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UNIFORM MOMENT BOUNDS OF FISHER’S INFORMATION
WITH APPLICATIONS TO TIME SERIES

BY NGAI HANG CHAN1 AND CHING-KANG ING2

Chinese University of Hong Kong and Academia Sinica

In this paper, a uniform (over some parameter space) moment bound for
the inverse of Fisher’s information matrix is established. This result is then
applied to develop moment bounds for the normalized least squares estimate
in (nonlinear) stochastic regression models. The usefulness of these results is
illustrated using time series models. In particular, an asymptotic expression
for the mean squared prediction error of the least squares predictor in au-
toregressive moving average models is obtained. This asymptotic expression
provides a solid theoretical foundation for some model selection criteria.

1. Introduction. Moment inequalities and moment bounds have long been
vibrant topics in modern probability and statistics. The celebrated inequalities of
Burkholder [3] and Doob [5] offer exemplary illustrations of the importance of
moment inequalities. Using moment bounds, the order of magnitude of the spec-
tral norm of the inverse of the Fisher’s information matrix can be quantified and
consistency and efficiency of least squares estimates of stochastic regression and
adaptive control can be established; see, for example, the seminal work of Lai and
Wei [15] and the succinct review of Lai and Ying [16]. In this paper, a uniform
(over some parameter space) moment bound for the inverse of the Fisher’s infor-
mation matrix is established. This bound is used to investigate the moment prop-
erties of least squares estimates and the mean squared prediction error (MSPE) for
time series models.

To appreciate the significance of uniform moment bounds, consider the stochas-
tic regression model

yt = gt (θ0) + εt , t = 1, . . . , n,(1.1)

where gt (·) is a random function, θ0 is an unknown parameter and {εt } is a martin-
gale difference sequence. There are two important problems related to this model.
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The first one concerns the mean squared error prediction. In practice, the un-
known parameter θ0 is usually estimated by the least squares estimate θ̂n, which
minimizes Sn(θ) = ∑n

t=1(yt −gt (θ))2. Although the (strong) law of large numbers
(LLN) and the central limit theorem (CLT) of θ̂n were established under certain as-
sumptions on gt (·) and εt (see among others, Lai [14] and Skouras [19]), relatively
little is known about the moment convergence of θ̂n. Moment convergence of θ̂n

offers important insight in the pursuit of the mean squared prediction problem. To
see this, suppose that n1/2(θ̂n − θ0) is asymptotically normal with mean zero and
variance η > 0. Then an immediate question is to pursue

E|n1/2(θ̂n − θ0)|q = O(1), q ≥ 1.(1.2)

In particular, if (1.2) holds for some q > 2, then {n(θ̂n − θ0)
2} is uniformly inte-

grable and consequently, limn→∞ nE(θ̂n − θ0)
2 = η. This result can be applied to

develop an asymptotic expression for the mean squared error of θ̂n as

E(θ̂n − θ0)
2 = η

n
+ o(n−1)

from which asymptotic properties of the MSPE of the least squares predictor
gn+1(θ̂n) of yn+1, E(yn+1 − gn+1(θ̂n))

2, can be established; see Sections 2 and 3
for further details.

To establish (1.2), consider the Fisher’s information number, n−1 ∑n
t=1(g

′
t (θ))2

of (1.1), where g′
t (θ) = dgt (θ)/dθ . As will be shown in Section 2, it turns out that

the uniform negative moment bound for n−1 ∑n
t=1(g

′
t (θ))2, that is, for any q ≥ 1,

E

{
sup

θ∈Bδ1 (θ0)

(
n−1

n∑
t=1

(g′
t (θ))2

)−q}
= O(1)(1.3)

plays a crucial role in proving (1.2), where Bδ1(θ0) = {θ : |θ − θ0| < δ1} for some
δ1 > 0.

A second but equally important problem in stochastic regression concerns
model selection. To understand how the uniform moment bound is related to this
issue, consider the case when gt (·) in (1.1) contains k > 1 unknown parameters
θ0 ∈ Rk . A multiparameter generalization of (1.3) becomes: for any q ≥ 1,

E

{
sup

θ∈Bδ1 (θ0)

λ
−q
min

(
n−1

n∑
t=1

∇gt (θ)(∇gt (θ))T

)}
= O(1),(1.4)

where λmin(L) denotes the minimum eigenvalue of the matrix L and ∇gt (θ) de-
notes the gradient vector of gt (θ). In particular, when gt (θ) = gt (θ1, . . . , θk) =
θ1yt−1 + · · · + θkyt−k in (1.1), that is, when yt is an autoregressive (AR) model of
order k, (1.4) reduces to

E

{
λ

−q
min

(
n−1

n∑
t=1

yt−1(k)yT
t−1(k)

)}
= O(1),(1.5)
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where yt (k) = (yt , . . . , yt−k+1)
T. By imposing a Lipschitz type condition on the

distribution function of εt and a stationarity condition on gt (·), Findley and Wei [7]
established (1.5), thereby providing a rigorous mathematical derivation of the AIC
model selection criterion for weakly stationary AR processes. However, the proof
of (1.4) for a general stochastic regression model is much more involved than (1.5)
due to the presence of an “extra” supremum, which is taken over an uncountable
set inside the expectation. As a consequence, similar to the AR case, knowledge
about negative uniform moment bounds of the Fisher’s information matrix (1.4)
constitutes an indispensable tool for the model selection problem.

The rest of this paper is organized as follows. In Section 2, we first show in The-
orem 2.1 that (1.4) holds under more general situations where Bδ1(θ0) is replaced
by a bounded subset � of Rk and ∇gt(θ) is replaced by a vector-valued random
function ft (θ), θ ∈ �, satisfying certain assumptions. We then apply Theorem 2.1
to establish the moment convergence of least squares estimates in (nonlinear) sto-
chastic regression models; see Theorem 2.2. Section 3 focuses on the applications
of Theorems 2.1 and 2.2 to autoregressive moving average (ARMA) models. In
particular, the moment convergence of the least squares estimates and an asymp-
totic expression (up to terms of order n−1) for the MSPE of the least squares pre-
dictor for ARMA models are established. To facilitate the presentation, technical
results of Sections 2 and 3 are deferred to Appendices A and B, respectively.

2. Uniform bounds on negative moments. Let (�, F ,P ) be a probabil-
ity space and {Ft } be an increasing sequence of σ -fields on (�, F ,P ). Let
ft (θ), t = 1, . . . , n, be r-dimensional Ft -measurable random functions of a para-
meter vector θ = (θ1, . . . , θk)

T ∈ � ⊂ Rk . In the first half this section, we provide
sufficient conditions under which the minimum eigenvalue of the normalized ma-
trix n−1 ∑n

t=1 ft (θ)fT
t (θ), λmin(n

−1 ∑n
t=1 ft (θ)fT

t (θ)), satisfies the following uni-
form moment bound:

E

{
sup
θ∈�

λ
−q
min

(
n−1

n∑
t=1

ft (θ)fT
t (θ)

)}
= O(1) for any q ≥ 1.(2.1)

This uniform negative moment bound is applied to investigate the moment proper-
ties of least squares estimates in the second half of this section. To begin, assume
the following conditions:

(C1) ft (θ) is continuous on � and � is a bounded subset of Rk ;
(C2) there exist positive integer d and positive numbers δ, α and M such that

for any t > d , any 0 < s2 − s1 ≤ δ, any θ ∈ � and any ‖a‖ = 1,

P
(
s1 < aTft (θ) ≤ s2|Ft−d

) ≤ M(s2 − s1)
α a.s.,

where ‖a‖ denotes the Euclidean norm of vector a ∈ Rr ;
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(C3) there exist τ > 0 and nonnegative random variables Bt satisfying
supt≥1 E(Bt ) ≤ C1 for some C1 > 0 such that for all ξ1, ξ2 ∈ � with ‖ξ1 − ξ2‖ <

τ ,

‖ft (ξ1) − ft (ξ2)‖ ≤ Bt‖ξ1 − ξ2‖ a.s.;
(C4) there exists C2 > 0 such that supt≥1 E(supθ∈� ‖ft (θ)‖2) ≤ C2.

