
The Annals of Probability
2012, Vol. 40, No. 2, 535–577
DOI: 10.1214/10-AOP624
© Institute of Mathematical Statistics, 2012

UNIFORMITY OF THE UNCOVERED SET OF RANDOM WALK
AND CUTOFF FOR LAMPLIGHTER CHAINS

BY JASON MILLER AND YUVAL PERES

Stanford University and Microsoft Research

We show that the measure on markings of Zd
n , d ≥ 3, with elements of

{0,1} given by i.i.d. fair coin flips on the range R of a random walk X run un-
til time T and 0 otherwise becomes indistinguishable from the uniform mea-
sure on such markings at the threshold T = 1

2Tcov(Zd
n). As a consequence

of our methods, we show that the total variation mixing time of the ran-
dom walk on the lamplighter graph Z2 � Zd

n , d ≥ 3, has a cutoff with thresh-
old 1

2Tcov(Zd
n). We give a general criterion under which both of these re-

sults hold; other examples for which this applies include bounded degree ex-
pander families, the intersection of an infinite supercritical percolation cluster
with an increasing family of balls, the hypercube and the Caley graph of the
symmetric group generated by transpositions. The proof also yields precise
asymptotics for the decay of correlation in the uncovered set.

1. Introduction. Suppose G = (V ,E) is a finite, connected graph and X is a
lazy random walk on G. This means that X is the Markov chain with state space
V and transition kernel

p(x, y;G) = Px[X(1) = y] =

⎧⎪⎪⎨⎪⎪⎩
1

2
, if x = y,

1

2 deg(x)
, if {x, y} ∈ E.

Let

τcov(G) = min
{
t ≥ 0 :V is contained in the range of X|[0,t]

}
be the cover time and let Tcov(G) = Eπ [τcov(G)] be the expected cover time. Here
and hereafter, a subscript of π indicates that X is started from stationarity. Let
τ(y) = min{t ≥ 0 :X(t) = y} be the first time X hits y and

Thit(G) = max
x,y∈V

Ex[τ(y)]

be the maximal hitting time. If (Gn) is a sequence of graphs with Thit(Gn) =
o(Tcov(Gn)), then a result of Aldous [4], Theorem 2, implies that τcov(Gn) has
a threshold around its mean: τcov(Gn)/Tcov(Gn) = 1 + o(1). Many sequences of
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(a) (b) (c)

FIG. 1. The subset L( 1
2 ,Z2

n) of Z2
n consisting of those points unvisited by a random walk X run

for 1
2Tcov(Z2

n), where Tcov(Z2
n) is the expected number of steps required for X to cover Z2

n, exhibits

clustering. Consequently, the marking of Z2
n by elements of {0,1} given by the results of i.i.d. coin

flips on the range of X at time 1
2Tcov(Z2

n) and zero otherwise can be distinguished from a uniform

marking. (a) L( 1
2 ,Z2

n). (b) L( 1
2 ,Z2

n) marked with i.i.d. coin flips. (c) Z2
n marked with i.i.d. coin flips.

graphs satisfy this condition, for example, Zd
n for d ≥ 2, Zn

2, and the complete
graph Kn. When Aldous’ condition holds, the set

L(α;Gn) = {x ∈ Vn : τ(x) ≥ αTcov(Gn)},
Vn the vertices of Gn, of α-late points, that is, points hit after time αTcov(Gn),
α ∈ (0,1), often has an interesting structure. The case Gn = Z2

n was first stud-
ied by Brummelhuis and Hilhorst in [8] where it is shown that E|L(α;Z2

n)| has
growth exponent 2(1 − α) and that points in Ln(α;Z2

n) are positively correlated.
This suggests that L(α;Gn) has a fractal structure and exhibits clustering. These
statements were made precise by Dembo, Peres, Rosen and Zeitouni in [13] where
they show that the growth exponent of |L(α;Z2

n)| is 2(1−α) with high probability
in addition to making a rigorous quantification of the clustering phenomenon (see
Figure 1 for an illustration of this).

If Gn is either Kn or Zd
n for d ≥ 3, then it is also true that log|L(α;Gn)| ∼

(1 − α) log|Vn| with high probability. In contrast to L(α;Z2
n), L(α;Kn) does not

exhibit clustering and is “uniformly random” in the sense that conditional on s0 =
|L(α;Kn)|, all subsets of Kn of size s0 are equally likely. The rapid decay of
correlation in L(α;Zd

n) for d ≥ 3 determined by Brummelhuis and Hilhorst [8]
indicates that the clustering phenomenon is also not present in this case and leads
one to speculate that L(α;Zd

n) is likewise in some sense “uniformly random.”
The purpose of this article is to quantify the degree to which this holds. We

use as our measure of uniformity the following statistical test. Let R(α;G) be the
(random) subset of V covered by X at time αTcov(G) and let μ(·;α,G) be the
probability measure on X (G) = {f :V → {0,1}} given by first sampling R(α;G)
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then setting

f (x) =
{

ξ(x), if x ∈ R(α;G),
0, otherwise,

where (ξ(x) :x ∈ V ) is a collection of i.i.d. variables such that P[ξ(x) = 0] =
P[ξ(x) = 1] = 1

2 . The question we are interested in is:

How large does α ∈ (0,1) need to be so that μ(·;α,G) is indistinguishable from
the uniform measure ν(·;G) on X (G)?

It must be that α ≥ 1/2 in the case of Zd
n for d ≥ 2 since if α < 1/2 then

|L(α;Zd
n)| − (1/2)nd

nd/2 → ∞ as n → ∞.

