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The multiple testing procedure plays an important role in detecting the
presence of spatial signals for large-scale imaging data. Typically, the spatial
signals are sparse but clustered. This paper provides empirical evidence that
for a range of commonly used control levels, the conventional FDR procedure
can lack the ability to detect statistical significance, even if the p-values un-
der the true null hypotheses are independent and uniformly distributed; more
generally, ignoring the neighboring information of spatially structured data
will tend to diminish the detection effectiveness of the FDR procedure. This
paper first introduces a scalar quantity to characterize the extent to which
the “lack of identification phenomenon” (LIP) of the FDR procedure occurs.
Second, we propose a new multiple comparison procedure, called FDRL, to
accommodate the spatial information of neighboring p-values, via a local
aggregation of p-values. Theoretical properties of the FDRL procedure are
investigated under weak dependence of p-values. It is shown that the FDRL

procedure alleviates the LIP of the FDR procedure, thus substantially facil-
itating the selection of more stringent control levels. Simulation evaluations
indicate that the FDRL procedure improves the detection sensitivity of the
FDR procedure with little loss in detection specificity. The computational
simplicity and detection effectiveness of the FDRL procedure are illustrated
through a real brain fMRI dataset.

1. Introduction. In many important applications, such as astrophysics, satel-
lite measurement and brain imaging, the data are collected at spatial grid points,
and a large-scale multiple testing procedure is needed for detecting the presence
of spatial signals. For example, functional magnetic resonance imaging (fMRI)
is a recent and exciting imaging technique that allows investigators to determine
which areas of the brain are involved in a cognitive task. Since an fMRI dataset
contains time-course measurements over voxels, the number of which is typically
of the order of 104–105, a multiple testing procedure plays an important role in
detecting the regions of activation. Another example of important application of
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multiple testing is to the diffusion tensor imaging, which intends to identify brain
white matter regions [Le Bihan et al. (2001)].

In the seminal work, Worsley et al. (2002) proposed a Gaussian random field
method which approximates the family-wise error rate (FWER) by modeling test
statistics over the entire brain as a Gaussian random field. It has been found to be
conservative in some cases [Nichols and Hayasaka (2003)]. Nichols and Hayasaka
(2003) also discussed the use of permutation tests and their simulation studies
showed that permutation tests tended to be more sensitive in finding activated re-
gions. The false discovery rate (FDR) approach has become increasingly popular.
The conventional FDR procedure offers the advantage of overcoming the conser-
vativeness drawback of FWER, requiring fewer assumptions than random field
based methods and being computationally less intensive than permutation tests.

Nevertheless, in practical applications to imaging data with a spatial structure,
even if the p-values corresponding to the true null hypotheses are independent and
uniformly distributed, the conventional FDR procedure may lack the ability to de-
tect statistical significance, for a range of commonly used control levels α. It will
be seen, in the left panels of Figure 2, that the FDR procedure for a 2D simulated
data declares only a couple of locations to be significant for α ranging from 0 to
about 0.4. That is, even if we allow FDR to be controlled at the level 40%, one
cannot reasonably well identify significant sites. The empirical evidence provided
above for the standard FDR procedure is not pathological. Indeed, similar phe-
nomena arise from commonly used signals plus noise models for imaging data,
as will be exemplified by extensive studies in Section 4.2. In statistical literature,
while some useful finite-sample and asymptotic results [Storey, Taylor and Sieg-
mund (2004)] have been established for the FDR procedure, the results could not
directly quantify the loss of power and “lack of identification phenomenon” (LIP).

More generally, for spatially structured imaging data, the significant locations
are typically sparse, but clustered rather than scattered. It is thus anticipated that
a location and its adjacent neighbors fall in a similar type of region, either signifi-
cant (active) or nonsignificant (inactive). As will be seen in the simulation studies
(where the LIP does not occur) of Section 5, the existing FDR procedure tends to
be less effective in detecting significance. This lack of detection efficiency is due
to the information of p-values from adjacent neighbors not having been fully taken
into account. Due to the popularity of the FDR procedure in research practices, it
is highly desirable to embed the spatial information of imaging data into the FDR
procedure.

This paper aims to quantify the LIP and to propose a new multiple testing pro-
cedure, called FDRL, for imaging data, to accommodate the spatial information of
neighboring p-values, via a local aggregation of p-values. Main results are given
in three parts.

• In the first part, statistical inference for the null distribution of locally aggregated
p-values is studied. See Method I proposed in Section 3.2 and Method II in
Section 3.3.
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• In the second part, asymptotic properties of the FDRL procedure are investi-
gated under weak dependence (to be defined in Section 4.1) of p-values. See
Theorems 4.1–4.3.

• The third part intends to provide a more in-depth discussion of why the LIP
occurs and the extent to which the FDRL procedure alleviates the LIP. In par-
ticular, we introduce a scalar α∞ to quantify the LIP: the smaller the α∞, the
smaller control level can be adopted without encountering LIP; α∞ = 0 rules out
the possibility of the LIP. In the particular case of i.i.d. p-values, Theorem 4.4
provides verifiable conditions under which α∞ = 0 and under which α∞ > 0.
Theorem 4.5 demonstrates that under mild conditions, α∞ of the FDRL pro-
cedure is lower than the counterpart of the FDR procedure. These theoretical
results demonstrate that the FDRL procedure alleviates the extent of the LIP,
thus substantially facilitates the selection of user-specified control levels. As
observed from the middle and right panels of Figure 2, for control levels close
to zero, the FDRL procedure combined with either Method I or Method II iden-
tifies a larger number of true significant locations than the FDR procedure.

The rest of the paper is arranged as follows. Section 2 reviews the conventional
FDR procedure and introduces α∞ to characterize the LIP. Section 3 describes the
proposed FDRL procedure. Its theoretical properties are established in Section 4,
where Section 4.2 explores the extent to which the FDRL procedure alleviates LIP.
Sections 5 and 6 present simulation comparisons of the FDR and FDRL procedures
in 2D and 3D dependent data, respectively. Section 7 illustrates the computational
simplicity and detection effectiveness of the proposed method for a real brain fMRI
dataset for detecting the regions of activation. Section 8 ends the paper with a brief
discussion. Technical conditions and detailed proofs are deferred to the Appendix.

2. FDR and lack of identification phenomenon.

2.1. Conventional FDR procedure. We begin with a brief overview of the con-
ventional FDR procedure that is of particular relevance to the discussion in Sec-
tions 3 and 4. For testing a family of null hypotheses, {H0(i)}ni=1, suppose that pi

is the p-value of the ith test. Table 1 summarizes the outcomes.

TABLE 1
Outcomes from testing n (null) hypotheses H0(i) based on a significance rule

H0(i) retained H0(i) rejected Total

H0(i) true U V n0
H0(i) false T S n1

Total W R n
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Benjamini and Hochberg (1995) proposed a procedure that guarantees the False
Discovery Rate (FDR) to be less than or equal to a pre-selected value. Here, the
FDR is the expected ratio of the number of incorrectly rejected hypotheses to the
total number of rejected hypotheses with the ratio defined to be zero if no hypothe-
sis is rejected, that is, FDR = E( V

R∨1) where R∨1 = max(R,1). A comprehensive
overview of the development of the research in the area of multiple testing can
be found in Benjamini and Yekutieli (2001), Genovese and Wasserman (2002),
Storey (2002), Dudoit, Shaffer and Boldrick (2003), Efron (2004), Storey, Taylor
and Siegmund (2004), Genovese and Wasserman (2004), Lehmann and Romano
(2005), Lehmann, Romano and Shaffer (2005), Genovese, Roeder and Wasserman
(2006), Sarkar (2006), Benjamini and Heller (2007) and Wu (2008), among oth-
ers. Fan, Hall and Yao (2007) addressed the issue on the number of hypotheses that
can be simultaneously tested when the p-values are computed based on asymptotic
approximations.

