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Abstract. During the last twenty years there have been considerable
methodological developments in the design and analysis of Phase 1, Phase 2
and Phase 1/2 dose-finding studies. Many of these developments are related
to the continual reassessment method (CRM), first introduced by O’Quigley,
Pepe and Fisher (1990). CRM models have proven themselves to be of prac-
tical use and, in this discussion, we investigate the basic approach, some con-
nections to other methods, some generalizations, as well as further applica-
tions of the model. We obtain some new results which can provide guidance
in practice.
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1. INTRODUCTION

The continual reassessment method (CRM) was in-
troduced by O’Quigley, Pepe and Fisher (1990) as
a design with which to carry out and analyze dose-
finding studies in oncology. The purpose of these stud-
ies, usually referred to as Phase 1 trials of a new ther-
apeutic agent, is to estimate the maximum tolerated
dose (MTD) to be used in Phase 2 and Phase 3 tri-
als. O’Quigley, Pepe and Fisher (1990) pointed out
that standard methods in use then, and still in use now,
fail to address the basic ethical requirements of experi-
mentation with human subjects. Given the unknown or
poorly understood relationship between dose and the
probability of undesirable side effects (toxicity), it is
inevitable, during experimentation, that some patients
will be treated at too toxic doses and some patients
will be treated at doses too low to have any real chance
of procuring benefit. Aside from being inefficient, the
case against the standard designs is that more patients
than necessary are treated in this way, either at too toxic

John O’Quigley is Professor, Inserm, Université Paris VI,
Place Jussieu, 75005 Paris, France (e-mail:
jmoquigley@gmail.com). Mark Conaway is Professor,
Division of Biostatistics, Department of Public Health
Sciences, University of Virginia, Charlottesville, VA 22908,
USA (e-mail: mconaway@virginia.edu).

a dose or, more usually, at too low a dose to provide
therapeutic benefit.

The rationale of the CRM is to concentrate as many
patients as we can on doses at, or close to, the MTD.
Doing so can provide an efficient estimate of the MTD
while maximizing the number of patients in the study
treated at doses with potential therapeutic benefit but
without undue risk of toxicity. A drawback of concen-
trating patients to a small number of dose levels, at and
around the MTD, is that the overall dose-toxicity curve
itself may be difficult to estimate. In practice, this tends
not to be a serious drawback, since estimation of the
entire dose-toxicity curve is rarely the goal of a dose-
finding clinical trial.

Phase 1 trials evaluating the toxicity of single agents
are becoming less common, giving way to more com-
plex studies involving multiple agents at various doses,
heterogeneous groups of patients, and evaluations of
both toxicity and efficacy. The standard methods are
ill-equipped to handle these more complex situations,
and here, we will discuss developments of the CRM
and related methods for tackling various problems
which arise in the context of dose finding. Whereas the
standard method, even for the simplest situation fails
to perform adequately, model based designs, while of-
fering greatly improved performance for the simplest
case, allow us to take on board those more involved
situations that arise in practice (Braun, 2002; Faries,
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2004; Goodman, Zahurak and Piantadosi, 1995; Leg-
edeza and Ibrahim, 2002; Mahmood, 2001; O’Quigley,
2002a; O’Quigley and Paoletti, 2003; O’Quigley and
Reiner, 1998; O’Quigley, Shen and Gamst, 1999; Pi-
antadosi and Liu, 1996).

We begin with the definitions and notation used in
Phase 1 trials and an overview of the CRM as origi-
nally proposed by O’Quigley, Pepe and Fisher (1990).
The next two sections outline Bayesian and likelihood-
based inference for the CRM, providing results for
the small-sample and large-sample properties of the
method. Section 5 gives extensions of the method and
discusses modifications of the basic design. Section 6
presents related designs, again for the case of a single
outcome whereas Section 7 considers two outcomes,
one positive and one negative and describes the goal of
locating the most successful dose (MSD). The article
concludes with a discussion of future directions in the
study of model-based methods for dose-finding stud-
ies.

1.1 Doses, DLT, MTD and the MSD

Traditional thinking in the area of cytotoxic anti-
cancer treatments is to give as strong a treatment as we
can without incurring too much toxicity. For the great
majority of new cancer treatments—recent advances
in immunotherapy being possible exceptions—we con-
sider that increases in dose correspond to increases in
both the number of patients who will experience toxic
side effects as well as the numbers who may benefit
from treatment. If we observe a complete absence of
toxic side effects, then we would not anticipate observ-
ing any therapeutic effect, either for those patients in
the study or for future patients. The Phase I trial then
has for its goal the determination of some dose having
an “acceptable” rate of toxicity. While it is true that the
essential goal of the study is to improve treatment for
future patients, ethical concerns dictate that we give the
best possible treatment to the patients participating in
the Phase I study itself. The highest dose level at which
patients can be treated and where the rate of toxicity
is deemed to be still acceptable is known as the MTD
(maximal tolerated dose).

On an individual level we can imagine being able to
increase the dose without encountering the toxic effect
of interest. At some threshold the individual will suffer
a toxicity. An assumed model is the following: at this
threshold the individual suffers a toxicity and, for all
higher doses, the individual would also have encoun-
tered a toxicity. Such a model is reasonable for most
situations and widely assumed. It remains nonetheless

a model and might be brought under scrutiny in par-
ticular cases. The model stipulates that for all levels
below the threshold, the individual would not suffer
any toxicity and we call the threshold itself the indi-
vidual’s own maximum tolerated dose (MTD). A dose-
limiting toxicity (DLT) curve for the individual would
be a (0,1) step function, the value 0 indicating no tox-
icity and the value 1 a toxicity. Thus, in the case of an
individual, the (0,1) step function for the DLT coin-
cides with that for the MTD.

Any population of interest can be viewed as being
composed of individuals each having their own par-
ticular MTD. Corresponding to each individual MTD
we have a (0,1) step function for the individual’s DLT.
Over some set or population of individuals, the sum
of the DLT curves at any dose equates to the probabil-
ity of toxicity at that same dose. For a population we
fix some percentile so that, 100 × θ% say, have their
own threshold at or below this level. The term MTD is
often used somewhat loosely, and not always well de-
fined. The more precise definition given in terms of a
percentile involves θ. Different values of θ would cor-
respond to different definitions of the MTD. The values
0.2, 0.25 and 0.33 are quite common in practice.

When information on efficacy, possibly through sur-
rogate measures or otherwise through some measure
of response, is available in a timely way, then it makes
sense to make use of such information. In the HIV set-
ting, there have been attempts to simultaneously ad-
dress the problems of both toxicity and efficacy. The
goal then becomes not one of finding the maximum tol-
erated dose but, rather, one of finding the MSD (most
successful dose), that is, that dose where the probabil-
ity of treatment failure, be it due to excessive toxicity
or to insufficient evidence of treatment efficacy, is a
minimum. The CRM can be readily adapted to address
these kinds of questions (O’Quigley, Hughes and Fen-
ton, 2001; Zohar and O’Quigley, 2006a).

