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GENERALIZED DENSITY CLUSTERING1

BY ALESSANDRO RINALDO AND LARRY WASSERMAN

Carnegie Mellon University

We study generalized density-based clustering in which sharply defined
clusters such as clusters on lower-dimensional manifolds are allowed. We
show that accurate clustering is possible even in high dimensions. We pro-
pose two data-based methods for choosing the bandwidth and we study the
stability properties of density clusters. We show that a simple graph-based
algorithm successfully approximates the high density clusters.

1. Introduction. It has been observed that classification methods can be very
accurate in high-dimensional problems, apparently contradicting the curse of di-
mensionality. A plausible explanation for this phenomenon is the “low noise” con-
dition described, for instance, in Mammen and Tsybakov (1999). When the low
noise condition holds, the probability mass near the decision boundary is small
and fast rates of convergence of the classification error are possible in high dimen-
sions.

Similarly, clustering methods can be very accurate in high-dimensional prob-
lems. For example, clustering subjects based on gene profiles and clustering curves
are both high-dimensional problems where several methods have worked well de-
spite the high dimensionality. This suggests that it may be possible to find condi-
tions that explains the success of clustering in high-dimensional problems.

In this paper, we focus on clusters that are defined as the connected compo-
nents of high density regions [Cuevas and Fraiman (1997), Hartigan (1975)]. The
advantage of density clustering over other methods is that there is a well-defined
population quantity being estimated and density clustering allows the shape of the
clusters to be very general. (A related but somewhat different approach for gener-
ally shaped clusters is spectral clustering; see von Luxburg (2007) and [Ng, Jordan
and Weiss (2002)].) Of course, without some conditions, density estimation is sub-
ject to the usual curse of dimensionality. One would hope that an appropriate low
noise condition would obviate the curse of dimensionality. Such assumptions have
been proposed by Polonik (1995), Rigollet (2007), Rigollet and Vert (2006), and
others. However, the assumptions used by these authors rule out the case where
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the clusters are very sharply defined, which should be the easiest cases, and, more
generally, clusters defined on lower dimensional sets.

The purpose of this paper is to define a notion of density clusters that does not
rule out the most favorable cases and is not limited to sets of full dimension. We
study the risk properties of density-based clustering and its stability properties, and
we provide data-based methods for choosing the smoothing parameters.

The following simple example helps to illustrate our motivation. We refer the
reader to the next section for a more rigorous introduction. Suppose that a distri-
bution P is a mixture of finitely many point masses at distinct points x1, . . . , xk

where xj ∈ R
d . Specifically, suppose that P = k−1∑k

j=1 δj where δj is a point
mass at xj . The clusters are C1 = {x1}, . . . ,Ck = {xk}. This is a trivial cluster-
ing problem even if the dimension d is very high. The clusters could not be more
sharply defined yet the density does not even exist in the usual sense. This makes
it clear that common assumptions about the density such as smoothness or even
boundedness are not well-suited for density clustering.

Now let ph = dPh/dμ be the Lebesgue density of the measure Ph obtained by
convolving P with the probability measure having Lebesgue density Kh, a kernel
with bandwidth h. Unlike the original distribution P , Ph has full-dimensional sup-
port for each positive h. The “mollified” density ph contains all the information
needed for clustering. Indeed, there exist constants h > 0 and λ ≥ 0 such that the
following facts are true:

1. for all 0 < h < h, the level set {x :ph(x) ≥ λ} has disjoint, connected compo-
nents Ch

1 , . . . ,Ch
k ;

2. the components Ch
j contain the true clusters: Cj ⊂ Ch

j for j = 1, . . . , k;

3. although Ch
j overestimates the true cluster Cj , this overestimation is incon-

sequential since P(Ch
j − Cj) = 0 and hence a new observation will not be

misclustered;
4. let p̂h denote the kernel density estimator using Kh with fixed bandwidth

0 < h < h and based on a i.i.d. sample of size n from P . Then, supx |ph(x) −
p̂h(x)| = O(

√
logn/n) almost everywhere P , which does not depend on the di-

mension d (see Section 3.1). The bias from using a fixed bandwidth h—which
does not vanish as n → ∞—does not adversely affect the clustering.

In summary, we can recover the true clusters using an estimator of the density
ph with a large bandwidth h. It is not necessary to assume that the true density is
smooth or that it even exists.

Our contributions in this paper are the following:

1. We develop a notion of density clustering that applies to probability distribu-
tions that have nonsmooth Lebesgue densities or do not even admit a density.

2. We find the rates of convergence for estimators of these clusters.
3. We study two data-driven methods for choosing the bandwidth.
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4. We study the stability properties of density clusters.
5. We show that the depth-first search algorithm on the ρ-nearest neighborhood

graph of {p̂h ≥ λ} is effective at recovering the high-density clusters.

Another approach to clustering that does not require densities is the minimum
volume set approach [Polonik (1995), Scott and Nowak (2006)]. Our approach is
different because we are specifically trying to capture the idea that kernel density
estimates are useful for clustering even when the density may not exist.

Section 2 contains notation and definitions. Section 3 contains results on rates
of convergence. We give a data-driven method for choosing the bandwidth in Sec-
tion 4. Section 4.2 contains results on cluster stability. The validity of the graph-
based algorithm for approximating the clusters is proved in Section 5. Section 6
contains some examples based on simulated data. Concluding remarks are in Sec-
tion 7. All proofs are in the Section 8. Some technical details are in the Appendix.

Notation. For two sequences {an} and {bn}, we write an = O(bn) and an =
�(bn) if there exists a constant C > 0 such that, for all n large enough, |an|/bn ≤ C

and |an|/bn ≥ C, respectively. If an = �(bn) and an = O(bn), then we will write
an 	 bn. We denote with P(E) the probability of a generic event E, whenever the
underlying probability measure is implicitly understood from the context. By the
dimension of a Euclidean set, we will always mean the k-dimensional Hausdorff
dimension for some integer 0 ≤ k ≤ d (see the Appendix). These sets may consist,
for example, of smooth submanifolds or even single points.

2. Settings and assumptions.

2.1. Level set clusters. In this section, we develop a probabilistic framework
for the definition of clusters we have adopted. For ease of readability, the more
technical measure-theoretic details are given in the Appendix.

Let P be a probability distribution on R
d whose support S (the smallest closed

set of P -measure 1) is comprised of an unknown number m of disjoint compact
sets {S1, . . . , Sm} of different dimensions. We define the geometric density of P as
the measurable function p : Rd 
→ R given by

p(x) = lim
h↓0

P(B(x,h))

vdhd
,(1)

where B(x, ε) is the Euclidean ball of radius h centered at x, μ is the d-dimen-
sional Lebesgue measure and vd ≡ μ(B(0,1)). Note that, almost everywhere P ,
p(x) = ∞ if and only if x belongs to some set Si having dimension strictly less
than d and is positive and finite if and only if x belongs to some d-dimensional
set Si . In general,

∫
Rd p(x) dμ(x) ≤ 1 and, therefore, p is not necessarily a proba-

bility density. Nonetheless, p can be used to recover the support of P , since

S = {x :p(x) > 0},
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where for a set A ⊂ R
d , A denotes its closure.

For λ ≥ 0, define the λ-level set

L ≡ L(λ) = {x :p(x) ≥ λ},(2)

and its boundary ∂L(λ) = {x :p(x) = λ}. Throughout the paper, we will suppose
that we are given a fixed value of λ < ‖p‖∞, where ‖p‖∞ ≡ supx∈Rd p(x). Often,
λ is chosen so that P(L(λ)) ≈ 1 − α for some given α. In practice, it is advisable
to present the results for a variety of values of λ as we discuss in Section 7.

We assume that there are k ≥ 1 disjoint, compact, connected sets C1(λ), . . . ,

Ck(λ) such that

L = C1(λ) ∪ · · · ∪ Ck(λ).

We will often write Cj instead of of Cj(λ) when the dependence of λ is clear from
the context. The value of k is not assumed to be known. The sets C1, . . . ,Ck are
called the λ-clusters of p, or just clusters. In our setting, the Cj ’s need not be full
dimensional. Indeed, Cj might be a lower-dimensional manifold or even a single
point. Furthermore, if Si has dimension smaller than d , then Cj = Si , for some
j = 1, . . . , k. Thus, for any λ ≥ 0, the λ-clusters of p will include all the lower-
dimensional components of S. On the other hand, if Si is full-dimensional, then
there may be multiple clusters in it, depending on the value of λ.

We observe an i.i.d. sample X = (X1, . . . ,Xn) from P , from which we construct
the kernel density estimator

p̂h(x) = 1

n

n∑
i=1

1

cdhd
K

(
x − Xi

h

)
∀x ∈ R

d,(3)

where cd ≡ ∫
Rd K(x) dμ(x). For simplicity, we assume that the kernel K : Rd 
→

R+ is a symmetric, bounded, smooth function supported on the Euclidean unit
ball. These assumptions can be easily relaxed to include, for instance, the case of
regular kernels as defined in Devroye, Györfi and Lugosi [(1997), Chapter 10].
In particular, while the compactness of the support of K simplifies our analysis,
it is not essential and could be replace by assuming fast decaying tails. Further
conditions on the kernel K are discussed in Section 3.1.

Let ph : Rd 
→ R be the measurable function given by

ph(x) =
∫
S
Kh(x − y)dP (y) = E(p̂h(x)),(4)

where Kh(x) ≡ 1
cdhd K(

‖x‖
h

). Also, let Khμ be the probability measure given by

Khμ(A) = ∫A Kh(x) dμ(x), for any Borel set A ⊆ R
d . Then, ph is the Lebesgue

density of the probability measure Ph obtained by convolving P with Khμ. More
precisely, for each measurable set A,

Ph(A) =
∫
A

∫
S
Kh(x − y)dP (y) dμ(x) =

∫
A

ph(x) dμ(x).
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Borrowing some terminology from analysis, where the kernel K is referred to as a
mollifier, we call the measure Ph and the density ph as the mollified measure and
mollified density, respectively. For each h, the mollification of P by K yields that:

1. the mollified measure Ph has full-dimensional support S ⊕ B(0, h) and is
absolutely continuous with respect to μ; here, for two set A and B in R

d ,
A ⊕ B ≡ {x + y :x ∈ A,y ∈ B} denotes its Minkowski sum;

2. the mollified density ph is of class Cα whenever K is of class Cα , with α ∈
N+ ∪ {∞}. (A real valued function is of class Cα if its partial derivatives up to
order α exist and are continuous.)

(As a referee pointed out to us, the properties of mollified measures are related to
the classical theory of distributions.) Mollifying P makes it better behaved. At the
same time, Ph and ph can be seen as approximations of the original measure P

and the geometric density p, respectively, in a sense made precise by the following
result.

LEMMA 1. As h → 0, Ph converges weakly to P and limh→0 ph(x) = p(x),

almost everywhere P .

To estimate the λ-clusters of p, we use the connected components of L̂, that is,
the λ-clusters of p̂h. That is, we estimate L with

L̂ ≡ L̂h(λ) = {x : p̂h(x) ≥ λ}.(5)

In practice, finding the estimated clusters is computationally difficult. Indeed,
to verify that two points x1 and x2 are in the same cluster, we need to find at least
one path γ ⊂ R

d connecting them such that p̂h(x) ≥ λ for each x ∈ γ . Conversely,
when x1 and x2 do not belong to the same cluster, this property has to be shown
to fail for every possible path between them. We discuss an algorithm for approxi-
mating the clusters in Section 5. Until then, we ignore the computational problems
and assume that the λ-clusters of p̂h can be computed exactly.

2.2. Risk. We consider two different risk functions.

• The level set risk is defined to be RL(p, p̂h) = E(ρ(p, p̂h,P )), where

ρ(r, q,P ) =
∫
{x : r(x)≥λ}
{x : q(x)≥λ}

dP (x),(6)

and A
B = (A ∩ Bc) ∪ (Ac ∩ B) is the symmetric set difference.
• Define the excess mass functional as

E (A) = P(A) − λμ(A)(7)

for any measurable set A ⊂ R
d . This functional is maximized by the true level

set L; see Mueller and Sawitzki (1991) and Polonik (1995). We can use the
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excess mass functional as a risk function except, of course, that we maximize it
rather than minimize it. Given an estimate L̂ of L based on p̂h, we will then be
interested in making the excess mass risk

RM(p, p̂h) = E (L) − E(E (L̂))(8)

as small as possible. Furthermore, if P has full-dimensional support, simple
algebra reveals that maximizing E (A) is equivalent to minimizing,∫

A
L
|p − λ|dμ,

which is the loss function used by Willett and Nowak (2007). In this case, the
minimizer L is unique. More generally, if P = P0 + P1 where P0 is the part of
P that is absolutely continuous with respect to the Lebesgue measure, then

E (L) − E (A) =
∫
A
L

|p0 − λ|dμ + P1(L) − P1(A),(9)

where p0 = dP0
dμ

. It is clear that L is no longer the unique minimizer of the excess
mass functional.