Storey, Taylor and Siegmund (2004) gave an empirical process definition of
FDR, by

FDR(t) = E

{
V (t)

R(t) ∨ 1

}
,(2.1)

where t stands for a threshold for p-values. For realistic applications, Storey
(2002) proposed the point estimate of FDR(t) by

F̂DR(t) = W(λ)t

{R(t) ∨ 1}(1 − λ)
,(2.2)

where λ ∈ (0,1) is a tuning constant, and W(t) is the number of nonrejections with
a threshold t . The intuition of this will be explained in Section 3.4. The pointwise
limit of F̂DR(t) under assumptions (7)–(9) of Storey, Taylor and Siegmund (2004)
is

F̂DR∞
(t) = [π0{1 − G0(λ)} + π1{1 − G1(λ)}]t

{π0G0(t) + π1G1(t)}(1 − λ)
,(2.3)

where π0 = limn→∞ n0/n, π1 = 1 − π0, and limn→∞ V (t)/n0 = G0(t) and
limn→∞ S(t)/n1 = G1(t) are assumed to exist almost surely for each t ∈ (0,1].
For a pre-chosen level α, a data-driven threshold for p-values is determined by

tα(F̂DR) = sup{0 ≤ t ≤ 1 : F̂DR(t) ≤ α}.(2.4)

A null hypothesis is rejected if the corresponding p-value is less than or equal to
the threshold tα(F̂DR). Methods (2.2) and (2.4) form the basis for the conventional
FDR procedure.
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2.2. Proposed measure for lack of identification phenomenon. Recall that the
FDR procedure is essentially a threshold-based approach for multiple testing prob-
lems, where the data-driven threshold tα(F̂DR) plays a key role. It is clearly seen
from (2.4) that tα(F̂DR) hinges on both the estimates F̂DR(t) devised, as well as
the control level α specified.

Using (2.2), we observe that the corresponding tα(F̂DR) is a nondecreasing
function of α. This indicates that for the FDR procedure, as α decreases below
inf0<t≤1 F̂DR(t), the threshold tα(F̂DR) will drop to zero and accordingly, the
FDR procedure can only reject those hypotheses with p-values exactly equal to
zero. We call this phenomenon “lack of identification.”

To better quantify the “lack of identification phenomenon” (LIP), the limiting
forms of F̂DR(t) as n → ∞ will be examined.

DEFINITION 1. For estimation methods F̂DR(t) in (2.2), define

αFDR∞ = inf
0<t≤1

F̂DR∞
(t),

where F̂DR∞
(t) is defined in (2.3). Define the endurance by EFDR = 1 − αFDR∞ .

Notice that the existence of αFDR∞ > 0 implies the occurrence of the LIP: in
real data applications with a moderately large number n of hypotheses, the FDR
procedure loses the identification capability when the control level α is close to
or smaller than αFDR∞ . On the other hand, the case αFDR∞ = 0 rules out the possi-
bility of the LIP. Henceforth, the smaller the αFDR∞ , the higher endurance of the
corresponding F̂DR, and the less likely the LIP happens. In other words, an FDR
estimation approach with a higher endurance is more capable of adopting a smaller
control level, thus reducing the extent of the LIP problem. We will revisit this issue
in Section 4.2 after introducing the proposed FDRL procedure.

3. Proposed FDRL procedure for imaging data. Consider a set of spatial
signals {μ(v) :v ∈ V ⊆ Z

d} in a 2D plane (d = 2) or a 3D space (d = 3), where
μ(v) = 0 for v ∈ V0, μ(v) �= 0 for v ∈ V1 and V0 ∪ V1 = V . Here V0 and V1 are
unknown sets. A common approach for detecting the presence of the spatial signals
consists of two stages. In the first stage, test the hypothesis

H0(v) :μ(v) = 0 versus H1(v) :μ(v) �= 0

at each location v. The corresponding p-value is denoted by p(v). In the second
stage, a multiple testing procedure, such as the conventional FDR procedure, is
applied to the collection, {p(v) :v ∈ V ⊆ Z

d}, of p-values.
In the second stage, instead of using the original p-value, p(v), at each v, we

propose to use a local aggregation of p-values at points located adjacent to v. We
summarize the procedure as follows.
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STEP 1. Choose a local neighborhood with size k.

STEP 2. At each grid point v, find the set Nv of its neighborhood points, and
the set {p(v′) :v′ ∈ Nv} of the corresponding p-values.

STEP 3. At each grid point v, apply a transformation f : [0,1]k �→ [0,1] to
the set of p-values in Step 2, leading to a “locally aggregated” quantity, p∗(v) =
f ({p(v′) :v′ ∈ Nv}).

STEP 4. Determine a data-driven threshold for {p∗(v) :v ∈ V ⊆ Z
d}.

For notational clarity, we denote by {p∗
i }ni=1 the collection of “locally aggre-

gated” p∗-values, {p∗(v) :v ∈ V ⊆ Z
d}. Likewise, the notation U∗(t), V ∗(t),

T ∗(t), S∗(t), W ∗(t) and R∗(t) can be defined as in Section 2, with pi replaced
by p∗

i . For instance, V ∗(t) = ∑n
i=1 I{H0(i) is true, and p∗

i ≤ t} and R∗(t) =∑n
i=1 I(p∗

i ≤ t), with I(·) an indicator function. Accordingly, the false discovery
rate based on utilizing the locally aggregated p∗

i -values becomes

FDRL(t) = E

{
V ∗(t)

R∗(t) ∨ 1

}
.(3.1)

As a comparison, FDR(t) in (2.1) corresponds to the use of the original p-values.

3.1. Choice of neighborhood and choice of f . As in Roweis and Saul (2000),
the set of neighbors for each data point can be assigned in a variety of ways, by
choosing the k nearest neighbors in Euclidean distance, by considering all data
points within a ball of fixed radius or by using some prior knowledge.

For the choice of the transformation function, f , one candidate is the median
filter, applied to the neighborhood p-values, without having to specify particular
forms of spatial structure. A discussion on other options for f can be found in
Section 8. Unless otherwise stated, this paper focuses on the median filtering.

3.2. Statistical inference for p∗-values: Method I. Let G∗(·) be the cumulative
distribution function of a “locally aggregated” p∗-value corresponding to the true
null hypothesis. Let G̃∗(·) be the sample distribution of {p∗(v) : v ∈ V0}. Recall
that the original p-value corresponding to the true null hypothesis is uniformly
distributed on the interval (0,1). In contrast, the distribution G∗(·) for a “locally
aggregated” p∗-value is typically nonuniform. This indicates that a significance
rule based on p-values is not directly applicable to the significance rule based on
p∗-values. For the median operation f , we propose two methods for estimating
G̃∗(·). Method I is particularly useful for large-scale imaging datasets, whereas
Method II is useful for data of limited resolution.

Method I is motivated from the observation: if the original p-values are indepen-
dent and uniformly distributed on the interval (0,1), then the median aggregated
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p∗-value follows a Beta distribution. More precisely, if the neighborhood size k is
an odd integer, then the median aggregated p∗-value conforms to the

Beta
(
(k + 1)/2, (k + 1)/2

)
(3.2)

distribution [Casella and Berger (1990)]. If k is an even integer, the median ag-
gregated p∗-value is distributed as a random variable (X + Y)/2, where (X,Y )

has the joint probability density function k!/{(k/2 − 1)!}2xk/2−1(1−y)k/2−1I(0 <

x < y < 1). Thus, as long as the resolution of the experiment data and imaging
technique keeps improving, so that the proportion of boundary grid points (corre-
sponding to those with neighborhood intersected with both V0 and V1) decreases
and eventually shrinks to zero, G∗(·) will tend to the Beta distribution in (3.2).

Following this argument, if the original p-values corresponding to the true null
hypotheses are independent and uniformly distributed [see, e.g., van der Vaart
(1998), page 305], the median aggregated p∗-values corresponding to the true
null hypotheses will approximately be symmetrically distributed about 0.5. Thus,
assuming that the number of false null hypothesis with p∗

i > 0.5 is negligible,
the total number of true null hypotheses, n0, is approximately 2

∑n
i=1 I(p∗

i >

0.5) + ∑n
i=1 I(p∗

i = 0.5), and the number of true null hypotheses with p∗-values
smaller than or equal to t could be estimated by

∑n
i=1 I{p∗

i ≥ (1 − t)}, for small
values of t . Here, owing to the symmetry, we use the upper tail to compute the
proportion to mitigate the bias caused by the data from the alternative hypotheses.
Hence, G̃∗(t) can be estimated by the empirical distribution function,

Ĝ∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 I{p∗

i ≥ (1 − t)}
2

∑n
i=1 I(p∗

i > 0.5) + ∑n
i=1 I(p∗

i = 0.5)
,

if 0 ≤ t ≤ 0.5,

1 −
∑n

i=1 I(p∗
i > t)

2
∑n

i=1 I(p∗
i > 0.5) + ∑n

i=1 I(p∗
i = 0.5)

,

if 0.5 < t ≤ 1.