(C1) is a standard assumption for the regression function and its gradient vector
in nonlinear regression; see, for example, Lai [14] and Robinson and Hidalgo [17].
(C2) says that given the information (σ -field) whose time index is sufficiently
smaller than the current time index t , the conditional distribution of aTft (θ) follows
a local Lipschitz condition of order α for all points θ ∈ � and all directions a with
‖a‖ = 1. In the special case when � contains only one point, (C2) is related to
Findley and Wei’s [7] uniform Lipschitz condition over all directions, which is
the key assumption used in deriving the AIC for stationary AR models. Since we
need to deal with the supremum over a class of inverses of minimum eigenvalues
indexed by θ , a Lipschitz type condition over all points (θ ) in all directions (a)
is required in this paper. As will be seen in Section 3, (C2) is flexible enough to
encompass many time series applications. Conditions like (C3) have been imposed
on the regression function by Andrews [2] and Skouras [19] in proving the uniform
law of large numbers for random functions associated with Sn(θ). (C3) can be
verified when ft (θ) is sufficiently smooth; see (3.26) for more details. (C4) imposes
a mild moment condition on ft (θ) and appears to be satisfied in many practical
situations. Moreover, (C4) can be weakened to supt≥1 supθ∈� E(‖ft (θ)‖2) ≤ C2
for some C2 > 0 at the price of strengthening the conditions on Bt in (C3) to
supt≥1 E(B2

t ) ≤ C1 for some C1 > 0.

THEOREM 2.1. Assume that (C1)–(C4) hold. Then inequality (2.1) is true.

PROOF. First, note that the measurability of supθ∈� λ
−q
min(n

−1 ∑n
t=1 ft (θ) ×

fT
t (θ)) is ensured by the continuity of ft (θ). Define nd = �(n − d)/d�, where �a�

is the largest integer ≤a. Then for n large,

nqλ
−q
min

(
n∑

t=1

ft (θ)fT
t (θ)

)

≤ nq

{
d∑

j=1

λmin

(
nd−1∑
i=0

f(i+1)d+j (θ)fT
(i+1)d+j (θ)

)}−q

(2.2)

≤ {n/(ndd)}qd−1
d∑

j=1

n
q
dλ

−q
min

(
nd−1∑
i=0

f(i+1)d+j (θ)fT
(i+1)d+j (θ)

)
,

where the first inequality is ensured by the fact that for symmetric matrices E1
and E2, λmin(E1 + E2) ≥ λmin(E1) + λmin(E2), and the second one is ensured by
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the convexity of x−q, x > 0. As a key step for achieving (2.1), we show, by making
use of (C2)–(C4), in Appendix A that there exists a positive integer m, depending
only on q, r, k and α, such that for all large n, all 0 ≤ l ≤ nd −m and all 1 ≤ j ≤ d ,

E

(
sup
θ∈�

λ
−q
min

(
l+m−1∑

i=l

f(i+1)d+j (θ)fT
(i+1)d+j (θ)

))
≤ C3,(2.3)

where C3 is some positive constant independent of l and j . Let nd,m = �nd/m�.
Then, analogous to (2.2),

n
q
dλ

−q
min

(
nd−1∑
i=0

f(i+1)d+j (θ)fT
(i+1)d+j (θ)

)

≤ (nd/nd,m)qn−1
d,m

nd,m−1∑
s=0

λ
−q
min

(
m−1∑
i=0

f(i+sm+1)d+j (θ)fT
(i+sm+1)d+j (θ)

)
.

Combining this fact with (2.2) and (2.3) yields for n large and for some positive
number C4,

nqE

{
sup
θ∈�

λ
−q
min

(
n∑

t=1

ft (θ)fT
t (θ)

)}

≤ nq

(nd,md)qd

×
d∑

j=1

n−1
d,m

nd,m−1∑
s=0

E

{
sup
θ∈�

λ
−q
min

(
m−1∑
i=0

f(i+sm+1)d+j (θ)fT
(i+sm+1)d+j (θ)

)}

≤ C3C4m
q.

Thus, (2.1) follows. �

To see the extent of the usefulness of (2.1), consider a stochastic regression
model of the form

yt = gt (θ0) + εt , t = 1, . . . , n,(2.4)

where {εt } is a martingale difference sequence with respective to {Gt }, an increas-
ing sequence of σ -fields on (�, F ,P ), such that

sup
t

E(ε2
t |Gt−1) < ∞ a.s.,(2.5)

gt (·) is a Gt−1-measurable random function on a compact set �1 ⊂ Rk and θ0 ∈
�1 is unknown coefficient vector. The least squares estimate θ̂n of θ0 is obtained
by minimizing

Sn(θ) =
n∑

t=1

(
yt − gt (θ)

)2(2.6)
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over �1. The next theorem provides a set of sufficient conditions under which

E‖n1/2(θ̂n − θ0)‖q = O(1), q ≥ 1.(2.7)

To state the result, denote the gradient vector and the Hessian matrix of a
smooth function h :Rk → R by ∇h(ξ1, . . . , ξk) = (∂h/∂ξ1, . . . , ∂h/∂ξk)

T and
∇2h(ξ1, . . . , ξk) = (∂2h/∂ξi ∂ξj )1≤i,j≤k , respectively. For θ ∈ Rk and η1 > 0, de-
fine Bη1(θ) = {ξ :‖ξ − θ‖ < η1}.

THEOREM 2.2. Consider the stochastic regression model (2.4) in which gt (·)
is Gt−1-measurable and continuous on �1 and the martingale difference sequence
{εt } satisfies (2.5). Suppose that there exists δ1 > 0 such that Bδ1(θ0) ⊂ �1 and
the gradient vector ∇gt is continuously differentiable on Bδ1(θ0). Moreover, as-
sume supt E(|εt |γ |Gt−1) < C5 a.s. for some γ > max{q,2} and C5 > 0, and the
following conditions hold:

(i) (C2)–(C4) hold for � = Bδ1(θ0), ft (θ) = ∇gt (θ) and Ft = Gt−1. In addi-
tion, there exists q1 > q such that

max
1≤i,j≤k

E

(
sup

θ∈Bδ1 (θ0)

∣∣∣∣∣n−1/2
n∑

t=1

εt (∇2gt (θ))i,j

∣∣∣∣∣
q1

)
= O(1),(2.8)

max
1≤i,j≤k,1≤t≤n

E
(

sup
θ∈Bδ1 (θ0)

|(∇2gt (θ))i,j |4q1
)

= O(1),(2.9)

max
1≤t≤n

E
(

sup
θ∈Bδ1 (θ0)

‖∇gt (θ)‖4q1
)

= O(1).(2.10)

(ii) For any δ2 > 0 such that �1 − Bδ2(θ0) is nonempty, (C2)–(C4) hold for
� = �1 − Bδ2(θ0), ft (θ) = gt (θ) − gt (θ0) and Ft = Gt−1. In addition, there exist
0 < ν ≤ 1/2 and q2 > q/(2ν) such that

E

(
sup

θ∈�1−Bδ2 (θ0)

∣∣∣∣∣n−1
n∑

t=1

εt

(
gt (θ) − gt (θ0)

)∣∣∣∣∣
q2

)
= O(n−νq2).(2.11)

(iii) There exists M̄ > 0 such that

P

(
sup

θ∈Bδ1 (θ0)

λ−1
min

(
n−1

n∑
t=1

∇gt (θ)(∇gt (θ))T

)
> M̄

)
= O(n−q),(2.12)

P

(
sup

θ∈Bδ1 (θ0)

n−1
n∑

t=1

‖∇gt (θ)‖2 > M̄

)
= O(n−q),(2.13)

max
1≤i,j≤k

P

(
sup

θ∈Bδ1 (θ0)

n−1
n∑

t=1

(∇2gt (θ))2
i,j > M̄

)
= O(n−q).(2.14)
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Then (2.7) holds.

