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GEE ANALYSIS OF CLUSTERED BINARY DATA WITH
DIVERGING NUMBER OF COVARIATES

BY LAN WANG1

University of Minnesota

Clustered binary data with a large number of covariates have become in-
creasingly common in many scientific disciplines. This paper develops an
asymptotic theory for generalized estimating equations (GEE) analysis of
clustered binary data when the number of covariates grows to infinity with
the number of clusters. In this “large n, diverging p” framework, we provide
appropriate regularity conditions and establish the existence, consistency and
asymptotic normality of the GEE estimator. Furthermore, we prove that the
sandwich variance formula remains valid. Even when the working correlation
matrix is misspecified, the use of the sandwich variance formula leads to an
asymptotically valid confidence interval and Wald test for an estimable lin-
ear combination of the unknown parameters. The accuracy of the asymptotic
approximation is examined via numerical simulations. We also discuss the
“diverging p” asymptotic theory for general GEE. The results in this paper
extend the recent elegant work of Xie and Yang [Ann. Statist. 31 (2003) 310–
347] and Balan and Schiopu-Kratina [Ann. Statist. 32 (2005) 522–541] in the
“fixed p” setting.

1. Introduction. A fundamental problem in statistical analysis is to charac-
terize the effects of a set of covariates X1, . . . ,Xp on a response variable Y based
on a sample of size n. Recently, there has been considerable interest in investi-
gating this problem in the so-called “large n, diverging p” asymptotic framework,
where the dimension of the covariates increases to infinity with the sample size.
This setup allows statisticians to adopt a more complex statistical model as more
abundant data become available, and thus to reduce the modeling bias.

The “large n, diverging p” framework can be traced back to the earlier pio-
neering work on M-estimators with a diverging number of parameter; see Hu-
ber (1973), Portnoy (1984, 1985, 1988), Mammen (1989), Welsh (1989), Bai and
Wu (1994), He and Shao (2000) and the references therein. With the advent of
high-dimensional data in many scientific areas, statistical theory developed in this
new framework has become crucial for guiding practical data analysis with high-
dimensional covariates, which relies heavily on asymptotic theory to justify its va-
lidity. By allowing the covariates’ dimension to increase with the sample size, Fan
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and Peng (2004) studied nonconcave penalized likelihood; Lam and Fan (2008) in-
vestigated profile-kernel likelihood inference with generalized varying coefficient
partially linear models; Huang, Horowitz and Ma (2008) explored bridge estima-
tors in linear regression; Hjort, McKeague and Van Keilegom (2009) and Chen,
Peng and Qin (2009) studied the effects of data dimension on empirical likelihood;
Zou and Zhang (2009) studied the adaptive elastic net, Zhu and Zhu (2009) inves-
tigated parameter estimation in a semiparametric regression model with highly
correlated predictors. In the aforementioned literature, the number of covariates
p grows to infinity at a polynomial rate o(nα) for some 0 < α < 1. In particular,
most of these papers provide necessary conditions under which classical asymp-
totic theories remain valid for α in the range [1

5 , 1
2 ].

A different line of research considers the case where p can be much larger than
n and even grow at an exponential rate of n, in which case the sparsity assumption
and other more stringent regularity conditions are generally required to investigate
the large-sample properties. Furthermore, it is worth noting that much work has
also been devoted to classification and multiple hypotheses testing problems with
high-dimensional covariates, but these problems are different in nature from what
is discussed in this paper. We refer to the review papers of Donoho (2000), Fan
and Li (2006) and Fan and Lv (2010) for more comprehensive references on high-
dimensional data analysis.

When the research focus is on modeling the relationship between Y and a high-
dimensional vector of covariates, the existing literature in the “large n, diverging
p” setting has been largely restricted to independent data. In many modern data
sets, in addition to the large dimensionality of covariates, complexity also arises
when the responses are correlated due to repeated measures or clustered design.
One representative example is the Framingham Heart Study, where the researchers
are interested in linking common risk factors to the occurrence of cardiovascular
diseases. In this study, many variables, such as age, smoking status, cholesterol
level and blood pressure, were recorded for the participants during their clinic
visits over the years to describe their physical characteristics and lifestyles. An-
other example is the Chicago Longitudinal Study in social science, which investi-
gated the educational and social development of about 1500 low income, minority
youths in the Chicago area. The study collected a large amount of information
on many variables that measure children’s early antisocial behavior, individual-
level attributes of the child, family attributes and social characteristics of both the
child and the family, among others. In some other examples of clustered data, the
number of variables measured for each individual or experimental unit may not
be many, but when one considers various interaction effects, the actual number of
predictors in the statistical model can still be large and better fits the “large p”
setup.

The intrinsic complexity of clustered data raises challenging issues for statis-
tical analysis, especially for correlated non-Gaussian data where it is difficult to
specify the full likelihood. In this paper, we establish the asymptotic properties of



GEE WITH LARGE p 391

generalized estimating equations (GEE), a semiparametric procedure widely used
in practice for clustered data analysis, while allowing the covariate dimension to
grow to infinity with the sample size.

The GEE procedure was introduced in a seminal paper of Liang and
Zeger (1986) as a useful extension of generalized linear models [McCullagh and
Nelder (1989)] to correlated data. Instead of specifying the full likelihood, it only
requires the knowledge of the first two marginal moments and a working corre-
lation matrix. Thus, it is particularly effective for modeling clustered binary or
count data. A key advantage of the GEE approach is that it yields a consistent
estimator (in the classical “large n, fixed p” setup), even if the working correlation
structure is misspecified. The GEE estimator is also asymptotically efficient if the
correlation structure is indeed correctly specified. The original paper of Liang and
Zeger focused mostly on the methodology development. Li (1997) adopted a min-
imax approach to study the consistency of GEE. A more complete and systematic
large-sample theory for GEE, including consistency and asymptotic normality, was
elegantly established by Xie and Yang (2003). Balan and Schiopu-Kratina (2005)
also rigorously studied a closely related pseudo-likelihood framework for GEE.
However, these papers all assume that p is fixed and that the number of clusters
n goes to infinity. Xie and Yang (2003) also considered the case where the cluster
size (number of observations within each cluster) is itself large, which corresponds
to a large number of time points in the longitudinal setting.

This paper examines the effect of high-dimensional covariates on the GEE es-
timator in the “large n, diverging p” setup, where p = pn is a function of the
sample size n. We focus on clustered binary data because binary response (e.g.,
disease status) is ubiquitous in many scientific applications and because of the rel-
ative transparency of technical derivation. We also discuss the related theory for
general GEE in Section 5.1 The main technical challenges come from the high
dimensionality of the covariates, the dependence among observations within each
cluster and the nuisance parameters in the working correlation matrix. We pro-
vide a self-contained derivation and extend earlier theory in the literature on M-
estimation with a large number of parameters, which is not tailored for clustered
data and generally has not considered nuisance parameters.

We aim to answer the following essential questions. To what extent can the as-
ymptotic results derived in the classical asymptotic framework for GEE still be
deemed trustworthy when the number of covariates is large? How large can pn be
(relative to n)? The main findings in this paper reveal that under reasonable condi-
tions, the GEE estimator β̂n is

√
pn/n-consistent when p2

n/n → 0 and that an arbi-
trary linear combination αT

n (β̂n −βn0) is asymptotically normal when p3
n/n → 0,

where βn0 is the true parameter value. These findings resonate with those in the lit-
erature for independent data in the “large p” setting. Moreover, we also verify that
the desirable robustness property against working correlation matrix misspecifica-
tion still holds and that both the sandwich variance formula and the large-sample
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Wald test still remain valid in this new context. Understanding these fundamental
questions is essential to justifying asymptotic statistical inference based on GEE
for analyzing real-world clustered data containing many covariates, such as the
validity of the confidence intervals provided by the GEE package in R, SAS and
other statistical software packages.

The rest of the paper is organized as follows. In Section 2, we provide a brief
review of the GEE procedure for analyzing clustered binary data. Section 3 estab-
lishes the consistency and asymptotic normality of the GEE estimator, the consis-
tency of the sandwich variance formula and the validity of the large-sample Wald
test in the “large n, diverging p” framework. Section 4 examines the asymptotic
results via numerical simulations. Section 5 discusses general GEE and related
problems.