1.2 Notation

We assume that we have available k doses; d1, . . . ,

dk , possibly multidimensional and ordered in terms of
the probabilities, R(di), for toxicity at each of the lev-
els, that is, R(di) < R(dj ) whenever i < j . The MTD
is denoted d0 and is taken to be one of the values in the
set {d1, . . . , dk}. It is the dose that has an associated
probability of toxicity, R(d0), as close as we can get to
some target “acceptable” toxicity rate θ . Specifically
we define d0 ∈ {d1, . . . , dk} such that

|R(d0) − θ |
(1)

< |R(d�) − θ |, � = 1, . . . , k;d� �= d0.
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The binary indicator Yj takes the value 1 in the case
of a toxic response for the j th entered subject (j =
1, . . . , n) and 0 otherwise. The dose for the j th entered
subject, Xj , is viewed as random taking values xj ∈
{d1, . . . , dk}; j = 1, . . . , n. Thus we can write

Pr(Yj = 1|Xj = xj ) = R(xj ).

Little is known about R(·) and, given the n observa-
tions, the main goal is to identify d0. Estimation of all
or part of R(d�), � = 1, . . . , k, is only of indirect in-
terest in as much as it may help provide information
on d0.

There is an extensive literature on problems simi-
lar to that just described. The solutions to these prob-
lems, however, are mostly inapplicable in view of eth-
ical constraints involved in treating human subjects.
The patients included in the Phase I design must, them-
selves, be treated “optimally,” the notion optimal now
implying for these patients a requirement to treat at the
best dose level, taken to be the one as close as we can
get to d0. We then have two statistical goals: (1) esti-
mate d0 consistently and efficiently and, (2) during the
course of the study, concentrate as many experiments
as possible around d0. Specifically, we aim to treat the
j th included patient at the same level we would have
estimated as being d0 had the study ended after the in-
clusion of j − 1 patients.

2. CONTINUAL REASSESSMENT METHOD

The continual reassessment method (CRM), pro-
posed as a statistical design to meet the requirements
of the type of studies described above, was introduced
by O’Quigley, Pepe and Fisher (1990). Many develop-
ments and innovations have followed, the basic method
and variants having found a number of other potential
applications. Here, we reconsider the original problem,
expressed in statistical terms, since it is this problem
that forged the method. In this article we consider the
main theoretical ideas and do not dwell on precise ap-
plications apart from for illustrative purposes.

The method begins with a parameterized working
model for R(xj ), denoted by ψ(xj , a), for some one-
parameter model ψ(xj , a) and a defined on the set
A. For every a, ψ(x, a) should be monotone increas-
ing in x and, for any x, ψ(x, a) should be monotone
in a. For every di there exists some ai ∈ A such that
R(di) = ψ(di, ai), that is, the one-parameter model is
rich enough, at each dose, to exactly reproduce the true
probability of toxicity at that dose. There are many

choices for ψ(x, a), including the simple Lehmann
type shift model:

log{− logψ(di, a)}
(2)

= log{− logαi} + a, i = 1, . . . , k,

where 0 < α1 < · · · < αk < 1 and −∞ < a < ∞, hav-
ing shown itself to work well in practice. This para-
meterization allows for the support of the parameter a

to be on the whole real line and priors such as the nor-
mal or the logistic, having heavier tails, have been used
here. The simple power model of O’Quigley, Pepe and
Fisher (1990) required that support for the parameter a

be restricted to the positive real line.
O’Quigley, Pepe and Fisher (1990) suggested that

the αi, i = 1, . . . , k, be chosen to reflect a priori as-
sumptions about the toxicity probabilities associated
with each dose. Lee and Cheung (2009) provided a sys-
tematic approach to choosing the initial values for the
αi, i = 1, . . . , k. Yin and Yuan (2009) used Bayesian
model averaging to combine estimates from different
sets of initial guesses at the αi, i = 1, . . . , k. It should
again be noted that the working model is not antici-
pated to represent the entire dose-toxicity curve. It suf-
fices that the parameterized working model be flexible
enough to allow for estimation of the dose-toxicity re-
lationship at and close to the MTD. This point will be
developed more fully in Section 4, which summarizes
the small- and large-sample properties of the CRM.
Cheung and Chappell (2002) investigated the opera-
tional sensitivity to different model choices.

Once a model has been chosen and we have data in
the form of the set �j = {y1, x1, . . . , yj , xj }, the out-
comes of the first j experiments, we obtain estimates
R̂(di) (i = 1, . . . , k) of the true unknown probabilities
R(di) (i = 1, . . . , k) at the k dose levels (see below).
The target dose level is that level having associated
with it a probability of toxicity as close as we can get
to θ . The dose or dose level xj assigned to the j th in-
cluded patient is such that

|R̂(xj ) − θ |
(3)

< |R̂(d�) − θ |, � = 1, . . . , k;d� �= xj .

This equation should be compared to (1). It translates
the idea that the overall goal of the study is also the goal
for each included patient. The CRM is then an iterative
sequential design, the level chosen for the (n + 1)th
patient, who is hypothetical, being also our estimate
of d0. After having included j subjects, we can cal-
culate a posterior distribution for a which we denote
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by f (a,�j ). We then induce a posterior distribution
for ψ(di, a), i = 1, . . . , k, from which we can obtain
summary estimates of the toxicity probabilities at each
level so that

R̂(di)
(4)

=
∫
a∈A

ψ(di, a)f (a,�j ) da, i = 1, . . . , k.

Using (3) we can now decide which dose level to allo-
cate to the (j + 1)th patient.

In the original version of the CRM, O’Quigley, Pepe
and Fisher (1990) used an alternative estimate R̃(di) =
ψ(di,μ), i = 1, . . . , k, where μ = ∫

a∈A af (a,�j ) da.

This was done primarily to reduce the amount of calcu-
lation required, a consideration of less importance to-
day. O’Quigley, Pepe and Fisher (1990) completed the
specification of the dose allocation algorithm by spec-
ifying a starting dose based on a prior specification of
the dose level with probability closest to the target.

3. BAYESIAN AND LIKELIHOOD INFERENCE

In order to base inference only on the likelihood it is
necessary to have the likelihood nonmonotone so that
the estimates are not on the boundary of the parame-
ter space. This is accomplished by having some initial
escalation scheme until the data achieve at least one
toxicity and one nontoxicity. We can regard the data
obtained via this initial escalation scheme as, in some
sense, empirical and use them as a data-based prior
to the second part of the study. Thus, both Bayesian
and likelihood alone, can all be put under a Bayesian
heading. We use this in the following to study different
Bayesian approaches to inference.