Some comments are in order. Conditions (i) and (iii) are needed to prove that
the qth moment of ‖n1/2(θ̂n − θ0)‖IAn is asymptotically bounded in (2.15), where
An is the event θ̂n falls into a small ball around θ0. Equations (2.9) and (2.10) in
condition (i) are similar to Condition 13 of [17], but (2.9) and (2.10) require the
existence of higher-order moments of ∇gt (θ) and ∇2gt (θ) to establish inequal-
ity (2.26), which plays an important role in deriving (2.15). Equation (2.8) in con-
dition (i) can be viewed as a “moment” counterpart to (3.18) of [14] and can be
justified by an argument similar to (3.8) of [14], which shows that the supremum
of a Hilbert space (H ) valued martingale is dominated by its norm in H under cer-
tain smoothness conditions. For more details, see (B.5) and (B.7) of Appendix B.
Equations (2.12)–(2.14) in condition (iii) may seem less relevant to the typical
assumptions made for LLN and CLT of θ̂n at the first sight. However, like (2.9)
and (2.10), they are needed for the derivation of (2.26). In fact, (2.12) and (2.13)
can be simplified into a single assumption that for any m̄ > 0,

P

(
sup

θ∈Bδ1 (θ0)

∥∥∥∥∥n−1
n∑

t=1

[∇gt(θ)(∇gt (θ))T − E{∇gt (θ)(∇gt (θ))T}]
∥∥∥∥∥ > m̄

)

= O(n−q),

where ‖D‖2 = sup‖x‖=1 xTDTDx for the matrix D. However, we do not want to
complicate the proof of Theorem 2.2 by using this assumption. When gt (θ) is
a linear process with coefficient functions satisfying certain smoothness condi-
tions, (2.12)–(2.14) can be justified based on a uniform version of the first mo-
ment bound theorem of Findley and Wei [6]. Further details can be found in (B.6)
and (B.9)–(B.11) of Appendix B. In contrast to conditions (i) and (iii), condition
(ii) is required to prove that the qth moment of ‖n1/2(θ̂n − θ0)‖IBn is asymptoti-
cally bounded in (2.27), where Bn denotes the event θ̂n falls outside a small ball
around θ0. Finally, (C2) in condition (ii) provides an identifiability condition for
model (2.4), while (2.11) is a moment counterpart to (3.14) of [14] and can be
analogously justified as (2.8).

PROOF OF THEOREM 2.2. Let 0 < δ∗
1 < min{δ1,3−1k−1M̄−2} and An =

{θ̂n ∈ Bδ∗
1
(θ0)}. We first show that

E
(‖n1/2(θ̂n − θ0)‖qIAn

) = O(1).(2.15)

By the mean value theorem for vector-valued functions, on the set An,

0 = ∇Sn(θ̂n) = ∇Sn(θ0) +
{∫ 1

0
∇2Sn

(
θ0 + r(θ̂n − θ0)

)
dr

}
(θ̂n − θ0),(2.16)
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where Sn(·) is defined in (2.6) and the integral of a matrix is to be understood
component-wise. In view of (2.16) and the identities that ∇Sn(θ) = −2

∑n
t=1(yt −

gt (θ))∇gt (θ) and ∇2Sn(θ) = 2
∑n

t=1 ∇gt (θ)(∇gt (θ))T − 2
∑n

t=1(yt − gt (θ)) ×
∇2gt (θ), one has

n∑
t=1

εt∇gt (θ0) = (
L(θ̂n, θ0) − Q(θ̂n, θ0)

)
(θ̂n − θ0) on An,(2.17)

where L(θ̂n, θ0) = ∫ 1
0

∑n
t=1 ∇gt (θ0 + r(θ̂n − θ0))(∇gt (θ0 + r(θ̂n − θ0)))

T dr and
Q(θ̂n, θ0) = ∫ 1

0
∑n

t=1{yt −gt (θ0 +r(θ̂n −θ0))}∇2gt (θ0 +r(θ̂n −θ0)) dr . A direct
algebraic manipulation leads to

λmin(L(θ̂n, θ0)) ≥ inf
θ∈Bδ1 (θ0)

λmin

(
n∑

t=1

∇gt (θ)(∇gt (θ))T

)
on An,(2.18)

which, together with the continuity of ∇gt (θ) on Bδ1(θ0), condition (i) and Theo-
rem 2.1, yields that for any s ≥ 1,

E(λ−s
min(n

−1L(θ̂n, θ0))IAn)
(2.19)

≤ E

(
sup

θ∈Bδ1 (θ0)

λ−s
min

(
n−1

n∑
t=1

∇gt (θ)(∇gt (θ))T

))
= O(1).

With the help of (2.19), we can assume without loss of generality that L−1(θ̂n, θ0)

exists on An, and hence by (2.17),

‖n1/2(θ̂n − θ0)‖IAn

≤ ‖nL−1(θ̂n, θ0)‖
∥∥∥∥∥n−1/2

n∑
t=1

εt∇gt (θ0)

∥∥∥∥∥IAn

+ ‖nL−1(θ̂n, θ0)‖
∥∥∥∥∥
∫ 1

0
n−1/2

n∑
t=1

εt∇2gt

(
θ0 + r(θ̂n − θ0)

)
dr

∥∥∥∥∥
× ‖θ̂n − θ0‖IAn(2.20)

+ ‖nL−1(θ̂n, θ0)‖
∥∥∥∥∥
∫ 1

0
n−1

n∑
t=1

r(θ0 − θ̂n)
T∇gt (θ

∗
t,r )

× ∇2gt

(
θ0 + r(θ̂n − θ0)

)
dr

∥∥∥∥∥
× ‖n1/2(θ̂n − θ0)‖IAn,
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where θ∗
t,r satisfies ‖θ∗

t,r − θ0‖ ≤ r‖θ̂n − θ0‖. By the Cauchy–Schwarz inequality
and Jensen’s inequality, it follows that∥∥∥∥∥

∫ 1

0
n−1/2

n∑
t=1

εt∇2gt

(
θ0 + r(θ̂n − θ0)

)
dr

∥∥∥∥∥
(2.21)

≤ k max
1≤i,j≤k

sup
θ∈Bδ1 (θ0)

∣∣∣∣∣n−1/2
n∑

t=1

εt (∇2gt (θ))i,j

∣∣∣∣∣ := kWn

and ∥∥∥∥∥
∫ 1

0
n−1

n∑
t=1

r(θ0 − θ̂n)
T∇gt (θ

∗
t,r )∇2gt

(
θ0 + r(θ̂n − θ0)

)
dr

∥∥∥∥∥
≤ k‖θ̂n − θ0‖

(
sup

θ∈Bδ1 (θ0)

n−1
n∑

t=1

‖∇gt (θ)‖2

)1/2

(2.22)

×
{

max
1≤i,j≤k

sup
θ∈Bδ1 (θ0)

n−1
n∑

t=1

(∇2gt (θ))2
i,j

}1/2

:= k‖θ̂n − θ0‖R1/2
1n R

1/2
2n .

Denoting supθ∈Bδ1 (θ0)
λ−1

min(n
−1 ∑n

t=1 ∇gt (θ)(∇gt (θ))T) by Rn and combining
(2.18) and (2.20)–(2.22), we obtain

‖n1/2(θ̂n − θ0)‖qIAn

≤ 3q

{
Rq

n

∥∥∥∥∥n−1/2
n∑

t=1

εt∇gt (θ0)

∥∥∥∥∥
q

(2.23)

+ δ∗q

1 kqRq
nWq

n + δ∗q

1 kqRq
nR

q/2
1n R

q/2
2n ‖n1/2(θ̂n − θ0)‖qIAn

}

:= 3q{(I) + (II) + (III)}.
Applying (2.8), (2.10), (2.19), supt E(|εt |γ |Gt−1) < C5 a.s., Hölder’s inequality
and Lemma 2 of Wei [21], it can be shown that for n large and some positive
constants C∗

1 and C∗
2 ,

E((I)) ≤ C∗
1(2.24)

and

E((II)) ≤ C∗
2 ;(2.25)

see Appendix A of Chan and Ing [4] for more details. In addition, by making use
of (2.9), (2.10) and (2.12)–(2.14), we show in Appendix A that for n large,

E((III)) ≤ C∗
3 + C∗

4 E
(‖n1/2(θ̂n − θ0)‖qIAn

)
,(2.26)
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where C∗
3 and C∗

4 are some positive constants with C∗
4 satisfying 0 < C∗

4 < 3−q .
Consequently, the desired conclusion (2.15) follows from (2.23)–(2.26).

