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CONSISTENCY OF MARKOV CHAIN QUASI-MONTE CARLO ON
CONTINUOUS STATE SPACES

BY S. CHEN1, J. DICK2 AND A. B. OWEN1

Stanford University, University of New South Wales and Stanford University

The random numbers driving Markov chain Monte Carlo (MCMC) sim-
ulation are usually modeled as independent U(0,1) random variables. Tribble
[Markov chain Monte Carlo algorithms using completely uniformly distrib-
uted driving sequences (2007) Stanford Univ.] reports substantial improve-
ments when those random numbers are replaced by carefully balanced inputs
from completely uniformly distributed sequences. The previous theoretical
justification for using anything other than i.i.d. U(0,1) points shows consis-
tency for estimated means, but only applies for discrete stationary distrib-
utions. We extend those results to some MCMC algorithms for continuous
stationary distributions. The main motivation is the search for quasi-Monte
Carlo versions of MCMC. As a side benefit, the results also establish con-
sistency for the usual method of using pseudo-random numbers in place of
random ones.

1. Introduction. In Markov chain Monte Carlo (MCMC), one simulates a
Markov chain and uses sample averages to estimate corresponding means of the
stationary distribution of the chain. MCMC has become a staple tool in the phys-
ical sciences and in Bayesian statistics. When sampling the Markov chain, the
transitions are driven by a stream of independent U(0,1) random numbers.

In this paper, we study what happens when the i.i.d. U(0,1) random numbers
are replaced by deterministic sequences, or by some dependent U(0,1) values. The
motivation for replacing i.i.d. U(0,1) points is that carefully stratified inputs may
lead to more accurate sample averages. One must be cautious though, because
as with adaptive MCMC [3, 21], the resulting simulated points do not have the
Markov property.

The utmost in stratification is provided by quasi-Monte Carlo (QMC) points.
There were a couple of attempts at merging QMC into MCMC around 1970, and
then again starting in the late 1990s. It is only recently that significant improve-
ments have been reported in numerical investigations. For example, Tribble [43]
reports variance reductions of several thousand fold and an apparent improved
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convergence rate for some Gibbs sampling problems. Those results motivate our
theoretical work. They are described more fully in the literature survey below.

To describe our contribution, represent MCMC sampling via xi+1 = φ(xi ,ui)

for i = 1, . . . , n, where x0 is a nonrandom starting point and ui ∈ (0,1)d . The
points xi belong to a state space � ⊂ Rs . The function φ is chosen so that xi

form an ergodic Markov chain with the desired stationary distribution π when
ui ∼ U(0,1)d independently. For a bounded continuous function f :� → R, let
θ(f ) = ∫

� f (x)π(x) dx and θ̂n(f ) = (1/n)
∑n

i=1 f (xi ). Then θ̂n(f ) →P θ(f ) as
n → ∞. In this paper, we supply sufficient conditions on φ and on the determinis-
tic sequences ui so that θ̂n(f ) → θ(f ) holds when those deterministic sequences
are used instead of random ones. The main condition is that the components of ui

be taken from a completely uniformly distributed (CUD) sequence, as described
below.

Ours are the first results to prove that deterministic sampling applied to MCMC
problems on continuous state spaces is consistent. In practice, of course, floating
point computations take place on a large discrete state space. But invoking finite
precision does not provide a satisfying description of continuous MCMC prob-
lems. In a finite state space argument, the resulting state spaces are so big that van-
ishingly few states will ever be visited in a given simulation. Then if one switches
from 32 to 64 to 128 bit representations, the problem seemingly requires vastly
larger sample sizes, but in reality is not materially more difficult.

To avoid using the finite state shortcut, we adopt a computational model with
infinite precision. As a side benefit, this paper shows that the standard practice
of replacing genuine i.i.d. values ui by deterministic pseudo-random numbers is
consistent for some problems with continuous state spaces. We do not think many
people doubted this, but neither has it been established before, to our knowledge.
It is already known from Roberts, Rosenthal and Schwartz [40] that, under certain
conditions, a geometrically ergodic Markov chain remains so under small pertur-
bations, such as rounding. That work does not address the replacement of random
points by deterministic ones that we make here.

1.1. Literature review. There have been a small number of prior attempts
to apply QMC sampling to MCMC problems. The first appears to have been
Chentsov [7], whose work appeared in 1967, followed by Sobol’ [42] in 1974.
Both papers assume that the Markov chain has a discrete state space and that the
transitions are sampled by inversion. Unfortunately, QMC does not usually bring
large performance improvements on such unsmooth problems and inversion is not
a very convenient method.

Chentsov replaces i.i.d. samples by one long CUD sequence, and this is the
method we will explain and then adapt to continuous problems. Sobol’ uses what
is conceptually an n × ∞ matrix of values from the unit interval. Each row is used
to make transitions until the chain returns to its starting state. Then the sampling
starts using the next row. It is like deterministic regenerative sampling. Sobol’
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shows that the error converges as O(1/n) in the very special case where the tran-
sition probabilities are all rational numbers with denominator a power of 2. These
methods were not widely cited and, until recently, were almost forgotten, probably
due to the difficulty of gaining large improvements in discrete problems, and the
computational awkwardness of inversion as a transition mechanism for discrete
state spaces.

The next attempt that we found is that of Liao [27] in 1998. Liao takes a set
of QMC points in [0,1]d shuffles them in random order, and uses them to drive
an MCMC. He reports 4- to 25-fold efficiency improvements, but gives no theory.
An analysis of Liao’s method is given in [44]. Later, Chaudary [6] tried a different
strategy using QMC to generate balanced proposals for Metropolis–Hastings sam-
pling, but found only small improvements and did not publish the work. Craiu and
Lemieux [8] also consider multiple-try Metropolis and find variance reductions of
up to 30%, which is still modest. Earlier, Lemieux and Sidorsky [26] report vari-
ance reduction factors ranging from about 1.5 to about 18 in some work using
QMC in conjunction with the perfect sampling method of Propp and Wilson [38].

Only recently have there been significantly large benefits from the combination
of QMC and MCMC. Those benefits have mainly arisen for problems on contin-
uous state spaces. Tribble’s [43] best results come from Gibbs sampling problems
computing posterior means. For problems with d parameters, he used every d-tuple
from a small custom built linear feedback shift register (LFSR). One example is the
well-known model used by Gelfand and Smith [16] for failure events of 10 pumps
from the article by Gaver and O’Murcheartaigh [15]. There are 11 unknown para-
meters, one for each pump and one for the scale parameter in the distribution of
pump failure rates. A second example is a 42 parameter probit model for vasore-
striction based on a famous data set from [14] and analyzed using latent variables
as in Albert and Chib [1]. Of those 42 parameters, the 3 regression coefficients are
of greatest interest and 39 latent variables are nuisance variables. Table 1 sets out
variance reduction factors found for randomized CUD versus i.i.d. sampling. The
improvements appear to grow with n, and are evident at very small sample sizes.

TABLE 1
Variance reduction factors from Tribble [43] for two Gibbs sampling problems. For the pumps data,
the greatest and least variance reduction for a randomized CUD sequence versus i.i.d. sampling is
shown. For the vasorestriction data, greatest and least variance reductions for the three regression

parameters are shown. See [43] for simulation details

n = 210 n = 212 n = 214

Data min max min max min max

Pumps 286 1543 304 5003 1186 16089
Vasorestriction 14 15 56 76 108 124
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There is another line of research in which large improvements have been ob-
tained by combining QMC with MCMC. This is the array-RQMC method de-
scribed in L’Ecuyer, Lecot and Tuffin [24] and other articles. That method simu-
lates numerous chains in parallel using quasi-Monte Carlo to update all the chains.
It requires a complicated method to match the update variables for each step to the
various evolving chains. This method has achieved variance reductions of many
thousand fold on some problems from queuing and finance. Very few properties
have been established for it, beyond the case of heat particles in one dimension
that was considered by Morokoff and Caflisch [31].

Finally, Jim Propp’s rotor-router method is a form of deterministic Markov
chain sampling. It has brought large efficiency improvements for some problems
on a discrete state space and has been shown to converge at better than the Monte
Carlo rate on some problems. See, for example, Doerr and Friedrich [13].

The use of CUD sequences that we study has one practical advantage compared
to the rotor-router, array-RQMC, regenerative sampling, and the other methods. It
only requires replacing the i.i.d. sequence used in a typical MCMC run by some
other list of numbers.

