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1. Introduction

Consider the linear regression model Y = Xβ+ε, where Y is a random n-vector
of responses, X is a known n× p matrix with linearly independent columns, β
is an unknown parameter p-vector and ε ∼ N(0, σ2In) where σ2 is an unknown

positive parameter. Let β̂ denote the least squares estimator of β. Also, define
σ̂2 = (Y −Xβ̂)T (Y −Xβ̂)/(n− p).

Suppose that the parameter of interest is θ = aTβ where a is a given p-vector
(a 6= 0). We seek a 1 − α confidence interval for θ. Define the quantile t(m) by
the requirement that P

(
− t(m) ≤ T ≤ t(m)

)
= 1−α for T ∼ tm. Let Θ̂ denote

aT β̂, i.e. the least squares estimator of θ. Also let v11 denote the variance of Θ̂
divided by σ2. The usual 1− α confidence interval for θ is

I =
[
Θ̂− t(m)

√
v11σ̂, Θ̂ + t(m)

√
v11σ̂

]

where m = n− p. Is this confidence interval admissible? The admissibility of a
confidence interval is a much more difficult concept than the admissibility of a
point estimator, since confidence intervals must satisfy a coverage probability
constraint. Also, admissibility of confidence intervals can be defined in either
weak or strong forms (Joshi, [3, 4]).

Kabaila and Giri [5], Section 3, describe a broad class D of confidence inter-
vals that includes I. The main result of the present paper, presented in Section 3,
is that I is strongly admissible within the class D. An attractive feature of the
proof of this result is that, although lengthy, this proof is quite straightforward
and elementary. Section 2 provides a brief description of this class D. For com-
pleteness, in Section 4 we describe a strong admissibility result, that follows
from the results of Joshi [3], for the usual 1− α confidence interval for θ in the
somewhat artificial situation that the error variance σ2 is assumed to be known.

2. Description of the class D

Define the parameter τ = cTβ− t where the vector c and the number t are given
and a and c are linearly independent. Let τ̂ denote cT β̂− t i.e. the least squares
estimator of τ . Define the matrix V to be the covariance matrix of (Θ̂, τ̂) divided
by σ2. Let vij denote the (i, j) th element of V . We use the notation [a± b] for
the interval [a− b, a+ b] (b > 0). Define the following confidence interval for θ

J(b, s) =

[
Θ̂−√

v11σ̂ b

(
τ̂

σ̂
√
v22

)
± √

v11σ̂ s

( |τ̂ |
σ̂
√
v22

)]
(1)

where the functions b and s are required to satisfy the following restrictions.
The function b : R → R is an odd function and s : [0,∞) → (0,∞). Both b
and s are bounded. These functions are also continuous except, possibly, at a
finite number of values. Also, b(x) = 0 for all |x| ≥ d and s(x) = t(m) for all
x ≥ d where d is a given positive number. Let F(d) denote the class of pairs of
functions (b, s) that satisfy these restrictions, for given d (d > 0).
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Define D to be the class of all confidence intervals for θ of the form (1),
where c, t, d, b and s satisfy the stated restrictions. Each member of this class
is specified by (c, t, d, b, s). Apart from the usual 1− α confidence interval I for
θ, the class D of confidence intervals for θ includes the following:

(a) Suppose that we carry out a preliminary hypothesis test of the null hy-
pothesis τ = 0 against the alternative hypothesis τ 6= 0. Also suppose
that we construct a confidence interval for θ with nominal coverage 1− α
based on the assumption that the selected model had been given to us
a priori (as the true model). The resulting confidence interval, called the
naive 1 − α confidence interval, belongs to the class D (Kabaila and Giri
[5], Section 2).

(b) Confidence intervals for θ that are constructed to utilize (in the particular
manner described by Kabaila and Giri [5]) uncertain prior information
that τ = 0.