Letting Bn = {θ̂n ∈ �̃1 = �1 −Bδ∗
1
(θ0)}, the rest of the proof aims to show that

E
(‖n1/2(θ̂n − θ0)‖qIBn

) = O(1),(2.27)

which, together with (2.15), yields the desired conclusion (2.7).
Since ‖n1/2(θ̂n −θ0)‖q ≤ C∗

5nq/2 for some C∗
5 > 0, (2.27) follows immediately

once we can show that

P(Bn) = O(n−q/2).(2.28)

By the continuity of gt (·) on �1, condition (ii) and Theorem 2.1, one has for any
s ≥ 1,

E

{[
inf

θ∈�̃1

n−1
n∑

t=1

(
gt (θ) − gt (θ0)

)2
]−s}

= O(1).(2.29)

In addition, it is straightforward to see that

Bn ⊆
{

2 sup
θ∈�̃1

∣∣∣∣∣n−1
n∑

t=1

εt

(
gt (θ) − gt (θ0)

)∣∣∣∣∣
(2.30)

≥ inf
θ∈�̃1

n−1
n∑

t=1

(
gt (θ) − gt (θ0)

)2
}
.

Since q2 > q/(2ν), there exists η1 > 0 such that q2 = q(1 + η1)/(2ν). By (2.29),
(2.30), (2.11), Chebyshev’s inequality and Hölder’s inequality, there exists C∗

6 > 0
such that for all large n,

P(Bn) ≤ C∗
6

{
E

(
inf

θ∈�̃1

n−1
n∑

t=1

(
gt (θ) − gt (θ0)

)2
)−q2/η1}η1/(1+η1)

×
{

E

(
sup

θ∈�̃1

∣∣∣∣∣n−1
n∑

t=1

εt

(
gt (θ) − gt (θ0)

)∣∣∣∣∣
q2)}1/(1+η1)

= O(n−q/2).

Consequently, (2.28) is established and the theorem is proved. �

As mentioned in the Introduction, (2.7) can be used to examine the asymptotic
properties of MSPE of gn+1(θ̂n), E(yn+1 − gn+1(θ̂n))

2, which is also known as
the final prediction error (FPE) for AR models; see Akaike [1]. To see this, note
first that under certain mild conditions such as (2.2) and (2.3) of [14], θ̂n → θ0 a.s.
If one can further show that

n1/2(∇gn+1(θ0))
T(θ̂n − θ0) ⇒ H(2.31)
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and

n{(∇gn+1(θ0))
T(θ̂n − θ0)}2 is uniformly integrable,(2.32)

where ⇒ denotes convergence in distribution and H is a random variable with
E(H2) < ∞, then

lim
n→∞nE{(∇gn+1(θ0))

T(θ̂n − θ0)}2 = E(H2).(2.33)

Once (2.33) is established, it can be linked to E(yn+1 − gn+1(θ̂n))
2 by means of

Taylor’s expansion as follows. Note that

n
{
E

(
yn+1 − gn+1(θ̂n)

)2 − E(ε2
n+1)

}
(2.34)

= nE{(∇gn+1(θ0))
T(θ̂n − θ0)}2 + E(R̃n) → E(H2),

provided the remainder term R̃n satisfies E(R̃n)= o(1). While (2.31) can be estab-
lished by means of asymptotic distribution results (see Section 3), (2.7) serves as
an important device in establishing (2.32) and E(R̃n)= o(1). If one further assumes
that E(ε2

t ) = σ 2 > 0 for all t > 0, then (2.34) provides an asymptotic expression
for E(yn+1 − gn+1(θ̂n))

2 as

E
(
yn+1 − gn+1(θ̂n)

)2 = σ 2 + E(H2)

n
+ o(n−1).(2.35)

Although the second term in (2.35) is asymptotically negligible compared to σ 2,
E(H2) becomes a key quantity. Utilizing (2.7), one can make use of the asymptotic
expression in (2.35), in particular E(H2), to construct optimal model selection cri-
teria; see, for example, Akaike [1], Wei [22] and Findley and Wei [7]. See, also,
Section 3 for further discussions.

3. Applications to ARMA models. Let y1, . . . , yn be generated from the sto-
chastic regression model,

yt = gt (η0) + εt , t = 1, . . . , n,(3.1)

where η0 = (α0,1, . . . , α0,p1, β0,1, . . . , β0,p2)
T is an unknown coefficient vector

and gt (η0) has the ARMA representation

gt (η0) = α0,1yt−1 + · · · + α0,p1yt−p1 − β0,1εt−1 − · · · − β0,p2εt−p2(3.2)

with the initial conditions yt = εt = 0 for all t ≤ 0. Define

η̂n = arg min
η∈�

n∑
t=1

(
yt − gt (η)

)2
,
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where � ⊂ Rp1+p2 is a compact set that includes η0 as an interior point and whose
elements η = (α1, . . . , αp1, β1, . . . , βp2)

T satisfy the following properties:

A1,η(z) = 1 −
p1∑

j=1

αjz
j �= 0,

(3.3)

A2,η(z) = 1 −
p2∑

j=1

βjz
j �= 0 for all |z| ≤ 1;

A1,η(z) and A2,η(z) have no common zeros;(3.4)

|αp1 | + |βp2 | > 0.(3.5)

In this section, we apply the results obtained in Section 2 to show that

E‖n1/2(η̂n − η0)‖q = O(1), q ≥ 1.(3.6)

Applications of (3.6) to the investigation of the MSPE of gn+1(η̂n), E(yn+1 −
gn+1(η̂n))

2, are also given. It should be mentioned that our initial conditions, yt =
εt = 0 for all t ≤ 0, are made for simplicity of the argument only and all results in
this section can be straightforwardly extended to the case where (yt , εt ) obey the
same assumptions for t ≤ 0 as for t > 0.

Let η ∈ �. Define εt (η) = 0 for t ≤ 0 and define εt (η) recursively for t ≥ 1 by

εt (η) = yt − gt (η)

= yt − α1yt−1 − · · · − αpyt−p1(3.7)

+ β1εt−1(η) + · · · + βp2εt−p2(η),

noting that εt (η0) = εt . As observed in (2.19) and (2.29) of Section 2, to obtain
(3.6), it is crucial to verify that for some δ1 > 0 with Bδ1(η0) ⊂ � and any s ≥ 1,

E

{
sup

η∈Bδ1 (η0)

λ−s
min

[
n−1

n∑
t=1

∇εt (η)(∇εt (η))T

]}
= O(1);(3.8)

and for any δ2 > 0 with �̃ = � − Bδ2(η0) �= ∅ and any s ≥ 1,

E

{
sup
η∈�̃

[
n−1

n∑
t=1

(
εt (η) − εt (η0)

)2
]−s}

= O(1).(3.9)

Denote the ith component of ∇εt (η) by (∇εt (η))i . Straightforward calculations
yield that for 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2,

(∇εt (η))i = −yt−i +
p2∑
s=1

βs(∇εt−s(η))i,(3.10)

(∇εt (η))p1+j = εt−j (η) +
p2∑
s=1

βs(∇εt−s(η))p1+j .(3.11)
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For j < 0, let c
(1)
j (η) = c

(2)
j (η) = 0 and for j ≥ 0, let c

(1)
j (η) and c

(2)
j (η) satisfy

∞∑
j=0

c
(1)
j (η)zj = −A2,η0(z)

A2,η(z)A1,η0(z)
,

∞∑
j=0

c
(2)
j (η)zj = A1,η(z)A2,η0(z)

A2
2,η(z)A1,η0(z)

.(3.12)

In view of (3.3)–(3.5) and the compactness of �, there exist positive constants K1
and K2 such that for all j ≥ 0 and i = 1,2,

sup
η∈�

∣∣c(i)
j (η)

∣∣ ≤ K1 exp(−K2j).(3.13)