3.1 Likelihood-Based Dose Allocations

After the inclusion of the first j patients, the loga-
rithm of the likelihood can be written as

Lj (a) =
j∑

�=1

y� logψ(x�, a)

(5)

+
j∑

�=1

(1 − y�) log
(
1 − ψ(x�, a)

)
,

where any terms not involving the parameter a have
been equated to zero. We suppose that Lj (a) is max-
imized at a = âj . Once we have calculated âj we
can next obtain an estimate of the probability of tox-
icity at each dose level di via R̂(di) = ψ(di, âj )

(i = 1, . . . , k). On the basis of this formula the dose

to be given to the (j + 1)th patient, xj+1, is deter-
mined. Once we have estimated a we can also calcu-
late an approximate 100(1 − α)% confidence interval
for ψ(xj+1, âj ) as (ψ−

j ,ψ+
j ) where

ψ−
j = ψ

{
xj+1,

(
âj + z1−α/2v(âj )

1/2)}
,

ψ+
j = ψ

{
xj+1,

(
âj − z1−α/2v(âj )

1/2)}
,

where zα is the αth percentile of a standard normal dis-
tribution and v(âj ) is an estimate of the variance of âj .
For the model of (2) this turns out to be particularly
simple and we can write

v−1(âj ) = ∑
�≤j,y�=0

ψ(x�, âj )(logα�)
2

/
(
1 − ψ(x�, âj )

)2
.

Although based on a misspecified model these intervals
turn out to be quite accurate, even for sample sizes as
small as 16, and thus helpful in practice (O’Quigley,
1992).

3.2 Prior Information on the Parameter a

There are three distinct approaches which can be
used in order to establish the prior information. These
are: (1) postulate some numerically tractable and suf-
ficiently flexible density g(a), (2) introduce a pseudo-
data prior which indirectly will specify g(a), and (3)
use some initial escalation scheme in a two-stage de-
sign until the first toxicity is observed. Let us consider
these three approaches more closely.

A gamma prior for g(a). For the Lehmann shift
model, on a logarithmic scale, given that A = (0,∞),

O’Quigley, Pepe and Fisher (1990) suggested, as a nat-
ural candidate,

g(a) = λcac−1 exp{−(λa)}/�(c),

�(c) =
∫ ∞

0
exp(−u)uc−1 du

the gamma density with scale parameter λ and shape
parameter c. The necessary steps in fitting a gamma
prior on the basis of the upper and lower points of our
prior confidence region have been described by Martz
and Waller (1982). For a relatively simple set-up in-
volving no more than six doses and using a coding
for dose (not the actual dose itself), O’Quigley, Pepe
and Fisher (1990) suggested that the simple exponen-
tial prior for a—a special case of the gamma prior
with c and λ both equal to 1—would be satisfactory.
Some authors have appealed to this simple exponential
prior in different contexts, or more involved set-ups,
and the resulting behavior of the method can be alarm-
ing (Moller, 1995).
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Pseudo-data prior. In the place of a prior expressed
as a specific parametric density function, pseudo-data
priors create observations that are weighted in accor-
dance with our degree of belief in their plausibility.
Using pseudo-data y∗

� , � = 1, . . . ,K , the prior g(a) is
defined from

g(a) ∼= exp

[ j∑
�=1

y∗
� logψ(x�, a)

(6)

+
j∑

�=1

(1 − y∗
� ) log

(
1 − ψ(x�, a)

)]
.

The prior “data” can be combined with the observed
data. In consequence standard and widely available
programs such as SAS or SPSS may be used directly to
calculate the posterior mode without the need for nu-
merical integration. The pseudo-data prior can be used
to establish our best prior guesses which will be mir-
rored by the estimates of a obtained from fitting the
pseudo-data alone. The imprecision which we wish to
associate with this can be governed by a weighting co-
efficient wj where 0 < wj < 1. This coefficient can
be independent of j and we would usually require that
wj ≤ wj−1. The posterior density is then

f (a,�j ) = A−1
j exp{wj logg(a)

(7)
+ (1 − wj)Lj (a)},

where Aj =∫ ∞
−∞ exp{wj logg(a)+(1−wj)Lj (a)}da.

The added generality of allowing the dependence of
the weights on j would rarely be needed and, in most
practical situations, it suffices to take w as a constant
small enough so that the prior has no more impact than
deemed necessary.

Uninformative priors. For the model (2), O’Quigley
(1992) suggested a normal prior having mean zero and
variance σ 2, large enough to be considered noninfor-
mative. Such a concept can be made more precise in
the following way, at least for fixed sample designs.
The mean and mode of the prior are at zero so that,
should the true probabilities of toxicity exactly coin-
cide with the αi then, the more informative the prior
the better we do, ultimately as the prior tends to be-
ing degenerate, that is, σ 2 → 0, we obtain the correct
level always. Taking some distance measure between
the distribution of our final recommendation and the
degenerate distribution putting all mass on the correct
level, this distance will increase as our uncertainty, as
measured by σ 2, increases. The curve of this distance,

as a function of σ 2, will reach an asymptotic limit, fur-
ther increases in σ 2 having a vanishing influence on the
error distribution of final recommendation. The small-
est finite value of σ 2, such that the operating character-
istics are sufficiently close to those obtained when σ 2

is infinite (in practice very large), corresponding to a
diffuse and even improper prior, will provide the prior
with the required behavior.

An uninformative prior, in the sense that it does not
favor any particular level, can be constructed readily
in the light of the results of O’Quigley (2006) which
partition the interval [A,B] for the parameter a into k

subintervals Si (i = 1, . . . , k). If a ∈ Si, then dose level
di corresponds to the MTD. For k dose levels we sim-
ply associate the probability mass 1/k to each of the
k subsets Si. Clearly this approach is readily extended
to the informative case by putting priors favoring some
levels more than others, either on the basis of clinical
information or simply out of a desire to influence the
operating characteristics in some particular way. An
example for the frequent case k = 6 would be to as-
sociate the prior 0.05 with level 1, and the values 0.19
with the other five levels. This would result in steering
us away from level 1 in favor of the other levels, un-
less the accumulating data begin to weigh against our
conjecture that level 1 is unlikely to be the right level.

Data-based prior in two-stage designs. In order to
be able to maximize the log-likelihood on the interior
of the parameter space we require heterogeneity among
the responses, that is, at least one toxic and one non-
toxic response (Silvapulle, 1981). Otherwise the like-
lihood is maximized on the boundary of the parame-
ter space and our estimates of R(di) (i = 1, . . . , k) are
trivially either zero, 1, or, depending on the model we
are working with, may not even be defined. In the con-
text of “pure likelihood”-based designs O’Quigley and
Shen (1996) argued for two-stage designs whereby an
initial escalation scheme provided the required hetero-
geneity. The experiment can be viewed as not being
fully underway until we have some heterogeneity in
the responses. These could arise in a variety of differ-
ent ways: use of a standard Up and Down approach,
use of an initial Bayesian CRM as outlined below, or
use of a design believed to be more appropriate by the
investigator. Once we have achieved heterogeneity, the
model kicks in and we continue as prescribed above
(estimation–allocation). We can also consider this ini-
tial escalation as providing empirical data. Conditional
upon these data we then proceed to the second stage.
The data obtained at the end of the first stage can be
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FIG. 1. A typical trial history using rapid early escalation; target is level 7.

viewed as providing an empirical prior. In this way, all
the approaches can be grouped under a Bayesian um-
brella. The essential differences arise through the dif-
ferent ways of specifying the prior.

