33)] or within 1000 nt [TGACTA
(rank 4) and GAGCTT (rank 28)]. In all of these instances, the flanking se-
quences of these W-boxes have p-values < 0.001. Resolving flanking sequence
specificity and genes targeted by specific WRKY factors has been extremely
challenging as the Arabidopsis WRKY family has over 70 members and pro-
moters of regulated genes tend to contain multiple W-boxes. Furthermore,
stimulus-dependent changes in WRKY binding affinities result in WRKY shuf-
fling on promoter elements [Turck, Zhou and Somssich (2004)]. Our approach
allows us to identify putative WRKY factor interaction pairs in silico and to
predict those cases where flanking sequences may be more readily resolved,
greatly facilitating experimental efforts.
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(CGCGTT, TTTCCA, 200) This motif combination (ranked 25) appears in a set
of 72 genes. This set of 72 aligns significantly with principal component 1.
When we look at the flanking sequences, Iseq for CGCGTT is highly significant
with a value of 0.76 and a p-value of 5×10−6. Interestingly, the TTTCCA motif
also appears in another motif combination (TCAACT, TTTCCA, 200) ranked
13. In this case, analysis of the flanking sequence for TTTCCA is 0.14, with a
p-value of 2 × 10−6.
The CGCGTT motif comprises part of a known motif, the “CGCG box,” with
consensus sequence (A/C/G)CGCG(C/G/T); this CGCG box is recognized
by all 6 members of the A. thaliana signal responsive genes AtSR1-6 [Yang
and Poovaiah (2003)]. The Arabidopsis SR proteins are Ca2+/calmodulin-
binding/DNA-binding proteins that are induced in response to a variety of plant
phytohormones and stresses [Yang and Poovaiah (2003)]. Ca2+ plays an impor-
tant role in mediating SA and H2O2 signal transduction [Yang and Poovaiah
(2003)]; however, our knowledge about the specific mechanisms involved is
limited. AtSR3-6 have been found to be rapidly induced in response to treat-
ment by salicylic acid or H2O2 [Yang and Poovaiah (2003)]. We do not observe
statistically significant changes in expression for any of the AtSR genes over
the time course of powdery mildew infection. However, as this time course fo-
cused on later stages of infection (1–7 days), it is very possible that early tran-
scriptional responses (such as a possible change in AtSR transcription) were not
captured. Instead, we resolve the later progressive transcriptional response asso-
ciated with extensive growth and reproduction of the powdery mildew including
downstream genes (e.g., containing the CGCG box) that may be regulated by
rapidly-induced transcription factors such as the AtSRs. Though the 72 genes
with the (CGCGTT, TTTCCAA, 200) motif combination were not significantly
enriched in any MIPS GO functional annotation category (performed using Vir-
tual Plant 0.9, BioMaps function), this 72 gene set includes a number of tran-
scription factors, defense-related genes and a calcium transporting ATPase (see
Supplementary Table 3) [Zhang, Wildermuth and Speed (2008)]. To further as-
sess whether additional members of the 72 gene set had been previously found
to be directly modulated by Ca2+/calmodulin, we compared the 72 gene set with
a union of genes (of 709) compiled from the following Arabidopsis datasets: (1)
the AtSR genes (6 genes) and genes identified as containing the CGCG box (19
genes) [Yang and Poovaiah (2002)]; (2) the Ca2+/calmodulin-binding, BTB
and TAX domain-containing AtBT protein family (5 genes) and interactors (2
genes) [Du and Poovaiah (2004)]; (3) rapid calcium-responsive up and down
regulated genes (229 genes) [Kaplan et al. (2006)]; (4) calmodulin-binding
proteins identified using high density protein arrays (173 genes) [Popescu et
al. (2007)]; and (5) genes whose annotation included the keyword calcium or
calmodulin (303 genes), obtained using VirtualPlant 0.9. Of the 72 genes in
our combined motif set, only 3 were present in the compiled Ca2+/calmodulin
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gene set (see Table 1). This suggests that we may have elucidated a previously
uncharacterized specific subset of responses requiring a CGCGTT cis-acting
element and TTTCCAA element in close proximity that can then be experi-
mentally validated.