2. Generalized estimating equations. For the j th observation of the ith
cluster, we observe a binary response variable Yij and a pn-dimensional vec-
tor of covariates Xij , i = 1, . . . , n and j = 1, . . . ,mi . Observations from differ-
ent clusters are independent, but those from the same clusters are correlated. Let
Yi = (Yi1, . . . , Yimi

)T denote the vector of responses for the ith cluster and let
Xi = (Xi1, . . . ,Ximi

)T be the associated mi × pn matrix of covariates.
The marginal regression approach of GEE assumes that E(Yij |Xij ) = πij and

Var(Yij |Xij ) = πij (1 − πij ), where a dispersion parameter may be added in the
marginal variance function if overdispersion is suspected to be present. Further-
more, it relates the covariates to the marginal mean by specifying that

logit(πij ) = XT
ijβn,(2.1)

where logit(πij ) = log(
πij

1−πij
) is the link function and βn is a pn-dimensional vec-

tor of parameters. The true unknown parameter value is denoted by βn0.
Let π i (βn) = (πi1(βn), . . . , πimi

(βn))
T , where πij (βn) = exp(XT

ijβn)/[1 +
exp(XT

ijβn)]. Further, let Ai(βn) be the mi × mi diagonal matrix with the j th
diagonal element Aij (βn) = πij (βn)(1 − πij (βn)), j = 1, . . . ,mi . In what fol-
lows, we assume mi = m < ∞, for simplicity. Liang and Zeger (1986) suggested
to estimate βn0 by solving the following generalized estimating equation in βn:

n∑
i=1

XT
i Ai (βn)V

−1
i

(
Yi − π i (βn)

) = 0,(2.2)

where Vi is a working covariance matrix.

3. Asymptotic properties when pn → ∞.

3.1. GEE estimator with estimated working correlation matrix. In applica-
tions, the true correlation matrix of Yi , denoted by R0, is unknown. The work-
ing covariance matrix is often specified via a working correlation matrix R(τ ):
Vi = A1/2

i (βn)R(τ )A1/2
i (βn), where τ is a finite-dimensional parameter. Com-
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monly used working correlation structures include AR-1, compound symmetry
and unstructured working correlation, among others. Note that, in practice, the
working correlation matrix is chosen to be independent of the covariates, for sim-
plicity. However, for correlated non-normal data, the range of correlation gener-
ally depends on the univariate marginals. Thus, R(τ ) should be understood as a
weight matrix [Chaganty and Joe (2004)]. Chaganty and Joe demonstrated that
GEE with an appropriately chosen working correlation matrix does have good ef-
ficiency when compared with a proper likelihood model.

Given a working correlation structure, τ is often estimated using a residual-
based moment method, which requires an initial consistent estimator of βn0. We
use R̂ to denote the resulting estimated working correlation matrix, with the sub-
script “n” suppressed. Following (2.2), we formally define the GEE estimator β̂n

as the solution of

Sn(βn) =
n∑

i=1

XT
i A1/2

i (βn)R̂
−1A−1/2

i (βn)
(
Yi − π i (βn)

) = 0.(3.1)

To solve for β̂n, we can iterate between a modified Fisher scoring algorithm for
βn and the moment estimation for τ . In the following, we provide examples of an
initial consistent estimator and an estimated working correlation matrix.

EXAMPLE 1 (Initial estimator for βn0 when pn → ∞). A simple way to ob-
tain an initial estimator for βn0 is to solve the generalized estimating equations
under the working independence assumption

S̃n(βn) =
n∑

i=1

XT
i

(
Yi − π i (βn)

) = 0.(3.2)

Under conditions (A1)–(A3) in Section 3.2, we can show that if p2
n/n → 0 as

n → ∞, then the independence estimating equations in (3.2) have a root β̃n such
that

‖β̃n − βn0‖ = Op

(√
pn/n

)
,(3.3)

where ‖ · ‖ denotes the Euclidean norm of a vector. A detailed derivation of (3.3)
is given in the Appendix.

EXAMPLE 2 (Estimated working correlation matrix when pn → ∞). In Balan
and Schiopu-Kratina (2005), it was suggested to use

R̂ = 1

n

n∑
i=1

A−1/2
i (β̃n)

(
Yi − π i (β̃n)

)(
Yi − π i (β̃n)

)T A−1/2
i (β̃n),

where β̃n is a preliminary
√

n/pn-consistent estimator of βn0, such as the one
discussed in Example 1. This provides a moment estimator of the unstructured
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working correlation matrix. Assuming conditions (A1)–(A3) of Section 3.2, we
can prove that if p2

n/n → 0 as n → ∞, then

‖R̂−1 − R−1
0 ‖ = Op

(√
pn/n

)
,(3.4)

where R0 denotes the true common correlation matrix. Here, and throughout the
paper, for a matrix B, ‖B‖ = [Tr(BBT )]1/2 denotes its Frobenius norm. A detailed
derivation of (3.4) is given in the supplementary article [Wang (2010)].

3.2. Existence and consistency. In Fan and Peng (2004), Lam and Fan (2008)
and Huang, Horowitz and Ma (2008), the estimator is defined as the minimizer
of a certain objective function. We use alternative techniques here to establish the
existence and consistency of the GEE estimator, which involve the roots of esti-
mating equations. The approach we adopt here is also different from that of Xie
and Yang (2003) and Balan and Schiopu-Kratina (2005), both of which rely on
properties of injective functions.

We directly verify the following condition: ∀ε > 0, there exists a constant � > 0
such that for all n sufficiently large,

P
(

sup
‖βn−βn0‖=�

√
pn/n

(βn − βn0)
T Sn(βn) < 0

)
≥ 1 − ε.(3.5)

Condition (3.5) is sufficient to ensure the existence of a sequence of roots β̂n of
the equation Sn(βn) = 0 such that ‖β̂n − βn0‖ = OP (

√
pn/n). This approach

follows from Theorem 6.3.4 of Ortega and Rheinboldt (1970). In Portnoy (1984),
this technique was applied to establish the existence and consistency of an M-
estimator for i.i.d. data; in a different setting, it was used by Wang et al. (2010)
to study a partial linear single-index model. This leads to a more straightforward
and elegant proof of weak consistency. On the other hand, the method relying on
injective functions [Xie and Yang (2003); Balan and Schiopu-Kratina (2005)] can
also be used to prove strong consistency.

To prove consistency and asymptotic normality, we need the following general
regularity conditions:

(A1) supi,j ‖Xij‖ = O(
√

pn);
(A2) the unknown parameter βn belongs to a compact subset B ⊆ Rpn , the true

parameter value βn0 lies in the interior of B and there exist two positive constants,
b1 and b2, such that 0 < b1 ≤ πij (βn0) ≤ b2 < 1, ∀i, j ;

(A3) there exist two positive constants, b3 and b4, such that

b3 ≤ λmin

(
n−1

n∑
i=1

XT
i Xi

)
≤ λmax

(
n−1

n∑
i=1

XT
i Xi

)
≤ b4,

where λmin (resp. λmax) denotes the minimum (resp. maximum) eigenvalue of a
matrix;
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(A4) the common true correlation matrix R0 has eigenvalues bounded away
from zero and +∞; the estimated working correlation matrix R̂ satisfies ‖R̂−1 −
R

−1‖ = Op(
√

pn/n), where R is a constant positive definite matrix with eigen-
values bounded away from zero and +∞; we do not require R to be the true
correlation matrix R0.

REMARK 1. Condition (A1) is a common assumption in the literature on
M-estimators with diverging dimension. For example, it is the same as assump-
tion (3.9) of Portnoy (1985) and it is implied by conditions (C.9) and (C.10) of
Welsh (1989). This condition holds almost surely under some weak moment con-
ditions for Xij from spherically symmetric distributions [see, e.g., the discussions
in He and Shao (2000)]. When m = 1 (i.e., each cluster has only one observation),
condition (A3) is also popularly adopted in the literature on high-dimensional re-
gression for independent data. It can be shown that condition (A3) is implied by the
following slightly stronger condition: there exist two positive constants, c1 ≤ c2,
such that ∀1 ≤ j ≤ m,

c1 ≤ λmin

(
n−1

n∑
i=1

Xij XT
ij

)
≤ λmax

(
n−1

n∑
i=1

Xij XT
ij

)
≤ c2.