2.3. Assumptions. Throughout our analysis, we assume the following condi-
tions.

(C1) There exist positive constants γ , C1 and ε such that

P
(|p(X) − λ| < ε

)≤ C1ε
γ ∀ε ∈ [0, ε).

(C2) There exist a positive constant h, and a permutation σ of {1, . . . , k} such that,
for all h ∈ (0, h) and all λ′ ∈ (λ − ε,λ + ε),

Lh(λ
′) =

k⋃
j=1

Ch
j (λ′),

where:
(a) Ch

i (λ′) ∩ Ch
j (λ)′ = ∅ for 1 ≤ i < j ≤ k;

(b) Cj(λ
′) ⊆ Ch

σ(j)(λ
′), for all 1 ≤ j ≤ k.

(C3) There exist a positive constant C2 such that, for all h ∈ (0, h) and λ′ ∈ (λ −
ε,λ],

L(λ′) =
k⋃

j=1

Cj(λ
′),

where

μ
(
∂Cj (λ

′) ⊕ B(0, h)
)≤ C2h

(d−di)∨1,

and di is the dimension of the component Si of the support of P such that
Cj(λ

′) ⊆ Si .
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2.4. Remarks on the assumptions. Conditions of the form (C1) or of other
equivalent forms, are also known as low noise condition or margin conditions
in the classification literature. They have appeared in many places, such as
Tsybakov (1997), Mammen and Tsybakov (1999), Baíllo, Cuesta-Albertos and
Cuevas (2001), Tsybakov (2004), Steinwart, Hush and Scovel (2005), Cuevas,
Gonzàlez-Manteiga and Rodrìguez-Casal (2006), Cadre (2006), Audibert and Tsy-
bakov (2007), Castro and Nowak (2008) and Singh, Scott and Nowak (2009).

This condition, first introduced in Polonik (1995), provides a way to relate the
stochastic fluctuations of p̂h around its mean ph to the clustering risk. Indeed, the
larger γ , the smaller the effects of these fluctuations, and the easier it is to obtain
good clusters from noisy estimates of ph, for any h < h.

Conditions (C2) simply require that the level set of the mollified density include
the true clusters. The additional fringe Lh−L can be viewed as a form of clustering
bias. Though mild and reasonable, these assumptions are particularly important, as
they imply that the estimated density p̂h can be used quite effectively for clustering
purposes, for a range of bandwidth values. This is is shown in the next simple
result. Let N(λ), Nh(λ) and N̂h(λ) denote the number of λ-clusters for p, ph

and p̂h, respectively. Notice that we do not require p to satisfy any smoothness
properties. See Section 3.3 for the case case of smooth densities.

LEMMA 2. Under conditions (C2) and for all ε ∈ (0, ε) and h ∈ (0, h), on the
event Eh,ε = {‖p̂h − ph‖∞ < ε},

Nh(λ) = N̂h(λ) = k.

Condition (C3) is used to obtain establish rates of convergence for the level set
risk and the excess mass risk. It provides a way of quantifying the clustering bias
due to the use of the mollified density ph as a function of the bandwidth h, locally
in a neighborhood of λ. In fact, if condition (C2) holds, then the clustering bias is
due to the sets Lh(λ − ε) − L(λ − ε), for h ∈ (0, h) and ε ∈ [0, ε).

LEMMA 3. Under conditions (C2) and (C3), for all h ∈ (0, h) and ε ∈ [0, ε)

such that λ − ε ≥ 0,

μ
(
Lh(λ − ε) − L(λ − ε)

)≤ C2h
θ ,(10)

where

θ =
{

d − max
i

di + 1, if max
i

di > 0,

d, otherwise,

and, for some positive constant C3,

P
(
Lh(λ − ε) − L(λ − ε)

)≤ C3h
ξ ,(11)

where ξ is either ∞ or 1; in particular, ξ = 1 only if maxi di = d .
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Condition (C3) is rather mild and depends only on dimension of the support
of P . Indeed, it follows from the rectifiability property (see the Appendix for de-
tails) that if, Si is a component of the support of P of dimension di < d , then
Si has box-counting dimension di [see, e.g., Ambrosio, Fusco and Pallara (2000),
Theorem 2.104]. This implies that (C3) is satisfied for all h small enough [see
also Falconer (2003)]. For clusters Cj belonging to full-dimensional components
of the support of P , (C3) follows if the sets ∂Cj (λ

′) have box-counting dimension
d − 1 for all λ′ ∈ (λ− ε,λ] and if h is small enough. In fact, under these additional
assumptions, it is possible to show that the bounds in Lemma 3 are sharp in the
sense that, for all λ′ ∈ (λ − ε,λ] and h ∈ (0, h), μ(Lh(λ

′) − L(λ′)) = �(hθ). In
addition, provided that h is smaller than the minimal inter-cluster distance

min
i �=j

inf
x∈Cjy∈Cj

‖x − y‖,

we also obtain that P(Lh(λ − ε) − L(λ − ε)) = �(hξ ), where ξ can only be 1
or ∞.

Finally, we point out that the value of h depends on the curvature of the compo-
nents ∂L(λ − ε) for all ε ∈ [0, ε), and on the minimal inter-cluster distance. The
smaller the condition numbers [see, e.g., Niyogi, Smale and Weinberger (2008)]
of these components, and the larger the inter-cluster distance, the larger h.

Although the rates are not affected by the constants, in practice, they can have
a significant effect on the results, since they may very well depend on d . This is
especially true of C1, as illustrated in Example 7 below.

2.5. A refined analysis of condition (C1). We conclude this section with some
comments on the parameter γ appearing in condition (C1), whose value affects
in a crucial way the consistency rates, with faster rates arising from larger values
of γ . If S has dimension smaller than d , then, clearly, γ = ∞, thus throughout
this subsection we assume that P is a probability measure on R

d having Lebesgue
density p.

First, a fairly general sufficient condition for assumption (C1) to hold with
γ = 1 at λ can be easily obtained using probabilistic arguments as follows. Let
G denote the distribution of the random variable Y = p(X) and suppose G has a
Lebesgue density g which is bounded away from 0 and infinity on (λ − ε,λ + ε).
Then, by the mean value theorem, for any nonnegative ε < ε,

P
(
λ − ε ≤ p(X) ≤ λ + ε

)= G
({y :y ∈ (λ + ε,λ − ε)})= εg(λ + η)

for some η ∈ (−ε, ε). Thus, (C1) holds with γ = 1 at λ. See also Example 7 below.
A more refined result based on analytic conditions is given next. Below Hd−1

denotes the (d − 1)-dimensional Hausdorff measure in R
d . See the Appendix for

the definition of Hausdorff measure.
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LEMMA 4. Suppose that P is a probability measure on R
d having Lip-

schiz density p. Assume that, almost everywhere μ, ‖∇p(x)‖ > 0 and that
Hd−1({x :p(x) = λ}) < ∞ for any λ ∈ (0,‖p‖∞). Then (C1) holds with γ = 1
for each λ ∈ (0,‖p‖∞) except for a set of Lebesgue measure 0.

A further point of interest is to characterize the set of λ values for which con-
dition (C1) holds with γ �= 1. Clearly, if p has a jump discontinuity, then (C1)
holds with γ = ∞, for all values of λ in some interval. On the other hand, due to
the previous result, if ‖∇p‖ is bounded away from 0 and ∞ in a neighborhood of
p−1(λ), then γ = 1. Thus, one could expect a value of γ different than 1 when
∇p does not exist or when ‖∇p‖ is infinity or vanishes in p−1(λ). See the exam-
ple on page 7 in Rigollet and Vert (2006), where (C1) holds with γ < 1 if q > d

and γ > 1 if q < d , the former case corresponding to ‖∇p(x0)‖ = 0 and the lat-
ter to limx→x0 ‖∇p(x)‖ = ∞. However, this would seem to indicate that, if p is
sufficiently regular, the values of λ for which γ �= 1 form a negligible set of R.
Lemma 4 above already shows that this set has Lebesgue measure zero if p is Lip-
schitz with nonvanishing gradient. Under stronger assumptions, it can be verified
that this set is in fact finite.

COROLLARY 5. Under the assumption of Lemma 4, if p is of class C 1 and has
compact support, then the set of λ such that (C1) holds with γ �= 1 is finite.

EXAMPLE 6. Sharp clusters and lower-dimensional clusters. Suppose that
p = dP

dμ
=∑m

i=1 πjpj where pi is a density with support on a compact, connected
set Si ,

∑
i πi = 1 and mini πi > 0. Moreover, suppose that

min
i �=j

inf
x∈Ci,y∈Cj

‖x − y‖ > 0,

where d(A,B) = infx∈A,y∈B‖x − y‖. Finally, suppose that

min
j

inf
x∈Cj

πjp(x) ≥ λ.

We denote clusters of this type as sharp clusters. See Singh, Nowak and Zhu
(2008), for example. It is easy to see that (C1) and (11) hold with γ = ξ = ∞.
A more general example in which one of the mixture component is supported
on a lower dimensional set is shown in Figure 1. Here, the true distribution is
P = (1/3)Unif(−5.5,−4.5)+ (1/3)Unif(4.5,5.5)+ (1/3)δ0. The geometric den-
sity and the mollified density based on h = 0.04 are shown in the top plot. The
point mass at 0 is indicated with a vertical bar. The bottom plot shows the true
clusters and the mollified clusters based on ph with λ = 0.04. The clusters based
on ph contain the true clusters and the difference between them is a set of zero
probability.
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FIG. 1. Sharp clusters. Top: the density of P = (1/3)Unif(−5.5,−4.5) + (1/3)Unif(4.5,5.5) +
(1/3)δ0 and the mollified density ph for h = 0.04. The point mass at 0 is indicated with a vertical
bar. Bottom: the true clusters and the mollified clusters of ph with λ = 0.04.

EXAMPLE 7 (Normal distributions). Suppose that X ∼ Nd(0,�), with � pos-
itive definite. Set σ = |�|1/2. Then (C1) holds for any 0 ≤ λ ≤ (σ (

√
2π)d)−1

with γ = 1 and C1 = Cd2σ(
√

2π)d , where the constant Cd depends on d (and,
of course, λ). We prove the claim only for λ = α(σ(

√
2π)d)−1, where α ∈ (0,1).

Cases in which α = 1 or α = 0 can be dealt with similarly. Let W ∼ χ2
d and notice

that X��−1X
d= W . For all ε > 0 smaller than

min
{

α

σ(
√

2π)d
,

(1 − α)

σ(
√

2π)d

}
,(12)

simple algebra yields

P
(|φσ (X) − λ| < ε

)
= P

(
2 log

1

α − εσ(
√

2π)d
≤ W ≤ 2 log

1

α + εσ(
√

2π)d

)

= 2
(

log
1

α − ε(σ
√

2π)d
− log

1

α + ησ(
√

2π)d

)
pd

(
log

1

α + ησ(
√

2π)d

)
for some η ∈ (−ε, ε) where pd denotes the density of a χ2

d distribution and the
second equality holds in virtue of the mean value theorem. By a first order Taylor
expansion, for ε ↓ 0, the first term on the right-hand side of the previous display
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FIG. 2. Noise exponent for Gaussians. Each curve shows P(|p(X) − λ| < ε) versus ε for α = 1/2.
The plots are nearly linear since γ = 1 in this case.

can be written as

2εσ
(√

2π
)d( 1

α − εσ(
√

2π)d
+ 1

α + εσ(
√

2π)d

)
+ o(ε2).

Since ( 1
α−εσ(

√
2π)d

+ 1
α+εσ(

√
2π)d

)pd(log 1
α+ησ(

√
2π)d

) 	 1 for any ε ≥ 0 bounded

by (12), the claim is proved. See Figure 2.