1.2. Outline. The paper is organized around our main results which appear in
Section 3. Theorem 2 gives sufficient conditions for consistency of QMC-MCMC
sampling by Metropolis–Hastings. Theorem 3 gives sufficient conditions for con-
sistency of QMC-MCMC sampling for the systematic scan Gibbs sampler.

Section 2 contains necessary background and notation for the two main theo-
rems of Section 3. It introduces quasi-Monte Carlo and Markov chain Monte Carlo
giving key definitions we need in each case. That section presents the Rosenblatt–
Chentsov transformation. We have combined a classic sequential inversion method
based on the Rosenblatt transformation with an elegant coupling argument that
Chentsov [7] used.

The consistency results for Metropolis–Hastings (Theorem 2) make moderately
strong assumptions in order to ensure that a coupling occurs. Section 4 shows
that those assumptions are satisfied by some Metropolized independence samplers
and also by some slice samplers. We also assumed some Riemann integrability
properties for our MCMC proposals. The Riemann integral is awkward compared
to the Lebesgue integral, but considering it is necessary when we want to study
specific algorithms on deterministic inputs. Section 5 gives sufficient conditions
for an MCMC algorithm to satisfy the required Riemann integrability conditions.

Our consistency results for the Gibbs sampler (Theorem 3) require some con-
traction properties and some Jordan measurability. Section 6 shows that these prop-
erties hold under reasonable conditions. Section 7 has a brief discussion on open
versus closed intervals for uniform random numbers. Our conclusions are in Sec-
tion 8. The lengthier or more technical proofs are placed in the Appendix.
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2. Background on QMC and MCMC.

2.1. Notation. Our random vectors are denoted by x = (x1, . . . , xs) ∈ � ⊆ Rs

for s ≥ 1. Points in the unit cube [0,1]d are denoted by u = (u1, . . . , ud). Two
points a,b ∈ Rd with aj < bj for j = 1, . . . , d define a rectangle

∏d
j=1[aj , bj ],

denoted by [a,b] for short. The indicator (or characteristic) function of a set A ⊂
Rd is written 1A.

We assume the reader is familiar with the definition of the (proper) Riemann
integral, for a bounded function on a finite rectangle [a,b] ⊂ Rd . The bounded set
A ⊂ Rd is Jordan measurable if 1A is Riemann integrable on a bounded rectangle
containing A. By Lebesgue’s theorem (see Section 5) A is Jordan measurable if
λd(∂A) = 0. Here λd denotes Lebesgue measure on Rd , and ∂A is the boundary
of A, that is, the set on which 1A is discontinuous.

2.2. QMC background. Here, we give a short summary of quasi-Monte Carlo.
Further information may be found in the monograph by Niedereiter [34].

QMC is ordinarily used to approximate integrals over the unit cube [0,1]d , for
d ∈ N. Let x1, . . . ,xn ∈ [0,1]d . The QMC estimate of θ(f ) = ∫

[0,1]d f (x) dx is

θ̂n(f ) = 1
n

∑n
i=1 f (xi ), just as we would use in plain Monte Carlo. The difference

is that in QMC, distinct points xi are chosen deterministically to make the discrete
probability distribution with an atom of size 1/n at each xi close to the continuous
U [0,1]d distribution.

The distance between these distributions is quantified by discrepancy measures.
The local discrepancy of x1, . . . ,xn at a ∈ [0,1]d is

δ(a) = δ(a;x1, . . . ,xn) = 1

n

n∑
i=1

1[0,a)(xi ) −
d∏

j=1

aj .(1)

The star discrepancy of x1, . . . ,xn in dimension d is

D∗d
n = D∗d

n (x1, . . . ,xn) = sup
a∈[0,1]d

|δ(a;x1, . . . ,xn)|.(2)

For d = 1, the star discrepancy reduces to the Kolmogorov–Smirnov distance be-
tween a discrete and a continuous uniform distribution.

A uniformly distributed sequence is one for which D∗d
n → 0 as n → ∞. If xi are

uniformly distributed then θ̂n(f ) → θ(f ) provided that f is Riemann integrable.
Under stronger conditions than Riemann integrability, we can get rates of con-

vergence for QMC. The Koksma–Hlawka inequality is

|θ̂n(f ) − θ(f )| ≤ D∗d
n VHK(f ),(3)

where VHK is the total variation of f in the sense of Hardy and Krause. For prop-
erties of VHK and other multidimensional variation measures, see [36].
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Equation (3) gives a deterministic upper bound on the integration error, and
it factors into a measure of the points’ quality and a measure of the integrand’s
roughness. There exist constructions x1, . . . ,xn where D∗d

n = O(n−1+ε) holds for
any ε > 0. Therefore, functions of finite variation can be integrated at a much
better rate by QMC than by MC. Rates of convergence of O(n−α(logn)dα), where
α ≥ 1 denotes the smoothness of the integrand which can therefore be arbitrarily
large, can also be achieved [12].

Equation (3) is not usable for error estimation. Computing the star discrepancy
is very difficult [19], and computing VHK(f ) is harder than integrating f . Prac-
tical error estimates for QMC may be obtained using randomized quasi-Monte
Carlo (RQMC). In RQMC each xi ∼ U [0,1]d individually while the ensemble
x1, . . . ,xn has Pr(D∗d

n (x1, . . . ,xn) < C(logn)d/n) = 1 for some C < ∞. For an
example, see [35]. A small number of independent replicates of the RQMC esti-
mate can be used to get an error estimate. RQMC has the further benefit of making
QMC unbiased. For a survey of RQMC, see [25].

A key distinction between QMC and MC is that the former is effective for
Riemann integrable functions, while the latter, in principle, works for Lebesgue
integrable functions. In practice, MC is usually implemented with deterministic
pseudo-random numbers. The best generators are proved to simulate independent
U [0,1] random variables based on either discrepancy measures over rectangles or
on spectral measures. Those conditions are enough to prove convergence for aver-
ages of Riemann integrable functions, but not for Lebesgue integrable functions.
As a result, ordinary Monte Carlo with pseudo-random numbers is also problem-
atic for Lebesgue integrable functions that are not Riemann integrable.

2.3. Completely uniformly distributed. In the Markov chain context, we need
a lesser known QMC concept as follows. A sequence u1, u2, . . . ∈ [0,1] is
completely uniformly distributed (CUD) if for any d ≥ 1 the points x(d)

i =
(ui, . . . , ui+d−1) satisfy D∗d

n (x(d)
1 , . . . ,x(d)

n ) → 0 as n → ∞. This is one of the
definitions of a random sequence from Knuth [22], and it is an important property
for modern random number generators.

Using a CUD sequence in an MCMC is akin to using up the entire period of
a random number generator, as remarked by Niederreiter [33] in 1986. It is then
necessary to use a small random number generator. The CUD sequences used by
Tribble [43] are miniature versions of linear congruential generators and feedback
shift register generators. As such, they are no slower than ordinary pseudo-random
numbers.

In the QMC context, we need to consider nonoverlapping d-tuples x̃(d)
i =

(udi−d+1, . . . , udi) for i ≥ 1. It is known [7] that

D∗d
n

(
x(d)

1 , . . . ,x(d)
n

) → 0 ∀d ≥ 1,

⇐⇒(4)

D∗d
n

(̃
x(d)

1 , . . . , x̃(d)
n

) → 0 ∀d ≥ 1.
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2.4. MCMC iterations. In the QMC context, the function f subsumes all the
necessary transformations to turn a finite list of i.i.d. U [0,1] random variables into
the desired nonuniformly distributed quantities, as well as the function of those
quantities whose expectation we seek. In some problems, we are unable to find
such transformations, and so we turn to MCMC methods.

Suppose that we want to sample x ∼ π for a density function π defined with
respect to Lebesgue measure on � ⊆ Rs . For definiteness, we will seek to approx-
imate θ(f ) = ∫

� f (x)π(x) dx. In this section, we briefly present MCMC. For a
full description of MCMC, see the monographs by Liu [28] or Robert and Casella
[39].