Finally, condition (A4) is a direct extension of a similar assumption in the “fixed p”
case. Liang and Zeger (1986) assumes that the estimator of the working correlation
matrix parameter τ̂ satisfies

√
n(τ̂ − τ 0) = Op(1) for some τ0. Assumption (C2)

of Chen and Jin (2006) is of similar nature, while Xie and Yang (2003) assumes the
nuisance parameter τ to be completely known. Note that Example 2 in Section 3.1
guarantees that (A4) is satisfied when a nonparametric moment estimator is used
for the working correlation matrix, in which case R = R0.

We use notation similar to that in Xie and Yang (2003) and Balan and Schiopu-
Kratina (2005). Consider the following estimating equation:

Sn(βn) =
n∑

i=1

XT
i A1/2

i (βn)R
−1

A−1/2
i (βn)

(
Yi − π i (βn)

)
.

If we let Mn(βn) denote the covariance matrix of Sn(βn), then

Mn(βn) =
n∑

i=1

XT
i A1/2

i (βn)R
−1

R0R
−1

A1/2
i (βn)Xi .

To prove the consistency, the essential idea is to approximate Sn(βn) by Sn(βn),
whose moments are easier to evaluate. Lemma 3.1 below establishes the accuracy
of this approximation, which also plays an important role in deriving the asymp-
totic normality in Section 3.3.
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LEMMA 3.1. Assume conditions (A1)–(A4). If n−1p2
n = o(1), then

‖Sn(βn0) − Sn(βn0)‖ = Op(pn).

To facilitate the Taylor expansion of the estimating function Sn(βn), we also use
Dn(βn) = − ∂

∂βT
n

Sn(βn) to approximate the negative gradient function Dn(βn) =
− ∂

∂βT
n

Sn(βn). Lemma 3.2 below provides a useful representation of Dn(βn), based

on which, Lemma 3.3 establishes the approximation of gradient functions.

LEMMA 3.2.

Dn(βn) = Hn(βn) + En(βn) + Gn(βn),(3.6)

where

Hn(βn) =
n∑

i=1

XT
i A1/2

i (βn)R
−1

A1/2
i (βn)Xi ,

En(βn) = 1

2

n∑
i=1

m∑
j=1

(
1 − 2πij (βn)

)
εij (βn)X

T
i A1/2

i (βn)R
−1

ej eT
j Xi ,

Gn(βn) = −1

2

n∑
i=1

m∑
j=1

(
1 − 2πij (βn)

)
A1/2

ij (βn)Xij XT
ij eT

j R
−1

εi(βn),

where εij (βn) = A−1/2
ij (βn)(Yij − πij (βn)), εi (βn) = A−1/2

i (βn)(Yi − π(βn))

and ej denotes a unit vector of length m whose j th entry is 1 and all other en-
tries of which are 0.

LEMMA 3.3. Assume conditions (A1)–(A4). If n−1p2
n = o(1), then ∀� > 0,

for bn ∈ Rpn , we have

sup
‖βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n [Dn(βn) − Dn(βn)]bn| = Op

(√
npn

)
.

REMARK 2. The matrix Dn(βn) − Dn(βn) is symmetric. The above lemma
immediately implies that

sup
‖βn−βn0‖≤�

√
pn/n

|λmin[Dn(βn) − Dn(βn)]| = Op

(√
npn

)
,

sup
‖βn−βn0‖≤�

√
pn/n

|λmax[Dn(βn) − Dn(βn)]| = Op

(√
npn

)
.

Furthermore, we can use the leading term Hn(βn) in (3.6) to approximate the
negative gradient function Dn(βn). This result is given by Lemma 3.4 below.
Lemma 3.5 further establishes an equicontinuity result for Hn(βn).
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LEMMA 3.4. Assume conditions (A1)–(A4). If n−1p2
n = o(1), then ∀� > 0,

for bn ∈ Rpn , we have

sup
||βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n [Dn(βn) − Hn(βn)]bn| = Op

(√
npn

)
.

LEMMA 3.5. Assume conditions (A1)–(A4). If n−1p2
n = o(1), then ∀� > 0,

for bn ∈ Rpn , we have

sup
‖βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n [Hn(βn) − Hn(βn0)]bn| = Op

(√
npn

)
.

The proofs of Lemmas 3.1–3.4 are given in the Appendix; the proof of
Lemma 3.5 is given in the supplementary article [Wang (2010)]. The following the-
orem ensures the existence and consistency of the GEE estimator when pn → ∞.

THEOREM 3.6 (Existence and consistency). Assume conditions (A1)–(A4)
and that n−1p2

n = o(1). Then, Sn(βn) = 0 has a root β̂n such that

‖β̂n − βn0‖ = Op

(√
pn/n

)
.

PROOF. We will prove that (3.5) holds. This requires us to evaluate the sign
of (βn − βn0)

T Sn(βn) on {βn :‖βn − βn0‖ = �
√

pn/n}. Note that

(βn − βn0)
T Sn(βn)

= (βn − βn0)
T Sn(βn0) − (βn − βn0)

T Dn(β
∗
n)(βn − βn0)

� In1 + In2,

where β∗
n lies between βn and βn0, that is, β∗

n = tβn + (1 − t)βn0 for some 0 <

t < 1. Next, we write

In1 = (βn − βn0)
T Sn(βn0) + (βn − βn0)

T [Sn(βn0) − Sn(βn0)]
� In11 + In12.

We have |In11| ≤ ‖βn − βn0‖ · ‖Sn(βn0)‖ = �
√

pn/n‖Sn(βn0)‖ by the Cauchy–
Schwarz inequality. Furthermore,

E[‖Sn(βn0)‖2]

= E

{
n∑

i=1

εT
i (βn0)R

−1
A1/2

i (βn0)XiXT
i A1/2

i (βn0)R
−1

εi (βn0)

}

≤
n∑

i=1

λmax(XiXT
i )λmax(Ai (βn0))λmax(R

−2
)E[εT

i (βn0)εi (βn0)]

≤ C Tr

(
n∑

i=1

XiXT
i

)
= C

n∑
i=1

m∑
j=1

XT
ij Xij = O(npn).
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Here, and throughout the paper, we use C to denote a generic positive constant
which may vary from line to line. Thus, ‖Sn(βn0)‖ = Op(

√
npn). This implies

that |In11| = �Op(pn). For In12, we have

|In12| ≤ ‖βn − βn0‖ · ‖Sn(βn0) − Sn(βn0)‖ = �
√

pn/nOp(pn) = �op(pn),

by Lemma 3.1. Hence, |In1| = �Op(pn). In what follows, we evaluate In2:

In2 = −(βn − βn0)
T Dn(β

∗
n)(βn − βn0)

−(βn − βn0)
T [Dn(β

∗
n) − Dn(β

∗
n)](βn − βn0)

� In21 + In22.

First, note that

|In22| ≤ max
(∣∣λmax

(
Dn(β

∗
n) − Dn(β

∗
n)

)∣∣, ∣∣λmin
(
Dn(β

∗
n) − Dn(β

∗
n)

)∣∣)
× ‖βn − βn0‖2

= Op

(√
npn

)
�2 pn

n
= �2op(pn),

by Lemma 3.3. On the other hand,

In21 = −(βn − βn0)
T Hn(βn0)(βn − βn0)

−(βn − βn0)
T [Hn(β

∗
n) − Hn(βn0)](βn − βn0)

−(βn − βn0)
T [Dn(β

∗
n) − Hn(β

∗
n)](βn − βn0)

� I a
n21 + I b

n21 + I c
n21.

From Lemma 3.5, we have I b
n21 = �2op(pn); from Lemma 3.4, we have I c

n21 =
�2op(pn). Finally, we evaluate I a

n21. We have

I a
n21 = −(βn − βn0)

T

[
n∑

i=1

XT
i A1/2

i (βn0)R
−1

A1/2
i (βn0)Xi

]
(βn − βn0)

≤ −λmin(R
−1

)min
i

λmin(Ai(βn0))λmin

(
n∑

i=1

XT
i Xi

)
‖βn − βn0‖2

≤ −C�2pn,

by (A3). Thus, (βn − βn0)
T Sn(βn) on {βn :‖βn − βn0‖ = �

√
pn/n} is asymp-

totically dominated in probability by In11 + I a
n21, which is negative for � large

enough. �
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3.3. Asymptotic normality of the GEE estimator. The asymptotic distribution
of the GEE estimator β̂n is closely related to that of the ideal estimating func-
tion Sn(βn0). When appropriately normalized, Sn(βn0) has an asymptotic normal
distribution, as shown by the following lemma.