Define b
(l)
j (η) = c

(1)
j−l(η),1 ≤ l ≤ p1, and b

(p1+l)
j (η) = c

(2)
j−l(η),1 ≤ l ≤ p2. Then

it follows from (3.10)–(3.13) that

∇εt (η) =
(

t−1∑
j=1

b
(1)
j (η)εt−j , . . . ,

t−1∑
j=1

b
(p1+p2)
j (η)εt−j

)T

(3.14)

and

max
1≤l≤p1+p2

sup
η∈�

∣∣b(l)
j (η)

∣∣ ≤ K ′
1 exp(−K2j) for some K ′

1 > 0.(3.15)

Moreover, one has

εt (η) − εt (η0) =
t−1∑
i=1

bi(η)εt−i ,(3.16)

where bj (η), j ≥ 1, satisfy 1 + ∑∞
j=1 bj (η)zj = A1,η(z)A2,η0(z)/(A2,η(z) ×

A1,η0(z)) and

sup
η∈�

|bj (η)| ≤ K3 exp(−K4j)(3.17)

for some positive constants K3 and K4. The next theorem provides sufficient con-
ditions under which

E

{
sup
η∈�

λ−s
min

[
n−1

n∑
t=1

∇εt (η)(∇εt (η))T

]}
= O(1) for any s ≥ 1.(3.18)

This result leads immediately to (3.8).

THEOREM 3.1. Assume model (3.1), with gt (·) defined in (3.2) and εt being
independent random variables satisfying E(εt ) = 0 and E(ε2

t ) = σ 2 for all t ≥ 1.
Moreover, assume that there exist positive constants α1, ξ and M1 such that for
any 0 < s2 − s1 ≤ ξ ,

sup
1≤m≤t<∞,‖v‖=1

|Ft,m,v(s2) − Ft,m,v(s1)| ≤ M1(s2 − s1)
α1,(3.19)
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where v ∈ Rm and Ft,m,v(·) denotes the distribution function of vT(εt , . . . ,

εt+1−m)T. Then, (C1)–(C4) hold for � = �, ft (θ) = ∇εt (η) and Ft = σ {εt−1,

εt−2, . . .}, the σ -field generated by εt−1, εt−2, . . . . Hence, by Theorem 2.1, (3.18)
follows.

PROOF. According to (3.3) and (3.12), it is easy to see that ∇εt (η) is con-
tinuous on �, and hence (C1) follows. Define � = {a : a ∈ Rp̄,‖a‖ = 1}, where
p̄ = p1 + p2. To show (C2), note first that by (3.3)–(3.5), one has for any λ ∈ �
and η ∈ �, there exists δ2 = δ2(λ,η) > 0 such that for all large t ,

E(λT∇εt (η))2 > δ2.(3.20)

In addition, it follows from (3.14) and (3.15) that

E(λT∇εt (η))2 converges to l(λ,η) uniformly on � × �,(3.21)

where l(λ,η) is some nonnegative function on � × �. Moreover, since
E(λT∇εt (η))2 is continuous on � × �, uniform convergence implies that l(λ,η)

is also continuous on � × �. By (3.20) and the compactness of � × �,
infλ∈�,η∈� l(λ,η) > 0. This, together with (3.21), yields that there is a positive
number ε and a positive integer L such that for all t > L,

inf
λ∈�,η∈�

E(λT∇εt (η))2 > ε > 0.(3.22)

For t > l1 ≥ 1, define ∇εt,l1(η) = (
∑l1

i=1 b
(1)
i (η)εt−i , . . . ,

∑l1
i=1 b

(p̄)
i (η)εt−i)

T. Ac-
cording to (3.14) and (3.15), there exists a positive integer L1(ε) such that for all
t > l1 ≥ L1(ε),

sup
λ∈�,η∈�

|E(λT∇εt (η))2 − E(λT∇εt,l1(η))2| < ε/2.(3.23)

From (3.22) and (3.23), it follows that for all t > d1 = max{L,L1(ε)},
inf

λ∈�,η∈�
E(λT∇εt,d1(η))2 > ε/2.(3.24)

Denote λT(∇εt,d1(η) − ∇εt (η)) by Rt(λ,η) and σ−1(var(λT∇εt,d1(η)))1/2 by
gt (σ,λ,η). Since λT∇εt,d1(η)/gt (σ,λ,η) can be written as

∑d1
j=1 cj εt−j with∑d1

j=1 c2
j = 1, (3.19) and (3.24) imply that for any λ × η ∈ � × � and t > d1,

P
(
s1 < λT∇εt (η) ≤ s2|Ft−d1

)
= P

(
s1 + Rt(λ,η) < λT∇εt,d1(η) ≤ s2 + Rt(λ,η)|Ft−d1

)
= P

(
s1 + Rt(λ,η)

gt (σ,λ,η)
<

λT∇εt,d1(η)

gt (σ,λ,η)
≤ s2 + Rt(λ,η)

gt (σ,λ,η)

∣∣∣Ft−d1

)
(3.25)

≤ M1

(
σ(s2 − s1)√

ε/2

)α1

a.s.,
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provided 0 < s2 − s1 ≤ (ξ
√

ε/2)/σ . In view of (3.25), (C2) holds with d = d1,
M = M1(σ

√
2/ε)α1 , α = α1 and δ = (ξ

√
ε/2)/σ .

On the other hand, it is shown in Appendix B that there exists τ ∗∗ > 0 such that
for any η1,η2 ∈ �, with ‖η2 − η1‖ < τ ∗∗,

‖∇εt (η2) − ∇εt (η1)‖ ≤ ‖η2 − η1‖B̃t ,(3.26)

where B̃t are nonnegative random variables satisfying

sup
t≥1

E(B̃2
t ) < ∞.(3.27)

Combining (3.26) and (3.27), we obtain (C3). Finally, the proof is completed by
noting that (C4) is an immediate consequence of (3.26), (3.27), (3.14), (3.15) and
the compactness of �. �

REMARK 1. In the proof of Theorem 3.1, (3.19) plays the same role as that
of (C2) in the proof of Theorem 2.1. When εt ’s are normally distributed, (3.19) is
satisfied with M1 = (2πσ 2)−1/2, α1 = 1 and any ξ > 0. In addition, when εt ’s are
i.i.d. with an integrable characteristic function, (3.19) is satisfied with any ξ > 0,
α1 = 1 and some M1 > 0. For more details, see Lemma 4 of [11]. An extension
of Theorem 3.1 to autoregressive fractionally integrated moving average models
(ARFIMA) has also been obtained by the authors. However, since the proof of this
extension is quite involved, the details will be reported elsewhere.

THEOREM 3.2. Under the same assumptions as in Theorem 3.1, (C1)–(C4)
hold for ft (θ) = εt (η) − εt (η0), � = �̃ and Ft = σ {εt−1, εt−2, . . .}, and hence by
Theorem 2.1, (3.9) follows.

The proof of Theorem 3.2 is omitted, since it is similar to the proof of Theo-
rem 3.1. Using Theorems 2.2, 3.1 and 3.2 and Lemma B.1 of Appendix B, the next
theorem, whose proof is deferred to Appendix B, establishes moment bounds for
n1/2(η̂n − η0).

THEOREM 3.3. Assume that the assumptions of Theorem 3.1 hold and for
some q1 > q ≥ 1,

sup
t≥1

E|εt |4q1 < ∞.(3.28)

Then, (3.6) follows.

