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RATES OF CONVERGENCE IN ACTIVE LEARNING

BY STEVE HANNEKE1

Carnegie Mellon University

We study the rates of convergence in generalization error achievable by
active learning under various types of label noise. Additionally, we study the
general problem of model selection for active learning with a nested hierarchy
of hypothesis classes and propose an algorithm whose error rate provably
converges to the best achievable error among classifiers in the hierarchy at
a rate adaptive to both the complexity of the optimal classifier and the noise
conditions. In particular, we state sufficient conditions for these rates to be
dramatically faster than those achievable by passive learning.

1. Introduction. Active learning refers to a family of powerful supervised
learning protocols capable of producing more accurate classifiers while using a
smaller number of labeled data points than traditional (passive) learning methods.
Here we study a variant known as pool-based active learning, in which a learning
algorithm is given access to a large pool of unlabeled data (i.e., only the covariates
are visible), and is allowed to sequentially request the label (response variable)
of any particular data points from that pool. The objective is to learn a function
that accurately predicts the labels of new points, while minimizing the number
of label requests. Thus, this is a type of sequential design scenario for a function
estimation problem. This contrasts with passive learning, where the labeled data
are sampled at random. In comparison, by more carefully selecting which points
should be labeled, active learning can often significantly decrease the total amount
of effort required for data annotation. This can be particularly interesting for tasks
where unlabeled data are available in abundance, but label information comes only
through significant effort or cost.

Recently, there have been a series of exciting advances on the topic of ac-
tive learning with arbitrary classification noise (the so-called agnostic PAC model
[22]), resulting in several new algorithms capable of achieving improved conver-
gence rates compared to passive learning under certain conditions. The first, pro-
posed by Balcan, Beygelzimer and Langford [6] was the A2 (agnostic active) al-
gorithm, which provably never has significantly worse rates of convergence than
passive learning by empirical risk minimization. This algorithm was later analyzed
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in detail in [19], where it was found that a complexity measure called the disagree-
ment coefficient characterizes the worst-case convergence rates achieved by A2 for
any given hypothesis class, data distribution and best achievable error rate in the
class. The next major advance was by Dasgupta, Hsu and Monteleoni [14], who
proposed a new algorithm, and proved that it improves the dependence of the con-
vergence rates on the disagreement coefficient compared to A2. Both algorithms
are defined below in Section 3. While all of these advances are encouraging, they
are limited in two ways. First, the convergence rates that have been proven for these
algorithms typically only improve the dependence on the magnitude of the noise
(more precisely, the noise rate of the hypothesis class), compared to passive learn-
ing. Thus, in an asymptotic sense, for nonzero noise rates these results represent
at best a constant factor improvement over passive learning. Second, these results
are limited to learning with a fixed hypothesis class of limited expressiveness, so
that convergence to the Bayes error rate is not always a possibility.

On the first of these limitations, recent work by Castro and Nowak [12] on
learning threshold classifiers discovered that if certain parameters of the noise dis-
tribution are known (namely, parameters related to Tsybakov’s margin conditions),
then we can achieve strict improvements in the asymptotic convergence rate via a
specific active learning algorithm designed to take advantage of that knowledge
for thresholds. Subsequently, Balcan, Broder and Zhang [7] proved a similar result
for linear separators in higher dimensions, and Castro and Nowak [12] showed
related improvements for the space of boundary fragment classes (under a some-
what stronger assumption than Tsybakov’s). However, these works left open the
question of whether such improvements could be achieved by an algorithm that
does not explicitly depend on the noise conditions (i.e., in the agnostic setting),
and whether this type of improvement is achievable for more general families of
hypothesis classes, under the usual complexity restrictions (e.g., VC class, entropy
conditions, etc.). In a personal communication, John Langford and Rui Castro
claimed A2 achieves these improvements for the special case of threshold clas-
sifiers (a special case of this also appeared in [9]). However, there remained an
open question of whether such rate improvements could be generalized to hold
for arbitrary hypothesis classes. In Section 4, we provide this generalization. We
analyze the rates achieved by A2 under Tsybakov’s noise conditions [26, 28]; in
particular, we find that these rates are strictly superior to the known rates for pas-
sive learning, when the disagreement coefficient is finite. We also study a novel
modification of the algorithm of Dasgupta, Hsu and Monteleoni [14], proving that
it improves upon the rates of A2 in its dependence on the disagreement coefficient.

Additionally, in Section 5, we address the second limitation by proposing a
general model selection procedure for active learning with an arbitrary structure
of nested hypothesis classes. If the classes have restricted expressiveness (e.g., VC
classes), the error rate for this algorithm converges to the best achievable error
by any classifier in the structure, at a rate that adapts to the noise conditions and
complexity of the optimal classifier. In general, if the structure is constructed to
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include arbitrarily good approximations to any classifier, the error converges to the
Bayes error rate in the limit. In particular, if the Bayes optimal classifier is in some
class within the structure, the algorithm performs nearly as well as running an
agnostic active learning algorithm on that single hypothesis class, thus preserving
the convergence rate improvements achievable for that class.

2. Definitions and notation. In the active learning setting, there is an in-
stance space X , a label space Y = {−1,+1} and some fixed distribution DXY

over X × Y , with marginal DX over X . The restriction to binary classification
(Y = {−1,+1}) is intended to simplify the discussion; however, everything below
generalizes quite naturally to multiclass classification (where Y = {1,2, . . . , k}).

There are two sequences of random variables: X1,X2, . . . and Y1, Y2, . . . , where
each (Xi, Yi) pair is independent of the others, and has joint distribution DXY .
However, the learning algorithm is only permitted direct access to the Xi values
(unlabeled data points), and must request the Yi values one at a time, sequentially.
That is, the algorithm picks some index i to observe the Yi value, then after observ-
ing it, picks another index i ′ to observe the Yi′ label value, etc. We are interested
in studying the rate of convergence of the error rate of the classifier output by
the learning algorithm, in terms of the number of label requests it has made. To
simplify the discussion, we will think of the data sequence as being essentially
inexhaustible, and will study (1 − δ)-confidence bounds on the error rate of the
classifier produced by an algorithm permitted to make at most n label requests, for
a fixed value δ ∈ (0,1/2). The actual number of (unlabeled) data points the algo-
rithm uses will be made clear in the proofs (typically close to the number of points
needed by passive learning to achieve the stated error guarantee).

A hypothesis class C is any set of measurable classifiers h : X → Y . We will
denote by d the VC dimension of C (see, e.g., [11, 15, 30–32]). For any mea-
surable h : X → Y and distribution D over X × Y , define the error rate of h as
erD(h) = P(X,Y )∼D{h(X) �= Y }; when D = DXY , we abbreviate this as er(h). This
simply represents the risk under the 0–1 loss. We also define the conditional error
rate, given a set R ⊆ X , as er(h|R) = P{h(X) �= Y |X ∈ R}. Let ν = infh∈C er(h),
called the noise rate of C. For any x ∈ X , let η(x) = P{Y = 1|X = x}, let
h∗(x) = 21[η(x) ≥ 1/2] − 1 and let ν∗ = er(h∗). We call h∗ the Bayes opti-
mal classifier and ν∗ the Bayes error rate. Additionally, define the diameter of
any set of classifiers V as diam(V ) = suph1,h2∈V P{h1(X) �= h2(X)}, and for any
ε > 0, define the diameter of the ε-minimal set of V as diam(ε;V ) = diam({h ∈
V : er(h) − infh′∈V er(h′) ≤ ε}).

For a classifier h, and a sequence S = {(x1, y1), (x2, y2), . . . , (xm, ym)} ∈ (X ×
Y)m, let erS(h) = 1

|S|
∑

(x,y)∈S 1[h(x) �= y] denote the empirical error rate on S,
[and define er{}(h) = 0 by convention]. It will often be convenient to make use of
sets of (index, label) pairs, where the index is used to uniquely refer to an element
of the {Xi} sequence (while conveniently also keeping track of relative ordering
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information); in such contexts, we will overload notation as follows. For a classi-
fier h, and a finite set of (index, label) pairs S = {(i1, y1), (i2, y2), . . . , (im, ym)} ⊂
N × Y , let erS(h) = 1

|S|
∑

(i,y)∈S 1[h(Xi) �= y], (and er{}(h) = 0, as before). Thus,
erS(h) = erS′(h), where S′ = {(Xi, y)}(i,y)∈S . For the indexed true label sequence,
Z (m) = {(1, Y1), (2, Y2), . . . , (m,Ym)}, we abbreviate this erm(h) = erZ (m)(h), the
empirical error on the first m data points.

In addition to the independent interest of understanding the rates achiev-
able here, another primary interest in this setting is to quantify the achievable
improvements, compared to passive learning. In this context, a passive learn-
ing algorithm can be formally defined as a function mapping the sequence
{(X1, Y1), (X2, Y2), . . . , (Xn,Yn)} to a classifier ĥn; for instance, perhaps the most
widely studied family of passive learning methods is that of empirical risk mini-
mization (e.g., [23, 27, 30, 31]), which return a classifier ĥn ∈ arg minh∈C ern(h).
For the purpose of this comparison, we review known results on passive learning
in several contexts below.