AATTTT, GGCGGC To our knowledge, the AATTTT motif has not previously
been described in its entirety as a cis-acting regulatory element in Arabidopsis.
The AATTTT motif is a component of the plant cis-acting regulatory element
CAAAATTTTGTA [PLACE database motif S000466, Higo et al. (1999)] and is
specifically activated during the early phases of an incompatible plant/bacterial
pathogen interaction in tobacco [Pontier et al. (2001)].
It appears alone (rank 7) and in combination with other motifs. For ranks 18, 36
and 42, the AATTTT motif is within 200 nt of its partner; whereas for ranks 22
and 41, it is within 1000 nt of the other motif. The p-values for the Iseq values
AATTTT in these interactions are all quite low. The (GGCGCC, AATTTT, 200)
pair is especially interesting as it is the only element that is mainly associated
with the second component.
Genes associated with component 2 exhibit a trend of enhanced expression
in the SA biosynthetic mutant compared with wild type over the time course
of expression and may be negatively regulated by SA. The GGCGCC mo-
tif is commonly known as the GCC box recognized by ethylene-responsive
factors (ERFs). ERF transcription factors regulate developmental and defense
processes and are associated with ET and JA signal transduction pathways
[Gutterson and Reuber (2004)]. The set of genes with the GCC motif is 245;
this set is highly ranked when component 2 alone is examined, but falls be-
low our threshold when the loss function combines both components 1 and
2. The GCCGCC set contains the defensin PDF1.2 (At5g44420), a marker of
ET- and JA acid-dependent defense responses, regulated in part by ERFs. The
(GGCGCC, AATTTT, 200) pair does not include PDF1.2, but does include
the ERF At1g06160 and AtWRKY75 (At5g13080) transcription factors, as
well as defense-related genes associated with ET- and JA-dependent defense
responses such as chitinases, a germin-like protein, and defensin-fusion protein
(At2g26020). Both ERF and WRKY factors can mediate cross talk between
SA- and ET/JA-dependent signaling pathways. This is particularly interesting
as this subset includes component 1- (SA-dependent responses) and component
2-associated genes.

6. Discussion. We have shown using two experimental data sets that the
model and methods we propose in Section 3 can be quite useful in finding tran-
scription factor binding sites using multivariate gene expression data. The model
stated in (1) and (3) can be quite general to accommodate any linear contrast(s) of
interest. For cases where no obvious contrasts are available from the experimen-
tal design, we suggest selecting the basis vectors {vj } using principal components.
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For both the yeast α-arrest experiment and the Arabidopsis powdery mildew infec-
tion experiment, the first few principal components are very effective in capturing
meaningful structure in the data.

To model cooperative regulation between TFBS, we developed a recursive
model for interactive effects that is limited to a chosen range along the promoter
sequence. The range parameter is also chosen during the model fitting process, and
a model selection criteria is proposed to adjust for this additional degree of free-
dom. However, these model selection criterion are only meant as a guideline for
interpreting the models, and should not be taken as strict rules for inclusion and
exclusion of variables.

In addition to validation using published experimental literature, we employed
three simple methods for interpretation of the model and statistical validation of
the reported motifs. We found the permutation procedure to be quite useful (and
necessary) for assessing how much noise the approach is expected to approach.
The flanking sequence and gene list enrichment analyses are particularly important
to experimental biologists as it allows them to prioritize motifs of interest and to
understand the differential variability in flanking sequences of particular motifs.

APPENDIX

A.1. Data pre-processing.