Let K denote the usual 1−α confidence interval for θ based on the assumption
that τ = 0. The naive 1 − α confidence interval, described in (a), may be
expressed in the following form:

h

( |τ̂ |
σ̂
√
v22

)
I +

(
1− h

( |τ̂ |
σ̂
√
v22

))
K (2)

where h : [0,∞) → [0, 1] is the unit step function defined by h(x) = 0 for all
x ∈ [0, q] and h(x) = 1 for all x > q. Now suppose that we replace h by a
continuous increasing function satisfying h(0) = 0 and h(x) → 1 as x → ∞ (a
similar construction is extensively used in the context of point estimation by
Saleh [10]). The confidence interval (2) is also a member of the class D.

3. Main result

As noted in Section 2, each member of the class D is specified by (c, t, d, b, s).
The following result states that the usual 1 − α confidence interval for θ is
strongly admissible within the class D.

Theorem 1. There does not exist (c, t, d, b, s) ∈ D such that the following three
conditions hold:

(a) Eβ,σ2

(
length of J(b, s)

)
≤ Eβ,σ2

(
length of I

)
for all (β, σ2). (3)

(b) Pβ,σ2

(
θ ∈ J(b, s)

)
≥ Pβ,σ2

(
θ ∈ I

)
for all (β, σ2). (4)

(c) Strict inequality holds in either (3) or (4) for at least one (β, σ2).

The proof of this result is presented in Appendix A.
An illustration of this result is provided by Figure 3 of Kabaila and Giri [5].

Define γ = τ/(σ
√
v22). Also define

e(γ; s) =
expected length of J(b, s)

expected length of I
.
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We call this the scaled expected length of J(b, s). Theorem 1 tells us that for any
confidence interval J(b, s), with minimum coverage probability 1− α, it cannot
be the case that e(γ; s) ≤ 1 for all γ, with strict inequality for at least one γ.
This fact is illustrated by the bottom panel of Figure 3 of Kabaila and Giri [5].

Define the class D̃ to be the subset of D in which both b and s are continuous
functions. Strong admissibility of the confidence interval I within the class D
implies weak admissibility of this confidence interval within the class D̃, as the
following result shows. Since (β̂, σ̂2) is a sufficient statistic for (β, σ), we reduce

the data to (β̂, σ̂2).

Corollary 1. There does not exist (c, t, d, b, s) ∈ D̃ such that the following three
conditions hold:

(a′)
(
length of J(b, s)

)
≤

(
length of I

)
for all (β̂, σ̂2). (5)

(b′) Pβ,σ2

(
θ ∈ J(b, s)

)
≥ Pβ,σ2

(
θ ∈ I

)
for all (β, σ2). (6)

(c′) Strict inequality holds in either (5) or (14) for at least one (β, σ2).

This corollary is proved in Appendix B.

4. Admissibility result for known error variance

In this section, we suppose that σ2 is known. Without loss of generality, we
assume that σ2 = 1. As before, let β̂ denote the least squares estimator of β.
Since β̂ is a sufficient statistic for β, we reduce the data to β̂. Assume that the

parameter of interest is θ = β1/

√
Var(β̂1). Thus the least squares estimator of

θ is Θ̂ = β̂1/

√
Var(β̂1). Define

∆̂ =



β̂2 − ℓ2β̂1

...

β̂p − ℓpβ̂1




where ℓ2, . . . , ℓp have been chosen such that Cov(β̂j − ℓjβ̂1, β̂1) = 0 for j =
2, . . . , p. Now define

δ =



β2 − ℓ2β1

...
βp − ℓpβ1


 .

Note that (Θ̂, ∆̂) is obtained by a one-to-one transformation from β̂. So, we
reduce the data to (Θ̂, ∆̂). Note that Θ̂ and ∆̂ are independent, with Θ̂ ∼
N(θ, 1) and ∆̂ with a multivariate normal distribution with mean δ and known
covariance matrix. Define the number z by the requirement that P (−z ≤ Z ≤
z) = 1− α for Z ∼ N(0, 1). Let I =

[
Θ̂− z, Θ̂ + z

]
. Define

ϕ(θ̂, θ) =

{
1 if θ ∈

[
θ̂ − z, θ̂ + z

]

0 otherwise
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This is the probability that θ is included in the confidence interval I, when θ̂ is
the observed value of Θ̂. The length of the confidence interval I is

∫∞

−∞
ϕ(θ̂, θ) dθ =

2z. Let pθ(·) denote the probability density function of Θ̂ for given θ. The cov-

erage probability of I is
∫∞

−∞
ϕ(θ̂, θ) pθ(θ̂) dθ̂ = 1− α.