LEMMA 3.7. Assume conditions (A1)–(A4). If n−1p3
n = o(1), then ∀αn ∈

Rpn such that ‖αn‖ = 1, we have

αT
n M

−1/2
n (βn0)Sn(βn0) → N(0,1) in distribution.

To prove Lemma 3.7, we write αT
n M

−1/2
n (βn0)Sn(βn0) as a sum of independent

random variables and then check the Lindberg–Feller condition for the central
limit theorem. The detailed proof is given in the Appendix. The following theorem
ensures the asymptotic normality of the GEE estimator when n−1p3

n = o(1).

THEOREM 3.8 (Asymptotic normality). Assume conditions (A1)–(A4). If
n−1p3

n = o(1), then ∀αn ∈ Rpn such that ‖αn‖ = 1, we have

αT
n M

−1/2
n (βn0)Hn(βn0)(β̂n − βn0) → N(0,1)

in distribution.

PROOF. We have

αT
n M

−1/2
n (βn0)Sn(βn0)

= αT
n M

−1/2
n (βn0)Sn(βn0) + αT

n M
−1/2
n (βn0)[Sn(βn0) − Sn(βn0)]

= αT
n M

−1/2
n (βn0)Dn(β

∗
n)(β̂n − βn0)

+ αT
n M

−1/2
n (βn0)[Sn(βn0) − Sn(βn0)]

= αT
n M

−1/2
n (βn0)Hn(βn0)(β̂n − βn0)

+ αT
n M

−1/2
n (βn0)[Dn(β

∗
n) − Hn(βn0)](β̂n − βn0)

+ αT
n M

−1/2
n (βn0)[Sn(βn0) − Sn(βn0)],

where, to obtain the second equality, we note that Sn(β̂n) = 0 and thus, by a Taylor
expansion, Sn(βn0) = Dn(β

∗
n)(β̂n − βn0) for some β∗

n between β̂n and βn0. By

Lemma 3.7, αT
n M

−1/2
n (βn0)Sn(βn0) → N(0,1). Therefore, to prove the theorem,

it is sufficient to verify that ∀� > 0,

sup
‖βn−βn0‖≤�

√
pn/n

|αT
n M

−1/2
n (βn0)[Dn(βn) − Hn(βn0)](β̂n − βn0)|

(3.7)
= op(1)
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and

|αT
n M

−1/2
n (βn0)[Sn(βn0) − Sn(βn0)]| = op(1).(3.8)

We prove (3.8) first. Note that[
αT

n M
−1/2
n (βn0)[Sn(βn0) − Sn(βn0)]

]2

= αT
n M

−1/2
n (βn0)[Sn(βn0) − Sn(βn0)][Sn(βn0) − Sn(βn0)]T M

−1/2
n (βn0)αn

≤ λmax(M
−1
n (βn0))λmax

([Sn(βn0) − Sn(βn0)][Sn(βn0) − Sn(βn0)]T
)

≤ ‖Sn(βn0) − Sn(βn0)‖2

λmin(Mn(βn0))

≤ ‖Sn(βn0) − Sn(βn0)‖2

Cλmin(
∑n

i=1 XT
i Xi)

= Op(p2
n/n) = op(1),

by Lemma 3.1 and the fact that

λmin(Mn(βn0)) ≥ Cλmin

(
n∑

i=1

XT
i Xi

)
.(3.9)

A justification of (3.9) is given in the proof of Lemma 3.7 in the Appendix. Thus,
(3.8) holds. Next, we prove (3.7). We have

sup
‖βn−βn0‖≤�

√
pn/n

|αT
n M

−1/2
n (βn0)[Dn(βn) − Hn(βn0)](β̂n − βn0)|

≤ sup
‖βn−βn0‖≤�

√
pn/n

|αT
n M

−1/2
n (βn0)[Dn(βn) − Dn(βn)](β̂n − βn0)|

+ sup
‖βn−βn0‖≤�

√
pn/n

|αT
n M

−1/2
n (βn0)[Dn(βn) − Hn(βn)](β̂n − βn0)|

+ sup
‖βn−βn0‖≤�

√
pn/n

|αT
n M

−1/2
n (βn0)[Hn(βn) − Hn(βn0)](β̂n − βn0)|

� In1 + In2 + In3.

By the Cauchy–Schwarz inequality and Remark 2, we have

In1 ≤ sup
‖βn−βn0‖≤�

√
pn/n

[
αT

n M
−1/2
n (βn0)

(
Dn(βn) − Dn(βn)

)2

× M
−1/2
n (βn0)αn

]1/2‖β̂n − βn0‖
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≤ sup
‖βn−βn0‖≤�

√
pn/n

max
(∣∣λmin(Dn(βn) − Dn(βn)

)∣∣,
∣∣λmax

(
Dn(βn) − Dn(βn)

)∣∣)
× λ

−1/2
min (Mn(βn0))Op(p1/2

n n−1/2)

= Op

(√
npn

)
O(n−1/2)Op(n−1/2p1/2

n ) = OP (n−1/2p3/2
n ) = op(1).

Hence, In1 = op(1). By the same argument and Lemmas 3.4 and 3.5, we also have
In2 = op(1) and In3 = op(1). This proves (3.7). �

REMARK 3. Note that the condition n−1p3
n = o(1) is the same as that of Hu-

ber (1973) for an M-estimator with independent data and diverging number of
parameters. It is weaker than the condition n−1p5

n = o(1) in Fan and Peng (2004)
and Lam and Fan (2008) for asymptotic normality.

REMARK 4. Combining the result of Theorem 3.8 with the Cramér–Wold de-
vice, it is easy to see that for any l × pn matrix Bn with l fixed and such that
BnBT

n → F, a positive definite matrix, we have

Bn�
−1/2
n (βn0)(β̂n − βn0) → Nl(0,F),

where

�n = H
−1
n (βn0)Mn(βn0)H

−1
n (βn0).

Now, take Bn = (Ln�nLT
n )−1/2Ln�

1/2
n , where Ln is an l × pn matrix such that

Ln�nLT
n is invertible. Then, BnBT

n = Il and we have the following corollary which
gives the asymptotic distribution of Ln(β̂n − βn0).

COROLLARY 3.9. Under the same conditions as in Theorem 3.8, if n−1p3
n =

o(1), then

(Ln�nLT
n )−1/2Ln(β̂n − βn0) → Nl(0, Il)

in distribution.

3.4. Sandwich covariance formula and large-sample Wald test. Theorem 3.8
and Corollary 3.9 suggest that the covariance matrix of β̂n is approximately �n.
To estimate �n, Liang and Zeger (1986) proposed, in the “fixed p” setup, the
following well-known sandwich covariance matrix estimator:

�̂n = H−1
n (β̂n)M̂n(β̂n)H

−1
n (β̂n),

where Hn(βn) is defined similarly as Hn(βn), but with R replaced by R̂; M̂n(βn)

is defined similarly as Mn(βn), except that R is replaced by R̂ and the unknown
true correlation matrix R0 is replaced by εi (βn)ε

T
i (βn), with εi (βn) defined in
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Lemma 3.2. Based on Corollary 3.9 and the sandwich covariance matrix estimator,
an asymptotic (1 − α)% confidence interval (0 < α < 1) for βj is

β̂j ± zα/2uT
j �̂nuj ,(3.10)

where zα/2 denotes the upper α
2 quantile of the standard normal distribution and

uj is the unit vector of length pn with the j th element equal to 1 and all the other
elements equal to 0.

The sandwich covariance formula plays an important role in GEE methodology.
In the “fixed p” setup, it is known that the sandwich covariance matrix estimator
provides a consistent estimator for the variance of the GEE estimator, even when
the working correlation matrix is misspecified. The following theorem shows that
this appealing property is still valid when pn converges to ∞ at an appropriate
rate.

The proofs of Theorem 3.10 and Corollary 3.11 below are given in the Appen-
dix.

THEOREM 3.10. Assume conditions (A1)–(A4) and that n−1p3
n = o(1). Then,

Cn�̂nCT
n − Cn�nCT

n = op(n−1),

where Cn is any l × qn matrix such that l is fixed and CnCT
n = G with G being an

l × l positive definite matrix.