In particular, the deviations of the number of zeros from nd/2 which arise in a
marking from such α far exceed that in the uniform case. By [4], Theorem 2, it
is also true that α ≤ 1 since if α > 1 then with high probability |L(α;Zd

n)| = 0.
The main result of this article is that the threshold for indistinguishability for any
sequence of graphs (Gn) with limn→∞ |Vn| = ∞ is α = 1

2 provided random walk
on (Gn) is uniformly locally transient and satisfies a mild connectivity hypothesis.

We need the following definitions in order to give a precise statement of our
results. The ε-total variation mixing time of G is

Tmix(ε;G) = min
{
t ≥ 0 : max

x∈V
‖pt(x, ·;G) − π‖TV ≤ ε

}
,

where pt(x, y;G) = Px[X(t) = y] is the t-step transition kernel of X started at x,

‖μ − ν‖TV = max
A⊆V

|μ(A) − ν(A)| = 1

2

∑
x∈V

|μ(x) − ν(x)|

is the total variation distance between the measures μ,ν on V and π is the sta-
tionary distribution of X. The ε-uniform mixing time of G is

T U
mix(ε;G) = min

{
t ≥ 0 : max

x,y∈V

∣∣∣∣pt(x, y;G)

π(y)
− 1

∣∣∣∣ ≤ ε

}
.

It is a basic fact ([3, 20]; see also Proposition 3.3) that T U
mix(ε;G) is within a factor

of log|V | of Tmix(ε;G), however, for many graphs this factor is constant. When-
ever we omit ε and write Tmix(G),T U

mix(G) it is understood that ε = 1
4 . Green’s

function of G is

g(x, y;G) =
T U

mix(G)∑
t=0

pt(x, y;G),
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that is, the expected amount of time that X spends at y until time T U
mix(G) when

started at x. For A ⊆ V , we set

g(x,A;G) = ∑
y∈A

g(x, y;G).

We say that (Gn) is uniformly locally transient with transience function ρ : [0,
∞) × [0,∞) → [0,∞) if

g(x,A;Gn) ≤ ρ(d(x,A),diam(A)) for all n and x ∈ Vn,A ⊆ Vn.

Here, d(·, ·) is the graph distance, d(x,A) = miny∈A d(x, y), and ρ(·, s) is as-
sumed to be nonincreasing with limr→∞ ρ(r, s) = 0 when s is fixed. Let ρ(r) =
ρ(r,1),

	(G) = max
x∈V

deg(x), 	(G) = min
x∈V

deg(x) and 	(G) = 	(G)

	(G)
.

ASSUMPTION 1.1 (Transience). (Gn) is a sequence of uniformly locally tran-
sient graphs with |Vn| → ∞ such that there exists 	0 > 0 so that 	(Gn) ≤ 	0 for
all n and, for each r > 0:

(1) log|B(x, r)| = o(log|Vn|) as n → ∞, and
(2) T U

mix(Gn)	
r(Gn) = o(|Vn|) as n → ∞.

The reason for the hypothesis 	(Gn) ≤ 	0 is that it implies

π(x;Gn)

π(y;Gn)
≤ 	0 uniformly in x, y ∈ Vn and n.

In particular, this combined with uniform local transience allows us to conclude
that the hitting time of any two points x, y ∈ Vn is comparable. The purpose of
part (1) of Assumption 1.1 is to ensure that for every r, n > 0 we can construct
an r-net Er,n of Vn whose size at logarithmic scales is comparable to |Vn|, that
is, log|Er,n| = log|Vn| + o(1) as n → ∞. Finally, part (2) of Assumption 1.1 is
important since by a union bound it implies that the probability that X hits any
fixed ball of finite radius within time T U

mix(Gn) when initialized from stationarity
tends to zero with n.

We will also need to make the following assumption.

ASSUMPTION 1.2 (Connectivity). (Gn) is a sequence of graphs satisfying ei-
ther:

(1) for every γ > 0 there exists R
γ
n → ∞ as n → ∞ satisfying R

γ
n ≤ 1

2 ×
max{R > 0 : maxx∈Vn |B(x,R)| ≤ |Vn|γ } such that for every r > 0,

T U
mix(Gn)

R
γ
n

max
d(x,A)≥R

γ
n

g(x,A) = o(1) as n → ∞
uniformly in A ⊆ Vn with diam(A) ≤ r , or
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(2) a uniform Harnack inequality, that is, for each α > 1 there exists C =
C(α) > 0 such that for every x, r,R > 0 with R/r ≥ α and positive harmonic
function h on B(x,R) we have that

max
y∈B(x,r)

h(y) ≤ C min
y∈B(x,r)

h(y).

Assumption 1.2 ensures that (Gn) is in some sense well connected. In partic-
ular, part (1) is used to show that X is uniformly unlikely to hit a small ball be-
fore remixing provided its starting point and the small ball are far enough apart.
This hypothesis will be relevant for graphs where |∂B(x, r)| is comparable to or
larger than |B(x, r)|, as in the case of Zn

2 or graphs which are locally tree-like.
Part (2) is meant to be applicable for graphs where |∂B(x, r)| is much smaller
than |B(x, r)|, as in the case of Zd

n , and is used to deduce that the empirical aver-
age of the probability that successive excursions of X between concentric spheres
∂B(x, r), ∂B(x,R) hit x conditional on their entrance and exit points is well con-
centrated around its mean provided R > r are large enough.

We now state our main theorem.

THEOREM 1.3. If (Gn) satisfies Assumptions 1.1 and 1.2, then for every
ε > 0,

lim
n→∞

∥∥∥∥μ(·; 1

2
+ ε,Gn

)
− ν(·;Gn)

∥∥∥∥
TV

= 0

and

lim
n→∞

∥∥∥∥μ(·; 1

2
− ε,Gn

)
− ν(·;Gn)

∥∥∥∥
TV

= 1.