Now let C(Θ̂, ∆̂) denote a confidence set for θ. Define

ϕδ(θ̂, θ) = Pθ,δ

(
θ ∈ C(θ̂, ∆̂)

)
,

where θ̂ denotes the observed value of Θ̂. For each given δ ∈ R
p−1, the ex-

pected Lebesgue measure of C(Θ̂, ∆̂) is Eθ,δ

( ∫∞

−∞
ϕδ(Θ̂, θ) dθ

)
. For each given

δ ∈ R
p−1, the coverage probability of C(Θ̂, ∆̂) is

∫∞

−∞
ϕδ(θ̂, θ) pθ(θ̂) dθ̂. Theorem

5.1 of Joshi [3] implies the following strong admissibility result. Suppose that

ϕδ(θ̂, θ) satisfies the following conditions

(i) Eθ,δ

( ∫∞

−∞
ϕδ(θ̂, θ) dθ

)
≤ Eθ,δ

( ∫∞

−∞
ϕ(θ̂, θ) dθ

)
for all θ ∈ R.

(ii)
∫∞

−∞
ϕδ(θ̂, θ) pθ(θ̂) dθ̂ ≥

∫∞

−∞
ϕ(θ̂, θ) pθ(θ̂) dθ̂ for all θ ∈ R.

Then ϕδ(θ̂, θ) = ϕ(θ̂, θ) for almost all (θ̂, θ) ∈ R
2. This result is true for each

δ ∈ R
p−1. Using standard arguemnts, this entails that I\C(Θ̂, ∆̂) and C(Θ̂, ∆̂)\I

are Lebesgue-null sets, for (Lebesgue-) almost all values of (Θ̂, ∆̂).

5. Remarks

The purpose of this section is to discuss (a) the breadth of the class of confidence
intervals D and (b) the challenges to showing admissibility within a wider class
of confidence intervals. We present an argument in favour of the claim that the
class D is about as broad as possible for the case p = 2. We then describe a
wider class of confidence intervals E . We note that a similar argument may be
mounted in favour of the claim that the class E is about as broad as possible
for the case p = 3. We point out, however, that the extension of the arguments
of the present paper to this class does not seem feasible.

Provided that one accepts some compelling equivariance arguments and some
further reasonable conditions on the confidence interval, the class D is as broad
as possible for the case p = 2. To see this, we proceed as follows. Suppose that
p = 2. By sufficiency, reduce the data to

(
Θ̂, τ̂ , σ̂

)
. Now apply the 3 equivari-

ance arguments described in Appendix A of Kabaila and Giri [5] to obtain a
confidence interval of the form (1), where b : R → R is an odd function and
s : [0,∞) → (0,∞). These equivariance arguments seem compelling. Requiring
that the functions b and s are (a) bounded and (b) continuous except, possibly,
at a finite number of values, seems reasonable. The condition that b(x) = 0 for
all |x| ≥ d and s(x) = t(m) for all x ≥ d (for d a given positive number) is
motivated by the requirement that the confidence interval revert to the usual
1− α confidence interval I with probability approaching 1, as |τ/σ| → ∞. This
condition therefore seems reasonable. In this way we are led to the class D.