A.1.1. Yeast α-arrest experiment. As in Spellman et al. (1998) and Busse-
maker, Li and Siggia (2001), we limit our search of TFBS to the 700 base promoter
sequence upstream of the gene immediately preceding the transcription start site.
Missing data have been imputed using KNNimpute [Troyanskaya et al. (2007)].
Prior to the analyses, the gene expression values from each sample were centered
and scaled to have mean 0 and variance 1.

We chose the genes for our analysis as follows: The list of 800 “cell-cycle re-
lated” genes identified by Spellman et al. (1998) are automatically included (we
refer to these as Spellman’s 800 in our analysis). To choose the negative controls,
we first clustered the data using K-means, and then identifying those clusters that
by visual examination did not exhibit a cell-cycle related pattern (these genes have
very little variation across the 18 time-points). 800 genes are sampled randomly
from these clusters to be included in the reduced set. Thus, we used 1600 genes in
our final analysis, exactly 50% of which are in Spellman’s 800 list.

A.1.2. Powdery mildew infection experiment. Arabidopsis thaliana Colum-
bia strain wildtype and ICS1-null mutant plants were evenly positioned and inter-
mixed in flats consisting of 6 boxes and placed in growth chambers [Wildermuth
et al. (2007)]. Each box contained 12 plants. When the plants were four weeks old,
they were infected with a heavy innoculum of powdery mildew (Golovinomyces
orontii). Uninfected plants served as controls and were grown in growth chambers
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with identical conditions. Mature leaves were harvested (for RNA) at 6 time points:
(0 hr, just prior to infection), 6, 24, 72, 120 and 168 hpi. Plants could not be re-
sampled, so at each time point, paired samples were harvested from two randomly
selected plants. mRNA extraction, target labeling and hybridization to Affymetrix
Arabidopsis ATH1 GeneChips was performed for 4 complete biological replicates,
yielding information on 22810 probesets for 56 arrays. For our analysis, we aver-
aged the expression level in the 4 biological replicates for each gene, time point
and plant type (mutant or wild type).

We discarded data points at hour 6, due to the fact that they were not collected
at the same time during the day as the other samples and thus, circadian effects,
rather than effects due to infection, could confound our analysis. Out of the 22810
probesets, we selected smaller, filtered gene sets for further analysis using the T̃ 2-
statistic from Tai and Speed (2006). T̃ 2 is an empirical Bayes statistic that ranks
genes from replicated time-course experiments by differential expression over time
in a single biological condition or across multiple biological conditions. Our fil-
tered gene set contains the top 1500 and bottom 1500 genes ranked by the T̃ 2 sta-
tistic for differential expression over time between the wildtype and ics1-mutant
strains. The bottom 1500 genes included in each gene list are necessary as negative
controls.

For Sg , we extracted the 1000 base promoter sequence upstream of gene g im-
mediately preceding the translation start site. Thus, Sg includes the 5′ UTR se-
quence.

A.2. Model selection criterion. For ease of notation, we first assume that
there is only one basis vector, and thus, the responses Yg are univariate for each
gene g. Also, for simplicity, we assume that the variance of the error term εg in
(3) is known and equal to 1 [the unknown variance case yields similar degrees of
freedom calculations, see Zhang (2005)]. Let e1 and e2 be two promoter elements.
By the notation of Section 3.3, Ag(e1) and Ag(e2) are the locations of e1 and e2,
respectively, in Sg . Define

Dg(e1, e2) = min{|k − l| :k ∈ Ag(e1), l ∈ Ag(e2)}
to be the minimum distance between any pair of (e1, e2) in Sg . For Ag(e1), Ag(e2)

empty, Dg(e1, e2) is defined to be ∞. Let e1,2 = (e1, e2, δ) be the promoter el-
ement representing the δ-range interaction of e1 and e2. Then, by the definition
of X(e) in (6), inclusion of e1,2 adds the term αI (Dg(e1, e2) < δ) to the existing
model. That is, the model that includes X(e) can be re-written as