(3.3)

A modification of the Glivenko–Cantelli theorem shows that sup0≤t≤1|Ĝ∗(t) −
G∗(t)| = o(1) almost surely as n → ∞. This method is distribution free, computa-
tionally fast and applicable when the p∗-values under the null hypotheses are not
too skewedly distributed.

An alternative approach for approximating G̃∗(·) is inspired by the central limit
theorem. If the neighborhood size k is reasonably large (e.g., k ≥ 5 if the original
p-values corresponding to the true null hypotheses are independent and uniformly
distributed), then G̃∗(·) could be approximated by a normal distribution centered at
0.5. This normal approximation scheme may be exploited in the situation (which
rarely occurs, though) when the original p-values corresponding to the true null
hypotheses are independent but asymmetric about 0.5 (when the null distribution
function of the test statistic is discontinuous).
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3.3. Refined method for estimating G̃∗(·): Method II. More generally, we con-
sider spatial image data of limited resolution. Recall the neighborhood size k of a
voxel v in the paper includes one for v itself. Let n1(v) denote the number of
points in Nv that belong to V1. Thus for any grid point v ∈ V0, n1(v) takes values
{0,1, . . . , k − 1}. Set

θn,j = P {n1(v) = j}, Q∗
j (t) = P {p∗(v) ≤ t |n1(v) = j}.

Clearly,
∑k−1

j=0 θn,j = 1. Therefore, the C.D.F. of p∗(v) for a grid point v ∈ V0 is
given by

G∗(t) = θn,0Q
∗
0(t) + θn,1Q

∗
1(t) + · · · + θn,k−1Q

∗
k−1(t),(3.4)

where Q∗
0(t) corresponds to, for independent tests, the Beta distribution function

in (3.2).
Likewise, we obtain

G̃∗(t) =
k−1∑
j=0

θ̃n,j Q̃
∗
j (t),

where θ̃n,j = #V (j)
0 /n0 is the proportion of v ∈ V0 with j neighboring grid

points in V1, and Q̃∗
j (t) = ∑

v∈V (j)
0

I{p∗(v) ≤ t}/#V (j)
0 is the sample distribution

of {p∗(v) : v ∈ V (j)
0 }, with #A denoting the number of elements in a set A and

V (j)
0 = {v ∈ V0 : n1(v) = j}. Clearly, if the original p-values corresponding to the

true null hypotheses are block dependent, then, by the Glivenko–Cantelli theorem,
sup0≤t≤1 |G̃∗(t) − G∗(t)| = o(1) almost surely, as n → ∞.

We propose the following Method II to estimate G̃∗(t):

1. Obtain estimates n̂0 and n̂1 = n − n̂0 of n0 and n1, respectively. One possible
estimator of n0 is n̂0 = ∑n

i=1 I(p∗
i > λ)/{1 − Ĝ∗(λ)}, for some tuning parame-

ter λ.
2. Define V̂1 = {v ∈ V :p∗(v) ≤ p∗

(n̂1)
}, where {p∗

(i)}ni=1 denote the order statistics

of {p∗
i }ni=1. Define V̂0 = {v ∈ V :p∗(v) > p∗

(n̂1)
}.

3. Set V̂ (j)
0 = {v ∈ V̂0 : n1(v) = j}. Estimate θ̃n,j , j = 0, . . . , k − 1, by θ̂n,j =

#V̂ (j)
0 /n̂0.

4. For j = 0, estimate Q̃∗
0(t) by Q̂∗

0(t) = Ĝ∗(t), the estimator of G̃∗(t) by

Method I in Section 3.2. To estimate Q̃∗
j (t), j = 1, . . . , k −1, for each v ∈ V̂ (0)

0 ,
collect its neighborhood p-values, randomly exclude j of them and obtain
the set Dj(v) for the remaining neighborhood p-values. Randomly sample j

grid points from V̂1 and collect their corresponding p-values in a set Aj(v).
Compute the median, p̂∗

j (v), of p-values in Dj(v) ∪ Aj(v). Estimate Q̃∗
j (t) by

Q̂∗
j (t) = ∑

v∈V̂ (0)
0

I{p̂∗
j (v) ≤ t}/#V̂ (0)

0 .
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5. Combining (3.4), G̃∗(t) is estimated by Ĝ∗
c(t) = ∑k−1

j=0 θ̂n,j Q̂
∗
j (t).

3.4. Significance rule for p∗-values. Using the locally aggregated p∗-values,
we can estimate FDRL(t) defined in (3.1) by either

F̂DRL(t) = W ∗(λ)Ĝ∗(t)
{R∗(t) ∨ 1}{1 − Ĝ∗(λ)} ,(3.5)

using Method I, or

F̂DRL(t) = W ∗(λ)Ĝ∗
c(t)

{R∗(t) ∨ 1}{1 − Ĝ∗
c(λ)} ,(3.6)

using Method II. The logic behind this estimate is the following. If we choose λ

far enough from zero, then the number of nonrejections, W ∗(λ), is roughly U∗(λ).
Using this, we have

V ∗(λ) ≈ n0G̃
∗(λ) ≈ {V ∗(λ) + W ∗(λ)}G̃∗(λ).

Solving the above equation suggests an estimate of V ∗(λ) by W ∗(λ)G̃∗(λ)/{1 −
G̃∗(λ)}. Now, using V ∗(t)/V ∗(λ) ≈ G̃∗(t)/G̃∗(λ), we obtain that at a threshold t ,
V ∗(t) can be estimated by W ∗(λ)G̃∗(t)/{1 − G̃∗(λ)}. This together with the de-
finition of FDRL(t) in (3.1) suggests the estimate in (3.5). Interestingly, in the
particular case of p∗

i ≡ pi and Ĝ∗(t) = t [or Ĝ∗
c(t) = t], F̂DRL(t) coincides with

F̂DR(t) defined in (2.2).
For a given control level α, a null hypothesis is rejected if the associated p∗-

value is smaller than or equal to the threshold,

tα(F̂DRL) ≡ sup{0 ≤ t ≤ 1 : F̂DRL(t) ≤ α}.(3.7)

This data-driven threshold for p∗-values together with the point estimation method
(3.5) [or (3.6)] for the false discovery rates comprises the proposed FDRL proce-
dure.

4. Properties of the FDRL procedure.

4.1. Asymptotic behavior. This section explores the asymptotic behavior of
the FDRL procedure under weak dependence of p-values. Technical assumptions
are given in Condition A in the Appendix, where Conditions A1–A3 are similar
to assumptions (7)–(9) of Storey, Taylor and Siegmund (2004). Thus the type of
dependence in Condition A2 includes finite block dependence, and certain mixing
dependence. Theorems 4.1–4.3 can be considered a generalization of Storey, Tay-
lor and Siegmund (2004) from a single p-value to locally aggregating a number k

of p-values with k > 1.
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Theorem 4.1 below reveals that the proposed estimator F̂DRL(t) controls the
FDRL(t) simultaneously for all t ≥ δ with δ > 0, and in turn supplies a conserva-
tive estimate of FDRL(t).

THEOREM 4.1. Assume Condition A in Appendix A. For each δ > 0,

lim
n→∞ inf

t≥δ

{
F̂DRL(t) − V ∗(t)

R∗(t) ∨ 1

}
≥ 0

and

lim
n→∞ inf

t≥δ
{F̂DRL(t) − FDRL(t)} ≥ 0

with probability one.