As an application of Theorem 3.3, an asymptotic expression for the MSPE of η̂n,
E{yn+1 − gn+1(η̂n)}2, is given in Theorem 3.4 below.
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THEOREM 3.4. Assume that the assumptions of Theorem 3.1 hold. Moreover,
let εt be i.i.d. random variables satisfying for some q1 > 18,

E|ε1|q1 < ∞.(3.29)

Then,

lim
n→∞n[E{yn+1 − gn+1(η̂n)}2 − σ 2] = p̄σ 2.(3.30)

PROOF. Let δ1 be any positive number such that Bδ1(η0) ⊂ � and define An =
{η̂n ∈ Bδ1(η0)} and Ac

n = {η̂n ∈ �̃ = � − Bδ1(η0)}. By Taylor’s theorem,

n1/2(
yn+1 − gn+1(η̂n) − εn+1

)
= n1/2(∇εn+1(η0))

T(η̂n − η0)IAn

+ n1/2

2
(η̂n − η0)

T∇2εn+1(η
∗)(η̂n − η0)IAn(3.31)

+ n1/2(
εn+1(η̂n) − εn+1(η0)

)
IAc

n

:= (I) + (II) + (III),

where ‖η∗ − η0‖ ≤ ‖η̂n − η0‖. In view of (3.31), (3.30) holds immediately if one
can show that

lim
n→∞ E(I)2 = p̄σ 2,(3.32)

lim
n→∞ E(II)2 = 0,(3.33)

lim
n→∞ E(III)2 = 0.(3.34)

By utilizing the martingale CLT (cf. [9]) and a truncation argument in [10], it
can be shown that

n1/2{(∇εn+1(η0))
T(η̂n − η0)}IAn ⇒ FTQ,(3.35)

where Q is distributed as N(0, σ 2�−1) with � = limt→∞ E{∇εt (η0)(∇εt (η0))
T},

and F, satisfying E(F) = 0 and E(FFT) = �, is independent of Q. Let 2 < r ≤
18/5. Then, it follows from Hölder’s inequality, Theorem 3.3, (3.15) and (3.29)
that

E{|n1/2(∇εn+1(η0))
T(η̂n − η0)|r}

≤ E{‖n1/2(η̂n − η0)‖r‖∇εn+1(η0)‖r}
≤ (

E‖n1/2(η̂n − η0)‖5r/4)4/5
(E‖∇εn+1(η0)‖5r )1/5 = O(1),

which implies the uniform integrability of n{(∇εn+1(η0))
T(η̂n −η0)}2IAn . Comb-

ing this with (3.35) yields

lim
n→∞ E[n{(∇εn+1(η0))

T(η̂n − η0)}2IAn] = E(FTQ)2 = p̄σ 2,
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and hence (3.32) follows. Moreover, applying Theorems 3.2 and 3.3, (3.29) and an
argument similar to that used to prove (B.8) and (B.12) of Appendix B, it is shown
in Appendix B of [4] that (3.33) and (3.34) are also true. Consequently, the desired
conclusion (3.30) holds. �

REMARK 2. Note that the moment restriction (3.29) is stronger than necessary
for the proofs of (3.32) and (3.34). On the other hand, since (3.33) requires that
E‖n1/2(η̂ − η0)‖q = O(1) holds with q = 9/2 (see Appendix B of [4]), it seems
that one cannot easily weaken (3.29) because Theorem 3.3 constitutes a key tool
in verifying (3.33).

In the special case of p2 = 0 (the pure AR case), equation (3.30) was examined
by Fuller and Hasza [8], Kunitomo and Yamamoto [13] and Ing [10]. In addition,
for the case p2 > 0, equation (3.30) was also considered in Yamamoto [23], but
a rigorous proof of (3.30) is still lacking in the literature. By establishing a set
of uniform moment bounds, this paper offers a rigorous proof of (3.30) for the
ARMA case.

Equation (3.30) implies that when two competing ARMA models are enter-
tained, the one having fewer estimated parameters also possesses a smaller MSPE,
up to terms of order n−1. As a result, the principle of parsimony (e.g., Tukey [20]),
which roughly asserts that mathematical models with the smallest number of pa-
rameters are preferred, is now endowed with a precise meaning in the context of
ARMA modelling. When p2 = 0, (3.30) was established in Akaike [1] using an
ad-hoc argument, which immediately led him to develop the final prediction error
criterion,

n + p̄

(n − p̄)n

n∑
t=1

(
yt − gt (η̂n)

)2

that is commonly used for AR model selection with optimal prediction efficiency;
see Shibata [18] or Ing and Wei [12]. Under this perspective, a contribution of
(3.30) is that it provides a theoretical foundation for the construction of the FPE
criterion for ARMA models. The issue of whether the FPE criterion (or its variants)
is asymptotically efficient (in the sense of [12] or [18]) in ARMA model selection
still remains open, however.

As a final remark, we note that (3.30) is obtained based on Theorems 2.1
and 2.2. Moreover, since these theorems provide a useful device for exploring the
moment properties of least squares estimates in (nonlinear) stochastic regression
models, their applications to prediction or model selection in models beyond the
ARMA case are anticipated.

APPENDIX A: PROOFS OF (2.3) AND (2.26)

PROOF OF (2.3). Let m = �{l1(r + 2k)+ r + k + 2q}/α�+ 1 with l1 > q . We
only prove (2.3) for the case of l = 0 and j = 1 since the other cases can be simi-
larly verified. First, define A(u) = {∑m−1

i=0 supθ∈� ‖f(i+1)d+1(θ)‖2 ≤ ul1/q/r} and
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B(u) = {∑m−1
i=0 B(i+1)d+1 ≤ ul1/q/k1/2}, where Bt are random variables defined

in (C3). Then, the left-hand side of (2.3) (with l = 0 and j = 1) is bounded by

K0 +
∫ ∞
K0

P

{
sup
θ∈�

(
inf‖y‖=1

m−1∑
i=0

(
yTf(i+1)d+1(θ)

)2
)−q

> u

}
du

= K0 +
∫ ∞
K0

P

{
inf
θ∈�

inf‖y‖=1

m−1∑
i=0

(
yTf(i+1)d+1(θ)

)2
< u−1/q

}
du

≤ K0 +
∫ ∞
K0

P

{
inf
θ∈�

inf‖y‖=1

m−1∑
i=0

(
yTf(i+1)d+1(θ)

)2
< u−1/q,A(u),B(u)

}
du(A.1)

+
∫ ∞
K0

P(Ac(u)) du +
∫ ∞
K0

P(Bc(u)) du

≡ K0 + (I) + (II) + (III),

where K0 = K0(l1, δ, q, k, τ ) is a positive number to be specified later and Ac(u)

and Bc(u) denote the complements of A(u) and B(u), respectively. Since l1 > q ,
by (C3), (C4) and Chebyshev’s inequality, it follows that for n large,

(II) ≤ C∗
1 and (III) ≤ C∗

2 ,(A.2)

where C∗
1 and C∗

2 are some positive constants depending on C1,C2, α, l1, r, k, q

and K0.
To deal with (I), consider the hypersphere Sr = {y : y ∈ Rr,‖y‖ = 1} and the

hypercube Hr (u) = [1 − 2u−(l1+1)/2q(�u(l1+1)/2q� + 1),1]r , u > 0. Note first that
Sr ⊆ Hr (u) for any u > 0. Divide Hr (u) into sub-hypercubes of equal size,
each of which has an edge length of 2u−(l1+1)/2q and a circumscribed circle
of radius

√
ru−(l1+1)/2q . Denote these sub-hypercubes by B̃i(u), 1 ≤ i ≤ m∗ =

(�u(l1+1)/2q� + 1)r . Letting Gi(u) = Sr ∩ B̃i(u) and {Gvi
(u), i = 1, . . . ,m∗∗}

denote the collection of nonempty Gi(u)’s, it follows that Sr = ⋃m∗∗
i=1 Gvi

(u)

with m∗∗ ≤ (�u(l1+1)/2q� + 1)r . On the other hand, since � is a bounded sub-
set in Rk , there is a positive integer g such that for any u > 0, � ⊆ Hk

g(u) =
[g − 2gu−(l1+1/2)/q(�u(l1+1/2)/q� + 1), g]k . We can similarly divide Hk

g(u) into
equal-sized sub-hypercubes W̃i(u), i = 1, . . . , e∗, where the edge length of W̃i(u)

is 2u−(l1+1/2)q−1
and e∗ = gk(�u(l1+1/2)/q� + 1)k . In addition, it holds that � =⋃e∗∗

i=1 Jvi
(u), where with Ji(u) = � ∩ W̃i(u), {Jvi

(u), i = 1, . . . , e∗∗} denotes the
collection of nonempty Ji(u)’s. By observing{

inf
θ∈�

inf‖y‖=1

m−1∑
i=0

(
yTf(i+1)d+1(θ)

)2
< u−1/q

}

=
e∗∗⋃
s=1

m∗∗⋃
j=1

{
inf

θ∈Jvs (u)
inf

y∈Gvj
(u)

m−1∑
i=0

(
yTf(i+1)d+1(θ)

)2
< u−1/q

}
,
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one has

P

(
inf
θ∈�

inf‖y‖=1

m−1∑
i=0

(
yTf(i+1)d+1(θ)

)2
< u−1/q,A(u),B(u)

)

(A.3)

≤
e∗∗∑
s=1

m∗∗∑
j=1

P

(
m−1⋂
i=0

C
(s,j)
i (u)

)
,

where

C
(s,j)
i (u) =

{
inf

θ∈Jvs (u)
inf

y∈Gvj
(u)

∣∣yTf(i+1)d+1(θ)
∣∣ < u−1/(2q),

B(i+1)d+1 ≤ ul1/q

k1/2 , sup
θ∈�

∥∥f(i+1)d+1(θ)
∥∥ ≤ ul1/2q

r1/2

}
.