P. Kabaila et al./Admissibility in regression 305

Farchione [2] considers the following case. Consider the same linear regression
model and parameter of interest θ as described in the introduction of the present
paper. Define the parameters τ2 = cT

2
β − t2 and τ3 = cT

3
β − t3, where a, c2 and

c3 are given linearly independent vectors and t2 and t3 are given numbers.
Let τ̂2 = cT

2
β̂ − t2 and τ̂3 = cT

3
β̂ − t3. Define V to be the covariance matrix of(

Θ̂, τ̂2, τ̂3
)
divided by σ2 and let vij denote that (i, j) th element of V . Farchione

[2] considers the class E of confidence intervals for θ of the form
[
Θ̂−√

v11σ̂ b

(
τ̂2

σ̂
√
v22

,
τ̂3

σ̂
√
v33

)
± √

v11σ̂ s

(
τ̂2

σ̂
√
v22

,
τ̂3

σ̂
√
v33

)]
(7)

where b and s satisfy conditions analogous to those stated in Section 2 of the
present paper. The class E is wider than the class D. One can argue, in a manner
similar to that presented in the previous paragraph, that the following is true.
Provided that one accepts some compelling equivariance arguments and some
further reasonable conditions on the confidence interval, the class E is as broad
as possible for the case p = 3. An extension of the arguments of the present
paper to the class E does not seem feasible due to (a) the complicatedness of
the conditions that must be satisfied by b and s and (b) the complicatedness
of the expressions derived by Farchione [2] for the coverage probability and the
expected length of a confidence interval belonging to the class E .

Appendix A: Proof of Theorem 1

Suppose that c is a given vector (such that c and a are linearly independent),
t is a given number and d is a given positive number. The proof of Theorem 1
now proceeds as follows. We present a few definitions and a lemma. We then
apply this lemma to prove this theorem.

Define W = σ̂/σ. Note that W has the same distribution as
√
Q/m where

Q ∼ χ2

m. Let fW denote the probability density function of W . Also let φ denote
the N(0, 1) probability density function. Now define

R1(b, s; γ) =
expected length of J(b, s)

expected length of I
− 1.

It follows from (7) of Kabaila and Giri [5] that

R1(b, s; γ) =
1

t(m)E(W )

∫ ∞

0

∫ d

−d

(s(|x|)− t(m))φ(wx − γ) dxw2 fW (w) dw.

(8)
Thus, for each (b, s) ∈ F(d), R1(b, s; γ) is a continuous function of γ.

Also define R2(b, s; γ) = P
(
θ /∈ J(b, s)

)
−α. We make the following definitions,

also used by Kabaila and Giri [5]. Define ρ = v12/
√
v11v22 and Ψ(x, y;µ, v) =

P (x ≤ Z ≤ y), for Z ∼ N(µ, v). Now define the functions

k†(h,w, γ, ρ) = Ψ
(
− t(m)w, t(m)w; ρ(h − γ), 1− ρ2

)

k(h,w, γ, ρ) = Ψ
(
b(h/w)w− s(|h|/w)w, b(h/w)w+ s(|h|/w)w; ρ(h− γ), 1−ρ2

)
.
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It follows from (6) of Kabaila and Giri [5], that

R2(b, s; γ) = −
∫ ∞

0

∫ d

−d

(
k(wx,w, γ, ρ)

− k†(wx,w, γ, ρ)
)
φ(wx − γ) dxw fW (w) dw. (9)

Thus, for each (b, s) ∈ F(d), R2(b, s; γ) is a continuous function of γ.
Now E(W 2) = 1 and so

∫ ∞

0

w2 fW (w) dw = 1.

It follows from (8) that

∫ ∞

−∞

R1(b, s; γ) dγ =
2

t(m)E(W )

∫ d

0

(
s(x)− t(m)

)
dx. (10)

Thus
∫∞

−∞
R1(b, s; γ) dγ exists for all (b, s) ∈ F(d).

Since k(wx,w, γ, ρ) and k†(wx,w, γ, ρ) are probabilities,

|R2(b, s; γ)| ≤
∫ ∞

0

∫ d

−d

φ(wx − γ)dxwfW (w) dw,

so that
∫ ∞

−∞

|R2(b, s; γ)| dγ ≤ 2d

∫ ∞

0

wfW (w) dw = 2dE(W ) < ∞.

Thus
∫∞

−∞
R2(b, s; γ) dγ exists for all (b, s) ∈ F(d).