To show that the proposed F̂DRL(t) asymptotically provides a strong control of
FDRL(t), we define

F̂DR∞
L (t) = [π0{1 − G∗

0(λ)} + π1{1 − G∗
1(λ)}]G∗∞(t)

{π0G
∗
0(t) + π1G

∗
1(t)}{1 − G∗∞(λ)} ,(4.1)

which is the pointwise limit of F̂DRL(t) under Condition A in Appendix A,
where it is assumed that π0 = limn→∞ n0/n, and limn→∞ V ∗(t)/n0 = G∗

0(t) and
limn→∞ S∗(t)/n1 = G∗

1(t) exist almost surely for each t ∈ (0,1], and G∗∞(t) =
limn→∞ G∗(t).

THEOREM 4.2. Assume Condition A in Appendix A. If there is a t ∈ (0,1]
such that F̂DR∞

L (t) < α, then lim supn→∞ FDRL(tα(F̂DRL)) ≤ α.

Theorem 4.3 states that the random thresholding rule tα(F̂DRL) converges to
the deterministic rule tα(F̂DR∞

L ).

THEOREM 4.3. Assume Condition A in Appendix A. If F̂DR∞
L (·) has a

nonzero derivative at the point tα(F̂DR∞
L ) ∈ (0,1), then limn→∞ tα(F̂DRL) =

tα(F̂DR∞
L ) holds almost surely.

4.2. Conditions for lack of identification phenomenon.

DEFINITION 2. For estimation methods F̂DRL(t) in (3.5) [or (3.6)], define

αFDRL∞ = inf
0<t≤1

F̂DR∞
L (t),

where F̂DR∞
L (t) is defined in (4.1).
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Theorem 4.4 establishes conditions under which the LIP does or does not take
place with the FDR and FDRL procedures. It will be seen that the conditions are
characterized by the null and alternative distributions of the test statistics, without
relying on the configuration of the neighborhood used in the FDRL procedure.
Theorem 4.5 demonstrates that αFDR∞ ≥ α

FDRL∞ under mild conditions, thus the
FDRL procedure reduces the extent of the LIP. For expository brevity, we assume
the test statistics are independent, which can be relaxed.

THEOREM 4.4. Let {T (v) :v ∈ V ⊆ Z
d} be the set of test statistics for testing

the presence of the spatial signals {μ(v) :v ∈ V ⊆ Z
d}. Consider the one-sided

testing problem,

H0(v) :μ(v) = 0 versus H1(v) :μ(v) > 0.(4.2)

For j = 0 and j = 1, respectively, assume that T (v), corresponding to the true
Hj(v), are i.i.d. random variables having a cumulative distribution function Fj

with a probability density function fj . Assume that the neighborhood size k ≥ 3
used in the FDRL procedure is an odd integer and that the proportion of boundary
grid points within V0 shrinks to zero, as n → ∞, that is, limn→∞ #V (0)

0 /n0 = 1,

where V (0)
0 = {v ∈ V :μ(v′) = 0 for any v′ ∈ Nv}. Assume Condition A1 in Appen-

dix A. Let x0 = F−1
0 (1) = inf{t :F0(t) = 1}.

I. If limx→x0−
f1(x)
f0(x)

= ∞, then αFDR∞ = 0 and α
FDRL∞ = 0.

II. If lim supx→x0−
f1(x)
f0(x)

< ∞, then αFDR∞ > 0 and α
FDRL∞ > 0.

THEOREM 4.5. Assume the conditions in Theorem 4.4. Suppose that f0(·) is
supported in an interval; f1(x) ≤ f0(x) for any x ≤ F−1

0 (0.5); 1−F0(F
−1
1 (0.5)) ≤

λ ≤ 0.5. Then αFDR∞ ≥ α
FDRL∞ .

Corollaries 1 and 2 below provide concrete applications of Theorems 4.4
and 4.5. The detailed verifications are omitted.

COROLLARY 1. Assume the conditions in Theorem 4.4. Suppose that the dis-
tribution F0 is N(0,1) and the distribution F1 is N(C,σ 2), where σ ∈ (0,∞) and
C ∈ (0,∞) are constants.

I. If σ ≥ 1, then αFDR∞ = 0 and α
FDRL∞ = 0.

II. If 0 < σ < 1, then αFDR∞ > 0 and α
FDRL∞ > 0. Moreover, if exp{−(C/σ)2/2}/

σ ≤ 1 and 1 − F0(C) ≤ λ ≤ 0.5, then αFDR∞ ≥ α
FDRL∞ .

COROLLARY 2. Assume the conditions in Theorem 4.4. Suppose that the dis-
tribution F0 is that of a Student’s td0 variate with d0 degrees of freedom and the
distribution F1 is that of C plus a Student’s td1 variate with d1 degrees of freedom,
where C ∈ (0,∞) is a constant.

I. If d0 > d1, then αFDR∞ = 0 and α
FDRL∞ = 0.
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II. If 1 ≤ d0 ≤ d1, then αFDR∞ > 0 and α
FDRL∞ > 0. Moreover, if d0 = d1 and

1 − F0(C) ≤ λ ≤ 0.5, then αFDR∞ ≥ α
FDRL∞ .

REMARK 1. For illustrative simplicity, a one-sided testing problem (4.2) is
focused upon. Two-sided testing problems can similarly be treated and we omit
the details.

4.3. An illustrative example of αFDR∞ > α
FDRL∞ > 0. Consider a pixelated 2D

image dataset consisting of n = 50 × 50 pixels, illustrated in the left panel of
Figure 1, where the black rectangles represent the true significant regions V1 with
n1 = 0.16 × n pixels and the white background serves as the true nonsignificant
regions V0 with n0 = n − n1 pixels. The data are simulated from the model,

Y(i, j) = μ(i, j) + ε(i, j), i, j = 1, . . . ,50,

where the signals are μ(i, j) = 0 for (i, j) ∈ V0, and μ(i, j) = C for (i, j) ∈ V1
with a constant C ∈ (0,∞), and the error terms {ε(i, j)} are i.i.d. following the
centered Exp(1) distribution. At each site (i, j), the observed data Y(i, j) is the
(shifted) survival time and used as the test statistic for testing μ(i, j) = 0 versus
μ(i, j) > 0. Clearly, all test statistics corresponding to the true null hypotheses are
i.i.d. having the probability density function f0(x) = exp{−(x + 1)}I(x + 1 > 0);
likewise, all test statistics in accordance with the true alternative hypotheses are
i.i.d. having the density function f1(x) = exp{−(x + 1 − C)}I(x + 1 > C). It is
easily seen that x0 = ∞, and lim supx→∞ f1(x)/f0(x) = exp(C) < ∞. An appeal

to Theorem 4.4 yields αFDR∞ > 0 and α
FDRL∞ > 0, and thus both the FDR and FDRL

procedures will encounter the LIP. Moreover, if C > log(2), exp(−C)/2 ≤ λ ≤ 0.5
and the neighborhood size k ≥ 3 is an odd integer, then sufficient conditions in
Theorem 4.5 are satisfied and hence αFDR∞ ≥ α

FDRL∞ .
Actual computations indicate that in this example, as long as C > log(4), αFDRL∞

is considerably smaller than αFDR∞ , indicating that the FDRL procedure can adopt

FIG. 1. Left panel: the true significant regions for the 2D simulated data sets. Right panel: neigh-
bors of a point at (x, y) used in the FDRL procedure for 2D simulated data.
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TABLE 2

Comparing αFDR∞ and α
FDRL∞

C log(8) log(12) log(16) log(20) log(24) log(28) log(32) log(36)

αFDR∞ 0.4130 0.3043 0.2471 0.2079 0.1795 0.1579 0.1409 0.1273

α
FDRL∞ 0.0103 0.0030 0.0013 0.0007 0.0004 0.0002 0.0002 0.0001

a control level much smaller than that of the conventional FDR procedure without
excessively encountering the LIP. For example, set λ = 0.1; assume that the neigh-
borhood in the FDRL procedure is depicted in the right panel of Figure 1, that is,
k = 5. Table 2 compares values of αFDR∞ and α

FDRL∞ for C = log(4j), j = 2, . . . ,9.
Refer to (C.2) and (C.5) in Appendix C for detailed derivations of αFDR∞ and α

FDRL∞ ,
respectively.

