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The Importance of Scale for
Spatial-Confounding Bias and Precision
of Spatial Regression Estimators
Christopher J. Paciorek

Abstract. Residuals in regression models are often spatially correlated.
Prominent examples include studies in environmental epidemiology to un-
derstand the chronic health effects of pollutants. I consider the effects of
residual spatial structure on the bias and precision of regression coefficients,
developing a simple framework in which to understand the key issues and de-
rive informative analytic results. When unmeasured confounding introduces
spatial structure into the residuals, regression models with spatial random
effects and closely-related models such as kriging and penalized splines are
biased, even when the residual variance components are known. Analytic and
simulation results show how the bias depends on the spatial scales of the co-
variate and the residual: one can reduce bias by fitting a spatial model only
when there is variation in the covariate at a scale smaller than the scale of the
unmeasured confounding. I also discuss how the scales of the residual and
the covariate affect efficiency and uncertainty estimation when the residuals
are independent of the covariate. In an application on the association between
black carbon particulate matter air pollution and birth weight, controlling for
large-scale spatial variation appears to reduce bias from unmeasured con-
founders, while increasing uncertainty in the estimated pollution effect.

Key words and phrases: Epidemiology, identifiability, mixed model, penal-
ized likelihood, random effects, spatial correlation, splines.

1. INTRODUCTION

Spatial confounding is likely present in many of the
applied contexts in which residuals are spatially cor-
related, particularly in public health and social sci-
ence. Consider the motivating example of the health
effects of exposure to (spatially varying) air pollution,
an important public health issue. Many variables that
explain variability in the response, including potential
confounding variables that may be correlated with ex-
posure, also vary spatially. For example, large-scale re-
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gional patterns in air pollution may be correlated with
regional patterns in diet, income and other risk factors
for a health outcome of interest. Small-scale patterns
in air pollution from local sources may be correlated
with risk factors as well, for example, if lower-income
people live nearer to busy roads or industrial sources.
If confounding variables are not measured, it will be
difficult to distinguish the effect of air pollution from
residual spatial variation in the health outcome. I use
the term spatial confounding to characterize this situ-
ation. Researchers have modeled the spatial structure
in the outcome with the apparent goal of reducing con-
founding bias (e.g., Clayton, Bernardinelli and Mon-
tomoli, 1993; Pope et al., 2002; Cakmak et al., 2003;
Biggeri et al., 2005). However, the statistical mecha-
nism for reducing bias does not appear to be well un-
derstood nor investigated rigorously in the statistical or
applied literature.
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To consider the problem formally, start with simple
linear regression with spatial structure:

Yi = β0 + βxXi + ei, i = 1, . . . , n,
(1)

e ∼ N (0,�),

where each outcome, Yi , is associated with a spatial lo-
cation, si ∈ �2. Xi is the corresponding value of a uni-
variate regressor of interest, which may also vary spa-
tially, in which case we would represent Xi as X(si ).
e = (e1, . . . , en)

T is the vector of errors, whose co-
variance matrix, �, captures any residual spatial cor-
relation, as well as independent variation. The regres-
sion coefficients, β = {β0, βx}, are unknown, and es-
timation of βx is of primary interest. Spatial statistics
and regression texts note that the ordinary least squares
(OLS) estimator for βx in this setting is unbiased but
inefficient, and the usual OLS variance estimator is
incorrect. Assuming known �, the generalized least
squares (GLS) estimator is the most efficient estima-
tor. However, little appears to be known about how the
spatial scales of the residual variability and of X af-
fect inference. Spatial structure in X is very common
in applications and complicates the problem because X

and the residual spatial structure compete to explain the
variability in the response (Waller and Gotway, 2004).
Furthermore, it would not be surprising if the spatial
correlation in the residuals were caused by an unmea-
sured spatially varying confounder; I next introduce
another representation of (1) to enable exploration of
confounding. Motivated by the air pollution example,
I will refer to X as the “exposure.”

One can obtain the basic spatial regression model (1)
using a simple mixed model,

Yi = β0 + βxX(si ) + g(si ) + εi,(2)

with random effects, g = (g(s1), . . . , g(sn))
T , and

white noise errors, εi
i.i.d.∼ N (0, τ 2). Suppose the ran-

dom effects are spatially correlated, with g ∼ N (0,

σ 2
g R(θg)), where R(θg) is a spatial correlation matrix

parameterized by θg , a spatial range parameter, and σ 2
g

is the variance of the random effects. Marginalizing
over g gives the marginal likelihood,

Y = (Y1, . . . , Yn)
T

(3)
∼ N

(
β01 + βxX, σ 2

g R(θg) + τ 2I
)
,

where 1 is an n-vector of ones, I is the identity matrix,
and X = (X1, . . . ,Xn)

T . Here � in (1) is explicitly
decomposed into spatial and nonspatial components.
An alternative formulation would specify the unknown
spatial function, g(s), as a penalized spline, where a
penalty parameter plays the role of {θg, σ

2
g } in the mar-

ginal likelihood in penalizing complexity of the spa-
tial structure. The exposure may itself be spatially cor-
related. For example, if X(s) is a Gaussian process,
then X ∼ N (0, σ 2

x R(θx)), with parameters analogous
to those for g. To demonstrate processes operating at
different spatial scales, Figure 1 shows simulated spa-
tial surfaces as one varies the spatial range parameter,
θ , in a Gaussian process model.

The spatial statistics literature assumes that the error,
ei in (1), is independent of the covariate(s) (Cressie,
1993; Waller and Gotway, 2004), with little or no dis-
cussion of the possibility that the error involves varia-
tion from unmeasured confounders. Henceforth, I will
refer to the errors as residuals because of the com-
mon use of the term “spatial residual” to refer to un-
explained spatial variability. To explore the possibility
of confounding, let’s consider g ≡ βzZ to be induced as
the effect, βz, of an unmeasured variable, Z, on the out-
come. Z = (Z(s1), . . . ,Z(sn))

T may also be spatially

FIG. 1. Gaussian process realizations using the Matérn covariance (see Section 2.2) for three values of θ , with (a) high-frequency, small
(fine)-scale variability when θ = 0.1, (b) moderate scale variability when θ = 0.5, and (c) low-frequency, large-scale variability when
θ = 0.9.
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correlated, for example, Z ∼ N (0, σ 2
z R(θz)), such that

σ 2
z = σ 2

g /β2
z , where θz is again a spatial range parame-

ter. If Z and X are dependent, then Z is an unmea-
sured spatial confounder. Derivation of the marginal
likelihood should be done by integrating over the (un-
known) conditional distribution of Z given X, whereas
the integration leading to (1) ignores the dependence.
Note that if X and Z are considered fixed, then associ-
ation between X and g ≡ βzZ is known as concurvity
(Buja, Hastie and Tibshirani, 1989; Ramsay, Burnett
and Krewski, 2003).