In an MCMC simulation, we choose an arbitrary x0 ∈ � with π(x0) > 0 and
then for i ≥ 1 update via

xi = φ(xi−1,ui),(5)

where ui ∈ [0,1]d and φ is an update function described below. The distribution of
xi depends on x0, . . . ,xi−1 only through xi−1 and so these random variables have
the Markov property. The function φ is chosen so that the stationary distribution
of xi is π . Then we estimate θ(f ) by θ̂n(f ) = 1

n

∑n
i=1 f (xi ) as before. If a burn-in

period was used, we assume that x0 is the last point of it.
First, we describe the Metropolis–Hastings algorithm for computing φ(x,u)

from the current point x ∈ � and u ∈ [0,1]d . It begins with a proposal y taken
from a transition kernel P(x, dy). With genuinely random proposals, the tran-
sition kernel gives a complete description. But for either quasi-Monte Carlo or
pseudo-random sampling, it matters how we actually generate the proposal. We
will assume that d − 1 U [0,1] random variables are used to generate y via
y = ψx(u1 : (d−1)). Then the proposal y is either accepted or rejected with proba-
bility A(x,y). The decision is typically based on whether the dth random variable
ud is below A.

DEFINITION 1 (Generator). The function ψ : [0,1]d → Rs is a generator for
the distribution F on Rs if ψ(u) ∼ F when u ∼ U [0,1]d .

DEFINITION 2 (Metropolis–Hastings update). For x ∈ �, let ψx : [0,1]d−1 →
� be a generator for the transition kernel P(x, dy) with conditional density
p(· | x). The Metropolis–Hastings sampler has

φ(x,u) =
{

y(x,u), ud ≤ A(x,u),
x, ud > A(x,u),

where y(x,u) = ψx(u1 : (d−1)) and

A(x,u) = min
(

1,
π(y(x,u))p(x | y(x,u))

π(x)p(y(x,u) | x)

)
.
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EXAMPLE 1 [Metropolized independence sampler (MIS)]. The MIS update is
a special case of the Metropolis–Hastings update in which y(x,u) = ψ(u1 : (d−1))

does not depend on x.

EXAMPLE 2 [Random walk Metropolis (RWM)]. The RWM update is a spe-
cial case of the Metropolis–Hastings update in which y(x,u) = x + ψ(u1 : (d−1))

for some generator ψ not depending on x.

DEFINITION 3 (Systematic scan Gibbs sampler). Let x = (x1, . . . , xs) ∈ Rd

with xj ∈ Rkj and d = ∑s
j=1 kj . To construct the systematic scan Gibbs sampler,

let ψj,x−j
(uj ) be a kj -dimensional generator of the full conditional distribution

of xj given x� for all � �= j . This Gibbs sampler generates the new point using
u ∈ [0,1]d . Write u = (u1, . . . ,us) with uj ∈ [0,1]kj . The systematic scan Gibbs
sampler has

φ(x,u) = (φ1(x,u), φ2(x,u), . . . , φs(x,u)),

where, for 1 ≤ j ≤ s,

φj (x,u) = ψj,x[j ](uj )

and x[j ] = (φ1(x,u), . . . , φj−1(x,u), xj+1, . . . , xd).

EXAMPLE 3 (Inversive slice sampler). Let π be a probability density function
on � ⊂ Rs . Let �′ = {(y,x) | x ∈ �,0 ≤ y ≤ π(x)} ⊂ Rs+1 and let π ′ be the uni-
form distribution on �′. The inversive slice sampler is the systematic scan Gibbs
sampler for π ′ with each kj = 1 using inversion for every ψj,x[j ] .

There are many other slice samplers. See [32]. It is elementary that (y,x) ∼ π ′
implies x ∼ π . It is more usual to use (x, y), but our setting simplifies when we
assume y is updated first.

2.5. Some specific generators. We generate our random variables as functions
of independent uniform random variables. The generators we consider require a
finite number of inputs, so acceptance-rejection is not directly covered, but see the
note in Section 8.

For an encyclopedic presentation of methods to generate nonuniform random
vectors, see Devroye [9]. Here, we limit ourselves to inversion and some general-
izations culminating in the Rosenblatt–Chentsov transformation introduced below.
We will not need to assume that π can be sampled by inversion. We only need in-
version for an oracle used later in a coupling argument.

Let F be the CDF of x ∈ R, and for 0 < u < 1 define

F−1(u) = inf{x | F(x) ≥ u}.
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Take F−1(0) = limu→0+ F−1(u) and F−1(1) = limu→1− F−1(u), using extended
reals if necessary. Then x = F−1(u) has distribution F on R when u ∼ U [0,1].

Multidimensional inversion is based on inverting the Rosenblatt transforma-
tion [41]. Let F be the joint distribution of x ∈ Rs . Let F1 be the marginal
CDF of x1 and for j = 2, . . . , s, let Fj (·;x1 : (j−1)) be the conditional CDF of
xj given x1, . . . , xj−1. The inverse Rosenblatt transformation ψR of u ∈ [0,1]s is
ψR(u) = x ∈ Rs where

x1 = F−1
1 (u1)

and

xj = F−1
j

(
uj ;x1 : (j−1)

)
, j ≥ 1.

If u ∼ U [0,1]s , then ψR(u) ∼ F .
We will use the inverse Rosenblatt transformation as a first step in a coupling

argument which extends the one in Chentsov [7].

DEFINITION 4 (Rosenblatt–Chentsov transformation). Let ψR be the inverse
Rosenblatt transformation for the stationary distribution π and let φ be the up-
date function for MCMC. The Rosenblatt–Chentsov transformation of the finite
sequence u0,u1, . . . ,um ∈ [0,1]d is the finite sequence x0, . . . ,xm ∈ � ⊂ Rs , with
s ≤ d , where x0 = ψR(u0,1 : s) and xi = φ(x0,ui) for i = 1, . . . ,m.

The Rosenblatt–Chentsov transformation starts off using u0 and inversion to
generate x0 and then it applies whatever generators are embedded in φ with the
innovations ui , to sample the transition kernel. The transition function φ need not
be based on inversion.

3. Consistency for MCQMC sampling. In this section, we prove sufficient
conditions for some deterministic MCQMC samplers to sample consistently. The
same proof applies to deterministic pseudo-random sampling. First, we define con-
sistency, then some regularity conditions, and then we give the main results.

3.1. Definition of consistency. Our definition of consistency is that the empir-
ical distribution of the MCMC samples converges weakly to π .

DEFINITION 5. The triangular array xn,1, . . . ,xn,n ∈ Rs for n in an infinite set
N∗ ⊂ N consistently samples the probability density function π if

lim
n→∞
n∈N∗

1

n

n∑
i=1

f (xn,i) =
∫

f (x)π(x) dx(6)

holds for all bounded continuous functions f :� → R. The infinite sequence
x1,x2, . . . ∈ Rs consistently samples π if the triangular array of initial subse-
quences with xn,i = xi for i = 1, . . . , n does.
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In practice, we use a finite list of vectors and so the triangular array formula-
tion is a closer description of what we do. However, to simplify the presentation
and avoid giving two versions of everything, we will work only with the infinite
sequence version of consistency. Triangular array versions of CUD sampling for
discrete state spaces are given in [44].

It suffices to use functions f in a convergence-determining class. For example,
we may suppose that f is uniformly continuous [4], or that f = 1(a,b] [5]. When
π is a continuous distribution, we may use f = 1[a,b].

3.2. Regularity conditions. Here, we define some assumptions that we need to
make on the MCMC update functions.

DEFINITION 6. Let C ⊂ [0,1]d have positive Jordan measure. If u ∈ C implies
that φ(x,u) = φ(x′,u) for all x,x′ ∈ �, then C is a coupling region.

Consider two iterations xi = φ(xi−1,ui) and x′
i = φ(x′

i−1,ui) with the same
innovations ui but possibly different starting points x0 and x′

0. If ui ∈ C , then xj =
x′
j holds for all j ≥ i. In Section 4, we give some nontrivial examples of MCMC

updates with coupling regions.

DEFINITION 7 (Regular MCMC). Let xm = xm(u0, . . . ,um) be the last point
generated in the Rosenblatt–Chentsov transformation, viewed as a function on
[0,1]d(m+1). The MCMC is regular (for bounded continuous functions) if the
function f (xm(u0, . . . ,um)) is Riemann integrable on [0,1]d(m+1) whenever f

is bounded and continuous.

Note that if an MCMC is regular, then the definition of the Rosenblatt–Chentsov
transformation implies that∫

[0,1]d(m+1)
f (xm(u0, . . . ,um)) du0 · · ·dum =

∫
�

f (x)π(x) dx

for any m ≥ 0 and all bounded continuous functions f .
We can, of course, define regularity for MCMC also with respect to other classes

of functions. Indeed, there are numerous equivalent conditions for regularity. For
example, the Portmanteau theorem ([5], Chapter 1.2) implies that it is enough to
assume that the functions f are bounded and uniformly continuous. Of interest
are also indicator functions of rectangles since they appear in the definition of the
local discrepancy at (1). The following theorem states some equivalent conditions.
To simplify the statements, we write that MCMC is regular for indicator functions
whenever 1A(xm(u0, . . . ,um)) is Riemann integrable on [0,1]d(m+1), where A is
either A = [a,b] with a,b finite or A = �.