Thus, we may define

g(b, s;λ) = λ

∫ ∞

−∞

R1(b, s; γ) dγ + (1− λ)

∫ ∞

−∞

R2(b, s; γ) dγ,

for each (b, s) ∈ F(d), where 0 < λ < 1. Kempthorne [7–9] presents results on
what he calls compromise decision theory. Initially, these results were applied
only to the solution of some problems of point estimation. Kabaila and Tuck [6]
develop new results in compromise decision theory and apply these to a problem
of interval estimation. The following lemma, which will be used in the proof of
Theorem 1, is in the style of these compromise decision theory results.

Lemma 1. Suppose that c is a given vector (such that c and a are linearly
independent), t is a given number and d is a given positive number. Also suppose
that λ is given and that (b∗, s∗) minimizes g(b, s;λ) with respect to (b, s) ∈ F(d).
Then there does not exist (b, s) ∈ F(d) such that

(a) R1(b, s; γ) ≤ R1(b
∗, s∗; γ) for all γ.

(b) R2(b, s; γ) ≤ R2(b
∗, s∗; γ) for all γ.

(c) Strict inequality holds in either (a) or (b) for at least one γ.
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Proof. Suppose that c is a given vector (such that c and a are linearly indepen-
dent), t is a given number and d is a given positive number. The proof is by
contradiction. Suppose that there exist (b, s) ∈ F(d) such that (a), (b) and (c)
hold. Now,

g(b∗, s∗;λ)− g(b, s;λ) = λ

∫ ∞

−∞

(
R1(b

∗, s∗; γ)−R1(b, s; γ)
)
dγ

+ (1− λ)

∫ ∞

−∞

(
R2(b

∗, s∗; γ)−R2(b, s; γ)
)
dγ

By hypothesis, one of the following 2 cases holds.

Case 1 (a) and (b) hold and R1(b
∗, s∗; γ) − R1(b, s; γ) > 0 for at least one γ.

Since R1(b
∗, s∗; γ)−R1(b, s; γ) is a continuous function of γ,

∫ ∞

−∞

(
R1(b

∗, s∗; γ)−R1(b, s; γ)
)
dγ > 0.

Thus g(b∗, s∗;λ) > g(b, s;λ) and we have established a contradiction.

Case 2 (a) and (b) hold and R2(b
∗, s∗; γ) − R2(b, s; γ) > 0 for at least one γ.

Since R2(b
∗, s∗; γ)−R2(b, s; γ) is a continuous function of γ,

∫ ∞

−∞

(
R2(b

∗, s∗; γ)−R2(b, s; γ)
)
dγ > 0.

Thus g(b∗, s∗;λ) > g(b, s;λ) and we have established a contradiction.

Lemma 1 follows from the fact that this argument holds for every given vector
c (such that c and a are linearly independent), every given number t and every
given positive number d.

We will first find the (b∗, s∗) that minimizes g(b, s;λ) with respect to (b, s) ∈
F(d), for given λ. We will then choose λ such that J(b∗, s∗) = I, the usual 1−α
confidence interval for θ. Theorem 1 is then a consequence of Lemma 1.

By changing the variable of integration in the inner integral in (9), it can be
shown that R2(b, s; γ) is equal to

−
∫ ∞

0

∫ d

0

((
k(wx,w, γ, ρ) − k†(wx,w, γ, ρ)

)
φ(wx − γ)

+
(
k(−wx,w, γ, ρ)− k†(−wx,w, γ, ρ)

)
φ(wx + γ)

)
dxw fW (w) dw

Using this expression and the restriction that b is an odd function, we find that∫∞

−∞
R2(b, s; γ) dγ is equal to
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−
∫ d

0

∫ ∞

0

∫ ∞

−∞

(
Ψ
(
b(x)w − s(x)w, b(x)w + s(x)w; ρy, 1 − ρ2

)

−Ψ
(
− t(m)w, t(m)w; ρy, 1 − ρ2

)

+Ψ
(
− b(x)w − s(x)w,−b(x)w + s(x)w;−ρy, 1 − ρ2

)

−Ψ
(
− t(m)w, t(m)w;−ρy, 1 − ρ2

))
φ(y) dy w fW (w) dw dx.