In the applied literature, practitioners often recog-
nize the need to consider residual spatial structure in
the outcome, with language of “control” or “account-
ing” for autocorrelation, and they fit models (such as
kriging or spatial random effects) that implicitly as-
sume independence of the residual and the exposure
(Burnett et al., 2001; Cakmak et al., 2003; Cho, 2003;
Burden et al., 2005; Augustin et al., 2007; Molitor
et al., 2007; Cerdá et al., 2009; Lee, Ferguson and
Mitchell, 2009). With the recent exception of Hodges
and Reich (2010), formal statements of the goals and
properties of fitting such spatial models are generally
absent. However, much of the interest appears to lie
in using the spatial residual structure to try to ac-
count for spatial confounding, with the implicit as-
sumption that such models reduce or eliminate con-
founding bias (e.g., Clayton, Bernardinelli and Mon-
tomoli, 1993; Pope et al., 2002; Cakmak et al., 2003;
Richardson, 2003; Biggeri et al., 2005). One approach
is to explicitly consider the spatial scales involved,
hoping that accounting for variation at a relatively large
spatial scale allows for identification of the parameter
of interest based on exposure heterogeneity at a smaller
spatial scale (e.g., Burnett et al., 2001; Cakmak et al.,
2003; Zeger et al., 2007). This smaller scale variation
may be less prone to confounding in a given applica-
tion. However, this consideration of spatial scale is of-
ten not explicit, and effects of scale on bias reduction,
while sometimes hinted at, have not been developed
formally.

In the analogous context of time series modeling of
air pollution, Dominici, McDermott and Hastie (2004)
attempt to attribute all the temporally correlated vari-
ability in the outcome to the residual term in order
to identify the effect of exposure based on the tem-
porally uncorrelated (and presumably unconfounded)
heterogeneity in the exposure. Dominici, McDermott
and Hastie (2004) provide no guidance in the scenario
that the exposure cannot be decomposed into autocor-
related and uncorrelated components. This issue also

applies to the approach of Lombardía and Sperlich
(2007), who filter out the dependence between fixed
and random effects. In the spatial setting, in which
measurements cannot be made at all locations, ac-
curate estimation of the uncorrelated component, if
such a component even exists, is rare: consider at-
mospheric phenomena such as temperature and air pol-
lution. A common situation in which fine-scale het-
erogeneity is not resolved involves prediction of spa-
tially varying exposure values using averages of nearby
measurements or spatial smoothing techniques. Hence,
I seek to address the problem when all of the measured
components of variation in exposure are spatial.

In this paper I address estimation in simple regres-
sion models with spatial residual structure. I focus
on the properties of penalized models, using a sim-
ple mixed model fit by GLS, equivalent to universal
kriging, to analyze the effects of the spatially corre-
lated residual structure on fixed effect estimators. Sec-
tion 2 focuses on bias from spatial confounding. I re-
port analytic results when the full covariance structure
is known and supporting simulations when the covari-
ance (or the amount of smoothing in penalized spline
models) is estimated from the data. I assess the use of
sensitivity analysis approaches based on spline models
that explicitly consider the bias-variance tradeoff in-
volved in choosing the spatial scale at which to model
the residual variation. Section 3 focuses on precision
of estimators when there is no association between ex-
posure and residual (no spatial confounding). I close
with a case study of the effects of air pollution on birth-
weight (Section 4).

2. SPATIAL CONFOUNDING AND BIAS

2.1 Identifiability

A key consideration in the basic model (2) is iden-
tifiability of βx and g(s). A closely-related question is
how the estimation procedure attributes variability be-
tween the exposure and the spatial residual term (the
random effects). In the simple linear model, attribut-
ion of variability to the covariates rather than the error
term is favored because this allows the estimate of the
error variance to decrease, with the normalizing con-
stant of the likelihood favoring smaller error variance.
In the spatial model, if the spatial term, g, is uncon-
strained, then βxX and g are not identifiable in the like-
lihood: one could remove the covariate from the model
and redefine g∗(s) ≡ βxX(s) + g(s) with no change
in the likelihood. Identifiability comes through con-
straints on g, either by (1) penalizing lack of smooth-
ness in g(s), (2) considering g to be a random effects



110 C. J. PACIOREK

term, or (3) having a prior on g. These approaches
give higher penalized likelihood, marginal likelihood
or posterior density, respectively, when variability is
attributed to the unpenalized fixed effects term rather
than to the spatial term. In the spatial confounding con-
text this dynamic causes bias in estimation of βx , for
example, as seen in the simulations of Peng, Dominici
and Louis (2006). An alternative constraint is to rep-
resent g in a reduced dimension basis, say, as a regres-
sion spline. In this case the model is identifiable if there
is a component of variability in X that cannot be ex-
plained by the spline structure, that is, if X is not per-
fectly collinear with the columns of the chosen basis
matrix.

2.2 Analytic Framework

To consider bias from unmeasured spatially vary-
ing confounders, take the following model as the data-
generating mechanism,

Yi ∼ N
(
β0 + βxX(si ) + βzZ(si), τ

2)
,(4)

with the notation as in Section 1. For each location,
s, suppose the correlation of X(s) and Z(s) over re-
peated sampling at the location is ρ �= 0, so that Z is
a confounder. Suppose further that Z is not observed
and that one models the residual spatial structure in the
outcome through spatially correlated random effects,
g ∼ N (0, σ 2

g R(θg)) as in (2). Finally, suppose that one
ignores the correlation between g ≡ βzZ and X and
integrates over the marginal distribution for g, giving
(3). Equivalently, Yi = β0 +βxX(si )+ε∗

i . The induced
correlation between X and ε∗ violates the usual regres-
sion assumption that the error is independent of the co-
variate, leading to bias. From the random effects per-
spective, we have (incorrectly) assumed that the ran-
dom effects are independent of the covariate, a key
(but often unstated) assumption of mixed effects mod-
els (Breslow and Clayton, 1993; Diggle et al., 2002,
page 170).

The treatment of X(s) and Z(s) as random naturally
induces spatial structure. However, in a given data set
the most plausible repeated sampling framework may
suggest that X and Z reflect spatial structure that does
not arise from a stochastic data generating process.
Rather, one might consider X(s) and Z(s) to be fixed
unknown functions, particularly when X and Z vary
at large scales, which mimics the partial spline/partial
linear setting. This also is consistent with the treatment
of large-scale variation in the mean term in traditional
kriging. Consider the case when there is concurvity be-
tween the two fixed functions, reflected in a nonzero

empirical correlation, ρ̂, between X and g ≡ βzZ as
calculated over the collection of locations (e.g., the
concurvity in the simulations of Ramsay, Burnett and
Krewski, 2003; He, Mazumdar and Arena, 2006; Peng,
Dominici and Louis, 2006). In the partial linear/partial
spline setting it is well known that such association
between the exposure and the nonparametric smooth
term causes bias (Rice, 1986, Equation 28; Speckman,
1988). In any real data set, the orthogonality needed for
ρ̂ ≈ 0 seems particularly unlikely if both X and Z vary
at large scale relative to the size of the domain (though
ρ̂ < 0 may be as much a possibility as ρ̂ > 0).

The stochastic generative model is still useful under
this framework of fixed functions because realizations
of X(s) and Z(s) give plausible values for X and Z that
could arise in real applications for which there is no
reasonable stochastic mechanism. I choose to treat X
and Z stochastically, and I use ρ to quantify explicitly
the strength of association between the residual spatial
variation and the exposure. This approach allows for
some simple, useful analytic results and is further jus-
tified in that the variation that an unmeasured Z induces
in Y is necessarily treated stochastically as part of the
residual in actual applications. In some cases I report
results conditional on X, and in others I also average
over the stochastic variability in X and over variability
in the spatial locations of the observations.