Yg = μ + ∑
e∈E\e1,2

β(e)Xg(e) + αI
(
Dg(e1, e2) < δ

) + εg,(9)

where δ is a change-point parameter. Including e1,2 as a predictor adds the para-
meters γ , δ to the model. We give here a crude analysis of the effective degrees of
freedom contributed by this interaction term.
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We assume that the promoter length R and the prior for δ are fixed and do not
increase with the sample size G, so that the probability

πδ ≡ P
(
Dg(e1, e2) < δ

)
can be considered as a fixed function of δ. Without loss of generality assume that
the gene indices are ordered so that Dg(e1, e2) is monotone nondecreasing. Define

τδ = max
i

{Di(e1, e2) ≤ δ}
to be the number of genes that have the element e1,2. Then, assuming that the
promoter sequences Sg are i.i.d., τδ is binomial with log-likelihood

logPδ(τδ = m) = log
(

G

m

)
πm

δ (1 − πδ)
G−m

= 1

2
log

G

2πm(G − m)
− GIδ,

where Iδ is the large deviations constant

Iδ = m

G
log

Gπδ

m
+ G − m

G
log

Gπδ

G − m
.

For ease of computation, we assume that e1,2 is the only term in the model, and
thus, (9) is reduced to Yg = μ + αI (Dg(e1, e2) < δ) + εg . Let M0 be the model
where α = 0, and M1 be the alternative model where α is arbitrary. Then, under
the Bayesian model selection framework, we choose the model with the largest
Bayes factor, which has the form

P(M1|Y)

P (M0|Y)

=
(∫ R

0

∫ ∞
−∞

∫ ∞
−∞

exp

(
−1

2

[
τδ∑

i=1

(Yi − α − μ)2

+
G∑

i=τδ+1

(Yi − μ)2

]
(10)

+ logPδ(τδ)

)
dα dμdδ/R

)

×
(∫ ∞

−∞
e−(1/2)

∑
i (Yi−μ)2

dμ

)−1

.

In (10) we have assumed uniform priors for δ, μ and α.
Since πδ does not change between M0 and M1, the term GIδ in the numer-

ator of (10) converges to a chi-square distribution under both models, and thus
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is stochastically bounded away from 0 and ∞ as G → ∞. Also, due to this as-
sumption, with probability one, τδ = O(G), and thus, the methods in Zhang and
Siegmund (2007) can be directly applied to the evaluation of (10) to yield the fol-
lowing approximation when G is large:

log
P(M1|Y)

P (M0|Y)
= l(α̂, μ̂, δ̂) − [log(τδ) + log(G − τδ) − logG]

(11)
− logR + Op(1),

where l(α̂, μ̂, δ̂) is the maximized likelihood. Compared with the classic BIC
which has a penalty of 1

2p logG, where p is the degrees of freedom of the model,
this new result suggests that each interaction term (δ, γ ) contributes

2[logR + log τδ + log(G − τδ) − logG]/ logG(12)

degrees of freedom to the model.
When the response is multivariate with weights {dj } as in (5), we simply take a

weighted sum of the BICs for each component.
The variance unknown case is more technically messy, but the same logic ap-

plies, yielding approximation (8). The proof will not be shown here; the interested
reader can refer to Zhang (2005).

SUPPLEMENTARY MATERIAL

Additional tables and figures (doi: 10.1214/07-AOAS142SUPP; .zip). Supple-
mentary Figures 1 and 2 show respectively the principal components and screeplot
for Spellman et al. (1998) yeast cell cycle data set. Supplementary Table 1 (a-b)
shows gene list enrichment, annotation, and flanking sequence analysis for pro-
moter elements identified in Spellman et al. (1998) yeast cell cycle experiment.
Supplementary Table 2 (a-b) shows the same information for the Wildermuth et al.
(2007) arabidopsis powerdery mildew infection experiment. Supplementary ta-
ble 3 lists the genes containing the (CGCGTT, TTTCCA, 200) element.
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