REMARK 1.4. If (Gn) is a sequence with |Vn| → ∞ and supn 	(Gn) < ∞,
then Assumption 1.1 is equivalent to the decay of g(x, y;Gn) in d(x, y) uniformly
in n.

Many families satisfy Assumptions 1.1 and 1.2, for example, Zd
n for d ≥ 3,

random d-regular graphs whp, also for d ≥ 3, and the hypercube Zn
2. We will

discuss these and other examples in the next section.
The problem that we consider is closely related to determining the mixing time

of the lamplighter walk, which we now introduce; recall that X (G) = {f :V →
{0,1}} is the set of markings of V by {0,1}. If G = (V ,E) is a finite graph, the
wreath product G� = Z2 � G is the graph (V �,E�) whose vertices are pairs (f, x)

where f ∈ X (G) and x ∈ V . There is an edge between (f, x) and (g, y) if and
only if {x, y} ∈ E and f (z) = g(z) for z /∈ {x, y}. G� is also referred to as the
lamplighter graph over G since it can be constructed by placing “lamps” at the
vertices of G; the first coordinate f of a configuration (f, x) indicates the state of
the lamps and the second gives the location of the lamplighter.



540 J. MILLER AND Y. PERES

FIG. 2. A typical configuration of the lamplighter over a 5 × 5 planar grid. The colors indicate the
state of the lamps and the dashed circle gives the position of the lamplighter.

The lamplighter walk X� on G is the random walk on G�. Its transition kernel
p(·, ·;G�) can be constructed from p(·, ·;G) using the following procedure: given
(f, x) ∈ V �:

(1) sample y ∈ V adjacent to x using p(x, ·;G),
(2) randomize the values of f (x), f (y) using independent fair coin flips,
(3) move the lamplighter from x to y.

See Figure 2 for an example of a typical lamplighter configuration. That both f (x)

and f (y) are randomized rather than just f (y) is necessary for reversibility. It is
obvious that the stationary distribution of X� is ν(·;G)×π(G). For the graphs we
consider, the mixing time of X� is dominated by the mixing time of its first coor-
dinate as it is comparable to Tcov(G) which in turn is much larger than Tmix(G),
the mixing time of the second coordinate of X�. This will allow us to deduce
Tmix(G

�) = (1
2 + o(1))Tcov(Gn) for graphs satisfying Assumptions 1.1, 1.2 from

Theorem 1.3.
Random walk on a sequence of graphs (Gn) is said to have a (total variation)

cutoff with threshold (an) if

lim
n→∞

Tmix(ε;Gn)

an

= 1 for all ε ∈ (0,1).

It is believed that many graphs have a cutoff, but establishing this is often quite
difficult since it requires a delicate analysis of the behavior of the underlying walk.
The term was first coined by Aldous and Diaconis in [2] where they prove cutoff
for the top-in-at-random shuffling process. Other early examples include random
transpositions on the symmetric group [16], the riffle shuffle and random walk on
the hypercube [1]. By making a small modification to the proof of Theorem 1.3,
we are able to establish cutoff for the lamplighter walk on base graphs satisfying
Assumptions 1.1 and 1.2.

Before we state these results, we will first summarize previous work related to
this problem. The mixing time of G� was first studied by Häggström and Jonas-
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son in [18] in the case Gn = Kn and Gn = Zn. Their work implies a cutoff with
threshold 1

2Tcov(Kn) in the former case and that there is no cutoff in the latter. The
connection between Tmix(G

�) and Tcov(G) is explored further in [22], in addi-
tion to developing the relationship between the relaxation time of G� and Thit(G),
and E[2|L(α;G)|] and T U

mix(G
�). The results of [22] include a proof of cutoff when

Gn = Z2
n with threshold Tcov(Z2

n) and a general bound that[1
2 + o(1)

]
Tcov(Gn) ≤ Tmix(G

�
n) ≤ [1 + o(1)]Tcov(Gn),(1.1)

whenever (Gn) is a sequence of vertex transitive graphs with Thit(Gn) =
o(Tcov(Gn)). It is not possible to improve upon (1.1) without further hypotheses
since the lower and upper bounds are achieved by Kn and Z2

n, respectively.
The bound (1.1) applies to Zd

n when d ≥ 3 since Thit(Zd
n) ∼ cdnd and

Tcov(Zd
n) = c′

dnd(logn) (see Proposition 10.13, Exercise 11.4 of [20]). This leads
[22] to the question of whether there is a threshold for Tmix((Zd

n)�) and, if so, if it
is at 1

2Tcov(Zd
n), Tcov(Zd

n) or somewhere in between. By a slight extension of our
methods, we are able to show that the threshold is at 1

2Tcov(Zd
n) when d ≥ 3, and

that the same holds whenever (Gn) satisfies Assumptions 1.1 and 1.2.

THEOREM 1.5. If (Gn) satisfies Assumptions 1.1 and 1.2, then Tmix(ε;G�
n)

has a cutoff with threshold 1
2Tcov(Gn).

In order to prove Theorems 1.3 and 1.5, we need to develop a delicate under-
standing of both the process of coverage and the correlation structure of L(α;Gn).
The proof yields the following theorem, which gives a precise estimate of the decay
of correlation in L(α;Gn) under the additional hypothesis of vertex transitivity.

THEOREM 1.6. Suppose (Gn) is a sequence of vertex transitive graphs satis-
fying Assumption 1.1. If (xi

n) for 1 ≤ i ≤ � is a family of sequences with xi
n ∈ Vn

and |xi
n − x

j
n | ≥ r for every n and i = j , then

(1 − δr,�)|Vn|−�α−δr,� ≤ P[xi
n ∈ L(α;Gn) for all i]

(1.2)
≤ (1 + δr,�)|Vn|−�α+δr,�,

where δr,� → 0 as r → ∞ while � is fixed. If 	(Gn) → ∞, we take r = 1 and
δ1,� = o(1) as n → ∞.