Using empirical data to construct a prior as the first
stage of a two-stage design can afford us a great deal
of flexibility. The initial exploratory escalation stage is
followed by a more refined homing in on the target.
Such an idea was first proposed by Storer (1989) in the
context of the more classical Up and Down schemes.
His idea was to enable more rapid escalation in the
early part of the trial where we may be quite far from a
level at which treatment activity could be anticipated.
Moller (1995) was the first to use this idea in the con-
text of CRM designs. Her idea was to allow the first
stage to be based on some variant of the usual Up and
Down procedures. In the context of sequential likeli-
hood estimation, the necessity of an initial stage was
pointed out by O’Quigley and Shen (1996) since the
likelihood equation fails to have a solution on the inte-
rior of the parameter space unless some heterogeneity
in the responses has been observed. Their suggestion
was to work with any initial scheme, Bayesian CRM or
Up and Down, and, for any reasonable scheme, the op-
erating characteristics appear relatively insensitive to
this choice.

Here we describe an example of a two-stage design
that has been used in practice (see Figure 1). There
were many dose levels and the first included patient
was treated at a low level. As long as we observe very
low-grade toxicities then we escalate quickly, includ-
ing only a single patient at each level. As soon as
we encounter more serious toxicities then escalation is
slowed down. Ultimately we encounter dose-limiting
toxicities at which time the second stage, based on fit-
ting a CRM model, comes fully into play. This is done
by integrating this information and that obtained on
all the earlier non-dose-limiting toxicities to estimate
the most appropriate dose level. Consider the follow-
ing example which uses information on low-grade tox-
icities in the first stage in order to allow rapid initial
escalation (see Table 1). Specifically we define a grade

TABLE 1
Toxicity “grades” (severities) for trial

Severity Degree of toxicity

0 No toxicity
1 Mild toxicity (non-dose-limiting)
2 Nonmild toxicity (non-dose-limiting)
3 Severe toxicity (non-dose-limiting)
4 Dose-limiting toxicity
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severity variable S(i) to be the average toxicity sever-
ity observed at dose level i, that is, the sum of the
severities at that level divided by the number of pa-
tients treated at that level. The rule is to escalate pro-
viding S(i) is less than 2. Furthermore, once we have
included three patients at some level, then escalation
to higher levels only occurs if each cohort of three pa-
tients does not experience dose-limiting toxicity. This
scheme means that, in practice, as long as we see only
toxicities of severities coded 0 or 1, then we escalate.
The first severity coded 2 necessitates a further inclu-
sion at this same level and, anything other than a 0
severity for this inclusion, would require yet a further
inclusion and a non-dose-limiting toxicity before be-
ing able to escalate. This design also has the advantage
that, should we be slowed down by a severe (severity
3), albeit non-dose-limiting toxicity, we retain the ca-
pability of picking up speed (in escalation) should sub-
sequent toxicities be of low degree (0 or 1). This can be
helpful in avoiding being handicapped by an outlier or
an unanticipated and possibly not drug-related toxicity
arising early in the study. Once a dose-limiting toxicity
is encountered the initial escalation stage is brought to
a halt and the accumulated data taken as our empirical
prior.

3.3 An Illustration

An example of a two-stage design involving 16 pa-
tients was given by O’Quigley and Shen (1996). There
were six levels in the study, maximum likelihood was
used, and the first entered patients were treated at
the lowest level. The design was two-stage. The true
toxic probabilities were R(d1) = 0.03, R(d2) = 0.22,
R(d3) = 0.45, R(d4) = 0.6, R(d5) = 0.8 and R(d6) =
0.95. The working model was that given by (2) where
α1 = 0.04, α2 = 0.07, α3 = 0.20, α4 = 0.35, α5 = 0.55
and α6 = 0.70. The targeted toxicity was given by
θ = 0.2 indicating that the best level for the MTD is
given by level 2 where the true probability of toxicity is
0.22. A grouped design was used until heterogeneity in
toxic responses was observed, patients being included,
as for the classical schemes, in groups of three. The
first three patients experienced no toxicity at level 1.
Escalation then took place to level 2 and the next three
patients treated at this level did not experience any tox-
icity either. Subsequently two out of the three patients
treated at level 3 experienced toxicity. Given this het-
erogeneity in the responses the maximum likelihood
estimator for a now exists and, following a few itera-
tions, could be seen to be equal to 0.715. We then have
that R̂(d1) = 0.101, R̂(d2) = 0.149, R̂(d3) = 0.316,

R̂(d4) = 0.472, R̂(d5) = 0.652 and R̂(d6) = 0.775.
The 10th entered patient is then treated at level 2 for
which R̂(d2) = 0.149 since, from the available esti-
mates, this is the closest to the target θ = 0.2. The 10th
included patient does not suffer toxic effects and the
new maximum likelihood estimator becomes 0.759.
Level 2 remains the level with an estimated probability
of toxicity closest to the target. This same level is in
fact recommended to the remaining patients so that af-
ter 16 inclusions the recommended MTD is level 2. The
estimated probability of toxicity at this level is 0.212
and a 90% confidence interval for this probability is
estimated as (0.07, 0.39).

4. LARGE-SAMPLE AND SMALL-SAMPLE
PROPERTIES

Extensive simulations (O’Quigley, Pepe and Fisher,
1990; O’Quigley and Shen, 1996; O’Quigley, 1999; Ia-
sonos et al., 2008), over wide choices of possible true
unknown dose-toxicity situations, show the method to
behave in a mostly satisfactory way, recommending
the right level or close levels in a high percentage of
situations and treating in the study itself a high per-
centage of included patients, again, at the right level
or levels close by. Cheung (2005), O’Quigley (2006)
and Lee and Cheung (2009) obtained theoretical re-
sults which not only provide some confidence in using
the method but can also provide guidance in the choice
and structure of working models. Even though mod-
els are misspecified, inference is still based on an es-
timating equation taken from the derivative of the log-
likelihood. Thus, Shen and O’Quigley (1996) defined

In(a) = 1

n

n∑
j=1

[
yj

ψ ′

ψ
{xj , a} + (1 − yj )

−ψ ′

1 − ψ
{xj , a}

]
.