To better visualize the LIP from limited data, Figure 2 compares the regions
detected as significant by the FDR and FDRL procedures for C = log(8) based
on one realization of the simulated data. It is observed from Figure 2 that for α

between 0 and 0.4, the FDR procedure lacks the ability to detect statistical signif-

FIG. 2. Lack of identification phenomenon when α varies from 0 to αFDR∞ = 0.4130. The sites that
are called statistically significant based on the realization are shown in black. Left panels: the FDR
procedure. Middle panels: the FDRL procedure using Method I. Right panels: the FDRL procedure
using Method II.
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icance; as α increases to 0.413 (which is the limit αFDR∞ = 0.413 as calculated in
Table 2) and above, some significant results emerge. In contrast, for α close to 0,
both Method I and Method II for the FDRL procedure are able to deliver some sig-
nificant results. Similar plots to those in Figure 2 are obtained with other choices
of C and hence are omitted for lack of space.

5. Simulation study: 2D dependent data.

5.1. Example 1. To illustrate the distinction between the FDRL and the con-
ventional FDR procedures, we present simulation studies. The true significant re-
gions are displayed as two black rectangles in the top left panel of Figure 3. The
data are generated according to the model

Y(i, j) = μ(i, j) + ε(i, j), i, j = 1, . . . ,258,(5.1)

where the signals are μ(i, j) = 0 for (i, j) ∈ V0, μ(i, j) = 4 in the larger black
rectangle and μ(i, j) = 2 in the smaller black rectangle. The errors {ε(i, j)} have
zero-mean, unit-variance and are spatially dependent, by taking ε(i, j) = {e(i −
1, j) + e(i, j) + e(i + 1, j) + e(i, j − 1) + e(i, j + 1)}/√5, where {e(i, j)}259

i,j=0
are i.i.d. N(0,1). At each pixel (i, j), Y(i, j) is used as the test statistic for testing
μ(i, j) = 0 against μ(i, j) > 0.

Both FDR and FDRL procedures are preformed at a common control level 0.01,
with the tuning constant λ = 0.1. In the FDRL procedure, the neighborhood of a
point at (x, y) is taken as in the right panel of Figure 1. The histogram of the origi-
nal p-values plotted in Figure 3(a) is flat except a sharp rise on the left border. The
flatness is explained by the uniform distribution of the original p-values corre-
sponding to the true null hypotheses, whereas the sharp rise is caused by the small
p-values corresponding to the true alternative hypotheses. The histogram of the
median aggregated p∗-values in Figure 3(c) shows a sharp rise at the left end and
has a shape symmetric about 0.5. The approximate symmetry arises from the limit
distribution of p∗-values corresponding to the true null hypotheses [see (3.2)],
whereas the sharp rise is formed by small p∗-values corresponding to the true al-
ternative hypotheses. Figures 3(b), (d) and (d′) manifest that the FDR procedure
diminishes the effectiveness in detecting the significant regions than the FDRL

procedure, demonstrating that the FDRL procedure more effectively increases the
true positive rates. As a comparison, Figures 3(e), (f) and (f′) correspond to using
the mean (other than median) filter for aggregating p-values. It is seen that the
detections by the median and mean filters are very similar; but compared with the
mean, the median better preserves the edge of the larger black rectangle between
significant and nonsignificant areas. This effect gets more pronounced when α in-
creases, lending support to the “edge preservation property” of the median.

To evaluate the performance of Method I and Method II in estimating G̃∗(t),
the bottom panels of Figure 3 display the plots of Ĝ∗(t) versus G̃∗(t) and Ĝ∗

c(t)
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FIG. 3. Comparison of the FDR and FDRL procedures for Example 1. In the first row, left: true
significant regions shown in black; middle: histogram of the original p-values; right: significant
regions detected by the FDR procedure. In the second row, left: histogram of the p∗-values using the
median filter; middle and right: significant regions detected by the FDRL procedure using Methods I
and II, respectively. In the third row, left: histogram of the p∗-values using the mean filter; middle
and right: significant regions detected by the FDRL procedure using Methods I and II, respectively.
In the bottom row, left: Ĝ∗(t) versus G̃∗(t); right: Ĝ∗

c (t) versus G̃∗(t); straight line: the 45 degree
reference line. Here α = 0.01 and λ = 0.1.

versus G̃∗(t). The agreement with 45 degree lines well supports both estimation
methods.
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FIG. 4. Panel (a): compare the average values of F̂DR(t) and those of F̂DRL(t) using Methods I
and II. Panel (b): compare the average values of F̂DR(t) and those of FDP(t). Panel (c): compare the
average values of F̂DRL(t) using Method I and those of FDPL(t). Panel (d): compare the average
values of F̂DRL(t) using Method II and those of FDPL(t). Here λ = 0.1.

To examine the overall performance of the estimated FDR(t) and FDRL(t)

for a same threshold t ∈ [0,1], we replicate the simulation 100 times. For
notational convenience, denote by FDP(t) = V (t)/{R(t) ∨ 1} and FDPL(t) =
V ∗(t)/{R∗(t) ∨ 1} the false discovery proportions of the FDR and FDRL pro-
cedures, respectively. The average values (over 100 data) of F̂DR(t) and F̂DRL(t)

at each point t are plotted in Figure 4(a). It is clearly observed that F̂DRL(t) using
both Methods I and II is below F̂DR(t), demonstrating that the FDRL procedure
produces the estimated false discovery rates lower than those of the FDR proce-
dure. Meanwhile, Figure 4 compares the average values of FDP(t) and those of
F̂DR(t) in panel (b), and the average values of FDPL(t) using Methods I and II
and those of F̂DRL(t) in panels (c) and (d), respectively. For each procedure, the
two types of estimates are very close to each other, lending support to the estima-
tion procedure in Section 3.4.

5.1.1. Sensitivity and specificity. To further study the relative performance of
the FDR and FDRL procedures, we adopt two widely used performance measures,

sensitivity ≡
{

S(tα(F̂DR))/n1, for the FDR procedure,
S∗(tα(F̂DRL))/n1, for the FDRL procedure,
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FIG. 5. Comparison of the average sensitivity (top panels), average specificity (middle panels) and
average false discovery proportion (bottom panels). Left panels: λ = 0.1. Right panels: λ = 0.4.

specificity ≡
{

U(tα(F̂DR))/n0, for the FDR procedure,
U∗(tα(F̂DRL))/n0, for the FDRL procedure,

for summarizing the discriminatory power of a diagnosis procedure, where S(t) =∑n
i=1 I{H0(i) is false, and pi ≤ t}, U(t) = ∑n

i=1 I{H0(i) is true, and pi > t},
S∗(t) = ∑n

i=1 I{H0(i) is false, and p∗
i ≤ t} and U∗(t) = ∑n

i=1 I{H0(i) is true, and
p∗

i > t}. Here, the sensitivity and specificity measure the strengths for correctly
identifying the alternative and the null hypotheses, respectively.

Following Section 5.1, we randomly generate 100 sets of simulated data and
perform FDR and FDRL procedures for each dataset, with the control levels α

varying from 0 to 0.1. The left panel of Figure 5 corresponds to λ = 0.1, whereas
the right panel corresponds to λ = 0.4. In either case, we observe that the average
sensitivity (over the datasets) of the FDRL procedure using Method I is consis-
tently higher than that of the FDR procedure, whereas the average specificities
of both procedures approach one and are nearly indistinguishable. In addition, the
bottom panels indicate that the FDR procedure yields larger (average) false discov-
ery proportions than the FDRL procedure. It is apparent that the results in Figure 5
are not very sensitive to the choice of λ. Unless otherwise stated, λ = 0.1 will be
used throughout the rest of the numerical work.

5.2. Example 2: More strongly correlated case. We consider a dataset gener-
ated according to the same model (5.1) as in Example 1, but with more strongly
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correlated errors, by taking ε(i, j) = ∑6
i=0

∑6
j=0 e(i, j)/7, where {e(i, j)}264

i,j=0 are
i.i.d. N(0,1). As seen from the figure in Zhang, Fan and Yu (2010), both FDR and
FDRL (using Methods I and II) procedures perform worse with strongly-correlated
data than with low-correlated data (given in Figure 3). However, there are no ad-
verse effects by applying FDRL to more strongly correlated data, and Method I
continues to be comparable with Method II for the FDRL procedure.