3. Rates of convergence. In this section, we study the rates of convergence
in the two distances using deterministic bandwidths. We defer the discussion of
random (data driven) bandwidths until Section 4.

3.1. Preliminaries. Before establishing consistency rates for the different risk
measures described above, we discuss some necessary preliminaries.

In our analysis, we require the event

Eh,ε ≡ {‖p̂h − ph‖∞ ≤ ε}, ε ∈ (0, ε), h ∈ (0, h),(13)

to hold with high probability, for all n large enough. In fact, some control over
Eh,ε provides a means of bounding the clustering risks, as shown in the following
result.
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LEMMA 8. Let ε ∈ (0, ε) and h ∈ (0, h) be such that the conditions (C1) and
(C2) are satisfied. Then, on the event Eh,ε ,

L(λ + ε) ⊆ L̂h(λ) ⊆ L(λ + ε) ∪ A ∪ B,

where

A = L(λ − ε) − L(λ + ε)

and

B = Lh(λ − ε) − L(λ − ε).

Therefore, on Eh,ε , under the additional condition (C3),

P(L̂h(λ)
L(λ)) ≤ C1ε
γ + C2h

ξ .(14)

In order to bound P(E c
h,ε), we study the properties of the kernel estimator p̂h.

We will impose the following condition on the kernel K .

(VC) The class of functions

F =
{
K

(
x − ·

h

)
, x ∈ R

d, h > 0
}

satisfies, for some positive number A and v

sup
P

N
(

Fh,L2(P ), ε‖F‖L2(P )

)≤ (A

ε

)v

,(15)

where N(T ,d, ε) denotes the ε-covering number of the metric space (T , d),
F is the envelope function of F and the supremum is taken over the set of
all probability measures on R

d . The quantities A and v are called the VC
characteristics of F .

Assumption (VC) appears in Giné and Guillou (2002), Einmahl and Mason (2005),
and Giné and Koltchinskii (2006). It holds for a large class of kernels, including,
for example, any compact supported polynomial kernel and the Gaussian kernel.
See Nolan and Pollard (1987) and van der Vaart and Wellner (1996) for sufficient
conditions for (VC).

Using condition (VC), we can establish the following finite sample bound for
P(‖p̂h − ph‖∞ > ε), which is obtained as a direct application of results in Giné
and Guillou (2002).

PROPOSITION 9 (Gine and Guillon). Assume that the kernel satisfies the prop-
erty (VC) and that

sup
t∈Rd

sup
h>0

∫
Rd

K2
h(t − x)dP (x) < D < ∞.(16)
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1. Let h be fixed. Then, there exist constants L > 0 and C > 0, which depend only
on the VC characteristics of K , such that, for any c1 ≥ C and 0 < ε ≤ c1D‖K‖∞ ,
there exists an n0 > 0, which depends on ε, D, ‖K‖∞ and the VC characteris-
tics of K , such that, for all n ≥ n0,

P

{
sup
x∈Rd

|p̂h(x) − ph(x)| > 2ε
}

≤ L exp
{
− 1

L

log(1 + c1/(4L))

c1

nhdε2

D

}
.(17)

2. Let hn → 0 as n → ∞ in such a way that nhd
n

|loghd
n| → ∞. If {εn} is a sequence

such that

εn = �

(√
log rn

nhd
n

)
,(18)

where rn = �(h
−d/2
n ), then, for all n large enough, (17) holds with h and ε

replaced by hn and εn, respectively. In particular, the term on the right-hand
side of (17) vanishes at the rate O(r−1

n ).

The above theorem imposes minimal assumptions on the kernel K and, more
importantly, on the probability distribution P , whose density is not required to be
bounded or smooth, and, in fact, may not even exist. Condition (16) is automat-
ically satisfied by bounded kernels. Finally, we remark that, for fixed h, setting

εn =
√

2 logn

hdnCK
for an appropriate constant CK (depending on K), an application of

the Borel–Cantelli lemma yields that, as n → ∞, ‖ph − p̂h‖∞ = O(

√
logn

n
) almost

everywhere P .

3.2. Rates of convergence. We now derive the converge rates for the clustering
risks defined in Section 2.2. Below, we will write CK for a constant whose value
depends only on the VC characteristic of the kernel K and on the constant D

appearing in (16).
We recall that Lemma 3 provides a way of controlling the clustering bias due

to the sets Lh(λ − ε) − L(λ − ε), uniformly over ε < ε and h < h. In fact, the
parameters θ ∈ {1, . . . , d} and ξ ∈ {1,∞} will determine the rates of consistency
for the excess mass and the level set risk, respectively. Specifically, higher values
of the parameter θ which correspond to supports of lower dimension yield faster
convergence rates for the excess mass risk. As for the level set risks, the case
ξ = ∞ is the most favorable, since it implies that the clustering bias has no effect
on the estimation of level sets and dimension independent rates are possible. In
particular, if Cj has dimension smaller than d , then P(Ch

σ(j) − Cj) = 0, so that
ξ = ∞. More generally, ξ = ∞ occurs when L = S. Overall our results yield
that, as expected, better rates for the clustering risk are obtained for distributions
supported on lower-dimensional sets.
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THEOREM 10 (Level set risk). Suppose that (C1), (C2), (C3) and (VC) hold.
Then there exists a constant CL such that, for any h ∈ (0, h) and ε ∈ (0, ε),

RL(p, p̂h) ≤ CL(εγ + hξ + e−CKnhdε2
).(19)

In particular, setting

hn =
(

logn

n

)γ /(2ξ+dγ )

and εn =
√

logn

CKnhd
n

we obtain

RL(p, p̂hn) = O

(
max
{(

logn

n

)γ ξ/(2ξ+dγ )

,
1

n

})
.(20)

If γ = ∞, then either S − L is empty or has zero Lebesgue measure, or S − L

is a full dimensional set of positive Lebesgue measure. The former cases, which
correspond to P having a lower-dimensional support or to sharp clusters (see Ex-
ample 6), implies that RL = O( 1

n
). Thus, we have dimension independent rates for

sharp clusters. In the latter case, ξ = 1, so that RL is of order O((
logn

n
)1/d). When

γ < ∞, then ξ = 1 and the risk is of order O((
logn

n
)γ/(2+dγ )).

In practice, there are examples in between the sharp and nonsharp cases for
probability distributions with full-dimensional support. For example, if there is a
very small amount of mass just outside the cluster, then, technically, ξ = 1 and the
rate will be slow for large d . However, if this mass is very small then we expect for
finite samples that the behavior of the risk will be close to the behavior observed
in the sharp case. We could capture this idea mathematically by allowing P to
change with n and then allowing ξn to vary with n and take values between 1
and ∞. However, we shall not pursue the details here.

As an interesting corollary to Theorem 10, we can show that the expected pro-
portion of sample points that are incorrectly assigned as clusters or noise vanishes
at the same rate.

COROLLARY 11. Let f̂h = |Îh|
n

, where

Îh = {i : sign
(
p̂h(Xi) − λ

) �= sign
(
p(Xi) − λ

)}
.

Then, E(f̂h) ≤ CL(εγ + hξ + e−CKnhdε2
).

We now turn to the excess mass risk.

THEOREM 12 (Excess mass). Suppose that (C1), (C2), (C3) and (VC) hold.
Then, there exists a constant CM , independent of ε and h, such that, for any h ∈
(0, h) and ε ∈ (0, ε) with ε < λ,

RM(p, p̂h) ≤ CM(εγ+1 + hθ + e−nCKε2hd

).
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Thus, setting

hn =
(

logn

n

)(γ+1)/(2θ+d(γ+1))

and εn =
√

logn

CKnhd
n

,

we obtain

RM(p, p̂h) = O

((
logn

n

)θ(γ+1)/(2θ+d(γ+1)))
.(21)

When γ = ∞ the excess mass risk RM is of order O(
logn

n
)θ/d . Thus, the

higher θ , that is, the smaller the dimension of the support of P , the faster the rate
of convergence. In particular, if P is supported over a finite set of points the risk
vanishes at the dimension independent rate O(

logn
n

). When γ < ∞, then θ = 1

and the risk is of order O((
logn

n
)(γ+1)/(2+d(γ+1))).

3.3. Some special cases. Here, we discuss some interesting special cases.

Fast rates for biased clusters. In some cases, we might be content with esti-
mating the level set Lh(λ), which is a biased version of L(λ). That is, the fringe
Lh(λ) − L(λ) may not be of great practical concern and, in fact, it may contain a
very small amount of mass. Indeed, we believe this is why clustering is often so
successful in high-dimensional problems. Exact estimation of the level sets is not
necessary in many practical problems. In fact, by Lemma 2, conditions (C2) guar-
antees that L̂ will include L with high probability. Thus, for clustering purposes,
one may consider some modifications of our risk functions. First, suppose we only
require that the estimated clusters cover the true clusters. That is, we say there is
not error as long as Cj ⊂ Ĉj . This suggests the following modification of our risk
functions:

• R̃L(p, p̂h) = ∫{x : p(x)≥λ}∩{x : p̂h(x)<λ} dP (x),

• R̃M(p, p̂h) = E (L) − E(L̂h ∩ L).

Then we have the following result, which gives faster, dimension independent
rates. The proof is similar to the proofs of the previous results and is omitted.

THEOREM 13. Let h ∈ (0, h) be fixed. Under (C1), (C2) and (VC), then

R̃L(p, p̂h) = O

(
max
{(

logn

n

)γ /2

,
1

n

})
and

R̃M(p, p̂h) = O

((
logn

n

)(1+γ )/2)
.
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Alternatively, one may be only interested in estimating the clusters of the mol-
lified density ph, for any fixed h ∈ (0, h). Then, provided that ph is sufficiently
smooth (which is guaranteed by choosing a smooth kernel) and has finite positive
gradient for each point in the set ∂Lh(λ), the results in Section 2.5 show that, for
all ε small enough,

μ
({x : |ph(x) − λ| < ε})≤ ε.

Thus, under assumptions (C2) and (VC), similar arguments to the ones used in the
proofs of Theorems 10 and 12 imply that

RL(ph, p̂h) =
∫
{x : ph(x)≥λ}
{x : p̂h(x)≥λ}

dP (x) = O

(√
logn

n

)
and

RM(ph, p̂h) = E (Lh) − E(E (L̂h)) = O

(
logn

n

)
.

In either case, we get dimension independent rates.

The smooth full-dimensional case. In the more specialized settings in which P

has full-dimensional support and the Lebesgue density p is smooth, better results
are possible. For example, using the same settings of Rigollet and Vert (2006), if
p is β-times Hölder differentiable, then the bias conditions (C2) are superfluous,
as

‖ph − p‖∞ ≤ Chβ(22)

for some constant C which depends only on the kernel K . Choosing h such that
Chβ < ε, on the event Eh,ε , the triangle inequality yields ‖p̂h − p‖∞ < 2ε. Thus,
for each ε < ε

2 and each h such that Chβ < ε, on Eh,ε , instead of (14), one obtains

P(L̂h(λ)
L(λ)) ≤ C12γ εγ .

Then, setting hn = (logn/n)1/(2β+d) and εn = �((logn/n))β/(2β+d)), we see
that RL(p, p̂h) is of order O((logn/n)γβ/(2β+d)), while RM(p, p̂h) is of order
O((logn/n)(γ+1)β/(2β+d)). These, are, up to an extra logarithmic factor, the mini-
max rates established by Rigollet and Vert (2006). In fact, under these smoothness
assumptions, and since the bias can be uniformly controlled as in (22), then, by
a combination of Fubini’s theorem and of a peeling argument as in Audibert and
Tsybakov (2007) and Rigollet and Vert (2006), the exponential term O(e−CKnhdε2

)

becomes redundant and rates without the logarithmic term are possible.

4. Choosing the bandwidth. In this section, we discuss two data-driven
method for choosing the bandwidth that adapts to the unknown parameters γ

and θ . Before we explain the details, we point out that L2 cross-validation is not
appropriate for this problem. In fact, we are allowing for the case where P may
have atoms, in which case it is well known that cross-validation chooses h = 0.
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4.1. Excess mass. We propose choosing h by splitting the data and maximiz-
ing an empirical estimate of the excess mass functional. Polonik (1995) used this
approach to choose a level set from among a fixed class L of level sets of finite
VC dimension. Here, we are choosing a bandwidth, or, in other words, we are
choosing a level set from a random class of level sets L = {{x : p̂h(x) ≥ λ} :h > 0}
depending on the observed sample X. The steps are in Table 1.