Some restrictions on ψ are needed (O’Quigley, 2006).
In particular, there must exist constants a1, . . . , ak ∈
[A,B] such that ψ(di, ai) = Ri , the function ψ sat-
isfies ψ(di,B) < θ < ψ(di,A), and there is a unique
a0 ∈ (a1, . . . , ak), ψ(d0, a0) = R(d0) = θ0. In general,
θ0 will not be equal to θ but will be as close as we can
get given the available doses. We require the estimating
function to respect a standard condition of estimating
functions which is that

s(t, x, a) = t
ψ ′

ψ
{x, a} + (1 − t)

−ψ ′

1 − ψ
{x, a}

is continuous and strictly monotone in a. We define
Ĩn(a) = n−1 ∑n

j=1 s{R(xj ), xj , a}.
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It is not typically the case that ψ(di, a0) = R(di) for
i = 1, . . . , k. However, at least in the vicinity of the
MTD, this will be approximately true, an idea that can
be formalized (Shen and O’Quigley, 1996) via the def-
inition of the set

S(a0) = {a : |ψ(d0, a) − θ | < |ψ(di, a) − θ |
(8)

for all di �= d0}.
Shen and O’Quigley (1996) showed that convergence
follows if, for i = 1, . . . , k, ai ∈ S(a0). O’Quigley
(2006) showed that, for each 1 ≤ i ≤ k − 1, there ex-
ists a unique constant κi such that θ − ψ(xi, κi) =
ψ(xi+1, κi) − θ > 0. The constants κi naturally give
rise to a partitioning of the parameter space [A,B].
Letting κ0 = A and κk = B , we can write the interval
[A,B] as a union of nonoverlapping intervals whereby
[A,B] = ⋃k

i=1[κi−1, κi). This partition is of particu-
lar value in establishing prior distributions which can
translate immediately into priors for the dose levels
themselves. It is also of value in deriving results con-
cerning the coherence, stability and convergence of
the algorithm (Cheung and Chappell, 2002; O’Quigley,
2006).

Convergence to the MTD stems from the fact that
supa∈[A,B] |In(a) − Ĩn(a)| converges almost surely to
zero (Shen and O’Quigley, 1996) and that we can
re-express Ĩn(a) as a sum over the k dose levels
rather than a sum over the n subjects; in particular
we have that Ĩn(a) = ∑k

i=1 πn(di)s{R(di), di, a}. Sup-
posing that the solution to the equation Ĩn(a) = 0 is
ãn and that ai is the unique solution to the equation
s{R(di), di, a} = 0, then ãn will fall into the interval
S1(a0). Since ân solves In(a) = 0, then, almost surely,
ân ∈ S(a0), so that, for n sufficiently large, xn+1 ≡ d0.

Since there are only a finite number of dose levels, xn

will ultimately settle at d0. Rather than appeal to the
set S(a0), which quantifies the roughness of the work-
ing approximation to the true dose-toxicity function in
the vicinity of the MTD, and which guarantees conver-
gence to the MTD when all of the ai belong to this set,
Cheung (2005) used a related approach which appeals
to a more flexible—in many ways more realistic—
definition of the MTD whereby probabilities of toxicity
within some given range are all taken to be acceptable.
Convergence can then be shown to obtain without such
restrictive conditions as those described above.

4.1 Efficiency

O’Quigley (1992) proposed using θ̂n = ψ(xn+1, ân)

to estimate the probability of toxicity at the recom-
mended level xn+1, where ân is the maximum likeli-
hood estimate. An application of the δ-method (Shen

and O’Quigley, 1996) shows that the asymptotic dis-
tribution of

√
n{θ̂n − R(d0)} is N{0, θ0(1 − θ0)}. The

estimate then provided by CRM is fully efficient for
large samples. This is what our intuition would sug-
gest given the convergence properties of CRM. What
actually takes place in finite samples needs to be inves-
tigated on a case by case basis. The relatively broad
range of cases studied by O’Quigley (1992) show a
mean squared error for the estimated probability of tox-
icity at the recommended level under CRM to corre-
spond well with the theoretical variance for samples of
size n, were all subjects to be experimented at the cor-
rect level. Some of the cases studied showed evidence
of super-efficiency, translating nonnegligible bias that
happens to be in the right direction, while a few others
indicated efficiency losses large enough to suggest the
possibility of better performance.

A useful tool in studies of finite sample efficiency
is the idea of an optimal design. We can derive a
nonparametric optimal design (O’Quigley, Paoletti
and Maccario, 2002) based upon no more than a
monotonicity assumption. Such an optimal design is
not generally available in practice but can serve as a
gold standard in theoretical studies, playing a role sim-
ilar to that of the Cramer–Rao bound. Comparisons
between any suggested method and the optimal de-
sign enable us to quantify just how much room there
is for potential improvement. Further evidence of the
efficiency of the CRM was provided by the work of
O’Quigley, Paoletti and Maccario (2002), where the
CRM is compared to the nonparametric optimal de-
sign. In the cases studied in that article and in that of
Paoletti, O’Quigley and Maccario (2004), potential for
improvement is seen to be limited, with the identifica-
tion of the MTD by the two-stage CRM design being
only slightly inferior to that of the optimal design.

4.2 Nonidentifiability of Fully Parameterized
Models

Under the conditions outlined above we will ulti-
mately only include patients at dose level d0. Under
very much broader conditions (Shen and O’Quigley,
1996) we can guarantee convergence to some level, not
necessarily d0 but one where the probability of toxicity
will not be far removed from that at d0. The conse-
quence of this is that, for the most common case of a
single homogeneous group of patients, we are obliged
to work with an underparameterized model, notably a
one-parameter model in the case of a single group. Al-
though a two-parameter model may appear more flexi-
ble, the convergence property of CRM means that ulti-
mately we will not obtain information needed to fit two
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parameters. Having settled at dose level di , the only
quantity we can estimate is R(di) which can be done
consistently in light of the Glivenko–Cantelli lemma.
Under our model conditions we have that R(di) =
ψ(di, ai) and that âj will converge almost surely to ai .
Adding a second parameter can only overparameterize
the situation and, for example, the commonly used lo-
gistic model has an infinite number of combinations
of the two parameters which lead to the same value of
R(di). A likelihood procedure can then be unstable and
may even break down, whereas a two-parameter fully
Bayesian approach (Gatsonis and Greenhouse, 1992;
Whitehead and Williamson, 1998) may work initially,
although somewhat artificially, but behave erratically
as sample size increases and the structural rigidity pro-
vided by the prior gradually wanes. This is true even
when starting out at a low or the lowest level, initially
working with an Up and Down design for early esca-
lation, before a CRM model is applied. Indeed, any
design that ultimately concentrates all patients from a
single group on some given level can fit no more than
a single parameter without running into problems of
identifiability.

5. EXTENDED CRM DESIGNS

The simple model of (2) can be extended to a class of
models denoted by ψm(xj , a) for m = 1, . . . ,M where
there are M members of the class. Take, for example,

ψm(di, a) = α
exp(a)
mi ,

(9)
i = 1, . . . , k;m = 1, . . . ,M,

where 0 < αm1 < · · · < αmk < 1 and −∞ < a < ∞, as
an immediate generalization of (2). Prior information
concerning the plausibility of each model is catered for
by π(m), m = 1, . . . ,M, where π(m) ≥ 0 and where∑

m π(m) = 1. When each model is given the same ini-
tial weighting, then we have that π(m) = 1/m. If the
data are to be analyzed under model m, then, after the
inclusion of j patients, the logarithm of the likelihood
can be written as

Lmj (a) =
j∑

�=1

y� logψm(x�, a)

(10)

+
j∑

�=1

(1 − y�) log
(
1 − ψm(x�, a)

)
,

where any terms not involving the parameter a have
been ignored. Under model m we obtain a summary
value of the parameter a, in particular the maximum of

the posterior mode and we refer to this as âmj . Given
the value of âmj under model m, we have an estimate
of the probability of toxicity at each dose level di via
R̂(di) = ψm(di, âmj ) (i = 1, . . . , k). On the basis of
this formula, and having taken some value for m, the
dose to be given to the (j + 1)th patient, xj+1, is deter-
mined. Thus, we need some value for m and we make
use of the posterior probabilities of the models given
the data �j . Denoting these posterior probabilities by
π(m|�j), then

π(m|�j)
(11)

= π(m)
∫ ∞
−∞ exp{Lmj (u)}g(u)du∑M

m=1 π(m)
∫ ∞
−∞ exp{Lmj (u)}g(u)du

.