THEOREM 1. The following statements are equivalent:
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(i) MCMC is regular for bounded continuous functions.
(ii) MCMC is regular for bounded uniformly continuous functions.

(iii) MCMC is regular for indicator functions 1[a,b] of rectangles [a,b].
PROOF. This result follows by applying the Portmanteau theorem ([5], Chap-

ter 1.2) and some methods from real analysis. �

A regular MCMC is one that satisfies any (and hence all) of the above.

3.3. Main results for Metropolis–Hastings. Theorem 2 below is the main re-
sult that we will use for Metropolis–Hastings sampling. One does not expect CUD
sampling to correct for an MCMC algorithm that would not be ergodic when sam-
pled with i.i.d. inputs. Ergodicity is assured through our assumption that there is
a coupling region. Section 4 below shows that some nontrivial MCMC methods
have such regions. Theorem 2 does not require the detailed balance condition that
Metropolis–Hastings satisfies, and so it may apply to some nonreversible chains
too.

THEOREM 2. Let � ⊆ Rs and let x0 ∈ �, and for i ≥ 1 let xi = φ(xi−1,ui)

where φ is the update function of a regular MCMC with a coupling region C . If
ui = (vd(i−1)+1, . . . , vdi) for a CUD sequence (vi)i≥1, then x1, . . . ,xn consistently
samples π .

The proof of Theorem 2 is in the Appendix. It shows that the fraction of points
xi in a bounded rectangle [a,b] converges to

∫
[a,b] π(x) dx. Almost the same proof

technique applies to expectations of bounded continuous functions.

3.4. Main results for Gibbs sampling. The Gibbs sampler can be viewed as a
special case of Metropolis–Hastings with acceptance probability one. However, it
is more straightforward to study it by applying results on iterated function map-
pings to (5) using methods from Diaconis and Freedman [10] and Alsmeyer and
Fuh [2].

In this subsection, we assume that (�,d) is a complete separable metric space.
We assume that the update function φ(x,u) is jointly measurable in x and u and
that it is Lipschitz continuous in x for any u. Lipschitz continuity is defined through
the metric d(·, ·) on �. The Lipschitz constant, which depends on u, is

�(u) = sup
x�=x′

d(φ(x,u), φ(x′,u))

d(x,x′)
.(7)

For each un ∈ [0,1]d , define Ln = �(un).
Next, we present a theorem from Alsmeyer and Fuh [2] on iterated random

mappings. The n step iteration, denoted φn, is defined by φ1(x;u1) = φ(x,u1) and
for n ≥ 2 :φn(x;u1, . . . ,un) = φ(φn−1(x;u1, . . . ,un−1),un).
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THEOREM 3. Let the update function φ(x,u) be jointly measurable in x and
u with

∫
[0,1]d log(�(u)) du < 0 and, for some p > 0,

∫
[0,1]d �(u)p du < ∞. As-

sume that there is a point x′ ∈ � with
∫
[0,1]d log+(d(φ(x′,u),x′)) du < ∞ and

E(d(φ(x′,u),x′)p) < ∞. Then there is a γ ∗ ∈ (0,1) such that for all γ ∈ (γ ∗,1)

there is a αγ ∈ (0,1) such that for every x, x̂ ∈ �

lim
m→∞α−m

γ Pr
(
d(φm(x; ·), φm(̂x; ·)) > γ m) = 0.(8)

PROOF. This follows by specializing Corollary 2.5(a) of [2] to the present
setting. �

THEOREM 4. Let (�,d) be a complete separable metric space and let (vi)i≥1

be a CUD sequence such that for every sequence (dn)n≥1 of natural numbers with
dn = O(logn), we have limn→∞ D

∗dn
n = 0. Let x0 ∈ �, and for i ≥ 1 let xi =

φ(xi−1,ui) be the Gibbs sampler update for stationary distribution π . Assume
that φ satisfies the conditions of Theorem 3 and that there is a γ ∈ (γ ∗,1) such
that

Bm(x, x̂) = {v ∈ [0,1]dm :d(φm(x,v), φm(̂x,v)) > γ m}
is Jordan measurable for all m ≥ 1 and x, x̂ ∈ �. Under these conditions, if the
Gibbs sampler is regular, then x1, . . . ,xn consistently samples π .

The proof of Theorem 4 is in the Appendix. Like Theorem 2, it shows that
bounded rectangles [a,b] have asymptotically the correct proportion of points.
Once again, similar arguments apply for bounded continuous functions of x.

Although not explicitly stated there, the proof of [11], Theorem 1, shows the
existence of sequences (vi)i≥1 for which

D∗d
n

({(
vd(i−1)+1, . . . , vdi

)
, i = 1, . . . , n

}) ≤ C

√
d log(n + 1)

n
,

for all n,d ∈ N, where C > 0 is a constant independent of n and d . Unfortunately,
no explicit construction of such a sequence is given in [11]. Then for any sequence
(dn)n≥1 of natural numbers with dn = O(logn) we obtain that

D∗dn
n

({(
vdn(i−1)+1, . . . , vdni

)
, i = 1, . . . , n

}) ≤ C′ log(n + 1)√
n

→ 0 as n → ∞.

In Theorem 2, we assumed that the coupling region C is Jordan measurable In
Theorem 4, we do not have a coupling region, but still have an analogous assump-
tion, namely that the sets Bm(x, x̂) are Jordan measurable. A condition on φ which
guarantees that Bm(x, x̂) is Jordan measurable is given in Section 6.
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4. Examples of coupling regions. Theorem 2 used coupling regions. These
are somewhat special. But they do exist for some realistic MCMC algorithms.

LEMMA 1. Let φ be the update for the Metropolized independence sampler
on � ⊆ Rs obtaining the proposal y = ψ(u1 : (d−1)), where ψ generates samples
from the density p, which are accepted when

ud ≤ π(y)p(x)

π(x)p(y)
.

Assume that the importance ratio is bounded above, that is,

κ ≡ sup
x∈�

π(x)

p(x)
< ∞.

Suppose also that there is a rectangle [a,b] ⊂ [0,1]d−1 of positive volume with

η ≡ inf
u∈[a,b]

π(ψ(u))

p(ψ(u))
> 0.

Then C = [a,b] × [0, η/κ] is a coupling region.

PROOF. The set C has positive Jordan measure. Suppose that u ∈ C . Then

π(y)p(x) ≥ ηp(y)
1

κ
π(x) ≥ udp(y)π(x),

and so φ(x,u) = y, regardless of x. �

LEMMA 2. Let π be a density on a bounded rectangular region � = [a,b] ⊂
Rs . Assume that 0 < η ≤ π(x) ≤ κ < ∞ holds for all x ∈ �. Let �′ = {(y,x) |
0 ≤ y ≤ π(x)} ⊂ [a,b] × [0, κ] be the domain of the inversive slice sampler. Let
(yi,xi ) = φ((yi−1,xi−1),ui) for ui ∈ [0,1]s+1 be the update for the inversive slice
sampler and put (y′

i ,x′
i ) = φ((y′

i−1,x′
i−1),ui). If ui ∈ C = [0, η/κ] × [0,1]s , then

xi = x′
i .

PROOF. If ui,1 ≤ η/κ , then yi = ui1π(xi−1) and y′
i = ui1π(x′

i−1) are in the set
[0, η/κ]. The distribution of x given y for any y ∈ [0, η/κ] is U [a,b]. Therefore,
xi = x′

i = a + u2 : (s+1)(b − a) (componentwise). �

Lemma 2 does not couple the chains because yi and y′
i are different in general.

But because xi = x′
i , a coupling will happen at the next step, that is, (yi+1,xi+1) =

(y′
i+1,x′

i+1) when ui ∈ [0, η/κ] × [0,1]s . One could revise Theorem 2 to include
couplings that happen within some number t of steps after u ∈ C happens. In this
case, it is simpler to say that the chain whose update comprises two iterations of
the inversive slice sampler satisfies Theorem 2. For a chain whose update is just
one iteration, the averages over odd and even numbered iterations both converge
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properly and so that chain is also consistent. Alternatively, we could modify the
space of y values so that all y ∈ [0, η/κ] are identified as one point. Then C is a
coupling region.