Outline. The remainder of the article is structured as follows. We show in Sec-
tion 2 that the hypotheses of Theorems 1.3 and 1.5 hold for a number of natu-
ral examples. In Section 3, we collect several general estimates that will be used
throughout the rest of the article; Proposition 3.2 is in particular of critical impor-
tance.

Next, in Section 4 we will develop precise asymptotic estimates for the cover
and hitting times of graphs (Gn) satisfying Assumption 1.1. The key idea is that
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the process by which X hits a point x can be understood by studying the excursions
of X from ∂B(x, r) through ∂B(x,R), r < R and then subsequently run for time
βT U

mix(G), some β > 0, in order to remix. Due to the remixing, these excursions
exhibit behavior which is close to that of i.i.d. random walk excursions initialized
from stationarity. This has three important consequences. First, our transience as-
sumptions imply that the number NH(x) of excursions up until the time τ(x) that x

is hit is stochastically dominated from below by a geometric random variable with
small parameter p provided R > r are both large. Thus, NH(x) is typically very
large. Second and consequently, the empirical average of the amount of time sepa-
rating the beginning of successive excursions up to time τ(x) is very concentrated
around its mean Tr,R(x). Third, with pj (x) the probability that the j th excursion
Ej hits x by time αTmix(G) after exiting B(x,R), α ≤ β , conditional on both the
entrance point of Ej and Ej+1 to B(x, r), we have that 1

k

∑k
j=1 pj (x) is also well

concentrated around its mean pr,R(x). Combining everything, this allows us to
deduce the following asymptotic formula for the hitting time of x:

E[τ(x)] = (
1 + o(1)

)
Tr,R(x)E[NH(x)] = (1 + o(1))Tr,R(x)

pr,R(x)
.

For simplicity, we will now restrict our attention to graph families which are
vertex transitive. This implies that Tr,R = Tr,R(x) and pr,R = pr,R(x) do not de-
pend on x. Consequently, by the Matthews method upper and lower bounds ([21];
see also Theorem 11.2 and Proposition 11.4 of [20]) we infer that

Tcov(Gn) = (
1 + o(1)

) Tr,R

pr,R

log|Vn|.(1.3)

We will now explain how we use these estimates to prove Theorems 1.3 and 1.5
in Section 6. By Proposition 3.2, to give an upper bound on the total variation
distance of the i.i.d. marking of the range of random walk run for time 1

2Tcov(Gn)

from the uniform marking on Vn, it suffices to control the exponential moment of
the set of points in Vn which are not visited by two independent random walks,
each run for time 1

2Tcov(Gn). Equation (1.3) implies that the number Ncov(x;α) of
excursions that have occurred by time αTcov(Gn) satisfies

Ncov(x;α) = (
α + o(1)

)
log|Vn|/pr,R.

This in turn implies the tail decay

P[τ(x) ≥ αTcov(Gn)] = |Vn|−α+o(1).

For points x, y which are far apart, it is unlikely that a single random walk ex-
cursion passes through both B(x,R) and B(y,R). That is, the process of hitting
well-separated points exhibits mean-field behavior, which in turn allows us to give
an efficient estimate of the relevant exponential moment. There are many technical
challenges involved in getting all of these estimates to fit together correctly.
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Decomposing the process of hitting into excursions between concentric spheres
is not new, and is used to great effect, for example, in [10–13]. Our implementa-
tion of this idea is new since explicit representations of hitting probabilities and
Green’s functions in addition to the approximate rotational invariance available in
the special case of Zd

n are not available in the generality we consider.
We prove Theorem 1.6 in Section 5. This result, which may be of indepen-

dent interest, is important in Section 6 since it allows us to deduce that points in
L(1

2 ;Gn) are typically “spread apart.” The article ends with a list of related open
questions.

2. Examples.

Zd
n , d ≥ 3. Although the simplest, this is the motivating example for this work.

It is well known (see Section 1.5 of [19]) that there exists a constant cd > 0 so
that g(x, y;Zd

n) ≤ cd |x − y|2−d , which implies uniform local transience. Assump-
tion 1.2(2) is also satisfied since it is also a basic result that random walk on Zd

n

satisfies a Harnack inequality (see [19], Section 1.4).

Super-critical percolation cluster. Suppose that ηe is a collection of i.i.d. ran-
dom variables indexed by the edges e = (x, y) of Zd , d ≥ 3, taking values in {0,1}
such that P[ηe = 1] = p ∈ [0,1]. An edge e is called open if ηe = 1. Let C(x) de-
note the subset of Zd consisting of those elements y that can be connected to x by
a path consisting only of open edges. Let C∞ denote the event that there exists an
infinite open cluster and let pc = inf{p > 0 : P[C∞] > 0}. Suppose p > pc. Then
it is known that there exists a unique infinite open cluster C∞ almost surely. Fix
x ∈ C∞ and consider the graph Gn = B(x,n) ∩ C∞. It follows from the works of
Delmotte [9], Deuschel and Pisztora [15], Pisztora [23] and Benjamini and Mos-
sel [6] that the heat kernel for continuous time random walk (CTRW) on Gn has
Gaussian tails whp when n is large enough; see the discussion after the statement
of Theorem A of [5]. Consequently, Green’s function of the CTRW on (Gn) has the
same quantitative behavior as for (Zd

n). This implies the same is true for the lazy
random walk, which in turn yields uniform local transience for (Gn) whp when n

is sufficiently large. Therefore there exists n0 = n0(ω) such that (Gn :n ≥ n0(ω))

almost surely satisfies Assumption 1.1. Furthermore, it is a result of Barlow [5]
that there exists n1 = n1(ω) such that random walk on (Gn :n ≥ n1(ω)) almost
surely satisfies a Harnack inequality and hence Assumption 1.2.