The estimated values of π(m|�j) can help us decide
between models which have physical implications of
interest to us. As an example suppose that there exists
significant heterogeneity among the patients and this is
simplified to the case of two groups.

5.1 A Simple Heterogeneity Model

As in other types of clinical trials we are essentially
looking for an average effect. Patients naturally differ
in the way they may react to a treatment and, although
hampered by small samples, we may sometimes be in a
position to specifically address the issue of patient het-
erogeneity. One example occurs in patients with acute
leukemia where it has been observed that children will
better tolerate more aggressive doses (standardized by
their weight) than adults. Likewise, heavily pretreated
patients are more likely to suffer from toxic side ef-
fects than lightly pretreated patients. In such situations
we may wish to carry out separate trials for the differ-
ent groups in order to identify the appropriate MTD for
each group. Otherwise we run the risk of recommend-
ing an “average” compromise dose level, too toxic for
a part of the population and suboptimal for the other.
Usually, clinicians carry out two separate trials or split
a trial into two arms after encountering the first DLTs
when it is believed that there are two distinct prog-
nostic groups. This has the disadvantage of failing to
utilize information common to both groups. The most
common situation is that of two samples where we aim
to carry out a single trial keeping in mind potential dif-
ferences between the two groups. A multisample CRM
is a direct generalization although we must remain re-
alistic in terms of what is achievable in the light of the
available sample sizes.

Introduce a binary variable Z taking the value 0 for
the first group and 1 for the second group. Suppose also
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that we know that, for the second group, the probability
of toxicity can only be the same or higher than the first
group. For this situation consider the following models:

1. Model 1: m = 1

Pr(Y = 1|di, z = 0) = ψ(di, a), i = 1, . . . , k,

Pr(Y = 1|di, z = 1) = ψ(di, a), i = 1, . . . , k,

2. Model 2: m = 2

Pr(Y = 1|di, z = 0) = ψ(di, a), i = 1, . . . , k,

Pr(Y = 1|di, z = 1) = ψ(di+1, a),

i = 1, . . . , k − 1,

Pr(Y = 1|di, z = 1) = ψ(dk, a), i = k.

If the most plausible model has m = 1, then we con-
clude that there is no difference between the groups. If
m = 2, then we conclude that for the second group the
probability of toxicity at any level is the same as that
for a subject from the first group but treated at one level
higher. The truth will be more subtle but since we have
to treat at some level we force this decision to be made
at the modeling stage. The idea extends, of course, to
several levels, positive as well as negative directions to
the difference, and to other factors such as treatment
schedules.

5.2 Randomization and Two-Parameter Models

Suppose that j subjects are already entered in the
trial. Instead of systematically selecting the level es-
timated as being closest to the target, a different ap-
proach would be to use the available knowledge to ran-
domly select a level from d1, . . . , dk according to some
given discrete distribution. This distribution does not
have to be fixed in advance but can depend on the avail-
able levels and the current estimate of the MTD. Let
xj+1 be defined as before. However, we will no longer
allocate systematically subject j + 1 to dose level xj+1
as before. Instead we allocate to wj+1 where we define

wj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑
m=1

dm+
I {xj+1 = dm,m < k};

R̂(xj+1) ≤ θ

k∑
m=1

dm−
I {xj+1 = dm,m > 1};

R̂(xj+1) > θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

and where 
 is a Bernoulli(0,1) random variable with
parameter typically of value 0.5. In words, instead of
allocating to the level closest to R̂(xj+1) we allocate,
on the basis of a random mechanism, to the level just

above R̂(xj+1) or the level just below R̂(xj+1). In the
cases where R̂(xj+1) is lower than the lowest available
level, or higher than the highest available level, then the
allocation becomes, again, systematic. The purpose of
the design is then to be able to sample on either side
of the target. Aside from those cases in which the low-
est level appears to be more toxic than the target or
the highest level less toxic than the target, observations
will tend to be concentrated on two levels. One of these
levels will have an associated estimated probability be-
low the target while the other level will have an esti-
mated probability above the target.

An immediate consequence of forcing experimenta-
tion to take place at more than a single level is that the
nonidentifiability described above changes. It is now
possible to estimate more than a single parameter, for
example the rate of toxicity at, say, the lower of the two
levels as well as the rate of toxicity at the next level up.
Working with a one-parameter model and randomizing
to two levels, say d� and d�+1, the estimate â will con-
verge to the solution of the equation

π(d�)

{
R�

ψ ′

ψ
(d�, a) + (1 − R�)

−ψ ′

1 − ψ
(d�, a)

}
,

{1 − π(d�)}
{
R�+1

ψ ′

ψ
(d�+1, a)

+ (1 − R�+1)
−ψ ′

1 − ψ
(d�+1, a)

}
= 0,

where π(d�) is the stable distribution (long-term pro-
portion) of patients included at level d�. Comparing
this equation with the estimating equation for the stan-
dard case without randomization, we can see that, un-
less the working model generates the observations, we
will not obtain consistent estimates of the probabili-
ties of toxicities at the two doses of the stable distribu-
tion. However, introducing a second parameter into the
model, one which describes the differences between
the probabilities of toxicity at the two dose levels, we
obtain consistent estimates at these two doses of the
stable distribution. To see this it is enough to parame-
terize the probability of toxicity at the current level d�

as ψ(d�, a) and that at level d�+1 by ψ(d�, a + b). The
estimates will converge to the solution of

π(d�)

{
R�

ψ ′

ψ
(d�, a) + (1 − R�)

−ψ ′

1 − ψ
(d�, a)

}
,

{1 − π(d�)}
{
R�+1

ψ ′

ψ
(d�+1, a + b)

+ (1 − R�+1)
−ψ ′

1 − ψ
(d�+1, a + b)

}
= 0,
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for which each term separately can be then accom-
modated within the framework describing consistency
given above. In practice we would use a model such as
the logistic where

ψ(dk, a, b) = exp(aαk + b)

1 + exp(aαk + b)
,

which, once settling takes place, is then a saturated
model.

6. RELATED DESIGNS

There have been many suggestions in the literature
for possible modifications of the basic design. Also,
some apparently alternative designs turn out to be
equivalent to the basic design. In this section we con-
sider some of these designs.