The result of Lemma 2 also applies to slice samplers that sample y | x and then
x | y ∼ U{x | π(x) ≤ y} using an s-dimensional generator that is not necessarily
inversion.

5. Riemann integrability. Theorem 2 proves that MCMC consistently sam-
ples π when implemented using CUD sequences. We required certain Riemann
integrability conditions in defining regular Rosenblatt–Chentsov transformations.
Here, we verify that nontrivial MCMC algorithms can have regular Rosenblatt–
Chentsov transformations.

It seems odd to use the Riemann integral over 100 years after Lebesgue [23]. But
pseudo-random number generators are now typically designed to meet an equidis-
tribution criterion over rectangular regions [29]. Other times they are designed
with a spectral condition in mind. This again is closely related to Riemann inte-
grability via the Weyl [45] condition where θ̂n(f ) → θ(f ) for all trigonometric
polynomials f (x) = e2π

√−1k′x if and only if x1, . . . ,xn are uniformly distributed.
Unless one is using physical random numbers, the Riemann integral, or perhaps
the improper Riemann integral is almost implicit.

5.1. Definitions and basic theorems. A function from A ⊂ Rd to Rs for s ≥ 1
is Riemann integrable if all of its s components are. To study how Riemann inte-
grability propagates, we will use the following two definitions.

DEFINITION 8. For a function f : Rk → R, the discontinuity set of f is

D(f ) = {x ∈ Rk | f discontinuous at x}.
If f is only defined on A ⊂ Rk , then D(f ) = D(f0) where f0(x) = f (x) for x ∈ A

and f0(x) = 0 for x /∈ A.

DEFINITION 9. For a function f : Rk → R, the graph of f is

G(f ) = {(x, y) ∈ Rk+1 | y = f (x)}.

Lebesgue’s theorem, next, provides a checkable characterization of Riemann
integrability.

THEOREM 5 (Lebesgue’s theorem). Let A ⊂ Rd be bounded and let f :A →
R be a bounded function. Then f is Riemann integrable iff λd(D(f )) = 0.

PROOF. See Marsden and Hoffman [30], page 455. �
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5.2. Need for Riemann integrable proposals. Here, we show that Riemann
integrability adds a special requirement to the way an algorithm is implemented.
Then we give an example to show that propagation rules for Riemann integrability
are more complicated than are those for continuity and differentiability.

Suppose that F is the N
((0

0

)
,
( 1
ρ

ρ
1

))
distribution for some ρ ∈ (−1,1). If we

take

x1(u) = �−1(u1)

and

x2(u) = ρx1(u) +
√

1 − ρ2�−1(u2),

then we find that f (u) = 1a1≤x1(u)≤b1 ×1a2≤x2(u)≤b2 is discontinuous only on a set
of measure zero. It is trivially bounded, and these two facts imply it is Riemann
integrable on [0,1]2.

Another transformation for the same distribution F is

x1 = �−1(u1)

and

x2 =
⎧⎨⎩ρx1(u) +

√
1 − ρ2�−1(u2), u1 /∈ Q,

−ρx1(u) −
√

1 − ρ2�−1(u2), u1 ∈ Q.

Changing the conditional distribution of x2 given x1 on a set of measure 0 leaves
the distribution F of x unchanged. But for this version, we find f can be discontin-
uous on more than a set of measure 0 and so this inverse Rosenblatt transformation
of F is not regular.

In practice, of course, one would use the regular version of the transformation.
But propagating Riemann integrability to a function built up from several other
functions is not always straightforward. The core of the problem is that the com-
position of two Riemann integrable functions need not be Riemann integrable.

As an example [18], consider Thomae’s function on (0,1),

f (x) =
{

1/q, x = p/q ∈ Q,
0, else,

where it is assumed that p and q in the representation p/q have no common fac-
tors. This f is continuous except on Q ∩ (0,1) and so it is Riemann integrable.
The function g(x) = 10<x≤1 is also Riemann integrable. But g(f (x)) = 1x∈Q for
x ∈ (0,1), which is famously not Riemann integrable. The class of Riemann inte-
grable functions, while more restrictive than we might like for conclusions, is also
too broad to use in propagation rules.
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5.3. Specializing to MCMC. First, we show that the acceptance-rejection step
in Metropolis–Hastings does not cause problems with Riemann integrability.

LEMMA 3. Let k ∈ N and suppose that g, h and A are real-valued Riemann
integrable functions on [0,1]k . For u ∈ [0,1]k+1 define

f (u) =
{

g(u1 : k), uk+1 ≤ A(u1 : k),
h(u1 : k), else.

Then f is Riemann integrable on [0,1]k+1.

PROOF. First, D(f ) ⊂ ((D(g) ∪ D(h)) × [0,1]) ∪ G(A). Riemann integra-
bility of g gives λk(D(g)) = 0. Similarly, λk(D(h)) = 0. Therefore, λk+1(D(g) ∪
D(h)) × [0,1]) = 0.

Turning to G(A), we split the domain [0,1]k of A into nk congruent sub-
cubes Cn,1, . . . ,Cn,nk (whose boundaries overlap). Then G(A) ⊆ ⋃nk

i=1 Cn,i ×
[mi,n,Mi,n], where mi,n = infu1 : k∈Cn,i

A(u1 : k) and Mi,n = supu1 : k∈Cn,i
A(u1 : k).

As a result λk+1(G(h)) ≤ n−k ∑
i (Mi,n − mi,n). Riemann integrability of A im-

plies this upper bound vanishes as n → ∞. Therefore, λk+1(G(A)) = 0 and so
λk+1(D(f )) = 0 and the result follows by Lebesgue’s theorem. �

In the MCMC context, g and h are the j th component of the proposal and the
previous state, respectively, A is the acceptance probability, and u is the ensemble
of uniform random variables used in m stage Rosenblatt–Chentsov coupling and
k = (m + 1)d − 1.

For consistency results, we study the proportion of times f (u) ∈ [a,b]. It is
enough to consider the components one at a time and in turn to show 1fj (u)≤bj

and 1fj (u)<aj
are Riemann integrable. However, as the example with Thomae’s

function shows, even the indicator function of an interval applied to a Riemann
integrable function can give a non-Riemann integrable composite function.

We may avoid truncation by employing bounded continuous test functions. We
will use the following simple corollary of Lebesgue’s theorem.

LEMMA 4. For k ≥ 1 and r ≥ 1, let g1, . . . , gr be Riemann integrable func-
tions from [0,1]k to a bounded interval [a, b] ⊂ R. Let h be a continuous function
from [a, b]k to R. Then

f (u) = h(g1(u), . . . , gk(u))

is Riemann integrable on [0,1]k .

PROOF. Because h is continuous, D(f ) ⊂ ⋃r
j=1 D(gk). But λk(D(gk)) = 0.

Therefore, λk(D(f )) = 0 and so f is Riemann integrable by Lebesgue’s theorem.
�
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We can also propagate Riemann integrability through monotonicity. If g is a
monotone function from R to R and f is the indicator of an interval, then f ◦ g is
the indicator of an interval too, and hence is Riemann integrable, when that interval
is of finite length.

LEMMA 5. Let F1(x1) be the CDF of x1 and for j = 2, . . . , s, let Fj (xj |
x1 : (j−1)) be the conditional CDF of xj given x1 : (j−1). Suppose that the CDFs
Fj (xj | x1 : (j−1)) are continuous functions of x1 : j and that the quantile func-
tions F−1

j (uj | x1 : (j−1)) are continuous in (uj ,x1 : (j−1)) ∈ [0,1] × Rj−1, for j =
2, . . . , s. Define functions z1(u) = F−1

1 (u1) and zj (u) = F−1
j (uj | z1 : (j−1)(u)) for

j = 2, . . . , s, where z1 : (j−1) = (z1, . . . , zj−1). Then for b ∈ Rs , the set

S(b) = {u | zj (u) ≤ bj ,1 ≤ j ≤ s}
is Jordan measurable.

PROOF. By hypothesis, zk is a continuous function of u ∈ [0,1]s , for k =
1, . . . , s, and so is Fk(bk | z1 : (k−1)(u)). This latter only depends on u1 : (k−1), for
k = 2, . . . , s, and so we write it as gk(u1 : (k−1)).

For k = 1, . . . , s, let Sk = {u1 : k | uj ≤ gj (u1 : (j−1)) for j = 1, . . . , k}. The set
S1 is the interval [0,F−1

1 (b1)], and hence is Jordan measurable. Suppose Sk is
Jordan measurable for k < s. Then

Sk+1 = (Sk × [0,1]) ∩ Gk+1 where Gk+1 = {
u1 : (k+1) | uk+1 ≤ gk+1(u1 : k)

}
.