REMARK 5. It is worth pointing out a subtle issue that is sometimes over-
looked in the existing literature on high-dimensional analysis of independent data.
In order to justify the validity of the asymptotic confidence interval or large-sample
test for estimable contrast, it is necessary to show that the convergence rate in
Theorem 3.10 is op(n−1). Note that the estimable contrast is asymptotically nor-
mal with convergence rate Op(n1/2); see, for example, Corollary 2.1 in He and
Shao (2000) for the case of an M-estimator based on independent data. In the lit-
erature, sometimes only the op(1) rate is provided, which is not adequate, but can
be fixed.

Next, we consider the large-sample Wald test for testing the following linear
hypothesis:

H0 : Lnβn0 = 0 vs. H1 : Lnβn0 �= 0,

where Ln is an l × pn matrix with l fixed and LnLT
n = Il . The Wald test statistic is

defined as

Wn = (Lnβ̂n)
T (Ln�̂nLT

n )−1(Lnβ̂n).

The corollary below shows that the Wald test remains valid, even when the number
of covariates diverges with the sample size.
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COROLLARY 3.11. Assume conditions (A1)–(A4). If n−1p3
n = o(1), then

Wn → χ2
l in distribution under H0, where χ2

l denotes the χ2 distribution with
l degrees of freedom.

REMARK 6. For testing a high-dimensional hypothesis H0 :βn = β∗
n0 versus

H1 :βn �= β∗
n0, it can be shown that

(β̂n − β∗
n0)

T �̂
−1
n (β̂n − β∗

n0) − pn√
2pn

→ N(0,1)(3.11)

in distribution under H0, under some regularity conditions. A proof of this result
is given in the supplementary article [Wang (2010)].

4. Numerical studies. We consider the following model for the marginal ex-
pectation of Yij , i = 1, . . . , n, given Xij ,

logit(πij ) = XT
ijβn0, j = 1,2,3,(4.1)

where βn0 is a pn-dimensional vector of parameters with pn = 
2.5n1/3�, with 
q�
denoting the the largest integer not greater than q . In this example, βT

n0 = (0.4 ·
1T
k ,−0.3 · 1T

k ,0.2 · 1T
k ,−0.1 · 1T

pn−3k), where 1k denotes a k-dimensional vector of

1’s and k = 
pn/4�. In addition, Xij = (xij1, . . . , xijpn)
T has a multivariate normal

distribution with mean zero, marginal variance 0.2 and an AR-1 correlation matrix
with autocorrelation coefficient 0.5. The binary response vector for each cluster has
the above marginal mean and an exchangeable (also called compound symmetry
or CS) correlation structure with correlation coefficient 0.5. Such correlated binary
data are generated using Bahadur’s representation [see, e.g., Fitzmaurice (1995)].

Since, for different sample sizes, the parameter dimension is different, we mea-
sure the accuracy of estimation by the simulated average mean square error, which
is obtained by averaging ‖β̂n − βn0‖2/pn over 500 simulated samples. Table 1
reports simulation results using four different working correlation structures: inde-
pendence working correlation matrix (IN), unstructured working correlation ma-
trix (UN), compound symmetry working correlation matrix (CS) and the first or-
der autocorrelation working correlation matrix (AR-1), for sample sizes n = 500,
1000, 2000 and 3000. Table 1 demonstrates that when the covariate dimension
grows at an appropriate rate with the sample size, the accuracy of GEE estimator
is satisfactory. We also observe that when the true correlation matrix (CS in this
case) is adopted, the estimator is more efficient.

We next examine the accuracy of the sandwich variance formula. The standard
deviations of the estimated coefficients over 500 simulations are averaged and re-
garded as the true standard error (SD). Table 2 compares SD with the standard
error obtained from the sandwich variance formula (SD2) when the unstructured
working correlation matrix is used for estimating β̂k , β̂2k , β̂3k and β̂pn . We observe
that the sandwich variance formula works remarkably well. Similar phenomena are
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TABLE 1
The simulated average mean squared error (×10) for estimating

βn0 using four different working correlation structures

Working correlation structure

n pn IN UN CS AR-1

500 19 0.265 0.156 0.154 0.179
1000 24 0.141 0.103 0.100 0.111
2000 31 0.090 0.074 0.071 0.075
3000 36 0.070 0.065 0.063 0.065

also observed for estimating other regression coefficients and with other working
correlation structures, but, for reasons of brevity, these are not reported.

Finally, we investigate hypothesis testing based on the large-sample Wald test.
We consider model (4.1) with n = 1000, pn = 24 and βT

n0 = (0.4 · 1T
6 ,−0.3 ·

1T
6 ,0.2 · 1T

6 ,−0.1 · 1T
2 ,0,0,0,0). The left panel of Figure 1 depicts the density

of the Wald test under the null hypothesis H0 :β21 = β22 = β23 = β24 = 0 and
compares it with the density curve of the χ2

4 distribution. It demonstrates that the
χ2 approximation given in Corollary 3.11 is accurate. The right panel of Figure 1
gives the normal Q–Q plot for the Wald test statistic under the null hypothesis
βn = βn0 and it shows that the null distribution can be approximated well by a
normal distribution for testing a higher-dimensional alternative, as discussed in
Remark 6.

5. Discussions.

5.1. Extension to general GEE. Although the focus of the paper is on clus-
tered binary data, the approaches and techniques can be extended to general GEE.
For general GEE, the decomposition of Dn(βn) given in Lemma 3.2 has a more
complex expression, and the potential unboundedness of Yij makes the derivation

TABLE 2
Standard deviation (SD) and estimated standard deviation (SD2) using the

sandwich variance formula

̂βk
̂β2k

̂β3k
̂βpn

n pn SD SD2 SD SD2 SD SD2 SD SD2

500 19 0.126 0.111 0.114 0.110 0.117 0.111 0.089 0.098
1000 24 0.082 0.083 0.079 0.083 0.085 0.083 0.072 0.074
2000 31 0.073 0.060 0.063 0.060 0.065 0.060 0.051 0.053
3000 36 0.060 0.051 0.049 0.051 0.052 0.051 0.051 0.045
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FIG. 1. The left panel gives the estimated null density of the large-sample Wald test (dashed curve)
and the density of the chi-square distribution with four degrees of freedom (solid curve) for testing
H0 :β21 = β22 = β23 = β24 = 0. The right panel gives the normal Q–Q plot of the Wald test statistic
under the null hypothesis βn = βn0.

of various probability bounds and asymptotic equivalence more delicate. Below,
we give a brief discussion of the large-p asymptotics for general GEE.

Assume that the first two marginal moments of Yij are μij (βn) := Eβn
(Yij ) =

μ(θij ) and σ 2
ij (βn) := Varβn

(Yij ) = μ̇(θij ), where θij = XT
ijβn. These moment

assumptions would follow when the marginal response variable has a canon-
ical exponential family distribution with scaling parameter 1. Let Ai (βn) =
diag(σ 2

i1(βn), . . . , σ
2
im(βn)) and μi (βn) = (μi1(βn), . . . ,μim(βn))

T . The GEE es-
timator β̂n is the solution of

n∑
i=1

XT
i A1/2

i (βn)R̂
−1A−1/2

i (βn)
(
Yi − μi (βn)

) = 0.(5.1)

In addition to assumptions (A1)–(A4) in Section 3.2, we adopt two additional
conditions:

(A5) there exists a finite constant M1 > 0 such that E(‖A−1/2
i (βn)(Yi −

μi (βn))‖2+δ) ≤ M1 for all i and some δ > 0;

(A6) if Bn = {βn :‖βn−βn0‖ ≤ �
√

pn/n}, then μ̇(XT
ijβn), 1 ≤ i ≤ n, 1 ≤ j ≤

m, are uniformly bounded away from 0 and ∞ on Bn; μ̈(XT
ijβn) and μ(3)(XT

ijβn),
1 ≤ i ≤ n, 1 ≤ j ≤ m, are uniformly bounded by a finite positive constant M2 on
Bn.
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REMARK 7. Condition (A5) is similar to the condition in Lemma 2 of Xie
and Yang (2003) and condition (Ñδ) in Balan and Schiopu-Kratina (2005). Condi-
tion (A6) requires μ

(k)
ij (XT

ijβn), k = 1,2,3, to be uniformly bounded when βn is in
a local neighborhood around βn0. This condition is generally satisfied for GEE. For
example, when the marginal model follows a Poisson distribution, μ(t) = exp(t),
thus μ

(k)
ij (XT

ijβn) = exp(XT
ijβn), k = 1,2,3, are uniformly bounded on Bn.