Bounded degree expanders. Suppose that (Gn) is an expander family with uni-
formly bounded maximal degree such that |Vn| → ∞. Then there exists T0 < ∞
such that Trel(Gn) ≤ T0 for every n where Trel(Gn) is the relaxation time of lazy
random walk on Gn. Equation (12.11) of [20] implies that

pt(x, y;Gn) ≤ C

(
1

|Vn| + e−t/T0

)
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and Theorem 12.3 of [20] gives T U
mix(Gn) = O(log|Vn|). By Remark 1.4, to check

Assumption 1.1, we need only show the uniform decay g(x, y;Gn) in d(x, y). If
t < d(x, y), then it is obviously true that pt(x, y;Gn) = 0. Hence,

g(x, y;Gn) ≤ C

(
O(log|Vn|)

|Vn| +
T U

mix(Gn)∑
t=d(x,y)

e−t/T0

)
(2.1)

≤ C1e
−d(x,y)/T0 + o(1)

as n → ∞. We will now argue that (Gn) satisfies part (1) of Assumption 1.2.
Suppose that 	 ≥ maxx∈Vn deg(x) for every n. We can obviously take R

γ
n =

γ log|Vn|/(2 log	), hence we have T U
mix(Gn)/R

γ
n = O(1) as n → ∞. Combin-

ing this with (2.1) implies that (Gn) satisfies Assumption 1.2.

Random regular graphs. Suppose that d ≥ 3 and let Gn,d denote the set of d-
regular graphs on n vertices. It is well known [7] that, whp as n → ∞, an element
chosen uniformly from Gn,d is an expander. Consequently, whp, a sequence (Gn)

where each Gn is chosen independently and uniformly from Gn,d , d ≥ 3, almost
surely satisfies the hypotheses of our theorems.

Hypercube. As in the case of super-critical percolation, for Zn
2 it is easiest to

prove bounds for the CTRW which, as we remarked before, easily translate over
to the corresponding lazy walk. The transition kernel of the CTRW is

pt(x, y;Zn
2) = 1

2n
(1 + e−2t/n)n−|x−y|(1 − e−2t/n)|x−y|,

where |x − y| is the number of coordinates in which x and y differ. The spectral
gap is 1/n (see Example 12.15 of [20]) which implies �(n) = T U

mix(Z
n
2) = O(n2)

(see Theorem 12.3 of [20]). Suppose that A ⊆ Zn
2 has diameter s and d(x,A) = r .

If y ∈ A, we have

pt(x, y;Zn
2) ≤ 1

2n
(1 + e−2t/n)n−r (1 − e−2t/n)r .

It is easy to see that

pt(x, y;Zn
2) ≤

⎧⎨⎩
(
Cε

t

n

)r

exp
(
− t

Cεn
(n − r)

)
, if t ≤ εn,

e−ρεn, if t > εn,

provided ε > 0 is sufficiently small. Consequently,

g(x,A;Zn
2) ≤ Cns−r

and therefore Zn
2 is uniformly locally transient. The other hypotheses of Assump-

tion 1.1 are obviously satisfied. As for Assumption 1.2, we note that in this case,
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we can take R
γ
n = γ n/(2 log2 n). Thus, if r > 0 it is easy to see that if diam(A) ≤ s

and d(x,A) ≥ R
γ
n we have that∑

y∈A

pt(x, y;Zn
2) ≤ nse−ρεn,

if t > εn. On the other hand, if t ≤ εn, then we have∑
y∈A

pt(x, y;Zn
2) ≤ ns

(
Cεt

n

)γ n/(2 log2 n)

e−t/(2Cε).

Hence, it is not hard to see that Zn
2 satisfies Assumption 1.2.

Caley graph of Sn generated by transpositions. Let Gn be the Caley graph
of Sn generated by transpositions. By work of Diaconis and Shahshahani [16],
Tmix(Gn) = �(n(logn)), which by Theorem 12.3 of [20] implies T U

mix(Gn) =
O(n2(logn)2). We are now going to give a crude estimate of pt(σ, τ ;Sn). By
applying an automorphism, we may assume without loss of generality that σ =
id. Suppose that d(id, τ ) = r and that τ1, . . . , τr are transpositions such that
τr · · · τ1 = τ . Then τ1, . . . , τr move at most 2r of the n elements of {1, . . . , n},
say, k1, . . . , k2r . Suppose k′

1, . . . , k
′
2r are distinct from k1, . . . , k2r and α ∈ Sn is

such that α(ki) = k′
i for 1 ≤ i ≤ r . Then the automorphism of Gn induced by con-

jugation by α satisfies ατα−1 = τ . Therefore, the size of the set of elements τ ′ in
Sn such that there exists a graph automorphism ϕ of Gn satisfying ϕ(τ) = τ ′ and
ϕ(id) = id is at least

(n−2r
2r

) ≥ 2−2rn2r ((2r)!)−1 assuming n ≥ 8r . Therefore,

pt(e, τ ;Gn) ≤ 22r (2r)!
n2r

and g(e, τ ;Gn) ≤ C(22r (2r)!)(logn)2n2−2r .