The set Sk × [0,1] is Jordan measurable because Sk is. The boundary of Gk+1
is contained within the intersection of the graph of gk+1 and the boundary of
[0,1]k+1 and so Gk+1 is Jordan measurable. The result follows by induction be-
cause S(b) = Ss . �

5.4. Regularity of Rosenblatt–Chentsov. Here, we give sufficient conditions
for the Rosenblatt–Chentsov transformation to be regular.

THEOREM 6. For integer m ≥ 0, let xm be the endpoint of the Rosenblatt–
Chentsov transformation of [0,1](d+1)m, started with a Riemann integrable func-
tion ψR and continued via the Metropolis–Hastings update φ. Let φ be defined
in terms of the proposal function y : Rs × [0,1]d−1 → Rs with proposal density
p(·, ·) : Rs ×Rs → [0,∞) and target density π : Rs → [0,∞). Let f be a bounded
continuous function on Rs .

If ψ is bounded and y, P and π are bounded continuous functions, then
f (xm(u0, . . . ,um)) is a Riemann integrable function of the variables [0,1](d+1)m

used in the Rosenblatt–Chentsov transformation.
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PROOF. We only need to show that xm is a Riemann integrable function of
(u0, . . . ,um) ∈ [0,1]d(m+1) and then the result follows by Lemma 4.

We proceed by induction. For m = 0, x0 = ψ(u0) is bounded and continuous
on [0,1]d , hence it is Riemann integrable.

Now suppose that xm−1 is a Riemann integrable function on [0,1]dm. Let
h(u0, . . . ,um−1,um1 : (d−1)) be the value xm−1, written as a Riemann integrable
function on [0,1]dm+d−1, so it ignores its last d − 1 arguments. Let g(u0,
. . . ,um−1,um1 : (d−1)) be the proposal ym = y(xm−1,um1 : (d−1)) = y(g(·),xm−1,
um1 : (d−1)). This is a continuous function y(·, ·) of two Riemann integrable func-
tions on [0,1]d(m+1)−1 and so it is Riemann integrable. Next, A(·, ·) is a continu-
ous function of both xm−1 and ym which are in turn Riemann integrable functions
on [0,1]dm+d−1, and so A(·, ·) is Riemann integrable. Then xm is a Riemann inte-
grable function on [0,1]dm+d , by Lemma 3, completing the induction. �

6. Conditions for the Gibbs sampler. In studying the Gibbs sampler, we
made several assumptions. First, we required Jordan measurability for the sets
Bm(x, x̂). Second, we required a contraction property. In this section, we show
that those assumptions are reasonable.

6.1. Jordan measurability of Bm(x, x̂). We give an example where the condi-
tions of Theorem 4 are satisfied, that is, the sets Bm(x, x̂) are Jordan measurable for
all m ≥ 1 and x, x̂ ∈ � (for some suitable domain � ⊂ Rs). Assume (additionally
to the assumptions made in Theorem 4) that φ(x,u) is totally differentiable with
continuous derivative with respect to u for each x ∈ � and that d is based on the Lp

norm for some 1 ≤ p < ∞. Further, assume that the gradient of d(φ(x,u), φ(̂x,u))

with respect to u vanishes only on a null set for all x, x̂ ∈ �, x �= x̂, that is,

λ
({u ∈ [0,1]d :∇u d(φ(x,u), φ(̂x,u)) = 0}) = 0,

for all x, x̂ ∈ �, x �= x̂, where λ denotes the Lebesgue measure and where
∇u d(φ(x,u), φ(̂x,u)) = ( ∂

∂uj
d(φ(x,u), φ(̂x,u)))j=1,...,d denotes the gradient.

Then, for all m ≥ 1, we also have

λ
({u ∈ [0,1]dm :∇u d(φm(x,u), φm(̂x,u)) = 0}) = 0

for all x, x̂ ∈ �, x �= x̂. Let x, x̂ ∈ � with x �= x̂ be fixed. Then for almost
all u∗ ∈ [0,1]dm we have ∇u d(φm(x,u∗), φm(̂x,u∗)) �= 0. Therefore, there is a
δ > 0 such that ∇ud(φm(x,u), φm(̂x,u)) �= 0 for all u ∈ Nδ(u∗), where Nδ(u∗) =
{v ∈ [0,1]dm :‖u∗ − v‖L2 < δ} is a neighborhood of u∗. Therefore, the direc-
tional derivative at a point u ∈ Nδ(u∗) is different from 0, except on a hyper-
plane, that is, almost everywhere. Hence, by the mean value theorem, the function
d(φm(x,u), φm(̂x,u)) for u ∈ Nδ(u∗) can at most be constant on a hyperplane,
which has Lebesgue measure 0. Note that Nδ(u∗) ∩ Qdm �= ∅, therefore there is a
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countable number of elements u∗
1,u∗

2, . . . and numbers δ1, δ2, . . . with the proper-
ties of u∗ and δ described above and for which we have

⋃∞
n=1 Nδn(u

∗
n) = [0,1]dm.

Therefore, we have

λ
({u ∈ [0,1]dm :d(φm(x,u), φm(̂x,u)) = c}) = 0,

for any c > 0.
The set of points where 1Bm(x,̂x) is discontinuous is given by

D = {u ∈ [0,1]dm :∀δ > 0 ∃v,v′ ∈ Nδ(u) such that

d(φm(x,v), φm(̂x,v)) > γ m and d(φm(x,v′), φm(̂x,v′)) ≤ γ m}.
As Bm(x, x̂) and {u ∈ [0,1]dm :d(φm(x,u), φm(̂x,u)) < γ m} are open, it follows
that

D ⊆ {u ∈ [0,1]dm :d(φm(x,u), φm(̂x,u)) = γ m}.
Therefore, λdm(D) = 0 and Lebesgue’s theorem (see Theorem 5) implies that
Bm(x, x̂) is Jordan measurable.

6.2. Contraction. Here, we illustrate how the Gibbs sampler yields a contrac-
tion for the probit model. In this model,

Zi = xT
i β + εi

and

Yi = 1Zi>0,

for i = 1, . . . , n for independent εi ∼ N (0,1). The coefficient β ∈ Rp has a non-
informative prior distribution. The predictors are xi ∈ Rp . We define the matrix X

with ij element xij . We assume that X has rank p.
The state of the Markov chain is (β,Z) ∈ � ⊂ Rp+n, where Z = (Z1, . . . ,Zn)

T.
Given the observed data (y1, . . . , yn,x1, . . . ,xn), we can use the Gibbs sampler to
simulate the posterior distribution of β and Z = (Z1, . . . ,Zn)

T. A single step of
the Gibbs sampler makes the transition(

β(k−1)

Z(k−1)

)
u1,...,un−→

(
β(k−1)

Z(k)

)
un+1,...,un+p−→

(
β(k)

Z(k)

)
for k ≥ 1 using generators given explicitly below. The values u1, . . . , un+p are the
components of uk ∈ (0,1)n+p . We also write the transitions as

(β,Z) → φ((β,Z),u) = (
φ(1)((β,Z),u), φ(2)((β,Z),u)

)
,

where φ and its components φ(1) and φ(2) (for β and Z, resp.) are given explicitly
below.
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Given β , the components of Z are independent, with

Zi ∼
{

N (xT
i β,1)|Zi > 0, if Yi = 1,

N (xT
i β,1)|Zi ≤ 0, if Yi = 0.

We may generate them from u1, . . . , un ∈ (0,1) by

Zi =
{

xT
i β + �−1(

�(−xT
i β) + ui�(xT

i β)
)
, if Yi = 1,

xT
i β + �−1(ui�(−xT

i β)), if Yi = 0.
(9)

Given Z, the distribution of β is β ∼ N ((XTX)−1XTZ, (XTX)−1). We may
generate it using un+1, . . . , un+p ∈ (0,1) via

β = (XTX)−1XTZ + (XTX)−1/2

⎛⎜⎝ �−1(un+1)
...

�−1(un+p)

⎞⎟⎠ .(10)

Thus equation (10) defines φ(1) while (9) defines φ(2).
The framework in [2] allows one to pick a metric that conforms to the problem.