2.1. Tsybakov’s noise conditions. Here we describe a particular parametriza-
tion of noise distributions, relative to a hypothesis class, often referred to as Tsy-
bakov’s noise conditions [26, 28], or margin conditions. These noise conditions
have recently received substantial attention in the passive learning literature, as
they describe situations in which the asymptotic minimax convergence rate of pas-
sive learning is faster than the worst case n−1/2 rate (e.g., [23, 26–28]).

CONDITION 1. There exist finite constants μ > 0 and κ ≥ 1, s.t. ∀ε > 0,
diam(ε;C) ≤ με1/κ .

This condition is satisfied when, for example,

∃μ′ > 0, κ ≥ 1 s.t. ∃h ∈ C :∀h′ ∈ C er(h′) − ν ≥ μ′
P{h(X) �= h′(X)}κ ,

[23]. It is also satisfied when the Bayes optimal classifier is in C and

∃μ′′ > 0, α ∈ (0,∞) s.t. ∀ε > 0 P{|η(X) − 1/2| ≤ ε} ≤ μ′′εα,

where κ and μ are functions of α and μ′′ [26, 28]; in particular, κ = (1 +α)/α. As
we will see, the case where κ = 1 is particularly interesting; for instance, this is the
case when h∗ ∈ C and P{|η(X) − 1/2| > c} = 1 for some constant c ∈ (0,1/2).
Informally, in many cases Condition 1 can be realized in terms of the relation
between magnitude of noise and distance to the optimal decision boundary; that
is, since in practice the amount of noise in a data point’s label is often inversely
related to the distance from the decision boundary, a small κ value may often result
from having low density near the decision boundary (i.e., large margin); when this
is not the case, the value of κ is often determined by how quickly η(x) changes as x

approaches the decision boundary. See [7, 12, 23, 26–28] for further interpretations
of this condition.
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It is known that when this condition is satisfied for some κ ≥ 1 and μ > 0, the
passive learning method of empirical risk minimization achieves a convergence
rate guarantee, holding with probability ≥ 1 − δ, of

er
(
arg min

h∈C

ern(h)
)

− ν ≤ c

(
d logn + log(1/δ)

n

)κ/(2κ−1)

,

where c is a (κ and μ-dependent) constant (this follows from [23, 27]; see Ap-
pendix B of the supplementary material [20], especially (17) and Lemma 5, for
the details). Furthermore, for some hypothesis classes, this is known to be a tight
bound (up to the log factor) on the minimax convergence rate, so that there is no
passive learning algorithm for these classes for which we can guarantee a faster
convergence rate, given that the guarantee depends on DXY only through μ and κ

[12, 28] (see also Appendix D of the supplementary material [20]).

2.2. Disagreement coefficient. The disagreement coefficient, introduced in
[19], is a measure of the complexity of an active learning problem, which has
proven quite useful for analyzing the convergence rates of certain types of active
learning algorithms: for example, the algorithms of [6, 10, 13, 14]. Informally, it
quantifies how much disagreement there is among a set of classifiers relative to
how close to some h they are. The following is a version of its definition, which
we will use extensively below. For any hypothesis class C and V ⊆ C, let

DIS(V ) = {x ∈ X :∃h1, h2 ∈ V s.t. h1(x) �= h2(x)}.
For r ∈ [0,1] and measurable h : X → Y , let

B(h, r) = {
h′ ∈ C : P{h(X) �= h′(X)} ≤ r

}
.

DEFINITION 1. The disagreement coefficient of h with respect to C under DX

is defined as

θh = sup
r>r0

P(DIS(B(h, r)))

r
,

where r0 = 0 (though see Appendix A.1 for alternative possibilities for r0).

DEFINITION 2. We further define the disagreement coefficient for the hypoth-
esis class C with respect to the target distribution DXY as θ = lim infk→∞ θh[k] ,
where {h[k]} is any sequence in C with er(h[k]) monotonically decreasing to ν; [by
convention, take every h[k] ∈ arg minh∈C er(h) if the minimum is achieved].

In Definition 1, it is conceivable that DIS(B(h, r)) may sometimes not be mea-
surable. In such cases, we can define P(DIS(B(h, r))) as the outer measure [29], so
that it remains well defined. We continue this practice below, letting P and E (and
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indeed any reference to “probability”) refer to the outer expectation and measure
in any context for which this is necessary.

Because of its simple intuitive interpretation, measuring the amount of disagree-
ment in a local neighborhood of some classifier h, the disagreement coefficient has
the wonderful property of being relatively simple to calculate for a wide range of
learning problems, especially when those problems have a natural geometric rep-
resentation. To illustrate this, we will go through a few simple examples from [19].

Consider the hypothesis class of thresholds hz on the interval [0,1] [for z ∈
(0,1)], where hz(x) = +1 iff x ≥ z. Furthermore, suppose DX is uniform on [0,1].
In this case, it is clear that the disagreement coefficient is 2, since for sufficiently
small r , the region of disagreement of B(hz, r) is [z − r, z + r), which has proba-
bility mass 2r . In other words, since the disagreement region grows with r in two
disjoint directions, each at rate 1, we have θhz = 2.

As a second example, consider the disagreement coefficient for intervals on
[0,1]. As before, let X = [0,1] and DX be uniform, but this time C is the set of
intervals h[a,b] such that for x ∈ [0,1], h[a,b](x) = +1 iff x ∈ [a, b] (for 0 < a <

b < 1). In contrast to thresholds, the disagreement coefficients θh[a,b] for the space
of intervals vary widely depending on the particular h[a,b]. Specifically, we have
θh[a,b] = max{ 1

b−a
,4}. To see this, note that when 0 < r < b − a, every interval in

B(h[a,b], r) has its lower and upper boundaries within r of a and b, respectively;
thus, P(DIS(B(h[a,b], r))) ≤ 4r , with equality for sufficiently small r . However,
when r > b − a, every interval of width ≤ r − (b − a) is in B(h[a,b], r), so that
P(DIS(B(h[a,b], r))) = 1.

As a slightly more involved example, [19] studies the scenario where X is the
surface of the origin-centered unit sphere in R

d for d > 2, C is the space of all
linear separators whose decision surface passes through the origin, and DX is the
uniform distribution on X ; in this case, it turns out ∀h ∈ C the disagreement coef-
ficient θh satisfies

π

4

√
d ≤ θh ≤ π

√
d.

The disagreement coefficient has many interesting properties that can help to
bound its value for a given hypothesis class and distribution. We list a few elemen-
tary properties below. Their proofs, which are quite short and follow directly from
the definition, are left as easy exercises.

LEMMA 1 (Close marginals [19]). Suppose ∃λ ∈ (0,1] s.t. for any measur-
able set A ⊆ X , λPDX

(A) ≤ PD′
X
(A) ≤ 1

λ
PDX

(A). Let h : X → Y be a measur-
able classifier, and suppose θh and θ ′

h are the disagreement coefficients for h with
respect to C under DX and D′

X , respectively. Then

λ2θh ≤ θ ′
h ≤ 1

λ2 θh.
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LEMMA 2 (Finite mixtures). Suppose ∃α ∈ [0,1] s.t. for any measurable set
A ⊆ X , PDX

(A) = αPD1(A) + (1 − α)PD2(A). For a measurable h : X → Y , let

θ
(1)
h be the disagreement coefficient with respect to C under D1, θ

(2)
h be the dis-

agreement coefficient with respect to C under D2, and θh be the disagreement
coefficient with respect to C under DX . Then

θh ≤ θ
(1)
h + θ

(2)
h .

LEMMA 3 (Finite unions). Suppose h ∈ C1 ∩ C2 is a classifier s.t. the dis-
agreement coefficient with respect to C1 under DX is θ

(1)
h and with respect to

C2 under DX is θ
(2)
h . Then if θh is the disagreement coefficient with respect to

C = C1 ∪ C2 under DX , we have that

max
{
θ

(1)
h , θ

(2)
h

} ≤ θh ≤ θ
(1)
h + θ

(2)
h .

In fact, even if h /∈ C1 ∩ C2, we still have θh ≤ θ
(1)
h + θ

(2)
h + 2.

See [8, 10, 14, 16, 19, 33] for further discussions of various uses of the dis-
agreement coefficient and related notions and extensions in active learning. In par-
ticular, Friedman [16] proves that any hypothesis class and distribution satisfying
certain general regularity conditions will admit finite constant bounds on θ . Also,
Wang [33] bounds the disagreement coefficient for certain nonparametric hypoth-
esis classes, characterized by smoothness of their decision surfaces. Additionally,
Beygelzimer, Dasgupta and Langford [10] present an interesting analysis using a
natural extension of the disagreement coefficient to study active learning with a
larger family of loss functions beyond 0–1 loss.

The disagreement coefficient has deep connections to several other quantities,
such as doubling dimension [25] and VC dimension [30]. Additionally, a re-
lated quantity, referred to as the “capacity function,” was studied in the 1980s by
Alexander in the passive learning literature, in the context of ratio-type empirical
processes [2–4] and recently was further developed by Giné and Koltchinskii [17];
interestingly, in this latter work, Giné and Koltchinskii study a localized version
of the capacity function, which in our present context can essentially be viewed as
the function τ(r) = P(DIS(B(h, r)))/r , so that θh = supr>r0

τ(r).