Since Z represents an unmeasured confounder, I as-
sess the inferential properties of fitting a regression
model by maximizing the marginal likelihood (3) using
GLS, thereby ignoring correlation between the resid-
ual and the exposure. I assess bias as a function of the
spatial scales of X(s) and Z(s), which I suppose to be
generated as Gaussian processes with Matérn spatial
correlation function

R(d; θ, ν) = 1

	(ν)2ν−1

(
2
√

νd

θ

)ν

Kν

(
2
√

νd

θ

)
,

where d is the Euclidean distance between two loca-
tions, θ is the spatial range parameter, and Kν(·) is the
modified Bessel function of the second kind, whose
order is the smoothness parameter, ν. I fix ν = 2,
which gives continuous and differentiable Gaussian
process realizations. This reflects an assumption of
some smoothness in the spatial processes under con-
sideration, but I also consider results based on an
exponential correlation function (i.e., ν = 0.5). The
model (3) is equivalent to both a mixed model and a
universal kriging model if one knows the variance and
spatial dependence parameters. Furthermore, given the
extensive use of penalized splines in applications, and
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the connection between penalized splines and mixed
models (Ruppert, Wand and Carroll, 2003), I also con-
sider the use of a penalized spline to represent g(s).

In the nonspatial context, one would generally try to
adjust for confounding by including relevant covariates
as fixed effects; in the spatial context one could include
spatial regression spline terms. The basic question that
I explore in the remainder of Section 2 is the extent
to which inclusion of a spatial random effect term or a
penalized spline can adjust for unmeasured spatial con-
founding, given that these approaches do not involve
a projection in the way that a regression spline does.
The random effects and penalized spline approaches
do estimate the residual spatial variation based on a
bias-variance tradeoff (e.g., Claeskens, Krivobokova
and Opsomer, 2009), and the penalized spline is a re-
gression spline in the limit as the penalty goes to zero.
So it seems plausible that these approaches may reduce
bias by at least partially adjusting for the unmeasured
spatial confounder. I will show that the spatial scales
involved are critical.

2.3 Bias with Known Parameters

This section considers bias when I suppose that the
variance parameters are known and only the regression
coefficients, β0 and βx , are unknown. The initial re-
sults concern the situation when the exposure, X, and
the unmeasured confounder, Z, vary at the same spa-
tial scale. I then assess what happens when X varies at
two scales and one is the same scale as the single-scale
confounder. Finally, I consider the possibility that there
is additional variability in the outcome at another scale,
but uncorrelated with X.

To start, suppose that X(s) and Z(s) share the same
spatial correlation range, θ , but may have different
marginal variances, namely, X ∼ N (μx1, σ 2

x R(θ)) and
Z ∼ N (μz1, σ 2

z R(θ)) and Cov(X,Z) = ρσxσzR(θ).
Straightforward conditional normal calculations give

E(β̂x |X) = βx + [(X T �−1X )−1X T �−1E(Z|X)βz]2

= βx +
⎡
⎢⎣(X T �−1X )−1X T �−1X

(5)

·
⎛
⎜⎝

μz − ρ
σz

σx

βzμx

ρ
σz

σx

βz

⎞
⎟⎠

⎤
⎥⎦

2

= βx + ρ
σz

σx

βz,

where X = [1 X], [·]2 indicates the second element
of the 2-vector, and � = σ 2

g R(θ) + τ 2I. The result-
ing bias, ρ

σz

σx
βz, is the same as if X and Z were not

spatially structured and is also equal to the bias un-
der OLS. This demonstrates that we have not adjusted
for confounding at all by fitting the model that in-
cludes spatial structure. As with OLS, the model at-
tributes as much of the variability as possible to the
exposure, rather than to the spatially correlated resid-
ual term, including all of the variability in Z that is
related to X. If ρ = 0, the bias is zero in (5). This oc-
curs because we average over stochastic variability in
Z, so any nonorthogonality between X and Z in indi-
vidual realizations contributes to variance rather than
bias. This contrasts with the bias terms in Rice (1986)
and Dominici, McDermott and Hastie (2004), which
are caused by nonorthogonality of the fine-scale vari-
ation in X and the nonparametric component of the
model, since neither is treated stochastically.

Next, I keep the same data-generating and model-
fitting framework, but explore the situation in which
the exposure varies at two scales. I suppose that
X(s) is a multi-scale process and introduce corre-
lation between Z(s) and one of the components of
X(s). Let X = Xc + Xu be decomposed into a com-
ponent, Xc, that is at the same scale as the con-
founder, Z, and a component at a different scale, Xu,
which is independent of Xc and Z. Specifically, take
Cov(X) = σ 2

c R(θc)+σ 2
u R(θu), Cov(Z) = σ 2

z R(θc) and
Cov(X,Z) = Cov(Xc,Z) = ρσcσzR(θc). After some
straightforward algebra and matrix manipulations, we
have

E(β̂x |X) = βx + [(X T �∗−1X )−1X T

· �∗−1E(Z|X)βz]2(6)

= βx + c(X)ρ
σz

σc

βz,

where

k(X) ≡ [(X T �∗−1X )−1X T �∗−1M(X − μx1)]2pc,

�∗ ≡ β2
z σ 2

z R(θc) + τ 2I
β2

z σ 2
z + τ 2 = (

(1 − pz)I + pzR(θc)
)
,

M ≡ (
pcI + (1 − pc)R(θu)R(θc)

−1)−1

and pz ≡ β2
z σ 2

z /(β2
z σ 2

z + τ 2). We see that the bias term
is proportional to that in the single-scale setting, mul-
tiplied by an additional term, k(X), that modulates the
bias. k(X) necessarily includes an extra multiplicative
factor, pc ≡ σ 2

c /(σ 2
c + σ 2

u ), that quantifies the mag-
nitude of the confounded component of X relative to
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the total variation in X. While the term k(X) is com-
plicated, we can explore its dependence on the spatial
scales (θc and θu) and the magnitudes of the variance
component ratios (pz and pc) to see how the bias com-
pares to the same-scale setting. In the following results
I average over the variability in X.

For a grid of n = 100 locations on the unit square,
Figure 2 shows the average of k(X) over 1000 simu-
lations as a function of θc and θu, for combinations of
pc and pz, where the empirical average approximates
the expectation with respect to the distribution of X.
There is a simple pattern to the bias modification rela-
tive to the same-scale setting. For θc = θu (the diagonal
elements on the 1 : 1 line), we do not need simulation:
EXk(X) = pc, which is equivalent to the same-scale
result (5), after accounting for the proportion of vari-
ability in X that is confounded, pc. Note that if one
estimates the analogous bias to (6) for OLS applied
to spatial data, it is nearly constant regardless of the
spatial scales [ÊXk(X) ≈ pc; not shown]. Only when

θu < θc, and particularly when θu 
 θc, do we see less
bias than in the same-scale setting, with clear poten-
tial for bias reduction from modeling the residual spa-
tial variation in the outcome (recall Figure 1 to inter-
pret the values of θ ). Above the diagonal, for θu > θc,
ÊXk(X) > pc, indicating more bias when the scale of
confounding is smaller than the scale of unconfounded
variability. This situation may be of limited practical
interest, because it’s not clear that there are real ap-
plications in which the unconfounded variation in the
exposure occurs at larger scales than the confounded
variation. However, it does show that there are circum-
stances in which bias is larger than under OLS, a point
also made in Hodges and Reich (2010). Note that the
patterns in Figure 2 are qualitatively similar regardless
of the values of pc and pz. Quantitatively, for larger
values of pc, corresponding to a larger proportion of
the variation in the exposure being confounded varia-
tion, bias is larger. For larger values of pz, correspond-
ing to a larger proportion of the residual variation being

FIG. 2. The expected value of the bias modification term, ÊXk(X), as a function of the spatial scales of confounded (θc) and unconfounded
(θu) variability for a selection of values of pz and pc . k(X) quantifies the amount of bias relative to the bias in the same-scale setting or with
nonspatial confounding (ρσzβz/σx ). Along the diagonal (θc = θu) EXk(X) = pc , which is equivalent to no bias reduction. Values near zero
indicate substantial bias reduction.
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the contribution of the confounder, the effects of the
spatial scales are more distinct. The results highlight
that inclusion of the spatial residual does not give unbi-
ased estimates and bias is substantial in many scenar-
ios even when the covariance parameters are known.
Results are very similar when I sample locations uni-
formly on the unit square or in a clustered fashion (us-
ing a Poisson cluster process).