6.1 Escalation with Underdose/Overdose Control

Babb, Rogatko and Zacks (1998) argued that the
main ethical concern was not so much putting each pa-
tient at a dose estimated to be the closest to the MTD
but rather putting each patient at a dose for which the
probability of it being too great was minimized. The
difference may be subtle but would be a basis for use-
ful, and important, discussions with the clinicians in-
volved. These discussions help make explicit the goals,
both in terms of final recommendation and for those
patients included in the study. There may be situations
where a parallel concern might focus on the underdos-
ing rather than the overdosing. For an approach based
on the CRM we would simply modify the definition of
the dose level “closest to the target” to be asymmetric.
Positive distances could be magnified relative to neg-
ative ones resulting in a tendency to assign below the
MTD rather than above it.

Babb, Rogatko and Zacks (1998) approached the
problem differently by focusing on the posterior distri-
bution of the MTD and suggesting a loss function that
penalizes overdosing to a greater degree than under-
dosing. Tighiouart, Rogatko and Babb (2005) devel-
oped the idea further, investigating a number of prior
distributions. Despite this change in emphasis, there is
no fundamental difference between these approaches
and the CRM, aside from the making use of a partic-
ular distance measure. The methods of Babb, Rogatko
and Zacks (1998) and Tighiouart, Rogatko and Babb
(2005) allow for continuous dose levels. Although the
CRM is most frequently applied in cases with a fixed
set of dose levels, it can be adapted to allocate patients
on dose levels other than the fixed set of doses.

6.2 ADEPT and Two-Parameter CRM

O’Quigley, Pepe and Fisher (1990) studied two-
parameter CRM models based on the logistic distrib-
ution. For large samples the parameters are not identi-
fiable and we may expect that this could lead to unsta-
ble or undesirable operating characteristics. For small
to moderate finite samples the behavior can be studied
on a case by case basis. Even when the two-parameter
model correctly generated the observations, the sim-
ulations of O’Quigley, Pepe and Fisher indicated that
the one-parameter CRM would work better for sample
sizes up to around 25.

Whitehead and Brunier (1995) suggested working
with the two-parameter logistic model and using a
pseudo-data prior. This has been put together as a soft-
ware package and is called ADEPT. The term ADEPT
is used to describe either the software itself or the ap-
proach which would be equivalent to a two-parameter
CRM with a data-based prior. Gerke and Siedentop
(2008) argued that ADEPT is to be preferred to stan-
dard CRM in terms of accuracy of recommendation.
This conclusion was based on a study of three, rather
particular, situations in which the target dose lies ex-
actly at the midpoint between two of the available
doses. They define the lower of these two doses as
being the MTD. Gerke and Siedentop’s definition of
the MTD is not the usual one which, had it been used
in their simulations, would have resulted in the very
opposite conclusion. The usual one, and that used in
O’Quigley, Pepe and Fisher, is the dose which is the
closest to the target. Should two doses be equidistant
from the target then, logically, either one could be con-
sidered to be the MTD. This observation alone would
completely reverse the findings of Gerke and Siedentop
(Shu and O’Quigley, 2008).

The ADEPT program leans more formally on Bayes-
ian decision procedures which, it is argued (Whitehead
and Brunier, 1995), represent a generalization of the
CRM since, instead of basing sequential patient allo-
cation on the anticipated gain for the next included pa-
tient or group of patients, allocation could be based on
the gain for the variance of estimators. In the case of
more than one parameter we could use different com-
binations of the individual variances and covariances,
in particular the determinant of the information matrix.
Whitehead and Brunier argued that “gain functions can
be devised from the point of view of the investigator
(accuracy for future patients) or from the point of view
of the next included patient, as in the CRM. Weighted
averages of these two possibilities can be used to form
compromise procedures.”



CONTINUAL REASSESSMENT AND RELATED DOSE-FINDING DESIGNS 213

However, under current guidelines, it is not possible
to use a procedure which sacrifices the point of view
of the current patient to that of future patients. It is
only future patients who may benefit from improved
precision (the point of view of the investigator) and,
although, in medical experimentation, arguments have
been and will continue to be put in such a direction,
such logic is not currently considered acceptable. Ex-
perimentation on an individual patient can only be jus-
tified if it can be argued that the driving goal is the
benefit of that same patient. Basing allocation on any-
thing other than patient gain, and, in particular, the gain
for future patients, would be a violation of the usual
ethical criteria in force in this area. In practice, only
patient gain is used, and so ADEPT is essentially the
same as two-parameter CRM. In animal experimenta-
tion or in experimentation in healthy volunteers, where
severe side effects are considered very unlikely, a case
could be built for using other gain functions.

6.3 Curve-Free Designs

Rather than appeal to a working model ψ(x, a) and
have a follow some distribution, we can employ a mul-
tivariate distribution of dimension k and consider the
ordered probabilities at the k levels to be the quantities
of interest. Prior median or mean values for the distrib-
ution of R(di), the probability of toxicity at dose di , are
provided by the clinician. We then work with a multi-
variate law that is flexible enough to allow reasonable
operating characteristics, escalating quickly enough in
the absence of observed toxicities and not being unsta-
ble or overreacting to toxicities that occur. Gasparini
and Eisele (2000) argued in favor of experimenting this
way. They suggested working with a product of beta
priors (PBP) upon reparameterizing whereby

θ1 = 1 − R(d1),

θi = 1 − R(di)

1 − R(di−1)
, i = 2, . . . , k,

and then letting the θi (i = 1, . . . , k) have indepen-
dent beta distributions. Since R(di) = 1 − θ1θ2 · · · θi

the monotonicity constraint is respected. The distribu-
tion of a product of beta distributions is complex but
the authors argue that we can approximate this well by
taking the product itself to be beta. We then fit such
a beta using the first two moments from the product,
easily achieved under the condition of independence
of the θi . Gasparini and Eisele (2000) provided some
guidelines for setting up the prior for this multivari-
ate law based on consideration of operating character-
istics. O’Quigley (2002b) demonstrated an equivalence

between a curve-free design and a CRM design in that,
given a particular specification of a curve-free design,
there exists an equivalent specification of a CRM de-
sign. This is also true in the other direction. By equiv-
alent we mean that all operational characteristics are
the same. However, this still remains only an existence
result and it is not yet known how to actually find the
equivalent designs. Cheung (2002) noted that in cases
where low toxicity percentiles are targeted, the use of
the nonparametric approach with a vague prior can lead
to dose allocation that tends to be confined to subop-
timal levels. Cheung (2002) exploited the connection
with the CRM to suggest informative priors that can
help alleviate this problem.

Whitehead et al. (2010) suggested an approach in
which the probabilities of toxicity at each dose, rather
than belonging to some continuum, are only allowed
to belong to a small discrete set. In practice, we do
not need to distinguish a probability of toxicity of 0.32
from a probability of 0.34. They could be considered
the same, or, in some sense at least, equivalent. The
idea is not unrelated to the idea of Cheung and Chap-
pell (2002) on indifference intervals. Performance of
Whitehead and colleague’s method is comparable to
the CRM.