5.3. Example 3: Large proportion of boundary grid points. The efficacy of
the FDRL procedure is illustrated in the figure of Zhang, Fan and Yu (2010) by a
simulated dataset generated according to the same model (5.1) as in Example 1, but
with a large proportion of boundary grid points, where μ(i, j) = 0 for (i, j) ∈ V0
and μ(i, j) = 4 for (i, j) ∈ V1. Similar plots using μ(i, j) = 2 for (i, j) ∈ V1 are
obtained and thus omitted. Again, there is no adverse effect of using FDRL to
detect dense or weak signals.

6. Simulation study: 3D dependent data. We apply the FDR and FDRL pro-
cedures to detect activated brain regions of a simulated brain fMRI dataset, which
is both spatially and temporally correlated. The experiment design, timings and
size are exactly the same as those of the real fMRI dataset in Section 7. The data
are generated from a semi-parametric model similar to that in Section 5.2 of Zhang
and Yu (2008). (They demonstrated that the semi-parametric model gains more
flexibilities than existing parametric models.) The left panel of Figure 6 contains
9 slices (corresponding to the 2D axial view) which highlight two activated brain
regions involving 91 activated brain voxels. The neighborhood used in the FDRL

procedure is illustrated in the right panel of Figure 6.

FIG. 6. Left panel: true activated brain regions (denoted by hot color) for the simulated fMRI
dataset. Right panel: neighbors of a point at (x, y, z) used in the FDRL procedure for 3D simulated
and real data.
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FIG. 7. Comparison of activated brain regions detected for the simulated fMRI dataset using the
conventional FDR approach (on the left) and the proposed FDRL procedure (on the right) using
Method I. Top panels: K. Bottom panels: Kbc. Here α = 0.05.

Figure 7 compares the activated brain regions identified by the FDR (in the left
panels) and FDRL (in the right panels) procedures. Owing to the wealth of data,
and for purposes of computational simplicity, results using Method I of FDRL are
presented. Voxel-wise inactivity is tested with the semi-parametric test statistics
K = (Aĥ)T {A(̃ST R̂−1S̃)−1AT }−1(Aĥ)/{̂rT R̂−1̂r/(n − rm)} (in the top panels)
and Kbc = (Aĥbc)

T {A(̃ST R̂−1S̃)−1AT }−1(Aĥbc)/{̂rT
bcR̂

−1̂rbc/(n − rm)} (in the
bottom panels) whose notation was given and asymptotic χ2 distributions were
derived in Zhang and Yu (2008). The control level is 0.05. Inspection of Figure 7
reveals that K and Kbc locate both active regions. In particular, using the FDR
procedure, both methods detect more than 200 voxels (which are visible when
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FIG. 8. Comparison of activated brain regions detected for the simulated fMRI dataset using the
conventional FDR approach (on the left) and the proposed FDRL procedure (on the right) using
Method I. Top panels: AFNI. Bottom panels: FSL. Here α = 0.05.

zooming the images), many of which are falsely discovered. When applying the
FDRL procedure, K detects 82 voxels, whereas Kbc detects 90 voxels. Thus the
FDRL procedure reduces the number of tiny scattered false findings, gaining more
accurate detections than the FDR procedure.

As a comparison, the detection results by popular software AFNI [Cox (1996)]
and FSL [Smith et al. (2004) and Woolrich et al. (2001)] are given in Figure 8. We
observe that both AFNI and FSL fail to locate one activated brain area, and that
the other region, though correctly detected, has appreciably reduced size relative
to the actual size. This detection bias is due to the stringent assumptions underly-
ing AFNI and FSL in modeling fMRI data: the Hemodynamic Response Function
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TABLE 3
Comparing FDR and FDRL procedures

Test methods

Multiple comparison K Kbc AFNI FSL

# of detected voxels FDR 276 870 16 6
FDRL, Method I 82 90 2 11

False discovery proportion FDR 0.6993 0.9000 0.5625 0
FDRL, Method I 0 0 0.5000 0

Sensitivity FDR 0.9121 0.9560 0.0769 0.0659
FDRL, Method I 0.9011 0.9890 0.0110 0.1209

Specificity FDR 0.9921 0.9678 0.9996 1.0000
FDRL, Method I 1.0000 1.0000 0.9997 1.0000

(HRF) in FSL is specified as the difference of two gamma functions, and the drift
term in AFNI is specified as a quadratic polynomial. As anticipated, applying the
F distributions restricted to parametric models to specify the distributions of test
statistics in AFNI and FSL leads to bias, which in turn gives biased calculations of
p-values and p∗-values. In this case, the detection performances of both the FDR
and FDRL procedures deteriorate, and the FDRL procedure does not improve the
performance of the FDR procedure. See Table 3 for a more detailed comparison.

To reduce modeling bias, for applications to the real fMRI dataset in Section 7,
we will only employ the semi-parametric test statistics K and Kbc. It is also worth
distinguishing between the computational aspects associated with the FDRL pro-
cedure: this paper uses (3.3) for the null distribution of p∗-values, whereas Zhang
and Yu (2008) used the normal approximation approach in Section 3.2.

7. Functional neuroimaging example. In an emotional control study, sub-
jects saw a series of negative or positive emotional images, and were asked to either
suppress or enhance their emotional responses to the image, or to simply attend to
the image. The sequence of trials was randomized. The time between successive
trials also varied. The size of the whole brain dataset is 64×64×30. At each voxel,
the time series has 6 runs, each containing 185 observations with a time resolution
of 2 seconds. For details of the dataset, please refer to Zhang and Yu (2008). The
study aims to estimate the BOLD (Blood Oxygenation Level-Dependent) response
to each of the trial types for 1–18 seconds following the image onset. We analyze
the fMRI dataset containing one subject. The length of the estimated HRF is set
equal to 18. Again, the neighborhood used in the FDRL procedure is illustrated in
the right panel of Figure 6.

A comparison of the activated brain regions using the FDR and FDRL proce-
dures is visualized in Figure 9. The level 0.001 is used to carry out the multiple
comparisons. The conventional FDR procedure finds more tiny scattered active
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FIG. 9. Comparison of activated brain regions detected for the real fMRI dataset using the conven-
tional FDR approach (on the left) and the proposed FDRL procedure (on the right) using Method I.
Top panels: K. Bottom panels: Kbc. Here α = 0.001.

voxels, which are more likely to be falsely discovered. In contrast, the FDRL pro-
cedure finds activation in much more clustered regions of the brain.

8. Discussion. This paper proposes the FDRL procedure to embed the struc-
tural spatial information of p-values into the conventional FDR procedure for
large-scale imaging data with a spatial structure. This procedure provides the stan-
dard FDR procedure with the ability to perform better on spatially aggregated
p-values. Method I and Method II have been developed for making statistical
inference of the aggregated p-values under the null. Method I gains remarkable
computational superiority, particularly for large/huge imaging datasets, when the
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p∗-values under the null are not too skewed. Furthermore, we provide a better un-
derstanding of a “lack of identification phenomenon” (LIP) occurring in the FDR
procedure. This study indicates that the FDRL procedure alleviates the extent of
the problem and can adopt control levels much smaller than those of the FDR pro-
cedure without excessively encountering the LIP, thus substantially facilitating the
selection of more stringent control levels.

As discussed in Owen (2005) and Leek and Storey (2008), a key issue with
the dependencies between the hypotheses tests is the inflation of the variance of
significance measures in FDR-related work. Indeed, similar to FDR, the FDRL

procedure (using Methods I and II) performs less well with highly-correlated data
than with the low-correlated data. Detailed investigation of the variance of FDRL

will be given in future study.
Other ways of exploring spatially neighboring information are certainly possi-

ble in multiple comparison. For example, the median operation applied to p-values
can be replaced by the averaging, kernel smoothing, “majority vote” and edge pre-
serving smoothing techniques [Chu et al. (1998)]. Hence, taking the median is
not the unique way to aggregate p-values. On the other hand, compared with the
mean, the median is more robust, computationally simpler and does not depend ex-
cessively on the spatial co-ordinates, especially on the boundaries between signifi-
cant and nonsignificant regions, as observed in Figures 3(d) and (f). An exhaustive
comparison is beyond the scope of the current paper and we leave this for future
research.