The results in Figure 2 correct for the complica-
tion that the sample variance of spatial process values
(calculated over the domain) decreases as θ increases.
This occurs because the sample variance over the do-
main in a single spatial replicate underestimates pop-
ulation variability; see Figure 1(b)–(c) for examples.
I want to have fixed ratios of average sample vari-
ances, pz ≡ β2

z EZs2
z /(β2

z EZs2
z + τ 2) ∈ {0.1,0.5,0.9}

and pc ≡ EXcs
2
c /(EXcs

2
c + EXus

2
u) ∈ {0.1,0.5,0.9}, for

all values of θc and θu, thereby avoiding the intro-
duction of artifacts caused solely by having ratios
of sample variances change with the spatial ranges.
Here s2

z , s2
c and s2

u are the sample variances of Z,

Xc and Xu, respectively. To achieve this, I generate
Xc ∼ N (0, d2

c σ 2
c R(θc)) and Xu ∼ N (0, d2

uσ 2
u R(θu))

and modify the calculation of k(X) in (6) accordingly.
dc and du are functions of θc and θu, respectively, that
are chosen such that EXcs

2
c (θc) ≈ σ 2

c and EXus
2
u(θu) ≈

σ 2
u , where s2

c (θc) is the sample variance of Xc for a
given realization under θc and analogously for s2

u(θu).
The expectations are taken with respect to the distrib-
ution of the subscripted random vector. These manipu-
lations allow me to present bias for scenarios that cor-
respond to specific ratios of average sample variability
of Xc, Xu, Z and ε over the spatial domain.

To have only a single scale of residual spatial vari-
ability is not very realistic. Therefore, I carried out an
additional simulation study with residual spatial vari-
ability in the outcome that is independent of the ex-
posure and at a smaller scale than the scale of Z(s).
I suppose that the data-generating model is

Y = β01 + βxX + βzZ + h + ε,(7)

and that h ∼ N (0, σ 2
h R(θu)), independent of X, Z and

ε, with all of the other details as before. Under this
data-generating model and again supposing that all
variance parameters are known, simulation estimates
of EXk(X) indicate that bias is somewhat smaller than
that seen in Figure 2 for θc > θu and somewhat larger
for θc < θu (not shown). Note that if the additional
small-scale variability is correlated with the exposure,
then one is back in the situation of having common
scales for the exposure and the confounder, which is
considered at the beginning of this section.

2.4 Bias and Precision with Estimated Parameters

To generalize the results of Section 2.3, which sup-
posed known variance and spatial dependence parame-
ters, I set up a simulation study to assess the impact
of estimating those parameters. In addition to maxi-
mum likelihood estimation of a mixed effects/kriging
model based on the marginal likelihood (3), I consider
the use of penalized likelihood to fit the model (2)
with a penalized thin plate spline spatial term for g(s).
I implemented the penalized spline using gam() in
R, which uses generalized cross-validation (GCV) for
data-driven smoothing parameter estimation (Wood,
2006). For the core simulations, I set the following pa-
rameter values, σ 2

u = σ 2
c = β2

z σ 2
z = 1, τ 2 = 4, βx =

0.5, ρ = 0.3, and sample 100 spatial locations uni-
formly from the unit square. For a range of values of θc

and θu, I simulate 2000 data sets for each pair {θc, θu}.
For each simulated data set, I generate new spatial lo-
cations and new values of X and Z; I then generate Y
using (4). Again we have to account for the reduced
empirical spatial variability as θ increases; these simu-
lations have effective values of pc = 0.5 and pz = 0.2.

With regard to bias, the simulation results for the
mixed/kriging model [Figure 3(b)] reasonably match
the theoretical values with known variance parameters
[Figure 3(a)]. However, when θu 
 θc, the bias is gen-
erally larger than with known variance parameters, be-
cause the fitted model sometimes estimates little or no
spatial structure in the residuals, pushing bias results
toward the larger bias seen under OLS [Figure 3(d)].
Results for the penalized spline model [Figure 3(c)]
show smaller bias for θu < θc than the mixed model,
presumably caused by the difference between estimat-
ing the amount of smoothing by GCV compared to
maximum likelihood. In either case, spatial scales are
critical, and bias is smaller than with OLS only when
the scale of confounding is larger than the scale of the
unconfounded variability. Additional simulations indi-
cate that as the correlation of confounder and exposure
increases, or the magnitude of variation in the con-
founder increases, or the effect size decreases, relative
bias increases (not shown). In such scenarios, substan-
tial bias reduction occurs only for very small spatial
scales in the exposure and large scales of confounding.

Figure 4 compares the mixed model with the pe-
nalized spline in the context of a bias-variance trade-
off. There is a substantial bias-variance tradeoff, with
the smaller bias of the penalized spline model (for
θc < θu) trading off for increased variance. The result
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FIG. 3. Relative bias, (Ê(β̂x) − βx)/βx , as a function of the spatial scales of confounded (θc) and unconfounded variability (θu): (a) the-
oretical bias for the mixed/kriging model with known variance parameters, and (b), (c), (d) simulated bias with estimated variance/penalty
parameters for (b) the mixed model, (c) a penalized spline model, and (d) OLS.

is increased mean squared error (MSE) in β̂x , except
when θu is very small. Both model variance estimates
(third column) understate the variability in the coef-
ficient estimates (second column), with particular un-
derestimation of uncertainty and low coverage for the
mixed/kriging model, and with lower coverage as one

moves away from the region of θc � θu. Of course the
bias causes much of the poor coverage.

Fitting the mixed/kriging model by restricted max-
imum likelihood (REML) rather than maximum like-
lihood produces moderate improvement in coverage,
with the average variance estimate more similar to the

FIG. 4. Simulation results for (top row) mixed model/kriging fit and (bottom row) penalized spline model. Each plot shows results as a
function of the spatial scales of the confounded (θc) and unconfounded variability (θu), with MSE (first column), variance of the estimates
over the simulations (second column), average squared standard error (third column) and coverage (fourth column).
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variance of the estimated coefficients. Using ν = 0.5
(i.e., an exponential spatial correlation function) in the
fitting rather than the true ν = 2 has little effect on
results. However, when I generate the unconfounded
variability, Xu, based on ν = 0.5, bias is substantially
smaller than the core results (particularly note that
there is reduced bias relative to OLS when θc = θu), ap-
parently because the nondifferentiable sample paths of
processes with exponential covariance play the role of
very fine-scale, unconfounded variability. There is lit-
tle change in results when using spatial locations sim-
ulated using a Poisson cluster process with an average
of seven children per cluster and cluster kernel standard
deviation of 0.03. Finally, simulations with ρ = 0, that
is, no confounding, indicate no bias for either model,
as expected.