3. General algorithms. We begin the discussion of the algorithms we will
analyze by noting the underlying inspiration that unifies them. Specifically, at this
writing, all of the published general-purpose agnostic active learning algorithms
achieving nontrivial improvements are derivatives of a basic technique proposed by
Cohn, Atlas and Ladner [13] for the realizable active learning problem. Under the
assumption that there exists a perfect classifier in C, they proposed an algorithm
which processes unlabeled data points in sequence, and for each one it determines
whether there is a classifier in C consistent with all previously observed labels that
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predicts +1 for this new point and one that predicts −1 for this new point; if so,
the algorithm requests the label, and otherwise it does not request the label; after
n label requests, the algorithm returns any classifier consistent with all observed
labels. In some sense, this algorithm corresponds to the very least we could expect
of an active learning algorithm, as it never requests the label of a point it can derive
from known information, but otherwise makes no effort to search for informative
data points. The idea is appealing, not only for its simplicity, but also for its ex-
tremely efficient use of unlabeled data; in fact, under the stated assumption, the
algorithm produces a classifier consistent with the labels of all of the unlabeled
data it processes, including those it does not request the labels of.

We can equivalently think of this algorithm as maintaining two sets: V ⊆ C

is the set of candidate hypotheses still under consideration, and R = DIS(V ) is
their region of disagreement. We can then think of the algorithm as requesting a
random labeled point from the conditional distribution of DXY given that X ∈ R,
and subsequently removing from V any classifier inconsistent with the observed
label. A formal definition of the algorithm is given as follows.

Algorithm 0
Input: hypothesis class C, label budget n

Output: classifier ĥn ∈ C

0. V0 ← C, t ← 0
1. For m = 1,2, . . .

2. If Xm ∈ DIS(Vt ),
3. Request Ym

4. t ← t + 1
5. Vt ← {h ∈ Vt−1 : h(Xm) = Ym}
6. If t = n or {m′ > m : Xm′ ∈ DIS(Vt )} = ∅, Return any ĥn ∈ Vt

The algorithms described below for the problem of active learning with label
noise each represent noise-robust variants of this basic idea. They work to reduce
the set of candidate hypotheses, while only requesting the labels of points in the
region of disagreement of these candidates. The trick is to only remove a classifier
from the candidate set once we have high statistical confidence that it is worse
than some other candidate classifier so that we never remove the best classifier.
However, the two algorithms differ somewhat in the details of how that confidence
is calculated.

3.1. Algorithm 1. The first noise-robust algorithm we study, originally pro-
posed by Balcan, Beygelzimer and Langford [6], is typically referred to as A2

for Agnostic Active. This was historically the first general-purpose agnostic active
learning algorithm shown to achieve improved error guarantees for certain learn-
ing problems in certain ranges of n and ν. Below is a variant of this algorithm.
It is defined in terms of two functions: UB and LB. These represent upper and
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lower confidence bounds on the error rate of a classifier from C with respect to
an arbitrary sampling distribution, as a function of a labeled sequence sampled ac-
cording to that distribution. Some steps in the algorithm require calculating certain
probabilities, such as P(DIS(V )) or P(R); later, we discuss replacing these with
appropriate estimators.

Algorithm 1
Input: hypothesis class C, label budget n, confidence δ, functions UB and LB
Output: classifier ĥn

0. V ← C, R ← DIS(C), Q ← ∅, m ← 0
1. For t = 1,2, . . . , n

2. If P(DIS(V )) ≤ 1
2P(R)

3. R ← DIS(V ); Q ← ∅

4. If P(R) ≤ 2−n, Return any ĥn ∈ V

5. m ← min{m′ > m :Xm′ ∈ R}
6. Request Ym and let Q ← Q ∪ {(m,Ym)}
7. V ← {h ∈ V : LB(h,Q, δ/n) ≤ minh′∈V UB(h′,Q, δ/n)}
8. ht ← arg minh∈V UB(h,Q, δ/n)

9. βt ← (UB(ht ,Q, δ/n) − minh∈V LB(h,Q, δ/n))P(R)

10. Return ĥn = ht̂ , where t̂ = arg mint∈{1,2,...,n} βt

The intuitive motivation behind the algorithm is the following. It focuses on re-
ducing the set of candidate hypotheses V , while being careful not to throw away
the best classifier h∗

C
= arg minh∈C er(h) (supposing, for this informal explana-

tion, that h∗
C

exists). Given that this is satisfied at any given time in the algo-
rithm, it makes sense to focus our samples to the region DIS(V ), since a clas-
sifier h1 ∈ V has smaller error rate than another classifier h2 ∈ V if and only
if it has smaller conditional error rate given DIS(V ). For this reason, on each
round, we seek to remove from V any h for which our confidence bounds in-
dicate that er(h|DIS(V )) > er(h∗

C
|DIS(V )). However, so that we can make use

of known results for i.i.d. samples, we freeze the sampling region R ⊇ DIS(V )

and collect an i.i.d. sample from the conditional given this region, updating the
region only when doing so allows us to further significantly focus the samples;
for this same reason, we also reset the collection of samples Q every time we
update the region R, so that it represents samples from the conditional given R.
Finally, we maintain the values βt , which represent confidence upper bounds on
er(ht ) − ν = (er(ht |R) − er(h∗

C
|R))P(R), and we return the ht minimizing this

confidence bound; note that it does not suffice to return hn, since the final Q set
might be small.

As long as the confidence bounds UB and LB satisfy (overloading notation in
the natural way)

PZ∼Dm{∀h ∈ C,LB(h,Z, δ′) ≤ erD(h) ≤ UB(h,Z, δ′)} ≥ 1 − δ′
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for any distribution D over X × Y and any δ′ ∈ (0,1), and UB and LB converge
to each other as m grows, it is known that a 1 − δ confidence bound on er(ĥn) − ν

converges to 0 [6]. For instance, Balcan, Beygelzimer and Langford [6] suggest
defining these functions based on classic results on uniform convergence rates in
passive learning [30], such as

UB(h,Q, δ′) = min{erQ(h) + G(|Q|, δ′),1},
(1)

LB(h,Q, δ′) = max{erQ(h) − G(|Q|, δ′),0},
where G(m,δ′) = 1

m
+

√
ln(4/δ′)+d ln(2em/d)

m
for m ≥ d , and by convention G(m,

δ′) = ∞ for m < d . This choice of UB and LB is motivated by the following
lemma, due to Vapnik [31].

LEMMA 4. For any distribution D over X × Y , and any δ′ ∈ (0,1) and m ∈ N,
with probability ≥ 1 − δ′ over the draw of Z ∼ Dm, every h ∈ C satisfies

|erZ(h) − erD(h)| ≤ G(m,δ′).(2)

To avoid computational issues, instead of explicitly representing the sets V

and R, we may implicitly represent them as a set of constraints imposed by the
condition in step 7 of previous iterations. We may also replace P(DIS(V )) and
P(R) by estimates, since these quantities can be estimated to arbitrary precision
with arbitrarily high confidence using only unlabeled data. Specifically, the con-
vergence rates proven below can be preserved up to constant factors by replacing
these quantities with confidence bounds based on a finite number of unlabeled
data points; the details of this are included in Appendix C of the supplementary
material [20]. As for the number of unlabeled data points required by the above al-
gorithm itself, note that if P(DIS(V )) becomes small, it will use a large number of
unlabeled data points; however, P(DIS(V )) being small also indicates er(ĥn) − ν

is small (and indeed βt ). In particular, to get an excess error rate of ε, the algorithm
will generally require a number of unlabeled data points only polynomial in 1/ε;
also, the condition in step 4 guarantees the total number of unlabeled data points
used by the algorithm is bounded with high probability. For comparison, recall that
passive learning typically requires a number of labeled data points polynomial in
1/ε.

3.2. Algorithm 2. The second noise-robust algorithm we study was originally
proposed by Dasgupta, Hsu and Monteleoni [14]. It uses a type of constrained
passive learning subroutine, LEARN, defined as follows for two sets of labeled
data points, L and Q.

LEARNC(L,Q) = arg min
h∈C : erL(h)=0

erQ(h).