We use the metric d((β,Z), (β ′,Z′)) = max(d1(β,β ′), d2(Z,Z′)), where

d1(β,β ′) = d1(β − β ′) =
√

(β − β ′)T(XTX)(β − β ′)(11)

and

d2(Z,Z′) = d2(Z − Z′) =
√

(Z − Z′)T(Z − Z′).(12)

We show below that

d
((

β(k),Z(k)), (
β ′(k),Z′(k))) ≤ d

((
β(k−1),Z(k−1)), (

β ′(k−1),Z′(k−1)))(13)

for pairs (β(k−1),Z(k−1)), (β ′(k−1),Z′(k−1)) of distinct points in �. Both metrics
d1 and d2 are also norms, which simplifies our task.

Suppose first that β(k−1) = β ′(k−1). Then it follows easily that Z(k) = Z′(k) and
β(k) = β ′(k), so then the left-hand side of (13) is 0. As a result, we may assume
without loss of generality that d1(β

(k−1) − β ′(k−1)) > 0. With this assumption, we
will use the bound

d((β(k),Z(k)), (β ′(k),Z′(k)))

d((β(k−1),Z(k−1)), (β ′(k−1),Z′(k−1)))
(14)

≤ max
(

d1(β
(k) − β ′(k))

d1(β(k−1) − β ′(k−1))
,

d2(Z(k) − Z′(k))

d1(β(k−1) − β ′(k−1))

)
.

We begin by studying the update to Z. Subtracting xT
i β from both sides of (9),

applying �(·), differentiating with respect to β and gathering up terms, we find
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that ∂
∂β

Zi = λixi where

λi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − (1 − ui)ϕ(xT

i β)

ϕ(Zi − xT
i β)

, if Yi = 1,

1 − uiϕ(−xT
i β)

ϕ(Zi − xT
i β)

, if Yi = 0,

(15)

and ϕ is the N (0,1) probability density function.
It is clear that λi < 1. Next, we show that λi ≥ 0. We begin by inverting (9) to

get

ui =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�(Zi − xT

i β) − �(−xT
i β)

�(xT
i β)

, if Yi = 1,

�(Zi − xT
i β)

�(−xT
i β)

, if Yi = 0.
(16)

Substituting (16) into (15) and simplifying yields

1 − λi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ(xT

i β)�(−Zi + xT
i β)

�(xT
i β)ϕ(Zi − xT

i β)
, if Yi = 1,

ϕ(−xT
i β)�(Zi − xT

i β)

�(−xT
i β)ϕ(Zi − xT

i β)
, if Yi = 0.

(17)

Now consider the function τ(x) = ϕ(x)/�(x). This function is nonnegative and
decreasing, using a Mill’s ratio bound from [20]. When Yi = 1, then 1 − λi =
τ(xT

i β)/τ (xT
i β − Zi) ≤ 1 because then Zi ≥ 0. We also used symmetry of ϕ(·). If

instead Yi = 0, then 1 − λi = τ(−xT
i β)/τ (−xT

i β + Zi) ≤ 1 because then Zi ≤ 0.
Either way, 1 − λi ≤ 1 and therefore λi ∈ [0,1) for all i.

Writing the previous results in a compact matrix form, we have

∂Z
∂β

=
(

∂zi

∂βj

)
ij

= �X,

where � = �(β,Z) = diag(λ1, . . . , λn). Similarly, equation (10) yields

∂β

∂Z
= (XTX)−1XT.

Thus, for the Z update with any uk ∈ (0,1)n+p ,

d2(Z(k) − Z′(k))

d1(β(k−1) − β ′(k−1))
≤ sup

β̃(k−1),Z̃(k)

d1(ξ)=1

d2

(
∂Z̃(k)

∂β̃(k−1)
ξ

)
(18)

≤ sup
β,Z

(Xξ)TXξ=1

‖�(β,Z)Xξ‖ < 1.
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For the β update, applying the chain rule gives

∂β(k)

∂β(k−1)
= ∂β(k)

∂Z(k−1)

∂Z(k−1)

∂β(k−1)
= (XTX)−1XT�X

and then

d1(β
(k) − β ′(k))

d1(β(k−1) − β ′(k−1))
≤ sup

β̃,d1(ξ)=1
d1

(
∂β̃(k)

∂β̃(k−1)
ξ

)
= sup

β,Z
(Xξ)TXξ=1

d1((X
TX)−1XT�Xξ)

= sup
β,Z,‖η‖=1

d1((X
TX)−1XT�η)

(19)
= sup

β,Z,‖η‖=1
‖X(XTX)−1XT�η‖

≤ max
1≤i≤n

λi

< 1,

using the nonexpansive property of the projection matrix X(XTX)−1XT.
By combining (18) with (19), we establish the contraction (13).

7. Open versus closed intervals. In the Lebesgue formulation, U(0,1)d and
U [0,1]d are the same distribution, in that they cannot be distinguished with posi-
tive probability from any countable sample of independent values. Riemann inte-
grals are usually defined for [0,1]d and discrepancy measures are usually defined
for either [0,1]d or [0,1)d . These latter theories are designed for bounded func-
tions.

In Monte Carlo simulations, sometimes values uij ∈ {0,1} are produced. These
end points can be problematic with inversion, where they may yield extended real
values, and hence good practice is to select random number generators supported
in the open interval (0,1).

For our Gibbs sampler example with the probit model, we required uk ∈
(0,1)n+p . This was necessary because otherwise the values φ(x,u) might fail to
belong to �.

Our slice sampler example had � equal to the bounded rectangle [a,b]. Then
values uij ∈ {0,1} do not generate sample points outside �.

Our Metropolized independence sampler did not require bounded support. It
could produce extended real values. Those however are not problematic for weak
convergence, which is based on averages of 1[a,b](xi ) or other bounded test func-
tions. Also, the chain will not get stuck at an unbounded point.
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8. Discussion. We have demonstrated that MCQMC algorithms formed by
Metropolis–Hastings updates driven by completely uniformly distributed points
can consistently sample a continuous stationary distribution. Some regularity con-
ditions are required, but we have also shown that those conditions hold for many,
though by no means all, MCMC updates. The result is a kind of ergodic theorem
for QMC like the ones in [7] and [37] for finite state spaces.

When RQMC is used in place of QMC to drive an MCMC simulation, then in-
stead of CUD points, we need to use weakly CUD points. These satisfy Pr(D∗d

n >

ε) → 0 for all ε > 0 and all d ∈ N.
Our version of MCMC above leaves out some methods in which one or more

components of ui are generated by acceptance-rejection sampling because then
we cannot assume d < ∞. A modification based on splicing i.i.d. U [0,1] random
variables into a CUD sequence was proposed by Liao [27] and then shown to result
in a weakly CUD sequence in [44].

We do not expect that a global substitution of QMC points will always bring
a large improvement to MCMC algorithms. What we do expect is that means of
smooth functions of the state vector in Gibbs samplers will often benefit greatly
from more even sampling.

It is also a fair question to ask when one needs an MCMC result computed
to the high precision that QMC sometimes makes possible. Gelman and Shirley
[17] address this issue, distinguishing Task 1 (inference about a parameter θ ) from
Task 2 [precise determination of E(θ) or more generally E(f (θ)) conditional on
the data, or a posterior quantile of θ ]. The accuracy of Task 1 problems may be
limited more by sample size than by Monte Carlo effort. Task 2 problems include
computation of normalizing constants and problems where one wants to report
numerically stable, and hence more reproducible, simulation output.

APPENDIX: PROOFS

This Appendix contains the lengthier proofs.
We need one technical lemma about CUD points. Consider overlapping blocks

of dk-tuples from ui , with starting indices d units apart. If ui are CUD then these
overlapping blocks are uniformly distributed. The proof works by embedding the
dk-tuples into nonoverlapping rdk-tuples. For large r , the boundary effect between
adjacent blocks becomes negligible. This result is also needed for the argument
in [37].

LEMMA 6. For j ≥ 1, let uj ∈ [0,1]. For integers d, i, k ≥ 1, let xi =
(ud(i−1)+1, . . . , ud(i−1)+dk). If uj are completely uniformly distributed, then xi ∈
[0,1]dk are uniformly distributed.

PROOF. Choose any c ∈ [0,1]dk . Let v = ∏dk
j=1 cj be the volume of [0, c).