Our bias results when ρ �= 0 are analogous to the
bias seen with penalized spline models in He, Mazum-
dar and Arena (2006) and Peng, Dominici and Louis
(2006). There, concurvity (i.e., ρ̂ �= 0) between the
smooth temporal term (analogous to our spatial resid-
ual) and the exposure emerged from the fixed basis
coefficients chosen based on empirical data examples
(R. Peng, personal communication; He, Mazumdar and
Arena, 2006). Similar results are seen in the spatial set-
tings of Ramsay, Burnett and Krewski (2003).

The presence of small-scale independent variation in
the residual (7) reduces bias for θu < θc (not shown),
relative to the results presented above. This occurs
through an increase in the number of degrees of free-
dom estimated from the data to capture residual vari-
ability, that is, undersmoothing with respect to the vari-
ation at the θc scale, analogous to undersmoothing
in the partial spline setting (Rice, 1986; Speckman,
1988). This scenario seems quite likely in applications:
if there is large-scale residual spatial structure, there is
likely to be finer-scale structure as well. Thus, analy-
ses that attempt to best fit the data may in the process
reduce bias from confounding at the larger scales.

2.5 The Bias-Variance Tradeoff

We have seen that even when all covariance parame-
ters are known and the scale of confounding is much
larger than the scale of unconfounded variability in X,
bias remains, albeit at a much reduced level. In prin-
ciple, if the structure at the confounded scale could
be exactly fit using a set of basis functions, such as
a regression spline (e.g., Dominici, McDermott and
Hastie, 2004), then the exposure effect estimate would
be unbiased, as in any multiple regression. The par-
tial residual kernel smoothing approach of Speckman

(1988) reduces bias in a similar fashion, albeit with-
out using a projection, through the technique of twic-
ing. However, in a real application, one has to choose
the basis functions, and if the basis functions do not
fully explain the confounded, large-scale variability,
even with a basis of seemingly sufficient dimension,
this will induce a bias. One could instead consider a
penalized spline approach with penalty parameter cho-
sen in advance to give the desired effective degrees of
freedom (e.d.f.). For fixed e.d.f., since the penalized
spline smoother is not a true projection (Speckman,
1988; Peng, Dominici and Louis, 2006), one would ex-
pect the penalized spline approach to have more bias
than the regression spline approach. Heuristically, bias
in this approach occurs because the estimated spatial
term does not fully explain the confounded component
of the variability in the outcome, causing a bias anal-
ogous to that seen in the partial spline setting (Rice,
1986; Speckman, 1988). However, we would expect
the penalized spline to be less sensitive to the exact
form of the basis functions and number and placement
of knots, as is seen in the example (Section 4). Further-
more, one can always undersmooth to reduce the bias,
following the recommendation in the partial spline lit-
erature (Rice, 1986; Speckman, 1988). Thus, using a
penalized spline seems reasonable, albeit without the
clean interpretation of a projection. I show below that
simulations comparing regression spline and penalized
spline models support these theoretical results from the
literature, in the spatial context considered here, with
the regression spline having reduced bias and increased
variance relative to penalized modeling.

The primary issue in an application is choosing the
amount of smoothing to reduce bias, since inference
about βx is the goal rather than best fitting the data.
Data-driven smoothing might reduce bias (if there is
small-scale residual correlation) or might have little ef-
fect on bias (if the data suggest only large-scale resid-
ual correlation). Thus, the reduction in bias will de-
pend on the scales involved and the actual amount
of smoothing done, and the analysis will reveal little
about the sensitivity of estimation to scale. Instead,
one could explicitly assess the bias-variance tradeoff
by varying the amount of smoothing and assessing the
sensitivity of the exposure effect inference. One ap-
proach is a spatial analogue to the sensitivity analysis
approaches of Peng, Dominici and Louis (2006): fit a
model with spatial basis functions and vary the e.d.f.
(e.g., Zeger et al., 2007). Plotting β̂x and uncertainty
intervals as a function of e.d.f. (or some other metric)
provides an assessment of the robustness of results to
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potential spatial confounding at various scales. If one
is concerned about confounding at a particular scale,
then one can report the results for an e.d.f. that would
undersmooth with respect to that scale to reduce bias,
accepting the tradeoff of increased uncertainty.

Motivated by this analysis strategy, I set up a simu-
lation under the settings of Section 2.4, using a regres-
sion spline (i.e., unpenalized fixed effects) and vary-
ing the e.d.f. by changing the dimension of the basis in
gam() in R. Figure 5(a) shows relative bias as a func-
tion of the spatial scales involved. As before, I focus on
the results below the 1 : 1 diagonal (θc = θu), as this is
the scenario of practical interest. By choosing a large
number of e.d.f., one can decrease bias more effec-

tively than when estimating the amount of smoothing
from the data [i.e., Figure 3(c)]. However, with mod-
erate and large scale variability, the variance of the es-
timates in this fixed effects model increases dramati-
cally [Figure 5(b)]. This causes a concordant increase
in the MSE (not shown), highlighting the bias-variance
tradeoff. In contrast, using a penalized spline with fixed
e.d.f. [fixing the smoothing parameter in gam() in R]
shows much more stable results. As expected, for a
given e.d.f. bias is not reduced as much as with a re-
gression spline [Figure 5(a)], but there is much less
variability [Figure 5(b)].

A diagnostic approach to understanding whether the
residual may include variation from an unmeasured

FIG. 5. Simulation results for relative bias (a) and variance (b) of β̂x as a function of the spatial scales of confounded (θc) and uncon-
founded (θu) variability for regression splines (top rows) and penalized splines (bottom rows) with 5, 15 and 30 e.d.f., where the e.d.f. are
pre-specified, rather than estimated based on the data.
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confounder is to assess the correlation between the
residual and the exposure. Not knowing βx , one might
use a variety of plausible values of βx to estimate g
and then calculate the correlation with X (and poten-
tially with filtered versions of X that exclude small-
scale variation).

2.6 Accounting for Residual Spatial Correlation

If one accounts for large-scale variation as a means
of reducing bias, there may still be small-scale residual
variation, such as fine-scale correlation in health out-
comes related to residential sorting. As I have shown,
one can reduce potential confounding bias from this
fine-scale variation through explicit spatial modeling
only if there is variability in the exposure at an even
smaller scale. If there is not, then one is effectively as-
suming that the fine-scale variation is uncorrelated with
the exposure. Given this assumption, one may need to
account for the fine-scale residual spatial variation so
that uncertainty estimation for βx is not compromised
(but note the results of Section 3.3). One possibility
would be to use an analysis robust to misspecification
of the residual variance, for example, using an estimat-
ing equation with uncertainty based on the sandwich
estimator, with regression spline terms in the mean to
account for large-scale spatial confounding bias. Al-
ternatively, one could fit a penalized model with the
amount of smoothing determined from the data. This
has two effects. First, it naturally accounts for the effect
of the spatial structure on uncertainty estimation. Sec-
ond, in the presence of small-scale residual variabil-
ity, the model will naturally undersmooth with respect
to large-scale variability that may cause confounding,
thereby reducing bias from confounding at the larger
scale, as discussed previously.

3. SPATIALLY CORRELATED RESIDUALS
AND PRECISION

In this section I suppose that the residual and the
exposure are independent (ρ = 0 in the framework of
Section 2), which results in unbiased estimation of βx .
I consider effects of spatial scale on the following ques-
tions about efficiency of estimators for βx (henceforth
simply β) and quantification of uncertainty:

(1) Given a fixed amount of residual variation, how is
efficiency affected by the proportion of that varia-
tion that is spatial?

(2) What is the magnitude of the improvement in effi-
ciency when accounting for residual spatial varia-
tion, relative to OLS?