By convention, if no h ∈ C has erL(h) = 0, LEARNC(L,Q) = ∅. The algorithm
is formally defined below, in terms of a sequence of estimators m, defined later.
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Algorithm 2
Input: hypothesis class C, label budget n, confidence δ, functions m

Output: classifier ĥn, sets of (index, label) pairs L and Q

0. L ← ∅, Q ← ∅

1. For m = 1,2, . . .

2. If |Q| = n or m > 2n, Return ĥn = LEARNC(L,Q) along with L and Q

3. For each y ∈ {−1,+1}, let h(y) = LEARNC(L ∪ {(m,y)},Q)

4. If some y has h(−y) = ∅ or
erL∪Q

(
h(−y)

) − erL∪Q

(
h(y)

)
> m−1

(
L,Q,h(y), h(−y), δ

)
5. Then L ← L ∪ {(m,y)}
6. Else Request the label Ym and let Q ← Q ∪ {(m,Ym)}
The algorithm maintains two sets of labeled data points: L and Q. The set Q

represents points of which we have requested the labels. The set L represents the
remaining points, and the labels of points in L are inferred. Specifically, suppose
(inductively) that at some time m we have that every (i, y) ∈ L has h∗

C
(Xi) = y,

where h∗
C

= arg minh∈C er(h) (supposing the min is achieved, for this informal
motivation). At any point, we can be fairly confident that h∗

C
will have relatively

small empirical error rate. Thus, if all of the classifiers h with erL(h) = 0 and
h(Xm) = −y have relatively large empirical error rates compared to some h with
erL(h) = 0 and h(Xm) = y, we can confidently infer that h∗

C
(Xm) = y. Note that

this is not the true label Ym, but a sort of “denoised” version of it. Once we infer
this label, since we are already confident that this is the h∗

C
label, and h∗

C
is the

classifier we wish to compete with, we simply add this label as a constraint: that
is, we require every classifier under consideration in the future to have h(Xm) =
h∗

C
(Xm). This is how elements of L are added. On the other hand, if we cannot

confidently infer h∗
C
(Xm), because some classifiers labeling Xm as −h∗

C
(Xm) also

have relatively small empirical error rates, then we simply request the label Ym

and add it to the set Q. Note that in order to make this comparison, we needed
to be able to calculate the differences of empirical error rates; however, as long
as we only consider the set of classifiers h that agree on the labels in L, we will
have erL∪Q(h1) − erL∪Q(h2) = erm(h1) − erm(h2), for any two such classifiers
h1 and h2, where m = |L ∪ Q|.

The key to the above argument is carefully choosing a threshold for how large
the difference in empirical error rates needs to be before we can confidently in-
fer the label. For this purpose, Algorithm 2 is defined in terms of a function,
m(L,Q,h(y), h(−y), δ), representing a threshold for a type of hypothesis test.
This threshold must be set carefully, since the sequence of labeled data points cor-
responding to L ∪Q is not actually an i.i.d. sample from DXY . Dasgupta, Hsu and
Monteleoni [14] suggest defining this function as

m

(
L,Q,h(y), h(−y), δ

) = β2
m + βm

(√
erL∪Q

(
h(y)

) +
√

erL∪Q

(
h(−y)

))
,(3)
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where βm =
√

4 ln(8m(m+1)S(C,2m)2/δ)
m

and S(C,2m) is the shatter coefficient (e.g.,
[15, 31]); this suggestion is based on a confidence bound they derive, and they
prove the correctness of the algorithm with this definition, meaning that the 1 − δ

confidence bound on its error rate converges to ν as n → ∞. For now we will focus
on the first return value (the classifier), leaving the others for Section 5, where they
will be useful for chaining multiple executions together.

4. Convergence rates. In both of the above cases, one can prove guarantees
stating that neither algorithm’s convergence rates are ever significantly worse than
passive learning by empirical risk minimization [6, 14]. However, it is even more
interesting to discuss situations in which one can prove error rate guarantees for
these algorithms significantly better than those achievable by passive learning. In
this section, we begin by reviewing known results on these potential improve-
ments, stated in terms of the disagreement coefficient; we then proceed to discuss
new results for Algorithm 1 and a novel variant of Algorithm 2, and describe the
convergence rates achieved by these methods in terms of the disagreement coeffi-
cient and Tsybakov’s noise conditions.

To simplify the presentation, for the remainder of this paper we will restrict the
discussion to situations with θ > 0 (and therefore C with d > 0 too). Handling the
extra case of θ = 0 is a trivial matter, since θ = 0 would imply that any proper
learning algorithm achieves excess error 0 for all values of n.

4.1. The disagreement coefficient and active learning: Basic results. Before
going into the results for general distributions DXY on X × Y , it will be instructive
to first look at the special case when the noise rate is zero. Understanding how the
disagreement coefficient enters into the analysis of this simpler case may aid in
digestion of the theorems and proofs for the general case presented later, where it
plays an essentially analogous role. Most of the major ingredients of the proofs for
the general case can be found in this special case, albeit in a much simpler form.
Although this result has not previously been published, the proof is essentially
analogous to (one case of) the analysis of Algorithm 1 in [19].

THEOREM 1. Let f ∈ C be such that er(f ) = 0 and θf < ∞. ∀n ∈ N and δ ∈
(0,1), with probability ≥ 1 − δ over the draw of the unlabeled data, the classifier
ĥn returned by Algorithm 0 after n label requests satisfies

er(ĥn) ≤ 2 · exp
{
− n

12θf (d ln(22θf ) + ln(3n/δ))

}
.

PROOF. As in the algorithm, let Vt denote the set of classifiers in C consistent
with the first t label requests. If P(DIS(Vt )) > 0 for all values of t in the algorithm,
then with probability 1 the algorithm uses all n label requests. Technically, each
claim below should be followed by the phrase, “unless P(DIS(Vt )) = 0 for some
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t ≤ n, in which case er(ĥn) = 0 so the bound trivially holds.” However, to simplify
the presentation, we will make this special case implicit, and will not mention it
further.

The high-level outline of this proof is to use P(DIS(Vt )) as an upper bound on
suph∈Vt

er(h), and then show P(DIS(Vt )) is halved roughly every λ = Õ(θf d)

label requests. Thus, after roughly Õ(θf d log(1/ε)) label requests, any h ∈ Vt

should have er(h) ≤ ε.
Specifically, let λn = �8θf (d ln(8eθf )+ ln(2n/δ))�. If n ≤ λn, the bound in the

theorem statement trivially holds, since the right-hand side exceeds 1; otherwise,
consider some nonnegative t ≤ n − λn and t ′ = t + λn. Let Xmt denote the point
corresponding to the t th label request, and let Xmt ′ denote the point corresponding
to label request number t ′. It must be that

|{Xmt+1,Xmt+2, . . . ,Xmt ′ } ∩ DIS(Vt )| ≥ λn,

which means there is an i.i.d. sample of size λn, with distribution equivalent to the
conditional of X given {X ∈ DIS(Vt )}, contained in {Xmt+1, . . . ,Xmt ′ }: namely,
the first λn points in this subsequence that are in DIS(Vt ).

Now recall that, by classic results from the passive learning literature (e.g., [5]),
this implies that on an event Eδ,t holding with probability 1 − δ/n,

sup
h∈Vt ′

er(h|DIS(Vt )) ≤ 2
d ln(2eλn/d) + ln(2n/δ)

λn

.

Also note that λn was defined (with express purpose) so that

2
d ln(2eλn/d) + ln(2n/δ)

λn

≤ 1/(2θf ).

Recall that, since er(f ) = 0, we have er(h) = P(h(X) �= f (X)). Since f ∈ Vt ′ ⊆
Vt , this means for any h ∈ Vt ′ we have {x :h(x) �= f (x)} ⊆ DIS(Vt ), and thus

sup
h∈Vt ′

P
(
h(X) �= f (X)

) = sup
h∈Vt ′

P
(
h(X) �= f (X)|X ∈ DIS(Vt )

)
P(DIS(Vt ))

= sup
h∈Vt ′

er(h|DIS(Vt ))P(DIS(Vt )) ≤ P(DIS(Vt ))/(2θf ).

So Vt ′ ⊆ B(f,P(DIS(Vt ))/(2θf )), and therefore by monotonicity of P(DIS(·))
and the definition of θf

P(DIS(Vt ′)) ≤ P
(
DIS

(
B

(
f,P(DIS(Vt ))/(2θf )

))) ≤ P(DIS(Vt ))/2.

By a union bound, Eδ,t holds for every t ∈ {iλn : i ∈ {0,1, . . . , �n/λn� − 1}} with
probability ≥ 1 − δ. On these events, if n ≥ λn�log2(1/ε)�, then (by induction)

sup
h∈Vn

er(h) ≤ P(DIS(Vn)) ≤ ε.

Solving for ε in terms of n gives the result (with a slight increase in constants due
to relaxing the ceiling functions). �
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4.2. Known results on convergence rates for agnostic active learning. We will
now describe the known results for agnostic active learning algorithms, starting
with Algorithm 1. The key to the potential convergence rate improvements of Al-
gorithm 1 is that, as the region of disagreement R decreases in measure, the error
difference er(h|R) − er(h′|R) of any classifiers h,h′ ∈ V under the conditional
sampling distribution (given R) can become significantly larger [by a factor of
P(R)−1] than er(h) − er(h′), making it significantly easier to determine which of
the two is worse using a sample of labeled data. In particular, [19] developed a
technique for analyzing this type of algorithm, and adapting that analysis to the
above definition of Algorithm 1 results in the following guarantee.

THEOREM 2 [19]. Let ĥn be the classifier returned by Algorithm 1 when
allowed n label requests, using the bounds (1) and confidence parameter δ ∈
(0,1/2). Then there exists a finite universal constant c such that, with probabil-
ity ≥ 1 − δ, ∀n ∈ N,

er(ĥn) − ν ≤ c

√
ν2θ2(d logn + log(1/δ)) log((n + 2νθ)/(νθ))

n

+ 2 exp
{
− n

cθ2(d log θ + log(n/δ))

}
.