THEOREM 5.1. Assume conditions (A1)–(A6) and that n−1p2
n = o(1). The

generalized estimating equation (5.1) then has a root β̂n such that ‖β̂n − βn0‖ =
Op(

√
pn/n). Furthermore, if n−1p3

n = o(1), then ∀αn ∈ Rpn such that ‖αn‖ = 1,

αT
n M

−1/2
n (βn0)Hn(βn0)(β̂n − βn0) → N(0,1)

in distribution, where M
−1/2
n (βn0) and Hn(βn0) have the same expressions as in

Section 3.2.

A sketch of the proof of Theorem 5.1 is given in the supplementary article
[Wang (2010)].

5.2. Related problems. In some scenarios, a “large n, diverging m” asymptotic
framework, where p is either fixed or also diverges at an appropriate rate, may be
more appropriate. This corresponds to a real situation where the cluster size is
itself large. For example, in a longitudinal study, doctors take measurements on
the patients during each visit. Each patient forms a cluster. The cluster size is large
if the number of visits is large. For a fixed p setting, this “large n, diverging m”
asymptotic framework has been considered by Xie and Yang (2003). A future topic
of interest is to consider large m together with large p.

Another interesting direction for future study is to consider a more flexible semi-
parametric specification for the generalized estimating equations in the large-p
setting. In the classical “fixed p” setting, GEE with partially linear model spec-
ification has been investigated by Lin and Carroll (2001a, 2001b), Lin and Ying
(2001), He, Zhu and Fung (2002), Fan and Li (2004), Chiou and Müller (2005),
Wang, Carroll and Lin (2005), Chen and Jin (2006), He, Fung and Zhu (2006) and
Huang, Zhang and Zhou (2007), among others.

APPENDIX

We use C to denote a generic positive constant that can vary from line to line.

PROOF OF (3.3). It suffices [Ortega and Rheinboldt (1970)] to show
that ∀ε > 0, there exists a � > 0 such that for all n sufficiently large,
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P(sup‖βn−βn0‖=�
√

pn/n(βn − βn0)
T S̃n(βn) < 0) ≥ 1 − ε. We have

(βn − βn0)
T S̃n(βn)

= (βn − βn0)
T S̃n(βn0) + (βn − βn0)

T ∂

∂βT
n

S̃n(β
∗
n)(βn − βn0)

� In1 + In2,

where β∗
n lies between βn0 and βn. We first consider In1. For any βn such that

‖βn − βn0‖ = �
√

pn

n
, we have |In1| ≤ �

√
pn

n
‖S̃n(βn0)‖. Note that

E[‖S̃n(βn0)‖2] = E

[
n∑

i=1

(
Yi − π i (βn0)

)T XiXT
i

(
Yi − π i (βn0)

)]

≤ E

[
n∑

i=1

λmax(XiXT
i )‖Yi − π i (βn0)‖2

]

≤ C Tr

(
n∑

i=1

XiXT
i

)
= C

n∑
i=1

m∑
j=1

XT
ij Xij = O(npn),

by assumption (A1). Thus, |In1| ≤ �Op(pn). Next,

In2 = −(βn − βn0)
T

[
n∑

i=1

XT
i Ai(βn0)Xi

]
(βn − βn0)

−(βn − βn0)
T

[
n∑

i=1

XT
i

(
Ai(β

∗) − Ai(βn0)
)
Xi

]
(βn − βn0)

� In21 + In22.

Note that In21 ≤ −λmin(Ai (β0))λmin(
∑n

i=1 XT
i Xi )‖βn − βn0‖2 ≤ −Cpn�

2,

by (A3). Since ∂
∂βn

Aij (βn) = πij (βn)(1 − πij (βn))(1 − 2πij (βn))Xij , we have

|In22| ≤ (βn − βn0)
T

[
n∑

i=1

m∑
j=1

|Aij (β
∗) − Aij (βn0)|Xij XT

ij

]
(βn − βn0)

≤ sup
i,j

‖Xij‖ · ‖β∗ − β0‖ · ‖βn − β0‖2 · λmax

(
n∑

i=1

XT
i Xi

)

≤ O
(√

pn

)
Op

(√
pn/n

)
(�2pn/n)O(n) = �2op(pn),

by (A1)–(A3). Thus, for sufficiently large �, (βn − βn0)
T S̃n(βn) is dominated

by In21, which is large and negative for all sufficiently large n. �

PROOF OF (3.4). The proof is given in the online supplement. �
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PROOF OF LEMMA 3.1. Let Q = {qj1,j2}1≤j1,j2≤m denote the matrix R̂−1 −
R

−1
. Then,

Sn(βn0) − Sn(βn0)

=
n∑

i=1

m∑
j1=1

m∑
j2=1

qj1,j2A1/2
ij1

(βn0)A
−1/2
ij2

(βn0)
(
Yij2 − πij2(βn0)

)
Xij1

=
m∑

j1=1

m∑
j2=1

qj1,j2

[
n∑

i=1

A1/2
ij1

(βn0)εij2(βn0)Xij1

]
,

where εij2(βn0) = A−1/2
ij2

(βn0)(Yij2 − πij2(βn0)). Note that

E

[∥∥∥∥∥
n∑

i=1

A1/2
ij1

(βn0)εij2(βn0)Xij1

∥∥∥∥∥
2]

=
n∑

i=1

Aij1(βn0)E[ε2
ij2

(βn0)]XT
ij1

Xij1

≤
n∑

i=1

XT
ij1

Xij1 = O(npn).

Thus, ‖∑n
i=1 A1/2

ij1
(βn0)εij2(βn0)Xij1‖ = Op(

√
npn) ∀1 ≤ j1, j2 ≤ m . Since, by

(A4), qj1,j2 = Op(
√

pn/n) ∀1 ≤ j1, j2 ≤ m, the proof is complete. �

PROOF OF LEMMA 3.2. The derivation can be found in Pan (2002). �

PROOF OF LEMMA 3.3. Let Hn(βn), En(βn) and Gn(βn) be defined the
same as Hn(βn), En(βn) and Gn(βn), respectively, but with R replaced by R̂.
By Lemma 3.2, it is sufficient to prove the following three results:

sup
‖βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n [Hn(βn) − Hn(βn)]bn|

(A.1)
= Op

(√
npn

)
,

sup
‖βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n [En(βn) − En(βn)]bn|

(A.2)
= Op

(√
npn

)
,

sup
‖βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n [Gn(βn) − Gn(βn)]bn|

(A.3)
= Op

(√
npn

)
.
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We have

|bT
n [Hn(βn) − Hn(βn)]bn|

=
∣∣∣∣∣

n∑
i=1

bT
n XT

i A1/2
i (βn)[R̂−1 − R

−1]A1/2
i (βn)Xibn

∣∣∣∣∣
≤ ‖R̂−1 − R

−1‖λmax(Ai (βn))λmax

(
n∑

i=1

XT
i Xi

)
‖bn‖2.

By assumptions (A2) and (A4), (A.1) is proved. Next, note that

|bT
n [En(βn) − En(βn)]bn|

= 1

2

∣∣∣∣∣
n∑

i=1

m∑
j=1

(
1 − 2πij (βn)

)
εij (βn)b

T
n XT

i A1/2
i (βn)

× [R̂−1 − R
−1]ej eT

j Xibn

∣∣∣∣∣
≤

n∑
i=1

m∑
j=1

A−1/2
ij (βn)|bT

n XT
i A1/2

i (βn)[R̂−1 − R
−1]ej | · |eT

j Xibn|

≤
n∑

i=1

m∑
j=1

A−1/2
ij (βn)‖R̂−1 − R

−1‖ · ‖A1/2
i (βn)‖ · ‖Xibn‖2.