To implement the method, we need to compute μ(Lh). In practice, μ(Lh) can
be approximated by

1

M

M∑
i=1

I (p̂h(Ui) ≥ λ)

g(Ui)
,

where U1, . . . ,UM is a sample from a convenient density g. In particular, one can
choose g = p̂H for some large bandwidth H . Choosing M ≈ n2 ensures that the
extra error of this importance sampling estimator is O(1/n) which is negligible.
We ignore this error in what follows.

Technically, the method only applies for λ > 0, at least in terms of the theory
that we derive. In practice, it can be used for λ = 0. In this case, Ê (h) becomes 1
when h is large. We then take ĥ to be the smallest h for which Ê (h) = 1.

Below we use the notation EX(·) instead of E (·) to indicate that the excess mass
functional (7) is evaluated at a random set depending on the training set X and,
therefore, is itself random. Accordingly, with some abuse of notation, for any
h > 0, we will write EX(h) = E (Lh), with Lh the λ-level set of p̂h. Below H
is a countable dense subset of [0, h]. The next result is closely related to Theorem
7.1 of Györfi et al. (2002).

THEOREM 14. Let h∗ = arg maxh∈H EX(h). For any δ > 0,

E(EX(h∗)) − E(EX(ĥ)) ≤ d(δ, κ)
1 + log 2

n
,(23)

where the expectation is with respect to the joint distribution of the training and
test set, d(δ, κ) = 2

κ
δ(1 + δ)(16γ 2 + δ(7 + 16γ 2)), with κ = 2 + λμ(S + B(0, h))

and γ 2 = 7
4(e4/7 − 1).

TABLE 1
Selecting the bandwidth using the excess mass risk

1. Split the data into two halves which we denote by X = (X1, . . . ,Xn) and Z = (Z1, . . . ,Zn).
2. Let H be a finite set of bandwidths. Using X, construct kernel density estimators {p̂h :h ∈ H}.

Let Lh = {x : p̂h(x) ≥ λ}.
3. Using Z, estimate the excess mass functional

Ê (h) = 1

n

n∑
i=1

I (Zi ∈ Lh) − λμ(Lh).

4. Let ĥ be the maximizer of Ê (h) and set L̂ = Lĥ.
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Now we construct a grid Hn of size depending on n that is guaranteed to ensure
that optimizing over Hn implies we are adapting over γ and θ .

THEOREM 15. Suppose (C1) and (C2) hold. Let

δn(θ) = a
θ/d
n

2An(θ)
,

where an = (logn/n) and

An(θ) = 2|logan|aθ/(2θ+d)
n θ2

(2θ + d)2 .

Let Gn(θ) = {γ1(θ), . . . , γN(θ)(θ)} where γj (θ) = (j − 1)δn(θ) and N(θ) is the
smallest integer less than or equal to ϒn(θ)/δn(θ),

ϒn(θ) = 2θ2

d2Wn

− 2θ

d
− 1

and

Wn = log 2

logn − log logn
.

Let

Hn = {hn(γ, θ) : θ ∈ {1, . . . , d}, γ ∈ Gn(θ)
}
,

where hn(γ, θ) = a
(γ+1)/(2θ+d(γ+1))
n . Let L̂ be obtained by minimizing Ê (h) for

h ∈ Hn. Then

E (L) − E(E (L̂)) ≤ O

(
logn

n

)θ(γ+1)/(2θ+d(γ+1))

.

The latter theorem shows that our cross-validation methods gives a completely
data-driven method for choosing the bandwidth that preserves the rate. Notice, in
particular, that adapting to the parameter θ is equivalent to adapting to the un-
known dimension of the support of P . This makes it possible to use our method
in practical problems as long as the sample size is large. For small sample sizes,
data splitting might lead to highly variable results in which case our bandwidth se-
lection method might not work well. An alternative is to split the data many times
and combines the estimates over multiple splits.

When μ(L) = 0, we have that h∗ = 0. The above theorems are still valid in this
case. Thus, the case where P is atomic is included while it is ruled out for L2

cross-validation.
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4.2. Stability. Another method for selecting the bandwidth is to choose the
value for h that produces stable clusters, in a sense defined below. The use of sta-
bility has gained much popularity in clustering; see Ben-Hur, Elisseeff and Guyon
(2002) and Lange et al. (2004), for example. In the context of k-means clustering
and related methods, Ben-David, von Luxburg and Pall (2006) showed that mini-
mizing instability leads to poor clustering. Here, we investigate the use of stability
for density clustering.

Suppose, for simplicity, that the sample size is a multiple of 3. That is, the sam-
ple size is 3n say. Now randomly split the data into three vectors of size n, denoted
by X = (X1, . . . ,Xn), Y = (Y1, . . . , Yn) and Z = (Z1, . . . ,Zn). (In practice, we
split the data into three approximately equal subsets.)

We define the instability function as the random function � : [0,∞) 
→ [0,1]
given by

�(h) ≡ ρ(p̂h, q̂h, P̂Z) =
∫
{x : p̂h(x)≥λ}
{x : q̂h(x)≥λ}

dP̂Z(x),(24)

where p̂h is constructed from X, q̂h is constructed from Y and P̂Z is the empirical
distribution based on Z.

Rather than studying stability in generality, we consider a special case involving
the following extra conditions.

1. Sharp clusters. Assume that P =∑m
j=1 πjPj where

∑
i πj = 1, and Pj is uni-

form on the compact set Sj of full dimension d . Thus, p(z) =∑j 
j I (z ∈ Sj )

where 
j = πj/μ(Sj ). Let 
 = minj 
j > 0 and let 
 = maxj 
j .
2. Spherical Kernel. We use a spherical kernel so that

p̂h(z) = 1

nhd

n∑
i=1

I (‖z − Xi‖ ≤ h)

vd

= P̂ (B(x,h))

hdvd

,

where vd = πd/2/�(d/2 + 1) denotes the volume of the unit ball and P̂ is the
empirical measure.

3. The support of P is a standard set. Letting S = ∪m
j=1Sj , we assume that there

exists a δ ∈ (0,1) such that

μ
(
B(z,h) ∩ L

)≥ δμ(B(z,h)) for all z ∈ S and all h < diam(S),

where diam(S) = sup(x,y)⊂S ‖x − y‖ indicates the diameter of the set S. This
property appears in a natural way in set estimation problems; see, for example,
Cuevas and Fraiman (1997).

4. Choice of λ. We take λ = 0, so that L = S.

Under these settings, the graph �(h) is typically unimodal with �(0) =
�(∞) = 0. Hence, it makes no sense to minimize �. Instead, we will fix a constant
α ∈ (0,1) and choose

ĥ = inf
{
h : sup

t>h

�(t) ≤ α
}
.(25)
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THEOREM 16. Let h∗ = diam(L). Under conditions 1–4:

1. �(0) = 0 and �(h) = 0, for all h ≥ h∗;
2. sup0<h<h∗ E(�(h)) ≤ 1/2;
3. as h → 0, E(�(h)) 	 hd ;
4. for each h ∈ (0, h∗),

D3(h∗ − h)d(n+1)Dn
4 ≤ E(�(h)) ≤ 2D1(h∗ − h)n+1Dn

2 ,

where

D1 = πd/2hd−1∗
2d�((d/2) + 1)

, D2 = πd/2hd−1∗
�((d/2) + 1)

,

D3 = δ
πd/2

�((d/2) + 1)
, D4 = 
δπd/2

�(d/2 + 1)
.

To see the implication of Theorem 16, we proceed as follows. Consider a grid
of values H ⊂ (0, h∗) of cardinality nβ , for some 0 < β < 1. By Hoeffding’s in-
equality, with probability at least 1 − 1

n
, we have that

sup
h∈H

|�(h) − E(�(h))| ≤ wn ≡
√

2 log(2n)(1 − β)

n
.

Replacing E(�(h)) by �(h) + wn and �(h) − wn in the upper and lower bounds
of part 4 of Theorem 16, respectively, setting them both equal to α and then finally
solving for h, we conclude that the selected ĥ is upper bounded by

h∗ −
(

α − wn

2D1

)1/(n+1)

D
−n/(n+1)
2

and lower bounded by

h∗ −
(

α + wn

D3

)1/(d(n+1))

D
−n/(d(n+1))
4

with probability larger than 1 − 1
n

. Thus, as n → ∞, the resulting bandwidth does
not tend to 0. Hence, the stability based method leads to bandwidths that are quite
different than the method in the previous section. Our explanation for this find-
ing is that the stability criterion is essentially aimed at reducing the variability of
the clustering solution, but it is virtually unaffected by the bias caused by large
bandwidths.

In the analysis above, we assumed for simplicity that λ = 0. When λ > 0, the
instability �(h) can have some large peaks for very large h. This occurs when h is
large enough so that some mode of ph(x) is close to λ. Choosing h according to
(25) will then lead to serious oversmoothing. Instead, we can choose ĥ as follows.
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Let h0 = arg maxh �(h) and define

ĥ = inf{h :h ≥ h0,�(h) ≤ α}.(26)

We will revisit this issue in Section 6. A theoretical analysis of this modified pro-
cedure is tedious and, in the interest of space, we shall not pursue it here.

5. Approximating the clusters. Lemma 2 shows that, under mild, conditions
and when the sample size is large enough, N(λ) = N̂h(λ) uniformly over h ∈ (0, h)

with high probability. However, computing the number of connected components
of L̂h(λ) exactly is computationally difficult, especially if d is large. In this section,
we study a graph-based algorithm for finding the connected components of L̂h

and for estimating the number of λ-clusters N(λ) that is based on the ρ-nearest
neighborhood graph of {Xi : p̂h(Xi) ≥ λ} that is fast and easy to implement.

The idea using the union of balls of radius ρ centered at the sample points to
recover certain properties of the support of a probability distribution is well un-
derstood. For instance, Devroye and Wise (1980) and Korostelev and Tsybakov
(1993) use it as a simple yet effective estimator of the support, while Niyogi, Smale
and Weinberger (2008) show how it can be utilized for identifying certain homol-
ogy features of the support.

In particular, Cuevas, Febrero and Fraiman (2000) and Biau, Cadre and Pellet-
tier (2007) propose to combine a kernel density estimation with a single-linkage
graph algorithm to estimate the number of λ-clusters [see also Jang and Hendry
(2007), for an application to large databases]. Our results offer similar guarantees
but hold under more general settings.

The algorithm proceeds as follows. For some h ∈ (0, h) and a given λ ≥ 0:

1. compute the kernel density estimate p̂h;
2. compute the ρ-nearest neighborhood graph of {Xi : p̂h(Xi) ≥ λ}, that is the

graph Gh,n on {Xi : p̂h(Xi) ≥ λ} where there is an edge between any two nodes
if and only if they both belong to a ball of radius ρ;

3. compute the connected components of Gh,n using a depth-first search.

The computational complexity of the last step is linear in the number of nodes
and the number of edges of Gh,n [see, e.g., Cormen et al. (2002)], which are both
random.

We will show that, if ρ is chosen appropriately, then, with high probability as
n → ∞:

1. the number of connected components of Gh,n, N̂G
h (λ), matches the number of

true clusters, N(λ) = k;
2. there exists a permutation of {1, . . . , k} such that, for each j and j ′,

Ch
j ⊆ ⋃

x∈Cσ(j)

B(x,ρ) and
( ⋃

x∈Cσ(j)

B(x,ρ)

)
∩
( ⋃

x∈Cσ(j ′)
B(x,ρ)

)
= ∅,(27)

where C1, . . . , Ck are the connected components of Gh,n.
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We will assume the following regularity condition on the densities ph, which is
satisfied if the kernel K is of class C 1 and P is not flat in a neighborhood of λ:

(G) there exist constants ε1 > 0 and Cg > 0 such that for each h ∈ (0, h), ph is of
class C 1 on {x : |ph(x) − λ| < ε1} and

inf
h∈(0,h)

inf
x∈{|ph(x)−λ|<ε1}

‖∇ph(x)‖ > Cg.(28)

Let δh = mini �=j infx∈Ch
i ,y∈Ch

j
‖x − y‖ and set δ = infh∈(0,h) δh. Notice that, under

(C2)(b), δ > 0. Finally, let Oh,n denote the event in (27), which clearly implies the
event {N̂G

h (λ) = k}.