Similarly, the key to improvements from Algorithm 2 is that as the number m

of processed unlabeled data points increases, we only need to request the labels of
those data points in the region of disagreement of the set of classifiers with near-
optimal empirical error rates. Thus, if the region of disagreement of classifiers with
excess error ≤ ε shrinks as ε shrinks, we expect the frequency of label requests to
shrink as m increases. Since we are careful not to discard the best classifier, and
the excess error rate of a classifier can be bounded in terms of the m function,
we end up with a bound on the excess error which is converging in m, the number
of unlabeled data points processed, even though we request a number of labels
growing slower than m. When this situation occurs, we expect Algorithm 2 will
provide an improved convergence rate compared to passive learning. Dasgupta,
Hsu and Monteleoni [14] prove the following convergence rate guarantee.

THEOREM 3 [14]. Let ĥn be the classifier returned by Algorithm 2 when al-
lowed n label requests, using the threshold (3), and confidence parameter δ ∈
(0,1/2). Then there exists a finite universal constant c such that, with probability
≥ 1 − δ, ∀n ∈ N,

er(ĥn) − ν ≤ c

√
ν2θ(d log((n + 2νθ)/(νθ)) + log(1/δ))

n

+ c

(
d + log

1

δ

)
exp

{
−

√
n

cθ(d + log(1/δ))

}
.



RATES OF CONVERGENCE IN ACTIVE LEARNING 347

Note that, among other changes, this bound improves the dependence on the dis-
agreement coefficient θ , compared to the bound for Algorithm 1. In both cases, for
certain ranges of θ , ν and n, these bounds can represent significant improvements
in the excess error guarantees, compared to the corresponding guarantees possi-
ble for passive learning. However, in both cases, when ν > 0 these bounds have
an asymptotic dependence on n of �̃(n−1/2), which is no better than the conver-
gence rates achievable by passive learning (e.g., by empirical risk minimization).
Thus, there remains the question of whether either algorithm can achieve asymp-
totic convergence rates strictly superior to passive learning for distributions with
nonzero noise rates. This is the topic we turn to next.

4.3. Active learning under Tsybakov’s noise conditions. It is known that for
most nontrivial C, for any n and ν > 0, for every active learning algorithm there
is some distribution with noise rate ν for which we can guarantee excess error
no better than ∝ νn−1/2 [21]; that is, the n−1/2 asymptotic dependence on n in
the above bounds matches the corresponding minimax rate, and thus cannot be
improved as long as the bounds depend on DXY only via ν (and θ ). Therefore,
if we hope to discover situations in which these algorithms have strictly superior
asymptotic dependence on n, we will need to allow the bounds to depend on a
more detailed description of the noise distribution than simply the noise rate ν.

As previously mentioned, one way to describe a noise distribution using a more
detailed parametrization is to use Tsybakov’s noise conditions (Condition 1). In the
context of passive learning, this allows one to describe situations in which the rate
of convergence is between n−1 and n−1/2, even when ν > 0. This raises the natural
question of how these active learning algorithms perform when the noise distrib-
ution satisfies this condition with finite μ and κ parameter values. In many ways,
it seems active learning is particularly well-suited to exploit these more favorable
noise conditions, since they imply that as we eliminate suboptimal classifiers, the
diameter of the remaining set shrinks; thus, for finite θ values, the region of dis-
agreement should also be shrinking, allowing us to focus the samples in a smaller
region and accelerate the convergence.

Focusing on the special case of learning one-dimensional threshold classifiers
under a certain uniform marginal distribution, Castro and Nowak [12] studied con-
ditions related to Condition 1. In particular, they studied a threshold-learning al-
gorithm that, unlike the algorithms described here, takes κ as input, and found its
convergence rate to be ∝ (

logn
n

)κ/(2κ−2) when κ > 1, and exp{−cn} for some (μ-
dependent) constant c, when κ = 1. Note that this improves over the n−κ/(2κ−1)

rates achievable in passive learning [12, 28]. Subsequently, Balcan, Broder and
Zhang [7] proved an analogous positive result for higher-dimensional linear sepa-
rators, and Castro and Nowak [12] additionally showed a related result for bound-
ary fragment classes (see below); in both cases, the algorithm depends explic-
itly on the noise parameters. Later, in a personal communication, Langford and
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Castro claimed that in fact Algorithm 1 achieves this rate (up to log factors)
for the one-dimensional thresholds problem, leading to speculation that perhaps
these improvements are achievable in the general case as well (under conditions
on the disagreement coefficient). Castro and Nowak [12] also prove that a value
∝ n−κ/(2κ−2) (or exp{−c′n}, for some c′, when κ = 1) is also a lower bound on
the minimax rate for the threshold learning problem. In fact, a similar proof to
theirs can be used to show this same lower bound holds for any nontrivial C. For
completeness, a proof of this more general result is included in Appendix D of the
supplementary material [20].

Other than the few specific results mentioned above, it was not previously
known whether Algorithm 1 or Algorithm 2, or indeed any active learning al-
gorithm, generally achieves convergence rates that exhibit these types of improve-
ments.

4.4. Adaptive rates in active learning: Algorithm 1. The above observations
open the question of whether these algorithms, or variants thereof, improve this
asymptotic dependence on n. It turns out this is indeed possible. Specifically, we
have the following result for Algorithm 1.

THEOREM 4. Let ĥn be the classifier returned by Algorithm 1 when allowed
n label requests, using the bounds (1) and confidence parameter δ ∈ (0,1/2). Sup-
pose further that DXY satisfies Condition 1. Then there exists a finite (κ- and μ-
dependent) constant c such that, for any n ∈ N, with probability ≥ 1 − δ,

er(ĥn) − ν ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 · exp
{
− n

cθ2(d logn + log(1/δ))

}
, when κ = 1,

c

(
θ2(d logn + log(1/δ)) logn

n

)κ/(2κ−2)

, when κ > 1.

PROOF. We will proceed by bounding the label complexity, or size of the label
budget n that is sufficient to guarantee, with high probability, that the excess error
of the returned classifier will be at most ε (for arbitrary ε > 0); with this in hand,
we can simply bound the inverse of the function to get the result in terms of a
bound on excess error.

Throughout this proof (and proofs of later results in this paper), we will make
frequent use of basic facts about er(h|R). In particular, for any classifiers h,h′
and set R ⊆ X , we have er(h) = er(h|R)P(R) + er(h|X \ R)P(X \ R); also, if
{x :h(x) �= h′(x)} ⊆ R, we have er(h|X \ R) − er(h′|X \ R) = 0 and therefore
er(h) − er(h′) = (er(h|R) − er(h′|R))P(R).

Note that, by Lemma 4 and a union bound, on an event of probability 1 − δ,
(2) holds with δ′ = δ/n for every set Q, relative to the conditional distribution
given its respective R set, for any value of n. For the remainder of this proof,
we assume that this 1 − δ probability event occurs. In particular, this means that
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for every h ∈ C and every Q set in the algorithm, LB(h,Q, δ/n) ≤ er(h|R) ≤
UB(h,Q, δ/n), for the set R that Q is sampled under.

Our first task is to show that we never remove the “good” classifiers from V .
We only remove a classifier h from V if h′ = arg minh′∈V UB(h′,Q, δ/n) has
LB(h,Q, δ/n) > UB(h′,Q, δ/n). Each h ∈ V has {x :h(x) �= h′(x)} ⊆ DIS(V ) ⊆
R, so that

UB(h′,Q, δ/n) − LB(h,Q, δ/n) ≥ er(h′|R) − er(h|R) = er(h′) − er(h)

P(R)
.

Thus, for any h ∈ V with er(h) ≤ er(h′), UB(h′,Q, δ/n) − LB(h,Q, δ/n) ≥
er(h′|R) − er(h|R) = (er(h′) − er(h))/P(R) ≥ 0, so that on any given round of
the algorithm, the set {h ∈ V : er(h) ≤ er(h′)} is not removed from V . In par-
ticular, since we always have er(h′) ≥ ν, by induction this implies the invariant
infh∈V er(h) = ν, and therefore also

∀t er(ht ) − ν = er(ht ) − inf
h∈V

er(h)

=
(
er(ht |R) − inf

h∈V
er(h|R)

)
P(R) ≤ βt ,

where again the second equality is due to the fact that ∀h ∈ V , {x :ht (x) �= h(x)}
⊆ DIS(V ) ⊆ R. We will spend the remainder of the proof bounding the size of
n sufficient to guarantee some βt ≤ ε. In particular, similar to the proof of Theo-
rem 1, we will see that as long as βt > ε, we will halve P(DIS(V )) roughly every
Õ(θ2dε2/κ−2) label requests, so that the total number of label requests before
some βt ≤ ε is at most roughly Õ(θ2dε2/κ−2 log(1/ε)).