APPENDIX A: PROOFS OF THEOREMS 4.1–4.3

We first impose some technical assumptions, which are not the weakest possi-
ble. Detailed proofs of Theorems 4.1–4.3 are given in Zhang, Fan and Yu (2010).

CONDITION A.
A0. The neighborhood size k is an integer not depending on n.
A1. limn→∞ n0/n = π0 exists and π0 < 1.
A2. limn→∞ V ∗(t)/n0 = G∗

0(t) and limn→∞ S∗(t)/n1 = G∗
1(t) almost surely

for each t ∈ (0,1], where G∗
0 and G∗

1 are continuous functions.
A3. 0 < G∗

0(t) ≤ G∗∞(t) for each t ∈ (0,1].
A4. supt∈(0,1] |Ĝ∗(t) − G∗∞(t)| = o(1) almost surely as n → ∞.

APPENDIX B: PROOFS OF THEOREMS 4.4 AND 4.5

B.1. Proof of Theorem 4.4. By the assumptions and H1(v), we see that the
p-value has the expression, p(v) = 1 − F0(T (v)). Thus, the distribution function
of p(v) corresponding to the true H0(v) is G0(t) = t for 0 < t < 1 and (2.3) gives
F̂DR∞

(t) = π0+π1{1−G1(λ)}/(1−λ)
π0+π1G1(t)/t

. Also, the distribution function of p(v) corre-
sponding to the true H1(v) is given by

G1(t) = 1 − F1
(
F−1

0 (1 − t)
)
.(B.1)
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Likewise, using (3.2), it follows that with probability one,

G∗
0(t) = lim

n→∞
V ∗(t)

n0

= lim
n→∞

∑
v∈V (0)

0
I{p∗(v) ≤ t}

#V (0)
0

· lim
n→∞

#V (0)
0

n0

+ lim
n→∞

∑
v∈V0\V (0)

0
I{p∗(v) ≤ t}
n0

(B.2)

= P {p∗(v) ≤ t} with v ∈ V (0)
0

= G∗∞(t) = B(k+1)/2,(k+1)/2(t),

the cumulative distribution function of a Beta((k + 1)/2, (k + 1)/2) random vari-
able and

G∗
1(t) = lim

n→∞S∗(t)/n1 = B(k+1)/2,(k+1)/2(G1(t)).(B.3)

Applying (B.2) and (4.1) gives F̂DR∞
L (t) = π0+π1{1−G∗

1(λ)}/{1−G∗
0(λ)}

π0+π1G
∗
1(t)/G∗

0(t)
.

Part I. For the FDR procedure, note that F̂DR∞
(t) is a decreasing function of

G1(t)/t . Applying L’Hospital’s rule and the fact limt→0+ G1(t) = 0,

lim
t→0+

G1(t)

t
= lim

t→0+
f1(F

−1
0 (1 − t))

f0(F
−1
0 (1 − t))

= lim
x→x0−

f1(x)

f0(x)
= ∞,(B.4)

where x = F−1
0 (1 − t). Thus, sup0<t≤1 G1(t)/t = ∞, which together with

F̂DR∞
(t) shows αFDR∞ = 0 for the FDR procedure.

For the FDRL procedure, applying (B.2) and (B.3), we get

dG∗
0(t)

dt
= dG∗∞(t)

dt
= k!

[{(k − 1)/2}!]2 t (k−1)/2(1 − t)(k−1)/2,(B.5)

dG∗
1(t)

dt
= k!

[{(k − 1)/2}!]2 G1(t)
(k−1)/2{1 − G1(t)}(k−1)/2 dG1(t)

dt
.(B.6)

Note that F̂DR∞
L (t) is a decreasing function of G∗

1(t)/G∗
0(t). Since

limt→0+ G∗
1(t) = 0 and limt→0+ G∗

0(t) = 0,

lim
t→0+

G∗
1(t)

G∗
0(t)

= lim
t→0+

dG∗
1(t)/dt

dG∗
0(t)/dt

(B.7)

= lim
t→0+

{
G1(t)

t
· 1 − G1(t)

1 − t

}(k−1)/2 dG1(t)

dt
,

which together with (B.4) shows limt→0+ G∗
1(t)/G∗

0(t) = ∞. Thus,

sup
0<t≤1

G∗
1(t)/G∗

0(t) = ∞,
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that is, α
FDRL∞ = 0 for the FDRL procedure.

Part II. Following F̂DR∞
(t) and F̂DR∞

L (t), we immediately conclude that
αFDR∞ �= 0 if

sup
0<t≤1

G1(t)/t < ∞,(B.8)

and that α
FDRL∞ �= 0 if

sup
0<t≤1

G∗
1(t)/G∗

0(t) < ∞.(B.9)

We first verify (B.8) for the FDR procedure. Assume (B.8) fails, that is,
sup0<t≤1 G1(t)/t = ∞. Note that for any δ > 0, the function G1(t)/t , for t ∈
[δ,1], is continuous and bounded away from ∞, thus, sup0<t≤1 G1(t)/t = ∞
only if there exists a sequence t1 > t2 > · · · > 0, such that limm→∞ tm = 0 and
limm→∞ G1(tm)/tm = ∞. For each m, recall that both G1(t) and t are continu-
ous on [0, tm], and differentiable on (0, tm). Applying Cauchy’s mean-value theo-
rem, there exists ξm ∈ (0, tm) such that G1(tm)/tm = {G1(tm)−G1(0)}/(tm − 0) =
dG1(t)

dt
|t=ξm. Since limm→∞ G1(tm)/tm = ∞, it follows that

lim sup
t→0+

dG1(t)

dt
= ∞.(B.10)

On the other hand, the condition lim supx→x0−
f1(x)
f0(x)

< ∞ indicates that

lim sup
t→0+

dG1(t)

dt
= lim sup

t→0+
f1(F

−1
0 (1 − t))

f0(F
−1
0 (1 − t))

= lim sup
x→x0−

f1(x)

f0(x)
< ∞,(B.11)

where x = F−1
0 (1 − t). Clearly, (B.11) contradicts (B.10).

Next, we show (B.9) for the FDRL procedure. Combining (B.7), (B.8) and
(B.11), the result follows. This completes the proof.

B.2. Proof of Theorem 4.5. We first show Lemma 1.

LEMMA 1. Let B(t) be the cumulative distribution function of a Beta(a, a)

random variable, where a > 1 is a real number. Then I for t ∈ (0,0.5), B(t)/t

is a strictly increasing function and B(t) < t ; II for t ∈ (0.5,1), B(t) > t ; III for
t1 ∈ (0,0.5] and t2 ∈ [t1,1], B(t1)/t1 ≤ B(t2)/t2.

PROOF. Let �(·) denote the Gamma function. It is easy to see that

B ′′(t) = �(2a)/{�(a)}2(a − 1)ta−2(1 − t)a−2(1 − 2t).(B.12)

To show part I, define F1(t) = B(t)/t . Then F ′
1(t) = {B ′(t)t − B(t)}/t2,

where d{B ′(t)t−B(t)}
dt

= B ′′(t)t . For t ∈ (0,0.5), (B.12) indicates B ′′(t) > 0, that
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is, B ′(t)t − B(t) is strictly increasing, implying B ′(t)t − B(t) > B ′(0)0 − B(0) =
0. Hence for t ∈ (0,0.5), B(t)/t is strictly increasing, and therefore B(t)/t <

B(0.5)/0.5 = 1.
For part II, define F2(t) = B(t) − t . Then F ′′

2 (t) = B ′′(t). By (B.12), B ′′(t) <

0 for t ∈ (0.5,1), thus F2(t) is strictly concave, giving F2(t) > max{F2(0.5),
F2(1)} = 0.

Last, we show part III. For t2 ∈ [t1,0.5], part I indicates that B(t1)/t1 ≤
B(t2)/t2; for t2 ∈ [0.5,1], part II indicates that B(t2)/t2 ≥ 1 which, combined with
B(t1)/t1 ≤ 1 from part I, yields B(t1)/t1 ≤ B(t2)/t2. �

We now prove Theorem 4.5. It suffices to show that

{1 − G1(λ)}/(1 − λ) ≥ {1 − G∗
1(λ)}/{1 − G∗

0(λ)},(B.13)

sup
0<t≤1

G1(t)/t ≤ sup
0<t≤1

G∗
1(t)/G

∗
0(t).(B.14)

Following (B.5) and (B.6), for 0 ≤ t ≤ 1,

G∗
1(t) = G∗

0(G1(t)).(B.15)

Applying (B.15), (B.1), 1 − F0(F
−1
1 (0.5)) ≤ λ and part II of Lemma 1 yields

G1(λ) ≤ G∗
1(λ); applying λ ≤ 0.5 and part I of Lemma 1 implies λ ≥ G∗

0(λ). This
shows (B.13).