(3) If one uses the naive estimator for the variance of
the OLS estimator, β̂OLS, what is the magnitude of

the error in uncertainty estimation compared to the
correct variance estimator for β̂OLS?

The first question does not appear to have been raised
in the literature. With regard to the second, while we
know that GLS is the most efficient estimator when
the residuals are correlated, here I investigate the mag-
nitude of this efficiency advantage as a function of
the spatial scales involved. Regarding the third, the
conventional wisdom in the statistical and applied lit-
erature appears to be that not accounting for spatial
structure leads to underestimation of uncertainty (e.g.,
Legendre, 1993; Burnett et al., 2001; Schabenberger
and Gotway, 2005, page 324). However, I have not
seen a formal quantification of this underestimation for
a regression coefficient, in contrast to our understand-
ing of the potentially severe underestimation of uncer-
tainty for the mean of a spatial process (Cressie, 1993,
Section 1.3; Schabenberger and Gotway, 2005, Sec-
tion 1.5).

Note that there are three variance estimators (i.e., es-
timators for the sampling variability of the estimated
regression coefficient) under consideration here: the
true GLS variance estimator, and the true and naive
OLS variance estimators. When ρ = 0, OLS is unbi-
ased, so it makes sense to consider OLS for estimation,
provided we adjust the usual OLS variance estimator
to account for the residual spatial correlation. While
actual applications will likely involve more compli-
cated modeling, consideration of these questions in this
simple setting, and with known variance components,
helps to understand the basic issues.

3.1 Relationship Between Spatial Scale
and GLS Efficiency

Given a fixed amount of residual variation, how is
efficiency affected by the proportion of variation that
is spatial? I quantify efficiency in terms of precision
rather than variance, as this allows for closed form
derivations.

LEMMA 3.1. Consider the model (3) and suppose
that all parameters are known except β0 and β ≡ βx .
The expectation of the precision of β̂GLS, with respect
to the sampling distribution of X, is

EX(Var(β̂GLS)−1)

= σ 2
x

τ 2 + σ 2
g

(
tr{�̃−1R(θx)}(8)

− 1T �̃−1R(θx)�̃
−11

1T �̃−11

)
,
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where �̃ ≡ (1 − pg)I + pgR(θg), pg ≡ σ 2
g /(σ 2

g + τ 2),
and the remaining notation follows that in previous
sections. See the Appendix for the proof.

Note that the term in parentheses is an effective sam-
ple size, analogous to n − 1 in the nonspatial problem.
Here the adjustment is for spatial structure in residual
and exposure, with the second component in the paren-
theses analogous to the degree of freedom lost for esti-
mating a mean.

Figure 6(a) shows Monte Carlo estimates of the ex-
pected precision as a function of θx and θg , averag-
ing (8) over 500 sets of n = 100 locations simulated
uniformly on the unit square. I report the expected
precision divided by a baseline of σ 2

x (n − 1)/(τ 2 +
σ 2

g ), which is the expected precision in the nonspa-
tial setting, supposing that the total residual variation,
τ 2 + σ 2

g , remains constant. Compared to the nonspa-
tial setting, lower precision occurs unless the exposure
varies at small spatial scale. When the exposure varies

FIG. 6. Efficiency and precision results for three values of pg = σ 2
g /(σ 2

g + τ2) (columns) as a function of the spatial scales of the residual
(θg) and the exposure (θx ). (a) The log of the expected precision of the GLS estimator (8), relative to the expected precision in the nonspatial
setting with equivalent total residual variation. (b) Relative efficiency of GLS and OLS estimation, quantified as the log of the expected ratio
of GLS to OLS precision. (c) The log of the expected ratio of the correct and naive OLS variance estimators (9). The results are based on
500 simulations for each set of parameter values, with a Matérn correlation with ν = 2 and 100 locations sampled uniformly over the unit
square.
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at small spatial scale and the residual at larger spatial
scale, precision can be substantially greater than in the
nonspatial setting. The model is able to account for part
of the residual variance through the spatial structure, as
if the spatial structure were an additional covariate to
which variation in the response is attributed. GLS im-
plicitly estimates the process, g in (2), that gives rise to
the marginalized model (3). This reduces the remain-
ing “unexplained” residual variability and thereby im-
proves efficiency relative to having independent errors
but equivalent overall residual variability. In contrast,
when X varies only at large spatial scales, then effi-
ciency decreases because of difficulty in distinguish-
ing βX(s) from g(s). Results are similar using points
on a regular grid or clustered based on a Poisson cluster
process.

3.2 Efficiency of GLS and OLS Estimators

Here I consider how spatial scale affects the relative
efficiency of spatial and nonspatial estimators, com-
paring the precisions of the OLS and GLS estimators.
Since the true OLS variance, [(X T X )−1(X T (τ 2I +
σ 2

g Rg)X )(X T X )−1]2,2, is a complicated function, it
is difficult to derive closed form expressions for effi-
ciency relative to the GLS estimator. Instead I conduct
a small simulation study. For a regular grid of values of
θx and θg , I carry out 500 simulations for each pair of
values, with n = 100 observations whose spatial loca-
tions are drawn uniformly over the unit square domain.
Note that I consider the ratio of the GLS precision to
the OLS precision, so the values of σ 2

x and σ 2
g + τ 2

cancel out of the ratio and do not affect the results.
Figure 6(b) shows the Monte Carlo estimates of the

expected relative precision, as a function of the spa-
tial scales, θg and θx , and the proportion of the resid-
ual variability that is spatial. When little of the residual
variability is spatial (pg = 0.1), there is little gain in
precision, as expected. When more is spatial, the gains
in precision are small when g varies at a small scale,
but substantial when g varies at a large scale. Unfor-
tunately, this is also precisely the case in which one
would be concerned about spatial confounding. If we
suppose that the large-scale structure in the residual
has been controlled for in an effort to reduce the poten-
tial for bias, then with the remaining residual variabil-
ity being fine scale, there is limited gain in precision
regardless of the spatial scale of the exposure. With
locations on a regular grid, the gains in precision are
slightly less for small values of θg , while with Poisson
cluster process sampling, the gains are somewhat larger
for small values of θg . See also Dow, Burton and White

(1982) for similar simulation results when a Markov
random field structure induces the correlation.

3.3 Underestimation of Uncertainty by the Naive
OLS Variance Estimator

Applied analyses often ignore residual spatial cor-
relation, raising the question of how strongly uncer-
tainty estimates are affected. One can express the ra-
tio of the true OLS variance to the incorrect naive
OLS variance as follows. First define W ≡ (X− X̄1)/s

where s2 ≡ 1
n

∑
(Xi − X̄)2. After expressing β̂x =

[(X T X )−1X T Y]2 = (X̃T X̃)−1X̃T Y where X̃ = X −
X̄1, we have

Vartrue(β̂x)

Varnaive(β̂x)
= (σ 2

g + τ 2)−1(X̃T X̃)

(σ 2
g + τ 2)−1(X̃T X̃)(X̃T 
̃X̃)−1X̃T X̃

= X̃T �̃X̃

X̃T X̃
= 1

n
WT �̃W.

Averaging over the sampling distribution of X, we have

EX

(
1

n
WT �̃W

)
= 1

n
tr(�̃ Cov(W)).(9)

So for �̃ ≈ I or Cov(W) ≈ I, that is, when either θg

or θx is close to zero, we expect the ratio to be near
one. Note also that with spatial correlation functions
that are nonnegative, the only negative contribution to
the ratio can be from negative covariances induced by
standardizing X. Such negative covariances should di-
minish as the sample size increases, so we expect the
ratio to generally be no smaller than one, indicating
that the naive variance does underestimate uncertainty.
Finally, the largest values of the ratio would occur with
large positive correlations in corresponding elements
of �̃ and Cov(W), which is to be expected when both
g and X show large-scale variation.