Recalling the definition of h[k] (from Definition 2), let

V (θ) =
{
h ∈ V : lim sup

k→∞
P

(
h(X) �= h[k](X)

)
>

P(R)

2θ

}
.(4)

Note that after step 7, if V (θ) = ∅, then

P(DIS(V )) ≤ P

(
DIS

({
h ∈ C : lim sup

k→∞
P

(
h(X) �= h[k](X)

) ≤ P(R)/(2θ)
}))

= lim
k′→∞P

(
DIS

( ⋂
k>k′

B
(
h[k],P(R)/(2θ)

)))

≤ lim
k′→∞P

( ⋂
k>k′

DIS
(
B

(
h[k],P(R)/(2θ)

)))

≤ lim inf
k→∞ P

(
DIS

(
B

(
h[k],P(R)/(2θ)

)))

≤ lim inf
k→∞ θh[k]

P(R)

2θ
= P(R)

2
,
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so that we will satisfy the condition in step 2 on the next round. Here we have used
the definition of θ in the final inequality and equality. On the other hand, if after
step 7, we have V (θ) �= ∅, then

∅ �=
{
h ∈ V : lim sup

k→∞
P

(
h(X) �= h[k](X)

)
>

P(R)

2θ

}

=
{
h ∈ V :

(
lim supk→∞ P(h(X) �= h[k](X))

μ

)κ

>

(
P(R)

2μθ

)κ}

⊆
{
h ∈ V :

(
diam(er(h) − ν;C)

μ

)κ

>

(
P(R)

2μθ

)κ}

⊆
{
h ∈ V : er(h) − ν >

(
P(R)

2μθ

)κ}

=
{
h ∈ V : er(h|R) − inf

h′∈V
er(h′|R) > P(R)κ−1(2μθ)−κ

}

⊆
{
h ∈ V : UB(h,Q, δ/n) − min

h′∈V
LB(h′,Q, δ/n) > P(R)κ−1(2μθ)−κ

}

⊆
{
h ∈ V : LB(h,Q, δ/n) − min

h′∈V
UB(h′,Q, δ/n)

> P(R)κ−1(2μθ)−κ − 4G(|Q|, δ/n)
}
.

Here, the third line follows from the fact that er(h[k]) ≤ er(h) for all sufficiently
large k, the fourth line follows from Condition 1, and the final line follows from
the definition of UB and LB. By definition, every h ∈ V has LB(h,Q, δ/n) ≤
minh′∈V UB(h′,Q, δ/n), so for this last set to be nonempty after step 7, we must
have P(R)κ−1(2μθ)−κ < 4G(|Q|, δ/n).

Combining these two cases (V (θ) = ∅ and V (θ) �= ∅), since |Q| gets reset to 0
upon reaching step 3, we have that after every execution of step 7,

P(R)κ−1(2μθ)−κ < 4G(|Q| − 1, δ/n).(5)

If P(R) ≤ ε
2G(|Q|−1,δ/n)

≤ ε
2G(|Q|,δ/n)

, then certainly βt ≤ ε (by definition of
βt ≤ 2G(|Q|, δ/n)P(R)). So on any round for which βt > ε, we must have

ε

2G(|Q| − 1, δ/n)
< P(R).(6)

Combining (5) and (6), on any round for which βt > ε,(
ε

2G(|Q| − 1, δ/n)

)κ−1

(2μθ)−κ < 4G(|Q| − 1, δ/n).(7)

Solving for G(|Q| − 1, δ/n) reveals that when βt > ε,

4−1/κ

(
ε

2

)(κ−1)/κ

(2μθ)−1 < G(|Q| − 1, δ/n).(8)
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Basic algebra shows that when n ≥ |Q| > d , we have

G(|Q| − 1, δ/n) ≤ 3

√
ln(4/δ) + (d + 1) ln(n)

|Q| .

Combining this with (8), solving for |Q| and adding d to handle the case |Q| ≤ d ,
we have that on any round for which βt > ε,

|Q| ≤
(

2

ε

)(2κ−2)/κ

(6μθ)242/κ

(
ln

4

δ
+ (d + 1) ln(n)

)
+ d.(9)

Since βt ≤ P(R) by definition, and P(R) is at least halved each time we reach
step 3, we need to reach step 3 at most �log2(1/ε)� times before we are guaranteed
some βt ≤ ε. Thus, any

n ≥ 1 +
((

2

ε

)(2κ−2)/κ

(6μθ)242/κ

(
ln

4

δ
+ (d + 1) ln(n)

)
+ d

)
log2

2

ε
(10)

suffices to guarantee either some |Q| exceeds (9) or we reach step 3 at least
�log2(1/ε)� times, either of which implies the existence of some βt ≤ ε. The stated
result now follows by basic inequalities to bound the smallest value of ε satisfying
(10) for a given value of n. �

If the disagreement coefficient is finite, Theorem 4 can often represent a sig-
nificant improvement in convergence rate compared to passive learning, where we
typically expect rates of order n−κ/(2κ−1) [12, 26, 28]; this gap is especially no-
table when the disagreement coefficient and κ are small. Furthermore, the bound
matches (up to logarithmic factors) the form of the minimax rate lower bound
proved by Castro and Nowak [12] for threshold classifiers (where θ = 2); as men-
tioned, that lower bound proof can be generalized to any nontrivial C (see Ap-
pendix D of the supplementary material [20]), so that the rate of Theorem 4 is
nearly minimax optimal for any nontrivial C with bounded disagreement coeffi-
cients. Also note that, unlike the upper bound analysis of Castro and Nowak [12],
we do not require the algorithm to be given any extra information about the noise
distribution, so that this result is somewhat stronger; it is also more general, as this
bound applies to an arbitrary hypothesis class.

A refined analysis and minor tweaks to the algorithm should be able to re-
duce the log factors in this result. For instance, defining UB and LB using the
uniform convergence bounds of Alexander [1], and using a slightly more compli-
cated algorithm closer to the original definition [6, 19]—taking multiple samples
between bound evaluations, allowing a larger confidence argument to the UB and
LB evaluations—the log2 n factor should reduce at least to logn log logn, if not
further. Also, as previously mentioned, it is possible to replace the quantities P(R)

and P(DIS(V )) in Algorithm 1 with estimators of these quantities based on a finite
sample of unlabeled data points, while preserving the results of Theorem 4 up to
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constant factors. We include an example of such estimators in Appendix C of the
supplementary material [20], along with a sketch of how to modify the proof of
Theorem 4 to compensate for using these estimated probabilities.

4.5. Adaptive rates in active learning: Algorithm 2. Note that, as before, n gets
divided by θ2 in the rates achieved by Algorithm 1. As before, it is not clear
whether any modification to the definitions of UB and LB can reduce this expo-
nent on θ from 2 to 1. As such, it is natural to investigate the rates achieved by
Algorithm 2 under Condition 1; we know that it does improve the dependence on
θ for the worst case rates over distributions with any given noise rate, so we might
hope that it does the same for the rates over distributions with any given values
of μ and κ . Unfortunately, we do not presently know whether the original defini-
tion of Algorithm 2 achieves this improvement. However, we now present a slight
modification of the algorithm, and prove that it does indeed provide the desired
improvement in dependence on θ , while maintaining the improvements in the as-
ymptotic dependence on n. Specifically, consider the following definition for the
threshold in Algorithm 2:

m

(
L,Q,h(y), h(−y), δ

) = 3ÊC(L ∪ Q,δ; L),(11)

where ÊC(·, ·; ·) is defined in the Appendix, based on a notion of local Rademacher
complexity studied by Koltchinskii [23]. In particular, the quantity ÊC is known to
be adaptive to Tsybakov’s noise conditions, in the sense that more favorable noise
conditions yield smaller values of ÊC. Using this definition, we have the following
theorem; due to space limitations, its proof is not presented here, but is included in
Appendix B of the supplementary material [20].

THEOREM 5. Suppose ĥn is the classifier returned by Algorithm 2 with thresh-
old as in (11), when allowed n label requests and given confidence parameter
δ ∈ (0,1/2). Suppose further that DXY satisfies Condition 1 with finite parameter
values κ and μ. Then there exists a finite (κ and μ-dependent) constant c such
that, with probability ≥ 1 − δ, ∀n ∈ N,

er(ĥn) − ν ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c

(
d + log

1

δ

)
· exp

{
−

√
n

cθ(d + log(1/δ))

}
, when κ = 1,

c

(
θ(d logn + log(1/δ))

n

)κ/(2κ−2)

, when κ > 1.

Note that this does indeed improve the dependence on θ , reducing its exponent
from 2 to 1; we do lose some in that there is now a square root in the exponent of
the κ = 1 case; however, as with Theorem 4, it is likely that slight refinements to
the definition of m would reduce this (though we may also need to weaken the
theorem statement to hold for any single n, rather than simultaneously for all n).
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The bound in Theorem 5 is stated in terms of the VC dimension d . However, for
certain nonparametric hypothesis classes, it is sometimes preferable to quantify the
complexity of the class in terms of a constraint on the entropy of the class, relative
to the distribution DXY (see e.g., [12, 23, 28, 29]). Specifically, for ε ∈ [0,1],
define

ωC(m, ε) = E sup
h1,h2∈C:

P{h1(X) �=h2(X)}≤ε

∣∣(er(h1) − erm(h1)
) − (

er(h2) − erm(h2)
)∣∣.