Let yj ∈ Gvj
(u), j = 1, . . . ,m∗∗, and θ s ∈ Jvs (u), s = 1, . . . , e∗∗, be arbitrarily

chosen. Then, for any y ∈ Gvj
(u) and θ ∈ Jvs (u),∣∣yT

j f(i+1)d+1(θ s)
∣∣ ≤ ‖yj − y‖∥∥f(i+1)d+1(θ s)

∥∥
+ ‖y‖∥∥f(i+1)d+1(θ s) − f(i+1)d+1(θ)

∥∥
+ ∣∣yTf(i+1)d+1(θ)

∣∣.
Combining this with (C3) yields that on the set C

(s,j)
i (u) with u > (2k1/2/

τ)q/(l1+1/2),∣∣yT
j f(i+1)d+1(θ s)

∣∣
≤ 2

√
ru−(l1+1)/2q sup

θ∈�

∥∥f(i+1)d+1(θ)
∥∥

+ 2
√

ku−(l1+1/2)/qB(i+1)d+1 + inf
θ∈Jvs (u)

inf
y∈Gvj

(u)

∣∣yTf(i+1)d+1(θ)
∣∣

≤ 5u−1/2q

and hence

C
(s,j)
i (u) ⊆ D

(s,j)
i (u) := {∣∣yT

j f(i+1)d+1(θ s)
∣∣ ≤ 5u−1/2q}

.(A.4)

In view of (A.3) and (A.4), it follows that for u > (2k1/2/τ)q/(l1+1/2),

P

(
inf
θ∈�

inf‖y‖=1

m−1∑
i=0

(
yTf(i+1)d+1(θ)

)2
< u−1/q,A(u),B(u)

)

(A.5)

≤
e∗∗∑
s=1

m∗∗∑
j=1

P

(
m−1⋂
i=0

D
(s,j)
i (u)

)
.
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Observe that

P

(
m−1⋂
i=0

D
(s,j)
i (u)

)
= E

{
m−2∏
i=0

I
D

(s,j)
i (u)

P
(
D

(s,j)
m−1(u)|F(m−1)d+1

)}
,

where I
D

(s,j)
i (u)

denotes the indicator function of the set D
(s,j)
i (u). This, together

with (C2), implies that for u > (10/δ)2q , all 1 ≤ s ≤ e∗∗, all 1 ≤ j ≤ m∗∗ and n

large,

P

(
m−1⋂
i=0

D
(s,j)
i (u)

)
≤ M(10)αu−α/2qE

{
m−2∏
i=0

I
D

(s,j)
i (u)

}
.

Repeating the same argument m − 1 times, one has

P

(
m−1⋂
i=0

D
(s,j)
i (u)

)
≤ Mm(10)mαu−mα/2q .(A.6)

Taking K0 > max{(10/δ)2q, (2k1/2/τ)q/(l1+1/2),1}, it follows from (A.5), (A.6)
and m > {l1(r + 2k) + r + k + 2q}/α that

(I) ≤
∫ ∞
K0

e∗∗∑
s=1

m∗∗∑
j=1

P

(
m−1⋂
i=0

D
(s,j)
i (u)

)
du

≤ 2r+kgkMm(10)αm
∫ ∞
K0

u−{1/(2q)}{αm−(l1+1)r−(2l1+1)k} du(A.7)

= 2r+kgkMm(10)αm{C(q,α,m, l1, r, k)}−1K
−C(q,α,m,l1,r,k)
0 ,

where C(q,α,m, l1, r, k) = {αm− (l1 +1)r − (2l1 +1)k −2q}/2q . Consequently,
(2.3) is ensured by (A.1), (A.2) and (A.7). �

PROOF OF (2.26). Let C∗
4 = δ∗q

1 kqM̄2q . Since δ∗
1 , defined at the beginning of

the proof of Theorem 2.2, is smaller than 3−1k−1M̄−2, it follows that C∗
4 < 3−q .

By the Cauchy–Schwarz inequality and (2.12)–(2.14), one has

E(III) ≤ δ∗2q

1 kqnq/2E
(
Rq

nR
q/2
1n R

q/2
2n I{RnR

1/2
1n R

1/2
2n >M̄2}

)
+ C∗

4 E
(‖n1/2(θ̂n − θ0)‖qIAn

)
≤ δ∗2q

1 kqnq/2{E(R2q
n R

q
1nR

q
2n)}1/2

(A.8)
× {P(Rn > M̄) + P(R1n > M̄) + P(R2n > M̄)}1/2

+ C∗
4 E

(‖n1/2(θ̂n − θ0)‖qIAn

)
= O(1){E(R2q

n R
q
1nR

q
2n)}1/2 + C∗

4 E
(‖n1/2(θ̂n − θ0)‖qIAn

)
.

In addition, E(R
2q
n R

q
1nR

q
2n) = O(1) follows from Hölder’s inequality, (2.9), (2.10)

and (2.19). Combining this with (A.8) yields (2.26). �
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APPENDIX B: PROOFS OF (3.26), (3.27) AND THEOREM 3.3

Throughout this Appendix, J(m, p̄),1 ≤ m ≤ p̄, denotes the set {(j1, . . . , jm) :
j1 < · · · < jm, ji ∈ {1, . . . , p̄} for 1 ≤ i ≤ m}, and for j = (j1, . . . , jm) ∈ J(m, p̄)

and smooth function w = w(ξ ) = w(ξ1, . . . , ξp̄), Djw denotes the partial deriv-
ative ∂mw/∂ξj1, . . . , ∂ξjm . Before proving (3.26) and (3.27), we note that ac-
cording to (3.3)–(3.5), (3.10)–(3.14) and the compactness of �, (∇2εt (η))i,j =∑t−2

s=1 cs,ij (η)εt−1−s , where cs,ij (η) are continuously differentiable on � and sat-
isfy, for some D1,D2 > 0 (independent of i, j and s),

sup
η∈�

|cs,ij (η)| ≤ D1 exp(−D2s).(B.1)

Moreover, there exists a small positive number τ ∗ such that

sup
η∈�∗

|Djbs(η)| ≤ D3 exp(−D6s),(B.2)

max
j∈J(m,p̄),1≤m≤p̄

sup
η∈�∗

∣∣Djb
(l)
s (η)

∣∣ ≤ D4 exp(−D6s),(B.3)

max
j∈J(m,p̄),1≤m≤p̄

sup
η∈�∗

|Djcs,ij (η)| ≤ D5 exp(−D6s),(B.4)

where �∗ = ⋃
η∈� Bτ∗(η) and D3, . . . ,D6 are some positive constants indepen-

dent of i, j, l and s.