Thus,

sup
‖βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n [En(βn) − En(βn)]bn|

≤ C‖R̂−1 − R
−1‖ ·

n∑
i=1

m∑
j=1

sup
‖βn−βn0‖≤�

√
pn/n

A−1/2
ij (βn) sup

‖bn‖=1
‖Xibn‖2

= Op

(√
pn/n

)
O(n) = Op

(√
npn

)
,

by assumption (A3). (A.3) is proved similarly. �

PROOF OF LEMMA 3.4. By (3.6), it is sufficient to verify that

sup
‖βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n En(βn)bn| = Op

(√
npn

)
,(A.4)

sup
‖βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n Gn(βn)bn| = Op

(√
npn

)
.(A.5)
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First, note that we have the following decomposition of En(βn):

En(βn) = 1

2

n∑
i=1

m∑
j=1

(
1 − 2πij (βn0)

)
εij (βn0)X

T
i A1/2

i (βn0)R
−1

ej eT
j Xi

+ 1

2

n∑
i=1

m∑
j=1

(
1 − 2πij (βn0)

)
εij (βn0)X

T
i [A1/2

i (βn) − A1/2
i (βn0)]

× R
−1

ej eT
j Xi

+ 1

2

n∑
i=1

m∑
j=1

[(
1 − 2πij (βn)

)
A−1/2

ij (βn) − (
1 − 2πij (βn0)

)
A−1/2

ij (βn0)
]

× (
Yij − πij (βn0)

)
XT

i A1/2
i (βn)R

−1
ej eT

j Xi

+ 1

2

n∑
i=1

m∑
j=1

(
1 − 2πij (βn)

)
A−1/2

ij (βn)
(
πij (βn0) − πij (βn)

)
× XT

i A1/2
i (βn)R

−1
ej eT

j Xi

� E1n(βn0) +
4∑

k=2

Ekn(βn).

Thus, to prove (A.4), it suffices to verify that sup‖bn‖=1 |bT
n E1n(βn0)bn| =

OP (
√

npn) and sup‖βn−βn0‖≤�
√

pn/n sup‖bn‖=1 |bT
n Ekn(βn)bn| = OP (

√
npn).

We first prove that sup‖bn‖=1 |bT
n E1n(βn0)bn| = OP (

√
npn), by verifying that

‖E1n(βn0)‖ = OP (
√

npn), where ‖E1n(βn0)‖ =
√

trace(E1n(βn0)E
T

1n(βn0)):

E[‖E1n(βn0)‖2]

= 1

4

n∑
i=1

m∑
j1=1

m∑
j2=1

(
1 − 2πij1(βn0)

)(
1 − 2πij2(βn0)

)
E[εij1(βn0)εij2(βn0)]

× trace[XT
i A1/2

i (βn0)R
−1

ej1eT
j1

XiXT
i ej2eT

j2

× R
−1

A1/2
i (βn0)Xi]

≤ C

n∑
i=1

m∑
j1=1

m∑
j2=1

|eT
j1

XiXT
i ej2eT

j2
R

−1
A1/2

i (βn0)

× XiXT
i A1/2

i (βn0)R
−1

ej1 |
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≤ C

n∑
i=1

m∑
j1=1

m∑
j2=1

‖eT
j1

Xi‖ · ‖XT
i ej2‖ · ‖eT

j2
R

−1
A1/2

i (βn0)Xi‖

× ‖XT
i A1/2

i (βn0)R
−1

ej1‖.
Note that ‖eT

j1
Xi‖ = ‖Xij1‖, ‖XT

i ej2‖ = ‖Xij2‖, ‖eT
j2

R
−1

A1/2
i (βn0)Xi‖ ≤

C(trace(XiXT
i ))1/2 and ‖XT

i A1/2
i (βn0)R

−1
ej1‖ ≤ C(trace(XiXT

i ))1/2. Thus,

E[‖E1n(βn0)‖2] ≤ C

n∑
i=1

m∑
j1=1

m∑
j2=1

‖Xij1‖ · ‖Xij2‖ trace(XiXT
i )

≤ C · max
i,j

‖Xij‖2 trace

(
n∑

i=1

XiXT
i

)
= O(np2

n),

by assumptions (A1) and (A3). This implies that sup‖bn‖=1 |bT
n E1n(βn0)bn| =

Op(
√

npn). Next, we have

|bT
n E2n(βn)bn|

=
∣∣∣∣∣1

2

n∑
i=1

m∑
j=1

(
1 − 2πij (βn0)

)
ε

1/2
ij (βn0)b

T
n XT

i [A1/2
i (βn) − A1/2

i (βn0)]

× R
−1

ej eT
j Xibn

∣∣∣∣∣
≤ C

n∑
i=1

m∑
j=1

|bT
n XT

i [A1/2
i (βn) − A1/2

i (βn0)]R−1
ej | · |eT

j Xibn|

≤ C

n∑
i=1

m∑
j=1

‖Xibn‖2λmax(R
−1

)max
j

|A1/2
ij (βn) − A1/2

ij (βn0)|.

Note that there exists some β∗
n between βn and βn0 such that

A1/2
ij (βn) − A1/2

ij (βn0) = 1
2A1/2

ij (β∗
n)

(
1 − 2πij (β

∗
n)

)
XT

ij (βn − βn0)

≤ C‖Xij‖ · ‖βn − βn0‖.
Therefore,

sup
‖βn−βn0‖≤�

√
pn/n

sup
‖bn‖=1

|bT
n E2n(βn)bn|

≤ C max
i,j

‖Xij‖ sup
‖βn−βn0‖≤�

√
pn/n

‖βn − βn0‖ · λmax

(
n∑

i=1

XT
i Xi

)

= O
(√

pn

)
O

(√
pn/n

)
O(n) = O

(√
npn

)
.
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Similarly, we can show that sup‖βn−βn0‖≤�
√

pn/n sup‖bn‖=1 |bT
n Ekn(βn)bn| =

O(
√

npn), k = 3,4. This proves (A.4). Similarly, we can prove (A.5). �

PROOF OF LEMMA 3.5. The proof is given in the online supplementary ma-
terial. �

PROOF OF LEMMA 3.7. We write αT
n M

−1/2
n (βn0)Sn(βn0) = ∑n

i=1 Zni , where

Zni = αT
n M

−1/2
n (βn0)X

T
i A1/2

i (βn0)R
−1

εi (βn0). Since Mn(βn0) = Cov(Sn(βn0)),

we have Var(αT
n M

−1/2
n (βn0)Sn(βn0)) = 1. To establish the asymptotic normality,

it suffices to check the Lindberg condition, that is, ∀ε > 0,
∑n

i=1 E[Z2
niI (|Zni | >

ε)] → 0. By the Cauchy–Schwarz inequality,

Z2
ni ≤ ‖αT

n M
−1/2
n (βn0)X

T
i A1/2

i (βn0)R
−1‖2 · ‖εi (βn0)‖2

≤ λmax(R
−2

)λmax(Ai (βn0))(α
T
n M

−1/2
n (βn0)X

T
i XiM

−1/2
n (βn0)αn)

×‖εi (βn0)‖2

≤ Cγni‖εi (βn0)‖2,

where γni � αT
n M

−1/2
n (βn0)X

T
i XiM

−1/2
n (βn0)αn. Next, we will show that

max1≤i≤n γni → 0 as n → ∞. Note that γni ≤ λmax(XT
i Xi )λ

−1
min(Mn(βn0)). Since

Mn(βn0) is symmetric, to evaluate λmin(Mn(βn0)), ∀bn ∈ Rpn , we have

bT
n Mn(βn0)bn ≥ λmin(R0)λmin(R

−2
)

n∑
i=1

λmin(Ai (βn0))b
T
n XT

i Xibn

≥ CbT
n

(
n∑

i=1

XT
i Xi

)
bn ≥ Cλmin

(
n∑

i=1

XT
i Xi

)
‖bn‖2.

Thus, inf‖bn‖=1 |bT
n Mn(βn0)bn| ≥ Cλmin(

∑n
i=1 XT

i Xi) and this implies that λmin×
(Mn(βn0)) ≥ Cλmin(

∑n
i=1 XT

i Xi ). Therefore, we have

γni ≤ λmax(XT
i Xi)

Cλmin(
∑n

i=1 XT
i Xi )

≤ Tr(XT
i Xi )

Cλmin(
∑n

i=1 XT
i Xi )

=
∑m

j=1 XT
ij Xij

Cλmin(
∑n

i=1 XT
i Xi)

.

It follows that max1≤i≤n γni ≤ O(n−1pn) = o(1). We have

n∑
i=1

E[Z2
niI (|Zni | > ε)] ≤

n∑
i=1

CγniE

[
‖εi (βn0)‖2I

{
‖εi (βn0)‖2 >

ε2

Cγni

}]
.