CONDITION 2. There exist finite constants α > 0 and ρ ∈ (0,1) s.t. ∀m ∈ N

and ε ∈ [0,1], ωC(m, ε) ≤ α · max{ε(1−ρ)/2m−1/2,m−1/(1+ρ)}.
In particular, the entropy with bracketing condition used in the original min-

imax analysis of Tsybakov [28] implies Condition 2 [23], as does the analogous
condition for random entropy [17, 18, 24]. In passive learning, it is known that em-
pirical risk minimization achieves a rate of order n−κ/(2κ+ρ−1) under Conditions 1
and 2 [23, 24] (see also Appendix B of the supplementary material [20], especially
(19) and Lemma 5), and that this is sometimes minimax optimal [28]. The fol-
lowing theorem gives a bound on the rate of convergence of the same version of
Algorithm 2 as in Theorem 5, this time in terms of the entropy condition which, as
before, is faster than the passive learning rate when the disagreement coefficient
is finite. The proof of this result is included in Appendix B of the supplementary
material [20].

THEOREM 6. Suppose ĥn is the classifier returned by Algorithm 2 with thresh-
old as in (11), when allowed n label requests and given confidence parameter
δ ∈ (0,1/2). Suppose further that DXY satisfies Condition 1 with finite parameter
values κ and μ, and Condition 2 with parameter values α and ρ. Then there exists
a finite (κ , μ, α and ρ-dependent) constant c such that, with probability ≥ 1 − δ,
∀n ∈ N,

er(ĥn) − ν ≤ c

(
θ log(n/δ)

n

)κ/(2κ+ρ−2)

.

Again, it is likely that refinements to the m definition may lead to improve-
ments in the log factor. Also, although this result is stated for Algorithm 2, it is
conceivable that, by modifying Algorithm 1 to use definitions of V and βt based
on ÊC(Q, δ;∅), an analogous result might be possible for Algorithm 1 as well.

It is worth mentioning that Castro and Nowak [12] proved a minimax lower
bound for the hypothesis class of boundary fragments, with an exponent having a
similar dependence on related definitions of κ and ρ parameters to that of Theo-
rem 6. Their result does provide a valid lower bound here; however, it is not clear
whether their lower bound, Theorem 6, both, or neither is tight in the present con-
text, since the value of θ is not presently known for that particular problem, and
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the matching upper bound of [12] was proven under a stronger restriction on the
noise than Condition 1. However, see [33] for an analysis of the disagreement co-
efficient for other nonparametric hypothesis classes, characterized by smoothness
of the decision surface.

5. Model selection. While the previous sections address adaptation to the
noise distribution, they are still restrictive in that they deal with hypothesis classes
of limited expressiveness. That is, the assumption of finite VC dimension implies
a strong restriction on the variety of classifiers one can represent (or approximate)
in the class; the entropy conditions allow slightly more flexibility, but under non-
trivial distributions, even the entropy conditions imply a significant restriction on
the expressiveness of the class. Thus, for algorithms restricted to classifiers from
such a restricted hypothesis class, it is often unrealistic to expect convergence to
the Bayes error rate. We address this issue in this section by developing a general
algorithm for learning with a sequence of nested hypothesis classes of increasing
complexity, similar to the setting of Structural Risk Minimization in passive learn-
ing [30]. The objective is to adapt, not only to the noise conditions, but also to the
complexity of the optimal classifier. The starting point for this discussion is the
assumption of a structure on C, in the form of a sequence of nested hypothesis
classes:

C1 ⊂ C2 ⊂ · · · .
Each class has an associated noise rate νi = infh∈Ci

er(h), and we define ν∞ =
limi→∞ νi . We also let θi and di be the disagreement coefficient and VC dimen-
sion, respectively, for the set Ci . We are interested in an algorithm that guarantees
convergence in probability of the error rate to ν∞. We are particularly interested
in situations where ν∞ = ν∗, a condition which is realistic in this setting since the
sets Ci can be defined so that it is always satisfied, even while maintaining each
di < ∞ (see, e.g., [15]). Additionally, if we are so lucky as to have some νi = ν∗,
then we would like the convergence rate achieved by the algorithm to be not sig-
nificantly worse than running one of the above agnostic active learning algorithms
with hypothesis class Ci alone. In this context, we can define a structure-dependent
version of Tsybakov’s noise condition as follows.

CONDITION 3. For some nonempty I ⊆ N, for each i ∈ I , there exist finite
constants μi > 0 and κi ≥ 1, such that ∀ε > 0,diam(ε;Ci ) ≤ μiε

1/κi .

Note that we do not require every Ci , i ∈ N, to have finite μi and κi , only some
nonempty set I ⊆ N; this is important, since we might not expect Ci to satisfy
Condition 1 for small indices i, where the expressiveness is quite restricted.

In passive learning, there are several methods for this type of model selection
which are known to preserve the convergence rates of each class Ci under Con-
dition 3 (e.g., [23, 28]). In particular, Koltchinskii [23] develops a method that
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performs this type of model selection; it turns out we can modify Koltchinskii’s
method to suit our present needs in the context of active learning; this results in
a general active learning model selection method that preserves the types of im-
proved rates discussed in the previous section. This modification is presented be-
low, based on using Algorithm 2 as a subroutine. (It should also be possible to
define an analogous method that uses Algorithm 1 as a subroutine instead.)

Algorithm 3
Input: nested sequence of classes {Ci}, label budget n, confidence parameter δ

Output: classifier ĥn

0. For i = �√n/2�, �√n/2� − 1, �√n/2� − 2, . . . ,1
1. Let Lin and Qin be the sets returned by Algorithm 2 run with Ci and the

threshold (11), allowing �n/(2i2)� label requests, and confidence δ/(2i2)

2. Let hin ← LEARNCi
(
⋃

j≥i Ljn,Qin)

3. If hin �= ∅ and ∀j s.t. i < j ≤ �√n/2�,
erLjn∪Qjn

(hin) − erLjn∪Qjn
(hjn) ≤ 3

2 ÊCj

(
Ljn ∪ Qjn, δ/(2j2); Ljn

)
4. ĥn ← hin

5. Return ĥn

The function Ê·(·, ·; ·) is defined in the Appendix. This method can be shown
to have a confidence bound on its error rate converging to ν∞ at a rate never sig-
nificantly worse than the original passive learning method of Koltchinskii [23],
as desired. Additionally, we have the following guarantee on the rate of conver-
gence under Condition 3. The proof is similar in style to Koltchinskii’s original
proof, though some care is needed due to the altered sampling distribution and
the constraint set Ljn. The proof is included in Appendix B of the supplementary
material [20].

THEOREM 7. Suppose ĥn is the classifier returned by Algorithm 3, when al-
lowed n label requests and confidence parameter δ ∈ (0,1/2). Suppose further that
DXY satisfies Condition 3. Then there exist finite (κi and μi-dependent) constants
ci such that, with probability ≥ 1 − δ, ∀n ∈ N,

er(ĥn) − ν∞
≤ 3 min

i∈I
(νi − ν∞)

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci

(
di + log

1

δ

)
· exp

{
−

√
n

ciθi(di + log(1/δ))

}
, if κi = 1,

ci

(
θi(di logn + log(1/δ))

n

)κi/(2κi−2)

, if κi > 1.

In particular, if we are so lucky as to have νi = ν∗ for some finite i, then the
above algorithm achieves a convergence rate not significantly worse than that guar-
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anteed by Theorem 5 for applying Algorithm 2 directly, with hypothesis class Ci .
Note that the algorithm itself has no dependence on the set I , nor has it any depen-
dence on each class’s complexity parameters di, κi,μi, θi ; the adaptive behavior
of the data-dependent bound ÊCj

allows the algorithm to adaptively ignore the re-
turned classifier from the runs of Algorithm 2 for which convergence is slow, thus
automatically selecting an index for which the error rate is relatively small.

As in the previous section, we can also show a variant of this result when the
complexities are quantified in terms of the entropy. Specifically, consider the fol-
lowing condition and theorem; the proof is in Appendix B of the supplementary
material [20]. Again, this represents an improvement over known results for pas-
sive learning when the disagreement coefficients are finite.

CONDITION 4. For each i ∈ N, there exist finite constants αi > 0, ρi ∈ (0,1)

s.t. ∀m ∈ N and ε ∈ [0,1], ωCi
(m, ε) ≤ αi · max{ε(1−ρi)/2m−1/2,m−1/(1+ρi)}.

THEOREM 8. Suppose ĥn is the classifier returned by Algorithm 3, when al-
lowed n label requests and confidence parameter δ ∈ (0,1/2). Suppose further
that DXY satisfies Conditions 3 and 4. Then there exist finite (κi , μi , αi and ρi-
dependent) constants ci such that, with probability ≥ 1 − δ, ∀n ∈ N,

er(ĥn) − ν∞ ≤ 3 min
i∈I

(νi − ν∞) + ci

(
θi log(n/δ)

n

)κi/(2κi+ρi−2)

.

In addition to these theorems for this structure-dependent version of Tsybakov’s
noise conditions, we also have the following result for a structure-independent
noise condition, in the sense that the noise condition does not depend on the par-
ticular choice of Ci sets, but only on the distribution DXY (and in some sense, the
full class C = ⋃

i Ci ); it may be particularly useful when the class C is universal,
in the sense that it can approximate any classifier.