Figure 6(c) supports these heuristic results, showing
the average ratio of variances in simulations, where the
simulations are conducted as in Section 3.2. The ra-
tio is close to one when either of the spatial terms has
fine-scale variability and far from one when both have
large-scale behavior. This result is similar to that of
Bivand (1980) for inference about a correlation coef-
ficient and to (Johnston and DiNardo, 1997, page 178)
under serial autocorrelation in a regression setting. As
expected, when the proportion of residual variability is
smaller (moving from the bottom left to bottom right
panels), the expected ratio gets closer to one. This in-
dicates that when nonspatial variation dominates the
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residual and the spatial structure in the residual or ex-
posure is not too large in scale, the naive variance es-
timator may be reasonable. A lack of large-scale resid-
ual structure might result from having accounted for
large-scale variation in attempting to reduce spatial
confounding bias. Results with gridded locations show
ratios slightly closer to one, and with clustered loca-
tions, ratios further from one. Note that the uncertainty
estimate in any given naive analysis may be larger than
when fitting a spatial model because the more sophisti-
cated model both corrects the variance estimate, which
increases the estimated uncertainty, and uses a more ef-
ficient estimator, which decreases the fundamental un-
certainty.

Simple simulations with spatial ranges and sampling
designs specific to an analysis could be easily carried
out for further guidance in a given setting, allowing
one to assess whether ignoring the spatial structure has
substantial impact on uncertainty estimation. Account-
ing for small-scale spatial correlation requires estima-
tion of the spatial structure and is often computation-
ally burdensome, so an assumption of independence
can have an important practical benefit. Of course in
some analyses, any underestimation of variability may
be cause for concern, in which case use of the naive
variance estimator would not be tenable.

4. CASE STUDY: BIRTHWEIGHT AND
AIR POLLUTION

Chronic health effects of ambient air pollution in de-
veloped countries involve small relative risks, but are
of considerable public health importance because of
widespread exposure. Epidemiologic studies attempt
to estimate a small effect from data with high levels
of variability and stronger effects from other covari-
ates, including potential confounders such as socioeco-
nomic status, so spatial confounding bias is of critical
concern.

I reanalyze data on the association between ambi-
ent air pollution (estimates of black carbon, a com-
ponent of particulate matter) and birthweight in east-
ern Massachusetts (Zeka, Melly and Schwartz, 2008;
Gryparis et al., 2009). These analyses found significant
negative effects of traffic proxy variables and black car-
bon, respectively, on birthweight. Gryparis et al. (2009)
used several methods to try to account for effects of
measurement error in the predicted black carbon con-
centrations, which are based on a regression model that
accounts for spatial and temporal structure and key co-
variates.

I follow these analyses in using an extensive set of
covariates to try to account for potential confounding.
I use smooth terms for mother’s age, gestational age
and mother’s cigarette use, to account for nonlineari-
ties, a linear term for census tract income, and categor-
ical variables for the following: presence of a health
condition of the mother, previous preterm birth, previ-
ous large birth, sex of baby, year of birth, index of pre-
natal care and maternal education. The exposure of in-
terest is the estimated nine-month average black carbon
concentration at the geocoded address of the mother,
based on a black carbon prediction model (Gryparis
et al., 2007). Following Gryparis et al. (2009), for
simplicity, I exclude the 13,347 observations with any
missing covariate values, giving 205,713 births.

In Gryparis et al. (2009) we found no evidence of
residual spatial correlation based on a spatial semi-
variogram. Further analysis here indicates that there is
significant residual spatial variation but that nonspatial
variation overwhelms the magnitude of this variation.
Figure 7(a) is a semivariogram showing no evidence
of spatial structure, while a spatial smooth of model
residuals [Figure 7(b)] indicates clear spatial structure.
While individual nonspatial variability among babies
swamps the spatial variation (hence the flat semivar-
iogram), it is large relative to the estimated pollution
effect (note the surface values in the range of −40 to
40, for comparison with effect estimates in Figure 8).
Thus, if the residual spatial variation is caused by spa-
tially varying confounders, it could bias estimation of
the pollution effect.

To include a spatial term in models of birthweight,
I consider a regression spline, an unpenalized ap-
proach, and a penalized spline, both with e.d.f. cho-
sen in advance (see Section 2.5), as well as a penal-
ized spline with data-driven smoothing parameter es-
timation based on GCV, all implemented in gam() in
R, using the thin plate spline basis. Note that the thin
plate regression spline approach implemented in gam()
should minimize sensitivity to knot placement (Wood,
2006).

I first add a spatial term to the model with the full
set of covariates to assess whether some of the esti-
mated effect may be biased by spatial confounding.
Figure 8(a) shows how the estimated effect of black
carbon varies with the e.d.f. and the spatial smoothing
approach. The estimate attenuates somewhat as more
e.d.f. are used to account for the spatial structure. For
the penalized spline, as more than about 10 e.d.f. are
used, the upper confidence limit exceeds zero, and for
larger e.d.f., the upper limit increases further. GCV



SCALE AND SPATIAL REGRESSION ESTIMATORS 121

FIG. 7. (a) Semivariogram of full model residuals, with the first point representing births to mothers living at the same location. (b) Spatial
smooth of residuals with town boundaries in grey. The spatial smooth, with 129 e.d.f. chosen by GCV, is highly significant.

chooses 157 e.d.f., indicating fairly small-scale spa-
tial structure in the data. For context note that with 129
e.d.f. in Figure 7(b) we see spatial features at the scale
of individual towns. While the regression spline ap-
proach implemented here avoids having to choose the
knots, the empirical results are still very sensitive to
e.d.f., in contrast to the stability of the penalized spline
solution as the e.d.f. varies. For both penalized and re-
gression splines, there is a clear bias-variance trade-
off, with increasing variance as the number of e.d.f. in-
creases. However, for this problem with a very large
sample size, the confidence intervals do not increase
drastically, nor is there much difference in the uncer-
tainty between the regression and penalized spline ap-

proaches. The spatial confounding assessment suggests
that while we have somewhat reduced confidence in
the black carbon effect, the effect estimate is reason-
ably stable even when using a spatial term with a large
number of degrees of freedom.

Next I consider what might have happened if most
of the covariates (particularly the ones related to so-
cioeconomic status) were not measured, potentially in-
ducing serious confounding. Figure 8(b) indicates that
without any spatial term in the model, the effect es-
timate is −23.0 with a 95% confidence interval of
(−26.8, −19.2), indicating a much more substantial ef-
fect of black carbon than the fully adjusted model. As
soon as one accounts for spatial structure, even with

FIG. 8. For the model with the full set of covariates (a) and the reduced set of covariates (b), black carbon effect estimates and 95%
confidence intervals based on different specifications for the spatial term in an additive model: black pluses indicate the model with no
spatial term and green dots with the e.d.f. chosen by GCV, while black (regression spline) and red (penalized spline) dots indicate results
when fixing the degrees of freedom at a set of discrete values. The lines through the points and corresponding dashed lines are taken by
connecting the effect estimate and confidence interval bounds for the discrete set.
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a small number of e.d.f., the estimate attenuates, ap-
proaching the fully adjusted estimate, with the upper
confidence limit rising above zero. The reduced model
appears to suffer from serious confounding, with the
estimated pollution effect apparently driven by large-
scale association of pollution and birthweight. The spa-
tial analysis is able to account for much of this apparent
confounding, substituting for a rich set of covariates.