THEOREM 17. Assume conditions (G) and (C2) and let d∗ = dim(L). Assume
further that there exists a constant C such that, for every r ≤ δ/2 and for P -almost
all x ∈ S ∩ L,

P(B(x, r)) > Crdi ,(29)

where di = dim(Si), with x ∈ Si . Then there exists positive constants ρ and M ,
depending on d∗ and L such that, for every ρ < min{δ/2, ρ}, there exists a number
ε(ρ) such that, for any ε < η(ρ),

P(Oc
h,n) ≤ P(E c

h,ε) + Mρ−d∗
e−Cnρd∗

,

uniformly in h ∈ (0, h).

The previous result deserves few comments. First, the constants ρ, M and
C depend on d∗. Second, assumption (29) is a natural generalization to lower-
dimensional sets of the standardness assumption used, for example, in Cuevas and
Fraiman (1997). It is clearly true for components Pi of full-dimensional support
that are absolutely continuous with respect to the Lebesgue measure. Finally, in
view of Lemma 19 [and, specifically, of the way ε(ρ, τ ) is defined], Theorem 17
holds for sequences {εn}, {hn} and {ρn} such that:

1. εn = o(1),
2. supn hn ≤ h;
3. supn ρn < min{δ/2, ρd} and εn = o(ρn).

In particular, if hn = o(1), then, following Proposition 9, the term P(E c
hn,εn

) van-

ishes if nhd
n

|loghd
n| → ∞. Interestingly enough, condition (C1) does not play a direct

role in Theorem 17.
We now consider a bootstrap extension of the previous algorithm, as suggested

in Cuevas, Febrero and Fraiman (2000). For any h, let X∗ = (X∗
1, . . . ,X∗

N), denote
a bootstrap sample from p̂h conditionally on {p̂h ≥ λ} and let G∗

n,h denote the ρ-
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neighborhood graph with node set X∗. Finally, let O∗
h,n be the event given in (27),

except that C1, . . . , Ck are now the connected components of G∗
h,n.

THEOREM 18. Assume conditions (C2) and (G). Suppose that there exist pos-
itive constants C and ρ such that

inf
h∈(0,h)

∫
Ah∩Lh(λ)

ph dμ > Cρd(30)

for any ball Ah of radius ρ < ρ and center in Lh(λ). Then, for any ρ ≤
min{δ/2, ρ}, there exists a positive number ε(ρ) such that, for each ε < ε(ρ),

P((O∗
h,n)

c) ≤ P(E c
h,ε) + Mρ−de−CNρd

,

uniformly in h ∈ (0, h), where M and C are positive constants independent of h

and ρ.

The constants C, C, ρ, and M depend on both d and S⊕B(0, h). In our settings,
condition (30) clearly holds if P has full-dimensional support. More generally, it
can be shown that conditions (G) and (29) imply (30).

Just like with Theorem 17, using Lemma 19, it can be verified that the theorem
holds if one consider sequences of parameters depending on the sample size such
that εn = o(1), εn = o(ρn), supn ρn < max{δ/2, ρ} and supn hn < h, provided that
the conditions of Proposition 9 are met.

Despite the similar form for the error bounds of Theorems 17 and 18, there are
some marked differences. In fact, in Theorem 17 the performance of the algorithm
depends directly on the sample size n and, in particular, on the actual dimension
d∗ ≤ d of the support of P , with smaller values of d∗ yielding better guarantees. In
contrast, besides n, the performance of the algorithm based on the bootstrap sample
depends on the ambient dimension d , regardless of d∗, and on the bootstrap sample
size N . By choosing N very large, the expression P(E c

h,ε) becomes the leading
term in the upper bound of the probability of the event (O∗

h,n)
c.

6. Examples. In this section, we consider a few examples to illustrate the
methods.

6.1. A one dimensional example. In Section 4.2, we pointed out that when λ >

0 and large, it is safer to use the modified rule ĥ = inf{h :h ≥ h0,�(h) ≤ α} where
h0 = arg maxh �(h), in place of the original rule ĥ = inf{h : supt>h �(t) ≤ α}. We
illustrate this with a simple one-dimensional example.

Figure 3 shows an example based on n = 200 points from the density p that
is uniform on [0,1] ∪ [5,6]. When λ = 0 (top), the original rule works fine. (We
use α = 0.05.) The selected bandwidth is small leading to the very wiggly density
estimator in the top right plot. However, this estimator correctly estimates the level
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FIG. 3. The left plots show the instability as a function of log bandwidth. The horizontal line shows
α = 0.05. The right plots show the true density and the kernel density estimator based on the selected
bandwidth h. In the top plots, λ = 0. In the bottom plots, λ = 0.3.

set and the clusters. In the bottom, we have λ = 0.3. When h is large, there is
a blip in the instability curve corresponding to the fact that the modes of ph(x)

are close to λ. The original rule corresponds to the second vertical line in the
bottom left plot. The resulting density estimator shown in the bottom right plot is
oversmoothed and leads to no points being in the set p̂h ≥ λ. The modified rule
corresponds to the first vertical line in the bottom left plot. This bandwidth works
fine.

Figure 4 compares the instability method (top) with the excess mass method
(bottom). Both methods recover the level set and the clusters. We took λ = 0.3 in
both cases. Because λ is very large, the excess mass becomes undefined for large h

since ph(x) < λ for all x, which we denoted by setting the risk to 0 in the bottom
left plot.

6.2. Fuzzy stick with spiral. Figure 5 shows data from a fuzzy stick with a
spiral. The stick has noise while the spiral is supported on a lower-dimensional
curve. Figure 6 shows the clusterings from the instability method and the excess
risk method with λ = 0. Both recover the clusters perfectly. Note that the excess
risk is necessarily equal to 1 for large h. In this case, we take ĥ to be the smallest
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FIG. 4. The top left plot shows the instability as a function of log bandwidth. The top right plot
shows the true density and the kernel density estimator based on the selected bandwidth h using
the modified rule. The bottom left plot shows the estimated excess mass risk as a function of log
bandwidth. The top right plot shows the true density and the kernel density estimator based on the
selected bandwidth h obtained by maximizing the excess mass. In both bottom plots, λ = 0.3. Both
methods recover the level set and the clusters.

h of all bandwidths that maximize the excess mass. We see that both methods
recover the clusters.

6.3. Two moons. This is a 20-dimensional example. The data lie on two half-
moons embedded in R

20. The results are shown in Figure 7. Only the first two
coordinates of the data are plotted. Again we see that both methods recover the
clusters.

7. Discussion. As is common in density clustering, we have assumed a fixed,
given value of λ. In practice, we recommend that the results should be computed
for a range of values of λ [see, e.g., Stuetzle and Nugent (2010), and references
therein]. It is important to choose a different bandwidth for each λ. Indeed, inspec-
tion of the proof of Theorem 12 shows that the optimal bandwidth is a function of
λ and that h(λ) → 0 as λ increases. Further research on data-dependent methods
to choose λ and ρ (the parameter used in the graph-based algorithm of Section 5)
would be very useful.
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FIG. 5. 500 data points from a fuzzy stick plus a spiral.

We discussed the idea of using stability to choose a bandwidth. We saw that
the behavior of the selected bandwidth is quite different than with the excess mass
method. This method seems to work well for density clustering unlike what hap-
pens for k-means clustering [Ben-David, von Luxburg and Pall (2006)]. We believe

FIG. 6. Clusters obtained from instability (top) and excess mass (bottom).
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FIG. 7. Clusters obtained from instability (top) and excess mass (bottom). The data are in R
20 but

only the first two components are plotted.

that the stability method deserves more scrutiny. In particular, it would be helpful
to understand the behavior of the stability measure under more general conditions.
Also, the detailed theoretical properties of the modified method for selecting h

based on stability should be explored.
Finally, we note that there is growing interest in spectral clustering methods

[von Luxburg (2007)]. We believe there are connections between the work reported
here and spectral methods.

8. Proofs. PROOF OF LEMMA 1. The weak convergence follows from the
fact that P is a Radon measure [see, e.g., Leoni and Fonseca (2007), Theo-
rem 2.79]. As for the second part, if x ∈ Si , where Si has Hausdorff dimension d ,
then p(x) = πipi(x), with pi a Lebesgue density, and the result follows directly
from Leoni and Fonseca (2007), Theorem 2.73, part (ii). See also the Appendix. On
the other hand if di < d , then it is necessary to modify the arguments as follows.
Since K is smooth and supported on B(0,1), there exists a η such that K(

x−y
h

) > η

if ‖x − y‖ < ηh. Set C = ηdi+1vdi

cd
, where vdi

is the volume of the unit Euclidean
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ball in R
di . Then

ph(x) = 1

cdhd

∫
Si∩B(x,h)

K

(
x − y

h

)
dP (y)

≥ 1

cdhd
η

∫
Si∩B(x,ηh)

dP (y)

= ηdi+1vdi

cdhd−di

1

vdi
(ηh)di

Pi(B(x, ηh))

= C

h(d−di)

Pi(B(x, ηh))

vdi
(ηh)di

.

As as h → 0, Pi(B(x,η,h))

vdi
(ηh)di

→ pi(x) < ∞, by (39) almost everywhere Hdi , while

C

h(d−di )
→ ∞, thus showing that limh→0 ph(x) = ∞. �

PROOF OF LEMMA 2. By assumption (C2), for any 0 ≤ ε < ε and 0 < h < h,

Nh(λ − ε) = Nh(λ) = Nh(λ + ε) = N(λ) = k.

On the event Eh,ε it holds that

Lh(λ + ‖ph − p̂h‖∞) ⊆ L̂h(λ) ⊆ Lh(λ − ‖ph − p̂h‖∞),

which implies that, on the same event,

k = Nh(λ + ‖ph − p̂h‖∞) ≤ N̂h(λ) ≤ Nh(λ − ‖ph − p̂h‖∞) = k. �

PROOF OF LEMMA 3. Recall that Kh is supported on B(0, h). For the first
claim, it is enough to show that, for any ε ∈ [0, ε), Lh(λ − ε) − L(λ − ε) ⊆
∂L(λ − ε) + B(0, h). Indeed, by (C3), μ(∂L(λ − ε) ⊕ B(0, h)) ≤ C2h

θ , which
implies (10). Thus, we will prove that, if w /∈ ∂L(λ − ε) ⊕ B(0, h), then w /∈
Lh(λ − ε) − L(λ − ε). For such a point w, either p(w) ≥ λ − ε or, by conditions
(C2), p(z) < λ−ε for every z ∈ B(w,h). Since the kernel K has compact support,
the latter case implies that ph(w) < λ − ε as well. Therefore,

w ∈ {x :p(x) ≥ λ − ε} ∪ {x :ph(x) < λ − ε}
= {x :p(x) < λ − ε,ph(x) ≥ λ − ε}c
= (Lh(λ − ε) − L(λ − ε)

)c
.

As for inequality (11), it is enough to observe that the set

Ih,ε = (Lh(λ − ε) − L(λ − ε)
)∩ S

either has zero probability (because it is empty or has Lebesgue measure 0) or has
positive Lebesgue measure. In the former case, we obtain ξ = ∞. In the latter case,
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Ih,ε must be full dimensional, so that, by (10), μ(Ih,ε) ≤ C3h, for all h ∈ (0, h).
Since p is bounded by λ on Ih,ε , we obtain

P
(
Lh(λ − ε) − L(λ − ε)

)= P(Ih,ε) ≤ λC2h = C3h,

which implies that we can take ξ = 1. �

PROOF OF LEMMA 4. Since p is Lipschitz and integrable, p−1(λ) is
Hd−1-measurable, so the integral Hd−1({x :p(x) = λ}) is well defined for λ ∈
(0,‖p‖∞), where Hd−1 denote the (d −1)-dimensional Hausdorff measure in R

d .
Furthermore, we can use the coarea formula. See Evans and Gariepy (1992)
and Ambrosio, Fusco and Pallara (2000) for backgrounds on Hausdorff mea-
sures and the coarea formula. By the Rademacher theorem, the set E1 of points
where p is not differentiable has Lebesgue measure zero. By Lemma 2.96 in
Ambrosio, Fusco and Pallara (2000), the set E2 = {x :‖∇p(x)‖ = 0} is such
that Hd−1{p−1(λ) ∩ E2} = 0, for all λ ∈ (0,‖p‖∞) outside of a set E3 ⊂ R of
Lebesgue measure 0. Without loss of generality, below we may assume that E1
and E2 are empty. Thus, we can assume that, for any λ ∈ (0,‖p‖∞) ∩ Ec

3, there
exists positive numbers ε, C and M such that:

(i) infx∈{x : |p(x)−λ|<ε} ‖∇p(x)‖ > C, almost everywhere-μ;
(ii) supη∈(−ε,ε) Hd−1({x :p(x) = λ + η}) < M .