THEOREM 9. Suppose the sequence {Ci} is constructed so that ν∞ = ν∗, and
ĥn is the classifier returned by Algorithm 3, when allowed n label requests and
confidence parameter δ ∈ (0,1/2). Suppose that there exists a constant μ > 0 s.t.
for all measurable h : X → Y , er(h)− ν∗ ≥ μP{h(X) �= h∗(X)}. Then there exists
a finite (μ-dependent) constant c such that, with probability ≥ 1 − δ, ∀n ∈ N,

er(ĥn) − ν∗ ≤ c min
i∈N

(νi − ν∗) +
(
di + log

i

δ

)
· exp

{
−

√
n

ci2θi(di + log(i/δ))

}
.

The condition ν∞ = ν∗ is quite easy to satisfy: for example, Ci could be axis-
aligned decision trees of depth i, or thresholded polynomials of degree i, or multi-
layer neural networks with i internal units, etc. As for the noise condition in Theo-
rem 9, this would be satisfied whenever P(|η(X)−1/2| ≥ c) = 1 for some constant
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c ∈ (0,1/2]. The case where er(h) − ν∗ ≥ μP{h(X) �= h∗(X)}κ for κ > 1 can be
studied analogously, though the rate improvements over passive learning are more
subtle.

6. Conclusions. Under Tsybakov’s noise conditions, active learning can of-
fer improved asymptotic convergence rates compared to passive learning when the
disagreement coefficient is finite. It is also possible to preserve these improved
convergence rates when learning with a nested structure of hypothesis classes, us-
ing an algorithm that adapts to both the noise conditions and the complexity of the
optimal classifier.

APPENDIX: DEFINITION OF Ê AND RELATED QUANTITIES

We define the quantity ÊC following Koltchinskii’s analysis of excess risk in
terms of local Rademacher complexity [23]. The general idea is to construct a
bound on the excess risk achieved by a given algorithm, such as empirical risk
minimization, via an application of Talagrand’s inequality. Such a bound should
be based on a measure of the expressiveness of the set of functions C; however,
to bound the excess risk achieved by a particular algorithm given a number of
data points, we need only measure the expressiveness of the set of functions the
algorithm is likely to select from. For reasonable algorithms, such as empirical
risk minimization, this means the set of functions with reasonably small excess
risk. Thus, we can bound the excess risk of the algorithm in terms of a measure of
expressiveness of the set of functions with relatively small risk, typically referred
to as a local complexity measure. This reasoning is somewhat circular, in that first
we must decide how small to expect the excess risk of the returned function to
be before we can calculate the local complexity measure, which itself is used to
calculate a bound on the risk of the returned function. Thus, we define the bound
on the excess risk as a kind of fixed point. Furthermore, we can estimate these
quantities using data-dependent confidence bounds, so that the excess risk bound
can be calculated without direct access to the distribution. For the data-dependent
measure of the expressiveness of the function class, we can use a Rademacher
process. A detailed motivation and derivation can be found in [23].

For our purposes, we add an additional constraint, by requiring the functions
we calculate the complexity of to agree with the labels of a labeled set L. This
is helpful for us, since given a set Q of labeled data with true labels, for any two
functions h1 and h2 that agree on the labels of L, it is always true that erL∪Q(h1)−
erL∪Q(h2) equals the difference of the true empirical error rates. As we prove in
the supplement, as long as the set L is chosen carefully (i.e., as in Algorithm 2),
the addition of this constraint is essentially inconsequential, so that ÊC remains a
valid excess risk bound. The detailed definitions are stated as follows.

For any function f : X → R, and ξ1, ξ2, . . . a sequence of independent random
variables with distribution uniform in {−1,+1}, define the Rademacher process
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for f under a finite set of (index, label) pairs S ⊂ N × Y as

R(f ;S) = 1

|S|
∑

(i,y)∈S

ξif (Xi).

The ξi should be thought of as internal variables in the learning algorithm, rather
than being fundamental to the learning problem.

For any two finite sets L ⊂ N × Y and S ⊂ N × Y , define

C[L] = {h ∈ C : erL(h) = 0},
Ĉ(ε; L, S) =

{
h ∈ C[L] : erS(h) − min

h′∈C[L] erS(h′) ≤ ε
}
,

D̂C(ε; L, S) = sup
h1,h2∈Ĉ(ε;L,S)

1

|S|
∑

(i,y)∈S

1[h1(Xi) �= h2(Xi)]

and

φ̂C(ε; L, S) = 1

2
sup

h1,h2∈Ĉ(ε;L,S)

R(h1 − h2;S).

For δ, ε > 0, m ∈ N, define sm(δ) = ln 20m2 log2(3m)

δ
and Zε = {j ∈ Z : 2j ≥ ε},

and for any set S ⊂ N × Y , define the set S(m) = {(i, y) ∈ S : i ≤ m}. We use the
following definitions from Koltchinskii [23] with only minor modifications.

DEFINITION 3. For ε ∈ [0,1], and finite sets S, L ⊂ N × Y , define

ÛC(ε, δ; L, S) = K̂

(
φ̂C(ĉε; L, S) +

√√√√s|S|(δ)D̂C(ĉε; L, S)

|S| + s|S|(δ)
|S|

)

and

ÊC(S, δ; L) = inf
{
ε > 0 :∀j ∈ Zε, min

m∈N
ÛC

(
2j , δ; L(m), S(m)) ≤ 2j−4

}
,

where, for our purposes, we can take K̂ = 752 and ĉ = 3/2, though there seems
to be room for improvement in these constants. For completeness, we also define
ÊC(∅, δ;C, L) = ∞ by convention.

We will also define a related quantity, representing a distribution-dependent ver-
sion of Ê, also explored by Koltchinskii [23]. Specifically, for ε > 0, define

C(ε) = {h ∈ C : er(h) − ν ≤ ε}.
For m ∈ N, let

φC(m, ε) = E sup
h1,h2∈C(ε)

∣∣(er(h1) − erm(h1)
) − (

er(h2) − erm(h2)
)∣∣,

ŨC(m, ε, δ) = K̃

(
φC(m, c̃ε) +

√
sm(δ)diam(c̃ε;C)

m
+ sm(δ)

m

)
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and

ẼC(m, δ) = inf{ε > 0 :∀j ∈ Zε, ŨC(m,2j , δ) ≤ 2j−4},
where, for our purposes, we can take K̃ = 8272 and c̃ = 3. For completeness, we
also define ẼC(0, δ) = ∞.

A.1. Definition of r0. In Definition 1, we took r0 = 0. If θ < ∞, then this
choice is usually relatively harmless. However, in some cases, setting r0 = 0 results
in a suboptimal, or even infinite, value of θ , which is undesirable. In these cases,
we would like to set r0 as large as possible while maintaining the validity of the
bounds. If we do this carefully enough, we should be able to establish bounds
that, even in the worst case when θ = 1/r0, are never worse than the bounds for
some analogous passive learning method; however, to do this requires r0 to depend
on the parameters of the learning problem: namely, n, δ, C and DXY . The effect
of a larger r0 can sometimes be dramatic, as there are scenarios where 1 � θ �
1/r0 [8]; we certainly wish to distinguish between such scenarios, and those where
θ ∝ 1/r0.

Generally, depending on the bound we wish to prove, different values of r0
may be appropriate. For the tightest bound in terms of θ proven in the Appendices
(namely, Lemma 7 of Appendix B in the supplementary material [20]), the defi-
nition of r0 = rC(n, δ) in (13) below gives a good bound. For the looser bounds
(namely, Theorems 5 and 6), a larger value of r0 may provide better bounds; how-
ever, this same general technique can be employed to define a good value for r0
in these looser bounds as well, simply using upper bounds on (13) analogous to
how the theorems themselves are derived from Lemma 7 in Appendix B [20].
Likewise, one can state analogous refinements of r0 for Theorems 1–4, though for
brevity these are left for the reader’s independent consideration.

DEFINITION 4. Define

m̃C(n, δ) = min

{
m ∈ N :n ≤ log2

4m2

δ
+ 2e

m−1∑
�=0

P(DIS(C(6ẼC(�, δ))))

}
(12)

and

rC(n, δ) = max

{
1

m̃C(n, δ)

m̃C(n,δ)−1∑
�=0

diam(6ẼC(�, δ);C),2−n

}
.(13)

We use this definition of r0 = rC(n, δ) in all of the main proofs. In particular,
with this definition, Lemma 7 of Appendix B [20] is never significantly worse than
the analogous known result for passive learning (though it can be significantly
better when θ � 1/r0).
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SUPPLEMENTARY MATERIAL

Proofs and Supplements for “Rates of Convergence in Active Learning”
(DOI: 10.1214/10-AOS843SUPP; .pdf). The supplementary material contains
three additional Appendices, namely, Appendices B, C and D. Specifically, Ap-
pendix B provides detailed proofs of Theorems 5–9, as well as several abstract
lemmas from which these results are derived. Appendix C discusses the use of
estimators in Algorithm 1. Finally, Appendix D includes a proof of a general min-
imax lower bound ∝ n−κ/(2κ−2) for any nontrivial hypothesis class, generalizing a
result of Castro and Nowak [12].
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