Hence, to within an additive constant that does not depend on (b, s),
∫∞

−∞
R2(b, s;

γ) dγ is equal to

−
∫ d

0

∫ ∞

0

∫ ∞

−∞

(
Ψ
(
b(x)w − s(x)w, b(x)w + s(x)w; ρy, 1 − ρ2

)

+Ψ
(
− b(x)w − s(x)w,−b(x)w + s(x)w;−ρy, 1 − ρ2

))

× φ(y) dy w fW (w) dw dx.

Thus, to within an additive constant that does not depend on (b, s),

g(b, s;λ) =

∫ d

0

q(b, s;x) dx,

where q(b, s;x) is equal to

2λ

t(m)E(W )
s(x)

− (1− λ)

∫ ∞

0

∫ ∞

−∞

(
Ψ(b(x)w − s(x)w, b(x)w + s(x)w; ρy, 1 − ρ2)

+ Ψ(−b(x)w − s(x)w,−b(x)w + s(x)w;−ρy, 1− ρ2)
)
φ(y) dy w fW (w) dw.

Note that x enters into the expression for q(b, s;x) only through b(x) and s(x).
To minimize g(b, s;λ) with respect to (b, s) ∈ F(d), it is therefore sufficient to
minimize q(b, s;x) with respect to (b(x), s(x)) for each x ∈ [0, d]. The situation
here is similar to the computation of Bayes rules, see e.g. Casella and Berger
[1], pp. 352–353. Therefore, to minimize g(b, s;λ) with respect to (b, s) ∈ F(d),
we simply minimize

q̃(b, s) =
2λ

t(m)E(W )
s

− (1− λ)

∫ ∞

0

∫ ∞

−∞

(
Ψ(bw − sw, bw + sw; ρy, 1− ρ2)

+ Ψ(−bw − sw,−bw + sw;−ρy, 1− ρ2)
)
φ(y) dy w fW (w) dw

with respect to (b, s) ∈ R× (0,∞), to obtain (b′, s′) and then set b(x) = b′ and
s(x) = s′ for all x ∈ [0, d].

Let the random variables A and B have the following distribution
[
A
B

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
.
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Note that the distribution of A, conditional on B = y, is N(ρy, 1− ρ2). Thus

Ψ(bw − sw, bw + sw; ρy, 1− ρ2) = P
(
bw − sw ≤ A ≤ bw + sw

∣∣B = y
)

Hence
∫ ∞

0

∫ ∞

−∞

Ψ(bw − sw, bw + sw; ρy, 1− ρ2)φ(y) dy w fW (w) dw

=

∫ ∞

0

P (bw − sw ≤ A ≤ bw + sw)w fW (w) dw. (11)

Let Φ denote the N(0, 1) cumulative distribution function. For every fixed w > 0
and s > 0,

P (bw − sw ≤ A ≤ bw + sw) = Φ(bw + sw) − Φ(bw − sw)

is maximized by setting b = 0. Thus, for each fixed s > 0, (11) is maximized
with respect to b ∈ R by setting b = 0.

Now let the random variables Ã and B̃ have the following distribution

[
Ã

B̃

]
∼ N

([
0
0

]
,

[
1 − ρ
−ρ 1

])
.

Note that the distribution of Ã, conditional on B̃ = y, is N(−ρy, 1− ρ2). Thus

Ψ(−bw− sw,−bw+ sw;−ρy, 1− ρ2) = P
(
− bw− sw ≤ Ã ≤ −bw+ sw

∣∣ B̃ = y
)

Hence
∫ ∞

0

∫ ∞

−∞

Ψ(−bw − sw,−bw + sw;−ρy, 1− ρ2)φ(y) dy w fW (w) dw

=

∫ ∞

0

P (−bw − sw ≤ Ã ≤ −bw + sw)w fW (w) dw. (12)

For every fixed w > 0 and s > 0,

P
(
− bw − sw ≤ Ã ≤ −bw + sw

)
= Φ(−bw + sw) − Φ(−bw − sw)

is maximized by setting b = 0. Thus, for each fixed s > 0, (12) is maximized
with respect to b ∈ R by setting b = 0.