To verify (B.14), let M = sup0<t≤1 G1(t)/t . Since G1(1)/1 = 1, we have M ≥
1 which will be discussed in two cases. Case 1: if M = 1, then

sup
0<t≤1

G∗
1(t)

G∗
0(t)

≥ G∗
1(1)

G∗
0(1)

= 1 = sup
0<t≤1

G1(t)

t
.(B.16)

Case 2: if M > 1, then there exists t0 ∈ [0,1] and tn ∈ (0,1) such that
limn→∞ tn = t0, and

lim
n→∞G1(tn)/tn = sup

0<t≤1
G1(t)/t = M > 1.(B.17)

Thus, there exists N1 such that for all n > N1,

G1(tn) > tn.(B.18)

Cases of t0 = 1, t0 = 0 and t0 ∈ (0,1) will be discussed separately. First, if t0 = 1,
then M = limn→∞ G1(tn)/tn = limn→∞ G1(tn) ≤ 1, which contradicts (B.17).
Thus t0 < 1. Second, if t0 = 0, then there exists N2 such that tn < 0.5 for all
n > N2. Thus for all n > N ≡ max{N1,N2}, applying (B.15), (B.18) and part III
of Lemma 1, we have that

G∗
1(tn)

G1(tn)
= G∗

0(G1(tn))

G1(tn)
≥ G∗

0(tn)

tn
.
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This together with (B.17) shows

sup
0<t≤1

G∗
1(t)

G∗
0(t)

≥ lim sup
n→∞

G∗
1(tn)

G∗
0(tn)

≥ lim
n→∞

G1(tn)

tn
= M = sup

0<t≤1

G1(t)

t
.(B.19)

Third, for t0 ∈ (0,1), since both F0 and F1 are differentiable and f0 is supported
in a single interval, G1(t)/t = {1 − F1(F

−1
0 (1 − t))}/t is differentiable in (0,1).

Thus,

sup
0<t≤1

G1(t)/t = G1(t0)/t0 = M(B.20)

and d{G1(t)/t}
dt

|t=t0 = 0. Notice

d{G1(t)/t}
dt

∣∣∣∣
t=t0

= (dG1(t)/dt)|t=t0 − G1(t0)/t0

t0
(B.21)

= (dG1(t)/dt)|t=t0 − M

t0
= 0.

If t0 > 0.5, then F−1
0 (1 − t0) ≤ F−1

0 (0.5). By (B.4) and the assumption on f0 and
f1, dG1(t)

dt
|t=t0 = f1(F

−1
0 (1 − t0))/f0(F

−1
0 (1 − t0)) ≤ 1, which contradicts (B.21).

Thus, 0 < t0 ≤ 0.5. This together with (B.15), (B.20), and part III of Lemma 1
gives

G∗
1(t0)

G1(t0)
= G∗

0(G1(t0))

G1(t0)
≥ G∗

0(t0)

t0
.

This, together with (B.20), shows

sup
0<t≤1

G∗
1(t)

G∗
0(t)

≥ G∗
1(t0)

G∗
0(t0)

≥ G1(t0)

t0
= M = sup

0<t≤1

G1(t)

t
.(B.22)

Combining (B.16), (B.19) and (B.22) completes the proof.

APPENDIX C: αFDR∞ AND α
FDRL∞ IN TABLE 2 OF SECTION 4.3

Before calculating αFDR∞ and α
FDRL∞ , we first present two lemmas.

LEMMA 2. Let f (x) and g(x) be differentiable functions in x ∈ (a, b) ⊆ R.
Suppose that g(x) �= 0 for x ∈ (a, b), and f (x)/g(x) is a nonincreasing function
of x. For any C ∈ (0,∞) such that g(x) + C �= 0, if df (x)/dx ≤ dg(x)/dx for all
x ∈ (a, b), then {f (x) + C}/{g(x) + C} is a decreasing function in x ∈ (a, b).

PROOF. The proof is straightforward and is omitted. �

LEMMA 3. The function h(x) = (10 − 15eCx + 6e2Cx2)/(10 − 15x + 6x2)

is decreasing in x ∈ (0, e−C), for any constant C ∈ (log(4),∞).
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PROOF. The function h(x) can be rewritten as h(x) = {6(−eCx + 5/4)2 +
5/8}/{6(−x + 5/4)2 + 5/8}. Note that (−eCx)/(−x) = eC is nonincreasing in
x and eC > 1 for x > 0. Applying Lemma 2, (−eCx + 5/4)/(−x + 5/4) is de-
creasing in x ∈ (0, e−C), so is (−eCx + 5/4)2/(−x + 5/4)2. When C > log(4),
d{(−eCx + 5/4)2}/dx ≤ d{(−x + 5/4)2}/dx. This together with Lemma 2 veri-
fies that h(x) is decreasing in x ∈ (0, e−C). �

First, we evaluate αFDR∞ . From (B.1) and the conditions in Section 4.3,

G0(t) = t for t ∈ [0,1] and G1(t) =
{

teC, if t ∈ [0, e−C],
1, if t ∈ (e−C,1].(C.1)

Thus sup0<t≤1 G1(t)/t = eC . By F̂DR∞
(t) in Appendix B,

αFDR∞ = π0 + π1{1 − λeCI(λ < e−C) − I(λ ≥ e−C)}/(1 − λ)

π0 + π1eC
.(C.2)

Next, we compute α
FDRL∞ . Recall from Appendix B that the distribution G∗

0(t)

with k = 5 is that of a Beta(3,3) random variable. Similarly, by (C.1), the distribu-
tion G∗

1(t) is that of a Beta(3,3)/eC random variable. By F̂DR∞
L (t) in Appendix B,

F̂DR∞
L (t) is a decreasing function of G∗

1(t)/G∗
0(t), for which two cases need to be

discussed. In the first case, t ∈ (0, e−C], it follows that

G∗
1(t)/G∗

0(t) = e3C 10 − 15 · eCt + 6 · e2Ct2

10 − 15t + 6t2 ,

which according to Lemma 3 is a decreasing function of t . Thus,

sup
t∈(0,e−C ]

G∗
1(t)/G∗

0(t) = lim
t→0+G∗

1(t)/G∗
0(t) = e3C

and

inf
t∈(0,e−C ]

F̂DR∞
L (t) = π0 + π1{1 − G∗

1(λ)}/{1 − G∗
0(λ)}

π0 + π1e3C
.(C.3)

In the second case, t ∈ (e−C,1], since G∗
1(t) = 1, we observe from F̂DR∞

L (t) in
Appendix B that F̂DR∞

L (t) is an increasing function of G∗
0(t), and thus

inf
t∈(e−C,1]

F̂DR∞
L (t) = π0 + π1{1 − G∗

1(λ)}/{1 − G∗
0(λ)}

π0 + π1/G∗
0(e

−C)
.(C.4)

Note that for C > 0, we have

1

G∗
0(e

−C)
= e3C

6(e−C − 5/4)2 + 5/8
≤ e3C

6(1 − 5/4)2 + 5/8
= e3C.

Combining (C.3) and (C.4) gives

αFDRL∞ = π0 + π1{1 − G∗
1(λ)}/{1 − G∗

0(λ)}
π0 + π1e3C

.(C.5)

This completes the proof.



FDRL FOR LARGE-SCALE IMAGING DATA 641

Acknowledgments. The comments of the anonymous referees, the Associate
Editor and the Co-Editors are greatly appreciated.

SUPPLEMENTARY MATERIAL

Proofs and figures (DOI: 10.1214/10-AOS848SUPP; .pdf). Section 1 gives de-
tailed proofs of Theorems 4.1–4.3, Section 2 gives the figure in Section 5.2, and
Section 3 gives the figure in Section 5.3.
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