If diam(A) = s, then trivially |A| ≤ n2s from which it is clear that (Gn) is uni-
formly locally transient. The other parts of Assumption 1.1 are obviously satis-
fied by Gn. As for Assumption 1.2, a simple calculation shows that we can take
R

γ
n ≤ γ n/4 + O(1). Hence setting R

γ
n = √

n, a calculation analogous to the one
above, gives that Assumption 1.2 is satisfied.

3. Preliminary estimates. The purpose of this section is to collect several
general estimates that will be useful for us throughout the rest of the article.

LEMMA 3.1. If μ,ν are measures with ν absolutely continuous with respect
to μ and ∫

dν

dμ
dν = 1 + ε,

then

‖ν − μ‖TV ≤
√

ε

2
.
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PROOF. This is a consequence of the Cauchy–Schwarz inequality:

‖μ − ν‖2
TV =

(
1

2

∫ ∣∣∣∣ dν

dμ
− 1

∣∣∣∣dμ

)2

≤ 1

4

∫ ∣∣∣∣ dν

dμ
− 1

∣∣∣∣2 dμ

= 1

4

(∫
dν

dμ
dν − 1

)
. �

Let ν denote the uniform measure on X (G) = {f :V → {0,1}}.
PROPOSITION 3.2. Suppose that μ is a measure on X (G) given by first sam-

pling R ⊆ V according to a probability μ0 on 2V , then, conditional on R sampling
f ∈ X (G) by setting

f (x) =
{

ξ(x), if x ∈ R,
0, otherwise,

where (ξ(x) :x ∈ V ) is a collection of i.i.d. random variables with P[ξ(x) = 0] =
P[ξ(x) = 1] = 1

2 . Then∫
dμ

dν
dμ =

∫ ∫
2|Rc∩S c| dμ0(R) dμ0(S).

PROOF. Letting μ(·|S) be the conditional law of μ given S and N = |V |, we
have ∫

dμ

dν
dμ = 2N

∫
μ({f }) dμ(f )

= 2N
∫ ∫ (∫

μ({f }|S) dμ0(S)

)
dμ(f |R) dμ0(R).

Suppose f ∈ X (G) is such that f |Rc ≡ 0 for some R ⊆ V . Note that

μ({f }|S) = 2−|R∩S|−|S\R||1{f |R\S≡0}.
Hence, the above is equal to

2N
∫ ∫ (∫

2−|R∩S|−|S\R|1{f |R\S≡0} dμ0(S)

)
dμ(f |R) dμ0(R)

= 2N
∫ ∫

2−|R∩S|−|S\R|
(∫

1{f |R\S≡0} dμ(f |R)

)
dμ0(R) dμ0(S)

= 2N
∫ ∫

2−|R∩S|−|S\R|2−|R\S| dμ0(S) dμ0(R).

Simplifying the expression in the exponent gives the result. �

Roughly speaking, the general strategy of our proof will be to show that if R, R′
denote independent copies of the range of random walk on Gn run up to time
(1

2 + ε)Tcov(Gn) and L = V \ R, L′ = V \ R′ then

E exp(ζ |L ∩ L′|) = 1 + o(1) as n → ∞(3.1)
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for ζ > 0. This method cannot be applied directly, however, since this exponen-
tial moment blows up even in the case of Z3

n. To see this, suppose that X,X′
are independent random walks on Z3

n initialized at stationarity. We divide the
cover time c3n

3(logn) into rounds of length n2. In the first round, with proba-
bility 1/4 we know that X starts in L1 = Z2

n ×{n/8, . . . ,3n/8}. In each successive
round, X has probability ρ0 > 0 strictly bounded from zero in n of not leaving
L2 = Z2

n × {1, . . . , n/2} and ending the round in L1. Since there are c3n(logn)

rounds, this means that X does not leave L1 with probability at least
1
4ρ

c3n logn
0 ≥ c exp(−ρ1n logn).

Since X′ satisfies the same estimate, we therefore have

E exp(ζ |L ∩ L′|) ≥ c exp
(

ζ

2
n3 − 2ρ1n logn

)
→ ∞ as n → ∞.

The idea of the proof is to truncate the exponential moment in (3.1) by condition-
ing the law of random walk run for time (1

2 + ε)Tcov(Gn) conditional on typical
behavior so that

‖μ̃0 − μ0‖TV = o(1) as n → ∞.

We do this in such a way that the uncovered set exhibits a great deal of spatial
independence in order to make the exponential moment easy to estimate. To this
end, we will condition on two different events. The first is that points in L(1

2 +
δ;Gn) are well separated: for any x ∈ Vn the number of points in L(1

2 + ε;Gn)

which are contained in a large ball centered at x is at most some constant M .
Given this event, we can partition L(1

2 + ε;Gn) into disjoint subsets E1, . . . ,EM

such that x, y ∈ E� distinct implies d(x, y) is large. Observe

E exp(ζ |L ∩ L′ ∩ E�|) ≤ E
∏

x∈E�

(
1 + eζ

N ′(x,T )∏
j=1

(
1 − q ′

j (x)
))

,

where N ′(x, T ) is the number of excursions of X′ from ∂B(x, r) to ∂B(x,R) by
time T and q ′

j (x) is the probability the j th such excursion hits x conditional on
its entrance and exit points. When T is large, uniform local transience implies that
N ′(x, T ) and

∏k
j=1 q ′

j (x) can be estimated by their mean and, roughly speaking,
this is the second event on which we will condition. Finally, we get control of the
entire exponential moment by an application of Hölder’s inequality.