Therefore, q̃(b, s) is, for each fixed s > 0, minimized with respect to b by
setting b = 0. Thus b′ = 0 and so b∗(x) = 0 for all x ∈ R. Hence, to find s′ we
need to minimize

λ

t(m)E(W )
s− (1 − λ)

∫ ∞

0

(
2Φ(sw)− 1

)
wfW (w) dw

with respect to s > 0. Therefore, to find s′ we may minimize

r(s) = ℓ(λ) s− 2

∫ ∞

0

Φ(sw)wfW (w) dw
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with respect to s > 0, where

ℓ(λ) =
λ

(1 − λ)t(m)E(W )
.

Note that ℓ(λ) is an increasing function of λ, such that ℓ(λ) ↓ 0 as λ ↓ 0 and
ℓ(λ) ↑ ∞ as λ ↑ 1. Choose λ = λ∗, where

ℓ(λ∗) = 2

∫ ∞

0

φ
(
t(m)w

)
w2 fW (w) dw.

Note that 0 < ℓ(λ∗) <
√
2/π. Now

dr(s)

ds
= ℓ(λ∗)− 2

∫ ∞

0

φ(sw)w2fW (w) dw.

Since
∫∞

0
φ(sw)w2fW (w) dw is a decreasing function of s > 0, dr(s)/ds is an

increasing function of s > 0. Also, for s = 0,
∫∞

0
φ(sw)w2fW (w) dw = 1/

√
2π.

Thus, to minimize r(s) with respect to s > 0, we need to solve

ℓ(λ∗)− 2

∫ ∞

0

φ(sw)w2 fW (w) dw = 0

for s > 0. Obviously, this solution in s = t(m). Thus s∗(x) = t(m) for all x ≥ 0.
In other words, J(b∗, s∗) = I. By Lemma 1, there does not exist (b, s) ∈ F(d)
such that

(a) Eβ,σ2

(
length of J(b, s)

)
≤ Eβ,σ2

(
length of I

)
for all (β, σ2). (13)

(b) Pβ,σ2

(
θ ∈ J(b, s)

)
≥ Pβ,σ2

(
θ ∈ I

)
for all (β, σ2). (14)

(c) Strict inequality holds in either (13) or (14) for at least one (β, σ2).

Theorem 1 follows from the fact that this argument holds for every given vector
c (such that c and a are linearly independent), every given number t and every
given positive number d.

Appendix B: Proof of Corollary 1

The proof of Corollary 1 is by contradiction. Suppose that c is a given vector
(such that c and a are linearly independent), t is a given number and d is a
given positive number. Also suppose that there exists (b, s) ∈ F(d) such that
both b and s are continuous and (a′), (b′) and (c′), in the statement of Corollary
1, hold. Now (a′) implies that

Eβ,σ2

(
length of J(b, s)

)
≤ Eβ,σ2

(
length of I

)
for all (β, σ2),

so that (a) holds. By hypothesis, one of the following two cases holds.
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Case 1
(
length of J(b, s)

)
<

(
length of I

)
for at least one (β̂, σ̂2). Now

(
length of J(b, s)

)
= 2

√
v11σ̂ s

( |τ̂ |
σ̂
√
v22

)
,

which is a continuous function of (β̂, σ̂2). Hence
(
length of I

)
−(length of J(b, s)

)

is a continuous function of (β̂, σ̂2). Thus

Eβ,σ2

(
length of J(b, s)

)
< Eβ,σ2

(
length of I

)
for at least one (β, σ2).

Thus there exists (b, s) ∈ F(d) such that (a), (b) and (c), in the statement of
Theorem 1, hold. We have established a contradiction.

Case 2 There is strict inequality in (b′) for at least one (β, σ2). Thus there
exists (b, s) ∈ F(d) such that (a), (b) and (c), in the statement of Theorem 1,
hold. We have established a contradiction.

Corollary 1 follows from the fact that this argument holds for every given vector
c (such that c and a are linearly independent), every given number t and every
given positive number d.
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