Then for each ε ∈ (0, ε),

P
({x : |p(x) − λ| < ε})= ∫ p(x)1{|p(x)−λ|<ε} dμ(x)

=
∫

p(x)

‖∇p(x)‖1{|p(x)−λ|<ε}‖∇p(x)‖dμ(x)

=
∫ +ε

−ε

∫
{p−1(λ+u)}

p(x)

‖∇p(x)‖ dHn−1(x) du

=
∫ +ε

−ε
(λ + u)

∫
{p−1(λ+u)}

(‖∇p(x)‖)−1 dHn−1(x) du

≤ 2λM

C
ε,

where the second equality holds because ‖∇p(x)‖ is bounded away from 0 on
{x : |p(x) − λ| < ε} by (i), the third equality is a direct application of the coarea
formula [see, e.g., Proposition 3, page 118 in Evans and Gariepy (1992)] and the
last inequality follows from (i) and (ii). �

PROOF OF COROLLARY 5. Following the proof of Lemma 4 and using our
additional assumption that p is of class C 1, without any loss of generality, below
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we can assume that the set E1 and E2 are empty and we recall that E3 has Lebesgue
measure 0. Let λ /∈ E3 be such that

inf
x∈p−1(λ)

‖∇p(x)‖ > 0.

We now claim that there exists a nonempty neighborhood U of λ for which

inf
λ∈U

inf
x∈p−1(λ)

‖∇p(x)‖ > 0.

Indeed, arguing by contradiction, suppose that the previous display were not veri-
fied for any neighborhood U of λ. Then there exist sequences {λn} ⊂ R and {xn} ⊂
S such that limn λn = λ, and xn ∈ p−1(λn) and ∇p(xn) = 0 for each n. By com-
pactness, it is possible to extract a subsequence {xnk

} of {xn} such that xnk
→ x,

for some x ∈ p−1(λ). Since p is of class C 1, this implies that ∇p(xnk
) → ∇p(x)

as well. However, ∇p(xnk
) = 0 for each k by construction, while ∇p(x) �= 0. This

produces a contradiction. Thus, for each λ that is not a critical point, one can find
a neighborhood of positive length containing it and, by Lemma 4, (C1) holds at λ

with γ = 1. Since, using compactness again, ‖p‖∞ < ∞, this implies that there
can only be a finite number of critical points for which γ may differ from 1. �

PROOF OF LEMMA 8. Since ε < ε and h < h, in virtue of (C2)(b) it holds
that, on Eh,ε ,

L̂h(λ) ⊇ Lh(λ + ε) ⊇ L(λ + ε)

and

L̂h(λ) ⊆ Lh(λ − ε) = L(λ − ε) ∪ (Lh(λ − ε) − L(λ − ε)
)
.

Because L(λ + ε) ⊆ L(λ) ⊆ L(λ − ε), the above inclusions imply, still on Eh,ε ,
that

L̂h(λ)
L(λ) ⊆ (L(λ − ε) − L(λ + ε)
)∪ (Lh(λ − ε) − L(λ − ε)

)
= A ∪ B,

where it is clear that the sets A and B are disjoint. Taking expectation with respect
to P of the indicators of the sets L̂h(λ)
L(λ), A and B and using condition (C1)
and Lemma 3 yield (14). �

PROOF OF PROPOSITION 9. The claimed results are a direct consequence of
Corollary 2.2 in Giné and Guillou (2002). We outline the details below. We rewrite
the left-hand side of (17) as

P

{∥∥∥∥∥
n∑

i=1

f (Xi) − E[f (X1)]
∥∥∥∥∥

Fh

> 2εnhd

}
,
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where

Fh =
{
K

(
x − ·

h

)
, x ∈ R

d

}
and then proceed to apply Giné and Guillou (2002), Corollary 2.2. Following their
notation, we set t = nhdε and, since,

sup
f ∈Fh

Var[f ] ≤ sup
z

∫
Rd

K2
(

z − x

h

)
dP (x) ≤ hdD,

we can further take σ 2 = hdD and U = C‖K‖∞, where C is a positive constant,
depending on h, such that σ < U/2. Then conditions (2.4), (2.5) and (2.6) of Giné
and Guillou (2002) are satisfied for all n bigger than some finite n0, which depends
on the VC characteristics of K , D, ‖K‖∞, C and ε. Part 2 is proved in a very
similar way. In this case, we take the supremum over the the entire class F and we
set σ 2

n = hd
nD and U = ‖K‖∞. For all n large enough, condition (2.5) is trivially

satisfied because hn = o(1), while equations (2.4) and (2.6) hold true by virtue
of (18). The unspecified constants again depend on the VC characteristics of K , D

and ‖K‖∞. �

PROOF OF THEOREM 10. We can write

E(ρ(p, p̂h,P )) = E

(∫
L̂h(λ)
L(λ)

dP ; Eh,ε

)
+ E

(∫
L̂h(λ)
L(λ)

dP ; E c
h,ε

)
,(31)

where for a random variable X defined on some probability space (�, F ,P) and
an event E ⊂ F , E(X; E ) ≡ ∫�∩A X(ω)dP(ω). Using Proposition 9, the second
term on the right-hand side is upper bounded by

P(Eh,ε) ≤ Le−nCKhde2
.(32)

As for the first term on the right-hand side of (31), without loss of generality, we
consider separately the case in which the support of P has no lower-dimensional
components and the case in which it of lower dimension. The result for the cases
in which the support has components of different dimensions follows in a straight-
forward way.

If the support of P consists of full-dimensional sets, then, on the event Eh,ε ,∫
L̂h(λ)
L(λ)

dP ≤ P
(
L(λ − ε) − L(λ + ε)

)+ P
(
Lh(λ − ε) − L(λ − ε)

)
≤ C1ε

γ + C3h
ξ ,

where the first inequality stems from (14) and the second from conditions (C1) and
(11).

If instead P has lower-dimensional support, then, because, on the event Eh,ε ,
L̂h ⊂ Lh(λ − ε) and because L ⊂ Lh(λ − ε) by (C2)(b), we see that, on Eh,ε ,∫

L̂h(λ)
L(λ)
dP = 0.
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We conclude that E(ρ(p, p̂h,P ); Eh,ε) is bounded by max{C1,C3}(εγ + hξ ) if
the support of P contains a full-dimensional set and is 0 otherwise. This, com-
bined with (32), yields the claimed upper bound on the level set risk with CL =
max{C1,C3,L}. The convergence rates are established using simple algebra. No-
tice that the choice of the sequences {εn} and {hn} does not violate condition (18).

�

PROOF OF COROLLARY 11. For each i ∈ {1, . . . , n},
P(i ∈ Îh|Eh,ε) ≤ P(Xi ∈ L̂h
L|Eh,ε) ≤ max{C1,C3}(εγ + hξ )

1

P(Eh,ε)
,

where the last inequality is due to Lemma 8. Thus,

E(|Îh|) ≤
n∑

i=1

P(i ∈ Î |Eh,ε)P(Eh,ε) + nP(E c
h)

≤ n
(
max{C1,C3}(εγ + hξ ) + P(E c

h)
)

≤ CL(εγ + hξ + e−CKnhdε2
). �

PROOF OF THEOREM 12. From (9), we have

E (L) − E (L̂h) =
∫
L̂h
L

|p0 − λ|dμ + P1(L) − P1(L̂h),

where p0 = dP0
dμ

. Since, on the event Eh,ε , L̂h ⊃ Lh(λ+ ε), we obtain, on the same
event,

P1(L) − P1(L̂h) ≤ P1(L) − P1(Lh + ε) = 0,

where the last equality is due to condition (C2)(b). Therefore,

E (L) − E (L̂h) ≤
∫
L̂h
L

|p0 − λ|dμ.

Just like in the proof of Theorem 10, we treat separately the case in which the
support of P is of lower-dimension and the case in which it consists of full-
dimensional sets. If the support of P is not of full dimension, then, on Eh,ε ,

E (L) − E (L̂h) ≤ λμ(L̂h
L) ≤ λμ
(
Lh(λ − ε) − L(λ − ε)

)≤ λC2h
θ

by (10). On the other hand, if the support of P has no lower-dimensional compo-
nents (so that p0 = p), still on the event Eh,ε and using Lemma 8,∫

{L̂h(λ)
L(λ)}
|p − λ|dμ ≤

∫
L(λ−ε)−L(λ+ε)

|p − λ|dμ

(33)
+
∫
Lh(λ−ε)−L(λ−ε)

|p − λ|dμ.



2710 A. RINALDO AND L. WASSERMAN

The first term on the right-hand side of the previous inequality can be bounded
as follows:∫

L(λ−ε)−L(λ+ε)
|p − λ|dμ(x) =

∫
{x : |p(x)−λ|<ε}

|p − λ|dμ(x)

≤ ε

∫
{x : |p(x)−λ|<ε}

dμ(x)

= ε

λ − ε

∫
{x : |p(x)−λ|<ε}

(λ − ε) dμ

≤ ε

λ − ε

∫
{x : |p(x)−λ|<ε}

p(x)dμ(x)

≤ C1

λ − ε
εγ+1,

where the last inequality is due to condition (C1). As for the second term of the
right-hand side of (33),∫

Lh(λ−ε)−L(λ−ε)
|p − λ|dμ ≤ λμ

(
Lh(λ − ε) − L(λ − ε)

)≤ λC2h
θ

by (10).
Thus, we conclude that E(E (L) − E (L̂h); E h,ε) is bounded by λC2h

θ if the
support of P is a lower-dimensional set and by

max
{
λC2,

C1

λ − ε

}
(εγ+1 + hθ)

otherwise. Next, by compactness of S, and using (32),

E
(

E (L) − E (L̂h); E c
h,ε

)≤ (1 + λμ
(
S + B(0, h)

))
P(Eh,ε) ≤ CS(1 + λ)Le−nCKhde2

for some positive constant CS , uniformly in h < h. The claimed upper bound on
the excess mass risk now follows by taking CM = max{λC2,

C1
λ−ε

,CS(1 + λ)L}.
The convergence rates can be easily obtained by simple algebra. Notice that the
choice of the sequences {εn} and {hn} does not violate condition (18). �

PROOF OF THEOREM 14. This follows by combining the version of Tala-
grand’s inequality for empirical processes as given in Massart (2000) with an adap-
tation of the arguments used in the proof of Theorem 7.1 in Györfi et al. (2002).
For completeness, we provide the details.

Define ĥ = arg suph∈H Ê (Lh), where

Ê (Lh) = 1

n

n∑
i=1

I (Zi ∈ Lh) − λμ(Lh)

and h∗ = arg suph∈H EX(Lh). Set �(h) = EX(Lh∗)− EX(Lh), where h ∈ H. Recall
that both Lh∗ and Lh = {x : p̂h ≥ λ}, are random sets depending on the training
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set X. We will bound E(�(ĥ)), where the expectation is over the joint distribution
of X and Y .

We can write

E(�(ĥ)|X) = E(�(ĥ)|X) − (1 + δ)�̂(ĥ)︸ ︷︷ ︸
T1

+ (1 + δ)�̂(ĥ)︸ ︷︷ ︸
T2

,

where �̂(h) = Ê (Lh∗) − Ê (Lh). Note that

�̂(ĥ) = Ê (Lĥ) − Ê (Lh∗) ≤ Ê (Lh∗) − Ê (Lh∗) = 0.