We finish the section by recording a standard lemma that bounds the rate of
decay of the total variation and uniform distances to stationarity:

PROPOSITION 3.3. For every s, t ∈ N,

max
x

‖pt+s(x, ·) − π‖TV ≤ 4 max
x,y

‖pt(x, ·) − π‖TV‖ps(y, ·) − π‖TV,(3.2)

max
x,y

∣∣∣∣pt+s(x, y)

π(y)
− 1

∣∣∣∣ ≤ max
x,y

ps(x, y)

π(y)
max

x
‖pt(x, ·) − π‖TV.(3.3)
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PROOF. The first part is a standard result; see, for example, Lemmas 4.11
and 4.12 of [20]. The second part is a consequence of the semigroup property:

1

π(z)
pt+s(x, z) = 1

π(z)

∑
y

pt (x, y)ps(y, z)

= 1

π(z)

∑
y

[pt(x, y) − π(y) + π(y)]ps(y, z)

≤
(

max
y,z

ps(y, z)

π(z)

)
‖pt(x, ·) − π‖TV + 1. �

Note that (3.2) and (3.3) give

max
x

‖pt(x, ·) − π‖TV ≤ ce−cα for t ≥ αTmix(G),(3.4)

max
x,y

∣∣∣∣pt+s(x, y)

π(y)
− 1

∣∣∣∣ ≤ ce−cα for t ≥ T U
mix(G) + αTmix(G),(3.5)

where c > 0 is a universal constant. We will often use (3.5) without reference,
and, for simplicity use that the same inequality holds when T U

mix(G) + αTmix(G)

is replaced by αT U
mix(G), perhaps adjusting c > 0.

4. Hitting and cover times. Throughout, we assume that we have a sequence
of graphs (Gn) satisfying Assumption 1.1 with transience function ρ. We will
often suppress the index n and refer to an element of (Gn) as G and similarly write
V,E for Vn,En, respectively. The primary purpose of this section is to develop
asymptotic estimates of the maximal hitting and cover times of (Gn). Roughly,
these will be given in terms of:

(1) the return time Tr,R(x), x ∈ V , of X to B(x, r) after passing through
B(x,R), R > r , large then allowed to remix, and

(2) the probability pr,R(x) that upon entering B(x, r), X subsequently hits x

before exiting B(x,R).

The derivation of these formulas requires many technical steps, so we will provide
an overview of how everything fits together before delving into the details.

Let N(x, t) be the number of excursions made by X from ∂B(x, r) to ∂B(x,R),
then subsequently allowed to remix by running for some multiple of T U

mix(G), by
time t and let pj (x) be the probability that the j th excursion Ej hits x conditional
on the entrance points of Ej and Ej+1 to B(x, r). Since the pj (x) are independent,
we can express the probability P(x, t) that x has not been hit by time t by the
formula

P(x, t) = E
N(x,t)∏
j=1

(
1 − pj (x)

)
.
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We will argue using uniform local transience that we can make pj (x) as small as
we like by choosing R > r large enough. Consequently, we have

P(x, t) = E

[
exp

(
−(

1 + O(ρ(r))
)N(x,t)∑

j=1

pj (x)

)]
.

Our first goal, accomplished in the next subsection, is to show that the em-
pirical mean 1

k

∑k
j=1 pj (x) is concentrated around its mean pr,R(x). Next, in

Section 4.2, we will again use concentration to argue that N(x, t) ≈ t/Tr,R(x).
These two steps allow us to conclude that P(x, t) is approximately given by
exp(−tpr,R(x)/Tr,R(x)). That is, P(x, t) is approximately exponential with pa-
rameter pr,R(x)/Tr,R(x) so that the expected hitting time of x is approximately
Tr,R(x)/pr,R(x). In the vertex transitive case, this immediately leads to an esti-
mate of (Tr,R/pr,R) log|V | for the cover time via the Matthews method ([21]; see
also Theorem 11.2 and Proposition 11.4 of [20]). A similar but more complicated
formula also holds for graphs which are not vertex transitive and is derived in the
second half of Section 4.3.

4.1. Probability of success. Fix R > r and let X be a lazy random walk on G.
Suppose A = {x1, . . . , x�} ⊆ V where d(xi, xj ) ≥ 2R for i = j . Let A(s) = {x ∈
V :d(x,A) ≤ s} where d(x,A) = miny∈A d(x, y). Let ∂A(s) = {x ∈ V :d(x,A) =
s}. The purpose of this section is to prove that the empirical mean of the conditional
probability that successive excursions of X from ∂A(r) through ∂A(R) succeed in
hitting x ∈ A given their entrance points concentrates around its mean. We will
need to extend our excursions by multiples of the uniform mixing time T U

mix(G) so
we have enough independence to get good concentration.

To this end, we fix β ≥ 0, set T U
β = βT U

mix(G), and define stopping times

τ0(A) = min{t ≥ 0 :X(t) ∈ ∂A(r)},(4.1)

σ0(A) = min{t ≥ τ0(A) :X(t) /∈ A(R)}(4.2)

and inductively set

τ
β
k (A) = min{t ≥ σ

β
k−1(A) + T U

β :X(t) ∈ ∂A(r)},(4.3)

σ
β
k (A) = min{t ≥ τ

β
k (A) :X(t) /∈ A(R)}.(4.4)

See Figure 3 for an illustration of the stopping times described in (4.1)–(4.4). Fix
α ∈ [0, β]. Let S

α,β
j (x;A) be the event that X(t) hits x in [τβ

j (A), σ
β
j (A) + T U

α ],

p
α,β
j (x;A) = P[Sα,β

j (x;A)|X(τ
β
j (A)),X(τ

β
j+1(A))]
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FIG. 3. The solid and dashed circles represent the boundaries of A(r) and A(R), respectively,
and the small points are the elements of A. Note that X may re-enter A(r) during the interval

[σβ
k (A), τ

β
k+1(A)].

and

a
α,β
j (x;A) = E

[σ
β
j (A)+T U

α∑
t=τ

β
j (A)

1{X(t)=x}
∣∣∣X(τ

β
j (A)),X(τ

β
j+1(A))

]
.