PROOFS OF (3.26) AND (3.27). Let τ ∗∗ = τ ∗/2. For ‖η2 − η1‖ < τ ∗∗, it fol-
lows from the mean value theorem for vector-valued functions that ‖∇εt (η2) −
∇εt (η1)‖2 ≤ ‖η2 − η1‖2‖ ∫ 1

0 ∇2εt (η1 + v(η2 − η1)) dv‖2 ≤ ‖η2 − η1‖2(B̃t )
2,

where B̃t = {∑1≤i,j≤p̄ supη∈�∗∗ (∇2εt (η))2
i,j }1/2, with �∗∗ = ⋃

η∈� Bτ∗∗(η). De-

noting by �̄∗∗ the compact closure of �∗∗, one has �̄∗∗ ⊂ �∗, which further
yields �̄∗∗ ⊂ ⋃r̄

r=1 Bτ∗(θ r ), for some 1 ≤ r̄ < ∞ and θ1, . . . , θ r̄ ∈ �. Hence,
E(B̃2

t ) ≤ ∑
1≤i,j≤p̄

∑r̄
r=1 E{supη∈Bτ∗ (θ r )

(∇2εt (η))2
i,j }. Moreover, it follows from

(B.1), (B.4) and (3.10) of Lai [14] that for all 1 ≤ i, j ≤ p̄, 1 ≤ r ≤ r̄ and
t ≥ 3, E{supη∈Bτ∗ (θ r )

(∇2εt (η))2
i,j } < C

∑∞
s=1{exp(−2D2s) + exp(−2D6s)} for

some C > 0 (see Appendix B of [4] for more details). Consequently, (3.26) and
(3.27) follow. �

The next lemma, Lemma B.1, provides moment bounds for the supremums of
some random functions associated with (2.8) and (2.11)–(2.14). Lemma B.1, to-
gether with Theorems 3.1 and 3.2, constitutes the major tools for proving Theo-
rem 3.3.

LEMMA B.1. Let θa be some point in Rk, k ≥ 1, and δ1 be some positive
number. For t ≥ 2, define Kt(θ) = ∑t−1

i=1 ci(θ)εt−i and Qt(θ) = ∑t−1
i=1 di(θ)εt−i ,
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where εi are independent random variables with E(εi) = 0 and E(ε2
i ) = σ 2

ε > 0
for all i ≥ 1, and ci(θ) and di(θ) are real-valued functions on Bδ1(θa). Assume
that for any i ≥ 1, j ∈ J(m, k) and 1 ≤ m ≤ k, Djci(θ) are continuous on Bδ1(θa),
and for some q1 ≥ 2, supi≥1 E|εi |q1 < ∞. Then, there exists C > 0 such that for
all n ≥ 2,

E

(
sup

θ∈Bδ1 (θa)

∣∣∣∣∣
n∑

t=2

Kt(θ)εt

∣∣∣∣∣
q1

)

≤ Cnq1/2

[{
n−1∑
i=1

c2
i (θa)

}q1/2

(B.5)

+
{

n−1∑
i=1

max
j∈J(m,k),1≤m≤k

sup
θ∈Bδ1 (θa)

(Djci(θ))2

}q1/2]
.

Moreover, if for any i, j ≥ 1, j ∈ J(m, k) and 1 ≤ m ≤ k, Dj{ci(θ)dj (θ)} are con-
tinuous on Bδ1(θ0), and for some q1 ≥ 2, supi≥1 E|εi |2q1 < ∞, then there exists
C > 0 such that for all n ≥ 3,

E

(
sup

θ∈Bδ1 (θa)

∣∣∣∣∣
n∑

t=2

Kt(θ)Qt(θ) − E(Kt(θ)Qt(θ))

∣∣∣∣∣
q1

)

≤ C

[{
n−1∑
j=1

(n−j∑
l=1

Sl,l

)2

+
n−1∑
j=1

(n−j∑
l=1

Vl,l

)2}q1/2

+ n(q1−2)/2
n−1∑
j=2

{(j−1∑
i=1

(n−j∑
l=1

Sl+j−i,l

)2)q1/2

(B.6)

+
(j−1∑

i=1

(n−j∑
l=1

Sl,l+j−i

)2)q1/2

+
(j−1∑

i=1

(n−j∑
l=1

Vl+j−i,l

)2)q1/2

+
(j−1∑

i=1

(n−j∑
l=1

Vl,l+j−i

)2)q1/2}]
,

where

Vi,j = |ci(θa)dj (θa)| and Si,j = max
j∈J(m,k),1≤m≤k

sup
θ∈Bδ1 (θa)

|Dj{ci(θ)dj (θ)}|.
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The proof of (B.5), given in Appendix B of [4], is based on (3.8) of [14] and
Lemma 2 of [21]. Assuming that supi≥1 E|εi |q1 < ∞ for some q1 > max{q,2}
with q ≥ 1, (B.5) can be used to justify (2.8) for the ARMA case. More precisely,
applying (B.5) with Kt(θ) = (∇2εt (η))i,j and εt = εt , in conjunction with (B.1)
and (B.4), it follows that for any δ1 > 0 with Bδ1(η0) ⊂ �,

max
1≤i,j≤p̄

E

(
sup

η∈Bδ1 (η0)

∣∣∣∣∣n−1/2
n∑

t=1

εt (∇2εt (η))i,j

∣∣∣∣∣
q1)

= O(1).(B.7)

In addition, by making use of (B.5) with Kt(θ) = εt (η) − εt (η0) and εt = εt , the
compactness of �̃, (3.17) and (B.2), we obtain

E

(
sup
η∈�̃

∣∣∣∣∣n−1
n∑

t=1

εt

(
εt (η) − εt (η0)

)∣∣∣∣∣
q1)

= O(n−q1/2),(B.8)

which gives (2.11) (with q2 = q1 and ν = 1/2) for the ARMA case.
On the other hand, (B.6), whose proof is also given in Appendix B of [4],

can be viewed as a uniform version of the first moment bound theorem of [6]
and plays a key role in verifying (2.12)–(2.14) for the ARMA case. Let M̄3 be
any positive number larger than 2D2

1σ 2 ∑∞
l=1 exp(−2D2l) and δ1 be any posi-

tive number satisfying Bδ1(η0) ⊂ �, noting that D1 and D2 are defined in (B.1).
Assume supi≥1 E|εi |2q1 < ∞ for some q1 ≥ 2q with q ≥ 1. Then, by (B.6) with
Kt(θ) = Qt(θ) = (∇2εt (η))i,j and εt = εt , (B.1), (B.4) and Chebyshev’s inequal-
ity, one has for any 1 ≤ i, j ≤ p̄,

P

(
sup

η∈Bδ1 (η0)

n−1
n∑

t=1

(∇2εt (η))2
i,j > M̄3

)

≤ P

(
sup

η∈Bδ1 (η0)

∣∣∣∣∣n−1
n∑

t=1

[(∇2εt (η))2
i,j − E{(∇2εt (η))2

i,j }]
∣∣∣∣∣
q1

> (M̄3/2)q1

)
(B.9)

= O(n−q1/2) = O(n−q),

which is (2.14) for the ARMA case. In addition, (2.12) and (2.13) for the ARMA
case, that is, for some M̄1, M̄2 > 0,

P

(
sup

η∈Bδ1 (η0)

λ−1
min

(
n−1

n∑
t=1

∇εt (η)(∇εt (η))T

)
> M̄1

)
= O(n−q),(B.10)

P

(
sup

η∈Bδ1 (η0)

n−1
n∑

t=1

‖∇εt (η)‖2 > M̄2

)
= O(n−q),(B.11)

can also be similarly verified. With the help of these results, we are now in a
position to prove Theorem 3.3.
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PROOF OF THEOREM 3.3. Since (3.28) is assumed, (B.7)–(B.11) follow. In
view of Theorems 2.2, 3.1 and 3.2, it remains to show that for some q1 > q ≥ 1
and some small positive number δ1 with Bδ1(η) ⊂ �,

max
1≤i,j≤p̄,1≤t≤n

E
(

sup
η∈Bδ1 (η0)

|(∇2εt (η))i,j |4q1
)

= O(1),(B.12)

and

max
1≤t≤n

E
(

sup
η∈Bδ1 (η0)

‖∇εt (η)‖4q1
)

= O(1).(B.13)

These equations, however, can be verified based on (3.15), (3.28), (B.1), (B.3),
(B.4) and an argument similar to (3.10) of [14]. The details are thus omitted here.

�
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