Thus, E(T2|X) ≤ 0. We conclude that

E(�(ĥ)) = E(E(�(ĥ)|X)) = E(E(T1|X)) + E(E(T2|X)) ≤ E(E(T1|X)).(34)

Now we bound E(T1|X). Consider the empirical process

Z = sup
h∈H

�̂(h),

so that Z = �̂(ĥ) and E(�(ĥ)|X) = E(Z|X). We have

P(T1 ≥ s|X) = P
(
E(Z|X) − (1 + δ)Z ≥ s | X)

= P

(
E(Z|X) − Z ≥ s + δE(Z|X)

1 + δ

∣∣∣X).
Notice that, conditionally on X, Z = 1

n
suph∈H

∑n
i=1 fh(Yi), where, for each

h ∈ H, fh : Rd 
→ R is the function given by

fh(x) = I (x ∈ Lh∗) − λμ(Lh∗) − (I (x ∈ Lh) − λμ(Lh)
)

with ‖fh‖∞ < κ . Let σ 2 ≡ E( 1
n

suph∈H
∑n

i=1 f 2
h (Yi)|X) and notice that σ 2 ≤

κE(suph �̂(h)|X) = κE(Z|X). Thus,

P(T1 ≥ s|X) ≤ P

(
E(Z|X) − Z ≥ s + δσ 2/κ

1 + δ

∣∣∣X),
which, by Corollary 13 in Massart (2000), is upper bounded by

2 exp
{
−n((s + δσ 2/κ)/(1 + δ))2

4(4γ 2σ 2 + 7/4κε)

}
.

Then, some algebra [see Problem 7.1 in Györfi et al. (2002)] yields the final bound

P(T1 ≥ s|X) ≤ 2 exp
{ −ns

d(δ, κ)

}
,

where d(δ, κ) is given the in the statement of the theorem.
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Set u = d(δ,κ)
n

log 2. Then

E(T1|X) =
∫ ∞

0
P(T1 > s|X)ds ≤ u +

∫ ∞
u

P(T1 > s|X)ds

= u + 2d(δ, κ)

n
exp
{
− nu

d(δ, κ)

}

= d(δ, κ)
1 + log 2

n
.

From (34), we conclude that

E(�(ĥ)) ≤ d(δ, κ)
1 + log 2

n

and so

E(M(ĥ)) ≤ E(M(h∗)) + d(δ, κ)
1 + log 2

n
,

which implies that

E(E (ĥ)) ≥ E(E (h∗)) − d(δ, κ)
1 + log 2

n
.

This shows (23).

PROOF OF THEOREM 15. Define rn(γ, θ) = (
logn

n
)θ(γ+1)/(2θ+d(γ+1)). For

each θ , rn(γ, θ) is decreasing in θ and

rn(ϒn(θ), θ) ≤ 2rn(∞, θ).

Hence, infγ∈[0,ϒn(θ)] rn(γ, θ) ≤ 2 infγ≥0 r(γ, θ). Some algebra shows that |∂rn(γ,

θ)/∂γ | ≤ An(θ) for all γ and θ . Therefore, for each j , rn(γj (θ), θ) = rn(jδn(θ)+
δn(θ), θ) ≥ rn(jδn(θ), θ) − δn(θ)An(θ) ≥ rn(γj (θ), θ)/2. Let hn = h(γ, θ). By
Theorem 12, RM(p, p̂hn) = O((logn/n)θ(γ+1)/(2θ+d(γ+1)). Let h∗ ∈ Hn mini-
mize RM(p, p̂h) for h ∈ Hn. Then RM(p, p̂h∗) ≤ 2RM(p, p̂hn). So,

RM(p, p̂ĥ) ≤ d(δ, κ)
1 + log 2

n
+ RM(p, p̂h∗)

≤ d(δ, κ)
1 + log 2

n
+ 2RM(p, p̂hn)

= d(δ, κ)
1 + log 2

n
+ 2rn(γ, θ)

= O

(
logn

n

)θ(γ+1)/(2θ+d(γ+1))

. �

PROOF OF THEOREM 16. (1) When h = 0, {p̂h > λ} = X and {q̂h > λ} = Y

so that {p̂h > λ}
{q̂h > λ} = (X,Y ). Since P has a Lebesgue density, with proba-
bility one, dP̂Z puts no mass on (X,Y ) and, therefore, �(0) = 0. By compactness



DENSITY CLUSTERING 2713

of S, if h ≥ diam(S), then ‖p̂h‖∞ = ‖q̂h‖∞ = 1
hdvd

, with the supremum attained
by any z ∈ S. Thus, as h → ∞, ‖p̂h − q̂h‖∞ → 0 and consequently, �(∞) → 0.

(2) Note that

�(h) = ρ(p̂h, q̂h, P̂Z) =
∫
{p̂h≥λ}
{q̂h≥λ}

dP̂Z(z)

=
∫

I
(
p̂h(z) ≥ λ, q̂h(z) ≤ λ

)
dP̂Z(z)

+
∫

I
(
p̂h(z) ≤ λ, q̂h(z) ≥ λ

)
dP̂Z(z).

Define ξ(h) = E(�(h)|X,Y ). Then

ξ(h) = ρ(p̂h, q̂h,P )

=
∫

I
(
p̂h(z) ≥ λ, q̂h(z) ≤ λ

)
dP (z)

+
∫

I
(
p̂h(z) ≤ λ, q̂h(z) ≥ λ

)
dP (z)

d= 2
∫

I
(
p̂h(z) ≥ λ, q̂h(z) ≤ λ

)
dP (z),

where d= denotes identity in distribution. Let πh(z) = P(p̂h(z) ≤ λ) = P(q̂h(z) ≤
λ). By Fubini’s theorem and independence,

E(�(h)) = E(ξ(h))

= 2
∫

Rd
P
(
p̂h(z) ≥ λ, q̂h(z) ≤ λ

)
dP (z)

(35)
= 2
∫

Rd
P
(
p̂h(z) ≥ λ

)
P
(
q̂h(z) ≤ λ

)
dP (z)

= 2
∫

Rd
πh(z)

(
1 − πh(z)

)
dP (z).

Since πh(z)(1 − πh(z)) ≤ 1/4 for all n, h and z, (2) follows.
(3) Let W = (X,Y ) be the 2n-dimensional vector obtained by concatenating X

and Y and define the event

Ah = {B(Wi,h) ∩ B(Wj ,h) = ∅,∀i �= j}.
Let h be small enough such that λnhdvd < 1 (trivially satisfied if λ = 0). Then, for
any realization w of the vector W for which the event Ah occurs,∫

I
(
p̂h(z) ≥ λ, q̂h(z) ≤ λ

)
dP (z) =

2n∑
i=1

P(B(wi, h)).
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By our assumptions,

2nδhdvd ≤
2n∑
i=1

P(B(wi, h)) ≤ 2n
hdvd.

Using the union bound, we also have

P(Ac
h) ≤
(

2n

2

)
(2h)dvd
.

Thus, it follows that, for fixed n, E(ξ(h)) → 0 as h → 0 according to

2nδhdvd ≤ E(ξ(h)) ≤ hdvd2
max{2dn(2n − 1),2n}.
(4) By the same arguments used in the proof of point (1), for all h ≥ h∗, ξ(h) = 0

almost everywhere with respect to the joint distribution of X and Y , and, therefore,
E(ξ(h)) = 0. Thus, we need only to consider the case 0 < h ≤ h∗.

Set pz,h = P(B(z,h)) and denote with Xz,h a random variable with distribution
Bin(n,pz,h). Then

P
(
p̂h(z) = 0

)= P(Xz,h = 0) = (1 − pz,h)
n.

For each z ∈ S, set D(z,h) = {z′ ∈ S :‖z − z′‖ < h} and Sh = {z :D(z,h) �= S}.
Furthermore, set ph,max = supz∈Sh

{pz,h} and ph,min = infz∈Sh
{pz,h}. Then the ex-

pected instability can be written as

E(�(h)) = 2
∫
Sh

πh(z)
(
1 − πh(z)

)
dP (z)

so that Ah,n ≤ E(�(h)) ≤ Bh,n, where

Ah,n ≡ 2P(Sh)(1 − ph,max)
n(1 − (1 − ph,min)

n),
Bh,n ≡ 2P(Sh)(1 − ph,min)

n(1 − (1 − ph,max)
n).

We will now upper bound Bh,n/2. For the first term, we proceed as follows.
There exists a sphere E = B(z0, h∗/2) such that S ⊂ E. [E.g., choose any two
points z, z′ such that ‖z − z′‖ = h∗. Set z0 = (z + z′)/2.] Let A = B(z0, h∗/2) −
B(z0, (h∗ − h)/2). We claim that Sh ⊂ A. This follows since if z ∈ Ac ∩ S then
z ∈ B(z0, h/2) and then supz′∈S ‖z−z′‖ ≤ supz∈B(z0,h/2),z′∈B(z0,h∗/2) ‖z−z′‖ = h.
Thus, if z ∈ Sh then z ∈ A ∩ S ⊂ A. Hence,

P(Sh) ≤ P(A) ≤ 
μ(A) = 

((h∗/2)d − (h/2)d)πd/2

�((d/2) + 1)
≤ D1(h∗ − h),

where

D1 = πd/2hd−1∗
2d�((d/2) + 1)

.
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For the second term, let z0 = arg minz pz,h. Then

1 − ph,min = 1 − P(B(z0, h)) = P(B(z,h∗)) − P(B(z0, h))

= P
(
B(z,h∗) − B(z0, h)

)≤ 
μ
(
B(z,h∗) − B(z0, h)

)
≤ 


(hd∗ − hd)πd/2

�((d/2) + 1)
= D2(h∗ − h),

where D2 = πd/2hd−1∗
�((d/2)+1)

. The third term is bounded above by 1. Hence, Bn ≤
D1D

n
2 (h∗ − h)n+1.

Now we lower bound Ah,n/2. First, we claim that Sh contains the intersection
of a sphere of radius r/2 where r = h∗ − h, with S. Indeed, let z ∈ Sh. Then there
exists z′ ∈ S such that ‖z − z′‖ ≤ h∗ = h + r . Let w ∈ B(z′, r/2). By the triangle
inequality, ‖w − z‖ ≥ h + r/2. So B(z′, r/2) ∩ S ⊂ Sh. Therefore,

P(Sh) ≥ P
(
B(z′, r/2) ∩ S

)≥ 
μ
(
B(z′, r/2) ∩ S

)
≥ δ
μ

(
B(z′, r/2)

)= D3(h∗ − h)d,

where D3 = δ
πd/2

�((d/2)+1)
.

To lower bound the second term, Let z0 = arg maxz pz,h. Then

1 − ph,max = 1 − P(B(z0, h)) = P(B(z,h∗)) − P(B(z0, h))

= P
(
B(z,h∗) − B(z0, h)

)≥ 
μ
((

B(z,h∗) − B(z0, h)
)∩ S
)

≥ 
δμ
(
B(z,h∗) − B(z0, h)

)= 
δ
(h∗ − h)dπd/2

�(d/2 + 1)

= D4(h∗ − h)d,

where D4 = 
δπd/2

�(d/2+1)
. Thus, (1 − phmax)

n ≥ Dn
4 (h∗ − h)nd . For the third term,

argue as above that 1 − ph,min ≤ D2(h∗ − h) so the third term is larger than 1/2
when h is close enough to h∗. Hence, An ≥ D3

2 Dn
4 (h∗ − h)d(n+1). �

PROOF OF THEOREM 17. By our assumptions (see Section 2.1),

0 < lim
r→0

P(B(x, r))

rdi
< ∞,

where di = dim(Si), for any x outside of a set of Pi measure zero. By Theorem 5.7
in Mattila (1999), di is also the box-counting dimension of Si . Thus, d∗ = maxi di .
Combined with (29) this implies that, without loss of generality, we can assume
that there exist constants C > 0 and ρ > 0 such that for every ball B of radius
ρ < ρ and center in L(λ), P(B) > Cρd∗

.
Let A be a covering of L(λ) with balls of radius ρ/2 and centers in L(λ), with

ρ < ρ. By compactness of L, |A| ≤ Mρ−d∗
, where M depends on d∗ and L(λ)

but not on ρ.
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Next, by Lemma 2, on the event Eh,ε = {‖ph − p̂h‖∞ < ε}, the set L̂h consists
of k disjoint connected sets. Since ρ < δ/2, this implies, on the same event, that
N̂G

h (λ) ≥ k. Thus, on the event Eh,ε , for some ε < ε1 to be specified below, a suf-
ficient condition for the event Oh,n to be verified is that every A ∈ A contains at
least one point from the set Ĵh ≡ {i : p̂h(Xi) ≥ λ} [similar arguments are used also
in Cuevas, Febrero and Fraiman (2000), Biau, Cadre and Pellettier (2007)]. We
conclude that the probability of Oc

h,n is bounded from above by

P(E c
h,ε) + Mρ−d∗

sup
A∈Ah

P({Xi /∈ A,∀i ∈ Ĵh} ∩ Eh,ε).