Ideally one would fit a model that accounts for fine-
scale spatial structure to improve one’s confidence in
the uncertainty estimation. However, with 205,713 ob-
servations, this is a computational challenge that I do
not take up here. Given the results in Section 3.3 that
indicate that large-scale structure causes most of the
variance underestimation, one can hope that the uncer-
tainty at the larger values for the spatial e.d.f. in Fig-
ure 8 may reasonably approximate the true uncertainty.

5. DISCUSSION

Considerations of scale are critical in spatial re-
gression problems. Standard spatial regression models,
which use spatial random effects, kriging specifica-
tions or a penalized spline to represent the spatial struc-
ture, are penalized models with inherent bias-variance
tradeoffs in estimating the smooth function. Under un-
measured spatial confounding, the bias carries over
into estimating the coefficient for the exposure of in-
terest, but the degree of bias depends on the spatial
scales involved. Inclusion of a spatial residual term
accounts for spatial correlation in the sense of reduc-
ing bias from unmeasured spatial confounders only
when there is unconfounded variability in the exposure
at a scale smaller than the scale of the confounding.
If the variation in exposure is solely at large scales,
there is little opportunity to reduce spatial confound-
ing bias, but with a component of small-scale exposure
variability, large-scale spatial confounding bias can be
reduced substantially. Accounting for large-scale resid-
ual correlation is also important for improving pre-
cision of regression estimators and for correctly esti-
mating uncertainty. In contrast, when residual correla-
tion occurs at small scales, there is little opportunity
for reducing spatial confounding bias at those scales
or improving regression estimator precision. However,
under the assumption of no small-scale confounding,
fitting such residual structure can reduce bias from
larger scale confounding by causing undersmoothing
with respect to the large-scale structure. While the re-
sults here are limited to the simple setting of linear
regression/additive models with a single covariate and

single unmeasured confounder, I expect that the quali-
tative results and principles hold in more complicated
settings, with no reason to believe that the bias results
would improve in more complicated models.

Sensitivity analyses that show the bias-variance
tradeoff as a function of the scale at which the spa-
tial residual structure is modeled (Peng, Dominici and
Louis, 2006; Zeger et al., 2007) offer one approach
that helps to frame the issue of bias in the context of
the spatial scales involved. In choosing a spline formu-
lation to carry out such an analysis, while a regression
spline has an appealing interpretation and in theory re-
sult in less bias in estimating the effect of interest, a
penalized spline with a fixed effective degrees of free-
dom may give more stable results. Of course the sensi-
tivity analysis approach does not answer the question
of how to get a single estimate of the effect of inter-
est. One might also consider an approach similar to
that of Beelen et al. (2007) and explicitly decompose
the exposure into multiple scales, including exposure
at each scale as a separate covariate and focus causal
interpretation on the effect estimates for the smaller
scales (e.g., Janes, Dominici and Zeger, 2007). Lu and
Zeger (2007) use matching estimators for each pair of
observations and assess how effect estimates vary with
spatial lag between the pairs to assess sensitivity. Note
that estimating equation approaches are not capable
of reducing bias from unmeasured spatial confounding
because the marginal variance is assumed to be unre-
lated to the exposure and variation is not attributed to a
spatial term.

From the econometric perspective, spatial confound-
ing bias might be seen as a type of endogeneity bias,
with exposure the endogenous variable and the uncon-
founded component of exposure, or some proxy for it,
an exogenous variable. Since the unconfounded com-
ponent is not measured directly, some sort of scale de-
composition appears necessary. Standard endogenous
variable techniques such as two-stage least squares and
instrumental variable methods (Johnston and DiNardo,
1997) do not appear directly useful but do share com-
monalities with approaches mentioned above.

Others have noted the identifiability problems in
spatial models, with sensitivity of effect estimates
to inclusion of a spatial residual term when the co-
variates vary spatially (Breslow and Clayton, 1993;
Clayton, Bernardinelli and Montomoli, 1993; Burden
et al., 2005; Lawson, 2006, page 187; Augustin et al.,
2007; Wakefield, 2007). A different methodologic per-
spective than that presented here has been taken by
Reich, Hodges and Zadnik (2006) and Houseman,
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Coull and Shine (2006), who estimate the effect of
exposure, X, by forcing the spatial residual to be or-
thogonal to X, attributing as much variability as possi-
ble to X. This approach makes a very strong assump-
tion of no confounding to avoid overadjustment bias
from accidentally accounting for some of the effect
of the covariate in the residual. Note that the residu-
als and covariates are not orthogonal under GLS esti-
mation (Schabenberger and Gotway, 2005, page 349).
Gustafson and Greenland (2006) confront a similar
problem of modeling systematic residual confound-
ing in a context with identifiability problems, finding
that imposing structure through a prior distribution in
a nonidentified model can help account for a portion
of the confounding, improving bias and precision of
estimators.

Note that measurement error in the exposure is of
critical concern, because reducing bias relies on esti-
mating variability in exposure at scales smaller than
the confounding. In many contexts, measurement er-
ror becomes an increasing concern at small scales
because of limitations in measurement resources. In
contrast, large-scale exposure variation may be well es-
timated using spatial smoothing and regression mod-
els, thereby inducing Berkson-type error through what
is effectively regression calibration (Gryparis et al.,
2009). To the extent to which accounting for bias forces
one to rely on exposure estimates more likely contam-
inated by classical measurement error, one may find
oneself reducing bias from confounding only to in-
crease it from measurement error. To the extent small-
scale variation is affected by Berkson error, one would
increase variance but not incur bias by relying on the
small-scale variation.

Finally note that in many settings one has aggregated
exposure and outcome data, so one has limited ability
to identify effects of exposure based on fine-scale vari-
ation because the aggregation eliminates the fine-scale
variation (e.g., Janes, Dominici and Zeger, 2007). This
suggests that accounting for spatial confounding with
areal data, for which researchers often use standard
conditional auto-regressive models, is likely to be inef-
fective when aggregating over large areal units, which
is consistent with the bias seen in Richardson (2003).
In work concurrent with that presented here, Hodges
and Reich (2010) have investigated bias in the areal
setting under a variety of perspectives on the spatial
random effects, also making the case for the approach
taken in Reich, Hodges and Zadnik (2006).

APPENDIX: PROOF OF LEMMA 3.1

From the definition of the GLS estimator, we have

Var(β̂GLS) = [X T �−1X ]−1
2,2

= 1T �−11

1T �−11XT �−1X − XT �−111T �−1X
.

Using the definitions of �̃ and pg , and taking the recip-
rocal, we have

Prec(β̂GLS) = 1

σ 2
g + τ 2

(
XT �̃−1X

− XT �̃−111T �̃−1X

1T �̃−11

)
.

Conclude by taking the expectation with respect to the
sampling distribution of X, using the expectation of a
quadratic form, and rearranging the matrices inside the
second trace to give a scalar:

EX(Prec(β̂GLS))

= σ 2
x

σ 2
g + τ 2

(
tr(�̃−1R(θx))

− tr(�̃−111T �̃−1R(θx))

1T �̃−11

+ μ2
x1T �̃−11 − μ2

x1T �̃−111T �̃−11

1T �̃−11

)

= σ 2
x

σ 2
g + τ 2

(
tr(�̃−1R(θx)) − 1T �̃−1R(θx)�̃

−11

1T �̃−11

)
.
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