Note that ‖εi (βn0)‖2 is uniformly bounded, by assumption (A2). Thus, for all
ε > 0 and δ > 0, there exists a positive integer N such that (1) I {‖εi (βn0)‖2 >
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ε2

Cγni
} = 0 for all n > N ; (2)

∑N
i=1 Cγni ≤ δ for all n sufficiently large. This ensures

that
n∑

i=1

CγniE

[
‖εi (βn0)‖2I

{
‖εi (βn0)‖2 >

ε2

Cγni

}]
→ 0.

Therefore, the Lindberg condition is verified. �

PROOF OF THEOREM 3.10. It is sufficient to show that for bn ∈ Rpn ,

sup
‖bn‖=1

|bT
n (�̂n − �n)bn| = op(n−1).(A.6)

We use the conclusion of Theorem 3.6 throughout the proof. Note that we can
write �̂n − �n = In1 + In2 + In3, where

In1 = H−1
n (β̂n)[M̂n(β̂n) − Mn(βn0)]H−1

n (β̂n),

In2 = [H−1
n (β̂n) − H

−1
n (βn0)]Mn(βn0)H

−1
n (β̂n),

In3 = H
−1
n (βn0)Mn(βn0)[H−1

n (β̂n) − H
−1
n (βn0)].

Thus, (A.6) is implied by sup‖bn‖=1 |bT
n Inibn| = op(1). We have

sup
‖bn‖=1

|bT
n In1bn|

≤ max(|λmax(M̂n(β̂n) − Mn(βn0))|, |λmin(M̂n(β̂n) − Mn(βn0))|)
λ2

min(Hn(β̂n))
.

To evaluate the eigenvalues of M̂n(β̂n) − Mn(βn0), we have

|cT
n [M̂n(β̂n) − Mn(βn0)]cn|

≤ |cT
n [M̂n(β̂n) − M̂n(βn0)]cn| + |cT

n [M̂n(βn0) − Mn(βn0)]cn|
for cn ∈ Rpn . Note that

sup
‖cn‖=1

|cT
n [M̂n(β̂n) − M̂n(βn0)]cn|

≤ sup
‖cn‖=1

∣∣∣∣∣
n∑

i=1

cT
n XT

i [A1/2
i (β̂n) − A1/2

i (βn0)]R̂−1εi(β̂n)ε
T
i (β̂n)

× R̂−1A1/2
i (β̂n)Xicn

∣∣∣∣∣
+ sup

‖cn‖=1

∣∣∣∣∣
n∑

i=1

cT
n XT

i A1/2
i (βn0)R̂

−1εi(β̂n)ε
T
i (β̂n)R̂

−1



414 L. WANG

× [A1/2
i (β̂n) − A1/2

i (βn0)]Xicn

∣∣∣∣∣
+ sup

‖cn‖=1

∣∣∣∣∣
n∑

i=1

cT
n XT

i A1/2
i (βn0)R̂

−1[εi (β̂n)ε
T
i (β̂n) − εi (βn0)ε

T
i (βn0)]

× R̂−1A1/2
i (βn0)Xicn

∣∣∣∣∣
� sup

‖cn‖=1
Jn1 + sup

‖cn‖=1
Jn2 + sup

‖cn‖=1
Jn3.

Note that

Jn1 ≤
n∑

i=1

‖cT
n XT

i [A1/2
i (β̂n) − A1/2

i (βn0)]‖ · ‖R̂−1εi (β̂n)‖2 · ‖A1/2
i (β̂n)Xicn‖.

We have ‖A1/2
i (β̂n)Xicn‖ ≤ ‖Xicn‖ and

‖cT
n XT

i [A1/2
i (β̂n) − A1/2

i (βn0)]‖ ≤ ‖Xicn‖max
j

|A1/2
ij (β̂n) − A1/2

ij (βn0)|

≤ C‖Xicn‖ · ‖Xij‖ · ‖β̂n − βn0‖.
Furthermore,

‖R̂−1εi (β̂n)‖2 = (
Yi − π i (β̂n)

)T A−1/2
i (β̂n)R̂

−2A−1/2
i (β̂n)

(
Yi − π i (β̂n)

)
≤ λmax(R̂−2)λmax(A

−1
i (β̂n))‖Yi − π i (β̂n)‖2 ≤ COp(1).

Thus,

sup
‖cn‖=1

Jn1 ≤ Op(1)‖β̂n − βn0‖max
i,j

‖Xij‖λmax

(
n∑

i=1

XT
i Xi

)
= op(n).

Similarly, sup‖cn‖=1 Jn2 = op(n) and sup‖cn‖=1 Jn3 = op(n). Thus,

sup
‖cn‖=1

|cT
n [M̂n(β̂n) − M̂n(βn0)]cn| = op(n).

Similarly, sup‖cn‖=1 |cT
n [M̂n(βn0) − Mn(βn0)]cn| = op(n). Finally, note that

λmin(Hn(β̂n)) ≥ λmin(R̂)min
i,j

(
πij (β̂n)

(
1 − πij (β̂n)

))
λmin

(
n∑

i=1

XT
i Xi

)
= Op(n).

Thus, sup‖bn‖=1 |bT
n In1bn| = op(n−1). We can also prove that sup‖bn‖=1 |bT

n Ini ×
bn| = op(n−1), i = 2,3, by first noting that

H−1
n (β̂n) − H

−1
n (βn0) = [H−1

n (β̂n) − H
−1
n (β̂n)] + [H−1

n (β̂n) − H
−1
n (βn0)]
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and then using the expressions

H−1
n (β̂n) − H

−1
n (β̂n) = H

−1
n (β̂n)[Hn(β̂n) − Hn(β̂n)]H−1

n (β̂n),

H
−1
n (β̂n) − H

−1
n (βn0) = H

−1
n (βn0)[Hn(βn0) − Hn(β̂n)]H−1

n (β̂n). �

PROOF OF COROLLARY 3.11. It is sufficient to show that

[(Ln�̂nLT
n )−1/2 − (Ln�nLT

n )−1/2]Ln(β̂n − βn0) → 0(A.7)

in probability. Note that the left-hand side can be written as

[(Ln�̂nLT
n )−1/2(Ln�nLT

n )1/2 − Il](Ln�nLT
n )−1/2Ln(β̂n − βn0)

and thus (A.7) is implied by

(Ln�̂nLT
n )−1(Ln�nLT

n ) − Il = (Ln�̂nLT
n )−1Ln(�n − �̂n)LT

n = op(1).

Let ui denote the l × 1 unit vector with the ith element being 1 and all of the other
elements being 0. Then, for all 1 ≤ i, j ≤ l, we have, by the Cauchy–Schwarz
inequality,

|uT
i (Ln�̂nLT

n )−1Ln(�n − �̂n)LT
n uj |

≤ |uT
i (Ln�̂nLT

n )−2ui |1/2|uT
j [Ln(�n − �̂n)LT

n ]2uj |1/2

≤ ‖Ln(�n − �̂n)LT
n ‖

λmin(Ln�̂nLT
n )

.

Now, for any l-dimensional vector such that ‖b‖ = 1, we have

|bT Ln�̂nLT
n b| ≥ |bT Ln�nLT

n b| − |bT Ln(�̂n − �n)LT
n b|

≥ λmin(�n) + op(n−1)

≥ λmin(Mn(βn0))

λ2
max(Hn(βn0))

+ op(n−1),

where the second inequality uses Theorem 3.10. By (3.9), λmin(Mn(βn0)) ≥
c1λmin(

∑n
i=1 XT

i Xi ) for some positive constant c1. Similarly, we can show
that λmax(Hn(βn0)) ≤ c2λmax(

∑n
i=1 XT

i Xi) for some positive constant c2. Thus,

λmin(Ln�̂nLT
n ) ≥ Op(n−1). This proves that ‖Ln(�n−�̂n)LT

n ‖
λmin(Ln�̂nLT

n )
= op(1), by Theo-

rem 3.10. �
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SUPPLEMENTARY MATERIAL

Supplement to “GEE analysis of clustered binary data with diverging num-
ber of covariates” (DOI: 10.1214/10-AOS846SUPP; .pdf). The proofs of (3.3),
Lemma 3.5, (3.11) and Theorem 5.1 are provided in this supplementary article
[Wang (2010)].
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