Since, on the event Eh,ε the set Jhn = {i :phn(Xi) ≥ λ + ε} is contained in Ĵh, we
further have that, for each A ∈ Ah,

P({Xi /∈ A,∀i ∈ Ĵh} ∩ Eh,ε) ≤ (1 − P(A ∩ {ph ≥ λ + ε}))n,(36)

where the inequality stems from the identity among events

{Xi /∈ A,∀i ∈ Jh} =⋂
i

{{{phn(Xi) ≥ λ + ε} ∩ Ac}∪ {phn(Xi) < λ + ε}},
and the independence of the Xi ’s. By Lemma 19, for any fixed 0 < τ < 1/2, there
exists a point y ∈ L(λ) ∩ Lh(λ + ε) such that B(y,

τρ
2 ) ⊂ A ∩ Lh(λ + ε), for all

ε < ε(ρ, τ ). Thus,

P
(
A ∩ Lh(λ + ε)

)≥ P

(
B

(
y,

τρ

2

))
≥ C

(
τρ

2

)d∗

for all ε < ε(ρ, τ ), where the second inequality is verified since ρτ
2 < ρ. Set

ε(ρ) = min{ε1, ε(ρ, τ )}. The result now follows from collecting all the terms and
the inequality (1 − x)n ≤ e−nx , valid for all 0 ≤ x ≤ 1. �

PROOF OF THEOREM 18. Let Ah be a covering of Lh(λ) by balls of radius
ρ/2 and centers in Lh(λ). By the same arguments used in the proof of the Theo-
rem 17, the probability of the event (O∗

h,n)
c is bounded by

P(E c
h,ε) + Mρ−d sup

A∈Ah

P({X∗
j /∈ A,∀j} ∩ Eh,ε),

where the probability is over the original sample X = (X1, . . . ,Xn) and the boot-
strap sample X∗ = (X∗

1, . . . ,X∗
N). Here, the value of ε < ε1 used in the definition

of the event Eh,ε is to be specified below. Because of compactness of the support
of P , M is a constant depending only d and S + B(0, h).

For a set S ⊆ R
d , we denote with S⊗n the n-fold Cartesian product of S and with

P h
X∗|X=x the conditional distribution of the bootstrap sample X∗ given X = x, with

x = (x1, . . . , xn). Let En = {x ∈ S⊗n :‖ph − p̂h‖∞ ≤ ε}, where p̂h is the kernel
density estimate based on x. Then, for each A ∈ Ah,

P({X∗
j /∈ A,∀j} ∩ Eh,ε) = EX(PX∗|X((Ac)⊗n); En),
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where, if X ∼ P , EX(f (X); E ) ≡ ∫{x∈E} f (x) dP (x). For every x ∈ En, by the
conditional independence of X∗ given X = x,

PX∗|X=x((A
c)⊗n) =

(
1 −
∫
A∩Lh(λ) p̂h(v) dv∫
{p̂h≥λ} p̂h(v) dv

)N

≤
(

1 −
∫
A∩Lh(λ+ε)(ph − ε) dμ

V (h, ε)

)N

,

where

V (h, ε) =
∫
Lh(max{λ−ε,0})

(ph + ε) dμ.

By Lemma 19, for any fixed τ < 1/2 and each h, there exists a point y ∈ Lh(λ) ∩
Lh(λ + ε) such that B(y,

τρ
2 ) ⊂ A ∩ Lh(λ + ε), for all ε < ε(ρ, τ ). Thus,∫

A∩Lh(λ+ε)
(ph − ε) dμ ≥

∫
B(y,τρ/2)

(ph − ε) dμ

=
∫
B(y,τρ/2)

ph dμ − εμ

(
B

(
y,

τρ

2

))
.

Next,

V (h, ε) =
∫
Lh(λ)

ph dμ + εμ
(
Lh(max{λ − ε,0}))+ ∫

Lh(λ)−Lh(max{λ−ε,0})
ph dμ.

Following the proof of Lemma 19, one can verify that, because of assumption (G),
infh∈(0,h) μ(Lh(λ) − Lh(max{λ − ε,0})) → 0, as ε → 0. Thus,∫

A∩Lh(λ+ε)(ph − ε) dμ

V (h, ε)
≥
∫
B(y,τρ/2) ph dμ∫

Lh(λ) ph dμ

(
1 + o(1)

)
as ε → 0. Then using (30) and the facts τ < 1/2 and

∫
Lh(λ) ph dμ ≤ 1 for each h,

we conclude that there exists a ε(ρ, τ ) such that∫
A∩Lh(λ+ε)(ph − ε) dμ

V (h, ε)
≥ Cρd

for all 0 < ε < ε(ρ, τ ) and for some appropriate constant C, independent of ρ

and h. Thus,

PX∗|X=x((A
c)⊗n) ≤ e−NCρd

and the results now follows by setting ε(ρ) = min{ε1, ε(ρ, τ )}. �

LEMMA 19. Assume conditions (C2) and (G). Then, for any 0 < τ < 1 and
ρ > 0, there exists a positive number ε(ρ, τ ) such that, for all ε < ε(ρ, τ ),

sup
h∈(0,h)

sup
x∈L(λ)

dist
(
x,Lh(λ + ε)

)
< τρ.(37)
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PROOF. The claim follows by minor modifications of the arguments used in
the Appendix of Biau, Cadre and Pellettier (2007). We provide some details for
completeness and refer to Lee (2003) for background. Because of assumption (G)
and in virtue of the regular level set theorem [see, e.g., Lee (2003), Corollary 8.10],
for any ε ∈ (0, ε1) and h ∈ (0, h), the set {x :ph(x) = λ + ε} is a closed embedded
submanifold of R

d . Let r(ε, h) be the maximal radius of the tubular neighborhood
around {x :ph(x) = λ + ε}. Set rh = infε<ε1 r(ε, h) and notice that rh > 0 is pos-
itive for each h ∈ (0, h). Then, following the proof of Biau, Cadre and Pellettier
[(2007), Proposition A.2] if ε < ε1, for any h ∈ (0, h),

sup
x∈∂Lh(λ)

dist
(
x,Lh(λ + ε)

)≤ C−1
g ε,(38)

where Cg in the same constant appearing in (28) [see equation (A.1) in Biau, Cadre
and Pellettier (2007)]. In fact, since Cg does not depend on h, (38) holds uniformly
over h ∈ (0, h). Set ε(ρ, τ ) = sup{ε ∈ (0, ε1) :Cε < τρ}. Then as L(λ) ⊆ Lh(λ) by
(C2)(b), (37) is verified for each ε < ε(ρ, τ ). �

APPENDIX: THE GEOMETRIC DENSITY

In this section, we describe in detail our assumptions on the unknown distribu-
tion P . For the sake of completeness, we provide the basic definitions of Hausdorff
measure, Hausdorff dimension, and rectifiability. We refer the reader to Evans and
Gariepy (1992), Mattila (1999), Ambrosio, Fusco and Pallara (2000) and Federer
(1969) for all the relevant geometric and measure theoretic background.

Let k ∈ [0,∞). The k-dimensional Hausdorff measure of a set E in R
d is de-

fined as Hk(E) ≡ limδ↓0 Hk
δ (E), where, for δ ∈ (0,∞],

Hk
δ (E) = vk

2k
inf
{∑

i∈I

(diam(Ei))
k : diam(Ei) < δ

}
,

where the infimum is over all the countable covers {Ei}i∈I of E, with the conven-
tion diam(∅) = 0. The Hausdorff dimension of a set E ⊂ R

d is

inf{k ≥ 0 : Hk(E) = 0}.
Note that H0 is the counting measure, while Hd coincides with the (outer)
Lebesgue measure. If k < d , we will refer to any Hk-measureable set as a set
of lower-dimension. When 1 ≤ k < d is an integer, Hk(E) coincides with the k-
dimensional area of E, if E is contained in a C 1 k-dimensional manifold embedded
in R

d .
The set E is said to be Hk-rectifiable if k is an integer, Hk(E) < ∞ and there

exist countably many Lipschitz functions fi : Rk 
→ R
d such that

Hk

(
E −

∞⋃
i=0

fi(R
k)

)
.
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A Radon measure ν in R
d is said to be k-rectifiable if there exists a Hk-rectifiable

set S and a Borel function f :S 
→ R
d such that

ν(A) =
∫
A∩S

f (x) dHk(x)

for each measurable set A ⊆ R
d .

Throughout this article, we assume that P is a finite mixture of probability mea-
sures supported on disjoint compact sets of possibly different integral Hausdorff
dimensions. Formally, for each Borel set A ⊆ R

d and for some integer m,

P(A) =
m∑

i=1

πiPi(A),

where π is a point in the interior of the (m − 1)-dimensional standard simplex
and each Pi is a di -rectifiable Radon measure with compact and connected sup-
port Si , where di ∈ {0,1, . . . , d} and Si ∩ Sj = ∅, for each i �= j . Notice that we
also have maxi Hdi (Si) < ∞. By Theorem 3.2.18 in Federer (1969), each of the
lower-dimensional rectifiable sets comprising the support of P , can be represented
as the union of C 1 embedded submanifolds, almost everywhere P . Thus, we are
essentially allowing P to be a mixture of distributions supported on disjoint sub-
manifolds of different dimensions and finite sets.

Our assumptions imply that, for every mixture component Pi , there exists a
Hdi -measurable real valued function pi such that such that

pi(x) =
⎧⎨⎩ lim

h→0

Pi(B(x,h))

vdi
hdi

> 0, if x ∈ Si ,

0, if x /∈ Si ,
(39)

where vdi
is the volume of the unit Euclidean ball in R

di . See, for instance, Mattila
[(1999), Corollary 17.9] or Ambrosio, Fusco and Pallara [(2000), Theorem 2.83].
Indeed, pi is a density function with respect to Hdi since, for any measurable set A,

Pi(A) =
∫
A∩Si

pi(x) dHdi (x),

where Hdi denotes the di-dimensional Hausdorff measure on R
d .

We do not assume any knowledge of the probability measures comprising the
mixture P , of their number, supports and dimensions, nor of the vector of mixing
probabilities π .

Recall that the geometric density is the extended real-valued function defined as

p(x) = lim
h↓0

P(B(x,h))

vdhd
, x ∈ R

d .

Below, we list the key properties of the geometric density. Notice, in partic-
ular, that p is not a probability density with respect to μ, since, in general,
0 ≤ ∫

Rd p(x) dμ(x) ≤ 1.
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PROPOSITION 20. The geometric density satisfies the following properties:

(i) p(x) = ∞ if and only if x ∈ Si with dim(Si) < d , almost everywhere P ,
(ii) p(x) = πipi(x) < ∞ if and only if x ∈ Si with dim(Si) = d , almost every-

where μ,
(iii) μ({x :p(x) = ∞}) = 0,
(iv) if x /∈ S, then p(x) = 0,
(v) S = {x :p(x) > 0}.

PROOF. If Si has dimension d , then, by the Lebesgue theorem,

p(x) = lim
h↓0

P(B(x,h))

vdhd
= πipi(x) < ∞,

μ-almost everywhere on Si . Similarly, if di < d , then, by (39),

p(x) = lim
h↓0

P(B(x,h))

vdhd
= lim

h↓0

vdi
hdi

vdhd

Pi(B(x,h))

vdi
hdi

= ∞,

since
vdi

hdi

vdhd → ∞ as h ↓ 0, Hdi -almost everywhere on Si . Thus, part (i) and (ii)

follow. Part (iii) is a direct consequence of (i) and (ii), while parts (iv) and (v) stem
directly from the definition of support. �

As a final remark, even though the geometric density p is very different from
the mixture densities pi , for our clustering purposes, we need only to concern
ourselves with estimating the level sets of p.
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