For integers r ≥ 1, define fr on [0,1]rdk by fr(u) = ∑(r−1)k
j=0 1[0,c)(ujd+1, . . . ,
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ujd+dk). Each fr has Riemann integral ((r − 1)k + 1)v. We use fr on nonover-
lapping blocks of length rdk from uj :

1

n

n∑
i=1

1[0,c)(xi ) ≥ 1

n

�n/(rk)�∑
i=1

fr

(
u(i−1)rdk+1, . . . , uirdk

)
→ (r − 1)k + 1

rk
v >

r − 1

r
v,

after using (4). Taking r as large as we like, we get lim infn→∞ 1
n

∑n
i=1 1[0,c)(xi ) ≥

v. It follows that lim infn→∞ 1
n

∑n
i=1 1[a,b)(xi ) ≥ Vol[a,b) for any rectangular sub-

set [a,b) ⊂ [0,1]dk . Therefore, lim supn→∞ 1
n

∑n
i=1 1[0,c)(xi ) ≤ v too, for other-

wise some rectangle [a,b) would get too few points. �

Now, we prove the main theorems from Section 3.

PROOF OF THEOREM 2. Pick ε > 0. Now let m ∈ N and for i = 1, . . . , n

define the sequence x′
i,m,0, . . . ,x′

i,m,m ∈ � as the Rosenblatt–Chentsov transfor-
mation of ui , . . . ,ui+m.

Suppose that φ is regular and for a bounded rectangle [a,b] ⊂ Rs , let f (x) =
1[a,b](x). Then ∫

f (x)π(x) dx − 1

n

n∑
i=1

f (xi ) = �1 + �2 + �3,(20)

where

�1 =
∫

f (x)π(x) dx − 1

n

n∑
i=1

f (x′
i,m,m),

�2 = 1

n

n∑
i=1

f (x′
i,m,m) − f (xi+m)

and

�3 = 1

n

n∑
i=1

f (xi+m) − f (xi ).

For �1, notice that x′
i,m,m ∈ [a,b] if and only if (vd(i−1)+1, . . . , vd(i+m)) lies

in a d(m + 1)-dimensional region B1. The region B1 has volume
∫
[a,b] π(x) dx

because Pr(x′
i,m,m ∈ [a,b]) is

∫
[a,b] π(x) dx when (vd(i−1)+1, . . . , vd(i+m)) ∼

U [0,1]d(m+1). It has a Riemann integrable indicator function by hypothesis. Then
because (vi)i≥1 are CUD, and using Lemma 6 with k = m + 1, we get

|�1| =
∣∣∣∣∣
∫

f (x)π(x) dx − 1

n

n∑
i=1

f (x′
i,m,m)

∣∣∣∣∣ −→ 0 as n → ∞.
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Now, consider �2. The only nonzero terms arise when xi+m �= x′
i,m,m. This

in turn requires that the coupling region C is avoided m consecutive times, by
ui+1, . . . ,ui+m. Then (vdi+1, . . . , vd(i+m)) belongs to a region of volume at most
(1 − Vol(C))m. Choose m large enough that (1 − Vol(C))m < ε. Then

lim sup
n→∞

∣∣∣∣∣1

n

n∑
i=1

f (x′
i,m,m) − f (xi+m)

∣∣∣∣∣ < ε.

For the third term, |�3| is at most m/n, which goes to 0 as n → ∞. Thus, we
have ∣∣∣∣∣ lim

n→∞
1

n

n∑
i=1

1xi∈[a,b] −
∫
[a,b]

π(x) dx

∣∣∣∣∣ < ε.

As ε > 0 was chosen arbitrarily, the result follows for this case.
The result holds trivially for the function 1�, hence we are done. �

PROOF OF THEOREM 3. We use the notation from the proof of Theorem 2.
As in the proof of Theorem 2, we write

∫
f (x)π(x) dx − 1

n

∑n
i=1 f (xi ) as the sum

of three terms. The first and third terms vanish by the same arguments we used in
Theorem 2.

For the second term, we have

|�2(n)| ≤ 1

n

n∑
i=1

|f (x′
i,m,m) − f (xi+m)|.

Let ε > 0 be arbitrary. We show that lim supn→∞ |�2(n)| ≤ ε. As ε > 0 is arbi-
trary, this then implies that lim supn→∞ |�2(n)| = 0.

Assume that the Gibbs sampler is regular for rectangles and for a bounded posi-
tive volume rectangle [a,b] ⊂ Rs let f (x) = 1[a,b](x). For 0 ≤ δ < min1≤j≤d(bj −
aj ), let δ = (δ, . . . , δ) ∈ Rs and put fδ(x) = 1[a−δ,b+δ] and f−δ(x) = 1[a+δ,b−δ].

Because fδ(x) ≥ f (x) ≥ f−δ(x), the triple (f−δ(x′
i,m,m), f (x′

i,m,m), fδ(x′
i,m,m))

must be in the set S = {(0,0,0), (0,0,1), (0,1,1), (1,1,1)}. Likewise f (xi+m) ∈
{0,1}. By inspecting all 8 cases in S ×{0,1}, we find that |�2| ≤ σ1 +σ2 +σ3, for

σ1 = 1

n

n∑
i=1

fδ(x′
i,m,m) − f−δ(x′

i,m,m),

σ2 = 1

n

n∑
i=1

(
f−δ(x′

i,m,m) − f (xi+m)
)
+

and

σ3 = 1

n

n∑
i=1

(
f (xi+m) − fδ(x′

i,m,m)
)
+,
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where z+ = max(z,0).
Choose δ > 0 such that∫

�∩([a−δ,b+δ]\[a+δ,b−δ])
π(x) dx <

ε

3
.

As the Gibbs sampler is regular for rectangles, (vi)i≥1 is a CUD sequence, and
x′
i,m,m is constructed using the Rosenblatt–Chentsov transformation we have

λ({u ∈ [0,1]dm+d : x′
i,m,m ∈ [a − δ,b + δ] \ [a,b]})

=
∫
�∩([a−δ,b+δ]\[a+δ,b+δ])

π(x) dx <
ε

3
,

and so lim supn→∞ |σ1(n)| ≤ ε/3.
The points x′

i,m,m and xi+m have different starting points x′
i,m,0 and xi , but

are updated m times using the same ui+1, . . . ,ui+m, that is, x′
i,m,m = φm(x′

i,m,0,
ui+1, . . . ,um) and xi+m = φm(xi ,ui+1, . . . ,ui+m). Therefore, Theorem 3 implies
that there is a constant C > 0 such that for all sufficiently large m ≥ m∗

i the region

Bm,i = {(v1, . . . ,vm) ∈ [0,1]dm :d(φm(x′
i,m,0, (v1, . . . ,vm)),

φm(xi , (v1, . . . ,vm))) > γ m},
has volume at most Cαm

γ . Let Bm = ⋃n
i=1 Bm,i . Let β = ∞ if [a,b] ∩ � = ∅ or

� \ [a − δ,b + δ] = ∅ and β = inf{d(y,y′) : y ∈ [a,b]∩�,y′ ∈ � \ [a − δ,b + δ]}
otherwise.

Let m1 = m1(n) be such that Cnαm1
γ < ε/3 and γ m1 < β . Now take

m0 ≥ max{m1,m
∗
1, . . . ,m

∗
n}. For large enough n, we can take m0 = m0(n) =

� logn+log(2C/ε)
log 1/αγ

� + 1. Then Bm0 has volume at most ε/3.

Thus, f−δ(x′
i,m0,m0

) > f (xi+m0) implies that d(x′
i,m0,m0

,xi+m0) ≥ β , which
in turn implies that (ui+1, . . . ,ui+m0) ∈ Bm0,i , and so (ui+1, . . . ,ui+m0) ∈ Bm0 .
Therefore, we have

lim sup
n→∞

|σ2(n)| ≤ lim sup
n→∞

1

n

n∑
i=1

1(ui+1,...,ui+m0 )∈Bm0
= lim sup

m0→∞
λ(Bm0) ≤ ε

3
.

A similar argument shows that lim supn→∞ |σ3(n)| ≤ ε/3.
Combining the three bounds yields

lim sup
n→∞

|�2(n)| ≤ lim sup
n→∞

σ1(n) + lim sup
n→∞

σ2(n) + lim sup
n→∞

σ3(n)

≤ ε

3
+ ε

3
+ ε

3
= ε,

establishing consistency when the Gibbs sampler is regular.
Since the result holds trivially for the function 1�, the result follows. �
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The coupling region in Theorem 2 was replaced by a mean contraction assump-
tion

∫
[0,1]d log(�(u)) du < 0 in Theorem 4. This way we obtain (possibly different)

coupling type regions Bm,i for each i = 1, . . . , n. We remedy this situation by let-
ting m depend on n, which in turn requires us to use a stronger assumption on the
CUD sequence (vi)i≥1, namely, that limn→∞ D

∗dn
n = 0.
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