7. IDENTIFYING THE MOST SUCCESSFUL DOSE
(MSD)

In the context of dose finding in HIV, O’Quigley,
Hughes and Fenton (2001) considered the problem of
finding the dose which maximizes the overall probabil-
ity of success. Here, failure is either a toxicity (in the
HIV context, mostly an inability to maintain treatment)
or an unacceptably low therapeutic response. Zohar
and O’Quigley (2006a) made a slight modification to
the approach to better accommodate the cancer setting.
We take Y and V to be binary random variables (0,1)

where Y = 1 denotes a toxicity, Y = 0 a nontoxicity,
V = 1 a response, and V = 0 a nonresponse. As before,
the probability of toxicity at the dose level Xj = xj is
defined by

R(xj ) = Pr(Yj = 1|Xj = xj ).

The probability of response given no toxicity at dose
level Xj = xj is defined by

Q(xj ) = Pr(Vj = 1|Xj = xj , Yj = 0),

so that P(di) = Q(di){1 − R(di)} is the probability of
success. A successful trial would identify the dose level
l such that P(dl) > P (di) (for all i where i �= l). Zo-
har and O’Quigley (2006b) called this dose the most
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successful dose and our purpose in this kind of study
is, rather than find the MTD, to find the MSD. The re-
lationship between toxicity and dose (xj ) and the rela-
tionship between response given no toxicity and dose
can be modeled through the use of two one-parameter
models. Whereas R(di) and Q(di) refer to exact, usu-
ally unknown, probabilities, the model-based equiva-
lents of these, ψ and φ, respectively, are only working
approximations given by

R(di) ≈ ψ(di, a) = α
expa
i ;

Q(di) ≈ φ(di, b) = β
expb
i ,

where 0 < α1 < · · · < αk < 1, −∞ < a < ∞, 0 <

β1 < · · · < βk < 1 and −∞ < b < ∞. For each dose,
there exist unique values of a and b such that the ap-
proximation becomes an equality at that dose, but not
necessarily exact at the other doses. After the inclusion
of j patients, R(di), Q(di), and P(di) are estimated by

R̂(di) = ψ(di, âj ); Q̂(di) = φ(di, b̂j );
P̂ = φ(di, b̂j ){1 − ψ(di, âj )},

where âj and b̂j maximize the log-likelihood (see
O’Quigley, Hughes and Fenton, 2001).

8. CONCLUSIONS

More fully Bayesian approaches in a decision mak-
ing context, and not simply making use of Bayesian
estimators, have been suggested for use in the con-
text of Phase I trial designs. These can be more in the
Bayesian spirit of inference, in which we quantify prior
information, observed from outside the trial as well as
that solicited from clinicians and/or pharmacologists.
Decisions are made more formally using tools from de-
cision theory. Any prior information can subsequently
be incorporated via the Bayes formula into a poste-
rior density that also involves the actual current obser-
vations. Given the typically small sample sizes often
used, a fully Bayesian approach has some appeal in that
we would not wish to waste any relevant information at
hand. Unlike the set-up described by O’Quigley, Pepe
and Fisher (1990), we could also work with informa-
tive priors.

Gatsonis and Greenhouse (1992) considered two-
parameter probit and logit models for dose response
and studied the effect of different prior distributions.
Whitehead and Williamson (1998) carried out similar
studies but with attention focusing on logistic mod-
els and beta priors. Whitehead and Williamson (1998)
worked with some of the more classical notions from

optimal design for choosing the dose levels in a bid
to establish whether much is lost by using subopti-
mal designs. O’Quigley, Pepe and Fisher (1990) ruled
out criteria based on optimal design due to the ethical
criterion of the need to attempt to assign the sequen-
tially included patients at the most appropriate level for
the patient. This same point was also emphasized by
Whitehead and Williamson (1998). Certain contexts,
however, may allow the use of more formal optimal
procedures.

For certain problems we may have good knowledge
about some aspect of the problem and poor knowledge
on the others. The overall dose-toxicity curve may be
very poorly known but, if this were to be given for, say,
one group, then we would have quite strong knowledge
of the dose-toxicity curve for another group. Uninfor-
mative Bayes or maximum likelihood would then seem
appropriate overall although we would still like to use
information that we have, an example being the case
of a group weakened by extensive prior therapy and
thereby very likely to have a level strictly less than that
for the other group. Careful parameterization would
enable this information to be included as a constraint.
However, rather than work with a rigid and unmodifi-
able constraint, a Bayesian approach would allow us to
specify the anticipated direction with high probability
while enabling the accumulating data to override this
assumed direction if the two run into serious conflict.
Exactly the same idea could be used in a case where we
believe there may be group heterogeneity but that it be
very unlikely the correct MTDs differ by more than a
single level. This is especially likely to be of relevance
in situations where a defining prognostic variable, say
the amount of prior treatment, is not very sharp so that
group classifications may be subject to some error. If
the resulting MTDs do differ we would not expect the
difference to be very great. Incorporating such infor-
mation into the design will improve efficiency.

Stochastic approximation, which is an algorithm for
finding the root of an unknown regression equation,
can be shown, under certain conditions, to be equiv-
alent to recursive inversion of a linear model (Wu,
1985, 1986; Cheung and Elkind, 2010). In the light of
those results, the CRM, in its basic form, could then
be viewed as stochastic approximation leaning upon a
particular dose-response model rather than a linear one.
However, this characterization of the methodology is
less fundamental than two others: (1) use of an under-
parameterized model and (2) restriction of the available
doses to a limited finite set.
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The second of the above characterizations implies
the necessity for the first (see Section 4.2). Consistency
of stochastic approximation fails in the setting where
we have a limited set of available responses (doses)
and can only be achieved under conditions analogous
to those outlined in this article (Shen and O’Quigley,
2000). Other algorithms similar to stochastic approxi-
mation (adaptive designs) rely on probabilistic rules to
identify some percentile (dose) from an unknown dis-
tribution. Wu’s (1985, 1986) findings suggest that there
is usually some implicit model behind the algorithm.

The CRM makes implicit models explicit ones; un-
derparameterized, and therefore misspecified, but suf-
ficiently flexible to obtain accurate estimates locally
although not reliable at points removed from those at
which the bulk of experimentation takes place. The
model, being explicit, readily enables extension and
generalization. The two group case, incorporation of
randomization about the target or the inclusion of par-
tial prior information are, at least conceptually, rela-
tively straightforward tasks. The framework is then in
place to investigate other aspects of dose-finding de-
signs such as multigrade outcomes or the ability to ex-
ploit information on within-subject escalation. As for
any method, there is always room for improvement, al-
though the results on optimality suggest that, for the
basic problem, this room is not great. It is likely to be
more fruitful to focus our attention on more involved
problems such as continuous outcomes, subject hetero-
geneity, combined efficacy-toxicity studies, and studies
involving escalation of two or more components.
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