The reason that it is useful to consider p
α,β
r,R (x;A) for β > α is that, as we will

prove in Lemma 6.3, this allows us to show that the effect of conditioning on
the terminal point X(τ

β
j+1(A)) of the excursion is negligible when β − α is large

enough. This in turn allows us to use uniform local transience to get that p
α,β
r,R (x;A)

can be bounded in terms of the transience function. Finally, we let p
α,β
r,R (x;A) =

Eπp
α,β
0 (x;A) and a

α,β
r,R (x;A) = Eπa

α,β
0 (x;A). For β ≥ α ≥ 1 note that

p
α,β
r,R (x;A) = p

1,1
r,R(x;A) + O

(T U
β

|V |
)

since a union bound implies that the probability X hits x in the interval [σ0(A) +
T U

1 , σ0(A) + T U
β ] is O(T U

β /|V |).
By Assumption 1.1, we have that T U

β 	r(G)/|V | = o(1) as n → ∞. Note that

p
1,1
r,R(x;A) ≥ (2	(G))−r since the right-hand side bounds from below the proba-

bility that X goes directly from ∂B(x, r) to x in r steps. Consequently,

p
α,β
r,R (x;A) = (

1 + o(1)
)
p

1,1
r,R(x;A).(4.5)

From now on, we will write pr,R(x;A) for p
1,1
r,R(x;A). By the same argument, it is

also true that a
α,β
r,R (x;A) = (1 + o(1))a

1,1
r,R(x;A) and we will also write ar,R(x;A)

for a
1,1
r,R(x;A).
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LEMMA 4.1. For each δ > 0 there exists γ0 > 0 such that for β − α ≥ γ0 and
all n large enough we have

1 − δ ≤ p
α,β
j (x;A)

P[Sα,β
j (x)|X(τ

β
j (A))] ≤ 1 + δ,(4.6)

1 − δ ≤ a
α,β
j (x;A)

E[∑σ
β
j (A)+T U

α

t=τ
β
j (A)

1{X(t)=x}|X(τ
β
j (A))]

≤ 1 + δ.(4.7)

In particular, p
α,β
j (x;A) ≤ (1 + δ)ρ(r) and a

β
j (x;A) ≤ (1 + δ)ρ(0)ρ(r) where ρ

is the transience function.

PROOF. Note that

P
[
X
(
σ

β
j (A) + T U

α

) = z|X(τ
β
j (A)) = zj ,X(τ

β
j+1(A)) = zj+1

]
= P[X(σ

β
j (A) + T U

α ) = z,X(τ
β
j (A)) = zj ,X(τ

β
j+1(A)) = zj+1]

P[X(τ
β
j (A)) = zj ,X(τ

β
j+1(A)) = zj+1]

=
(P[X(τ

β
j+1(A)) = zj+1|X(σ

β
j (A) + T U

α ) = z]
P[X(τ

β
j+1(A)) = zj+1|X(τ

β
j (A)) = zj ]

)

× P
[
X
(
σ

β
j (A) + T U

α

) = z|X(τ
β
j (A)) = zj

]
.

Mixing considerations imply

P[X(τ
β
j+1(A)) = zj+1|X(τ

β
j (A)) = zj ] = [1 + O(e−cβ)]Pπ [X(τ0(A)) = zj+1]

and

P
[
X(τ

β
j+1(A)) = zj+1|X(

σ
β
j (A) + T U

α

) = z
]

= [
1 + O

(
e−c(β−α))]Pπ [X(τ0(A)) = zj+1].

Consequently, if μj denotes the law of X(σ
β
j (A)+ T U

α ) conditional on X(τ
β
j (A))

and X(τ
β
j+1(A)) and μ is the law of X(σ

β
j (A) + T U

α ) but conditional only on

X(τ
β
j (A)), we have 1 − δ ≤ dμj/dμ ≤ 1 + δ when β − α is large enough. Thus,

p
α,β
j (x;A) =

∫
P
[
S

α,β
j (x)|X(τ

β
j (A)),X

(
σ

β
j (A) + T U

α

) = z,X(τ
β
j+1(A))

]
dμj (z)

≤ (1 + δ)

∫
P
[
S

α,β
j (x)|X(τ

β
j (A)),X

(
σ

β
j (A) + T U

α

) = z
]
dμ(z)

= (1 + δ)P[Sα,β
j (x)|X(τ

β
j (A))].
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The lower bound for p
α,β
j (x;A) and the bounds for aj (x;A) are proved similarly.

�

In the next lemma, we will prove the concentration of p
α,β
j (x;A) and

a
α,β
j (x;A). The proof consists of three main steps. First, the previous lemma

allows us to replace p
α,β
j (x;A) by P[Sα,β

j (x;A)|X(τj (A))] and likewise for

a
α,β
j (x;A). Roughly, the next step is to use a stochastic domination argument

to show that we can replace P[Sα,β
j (x;A)|X(τj (A))] by i.i.d. variables with law

P[Sα,β
1 (x,A)|X(τ1(A))]. The result then follows by an application of Cramér’s

theorem.

LEMMA 4.2. Fix r > 0 and δ ∈ (0,1). There exists γ0 > 0 depending only on
r, δ such that for all R ≥ r , β − α ≥ γ0 and n large enough we have

P

[
k∑

j=1

p
α,β
j (x;A) /∈ [1 − δ,1 + δ]pr,R(x;A)k

]
(4.8)

≤ 4 exp
(
−Cδ2pr,R(x;A)

ρ(r)
k

)
and

P

[
k∑

j=1

a
α,β
j (x;A) /∈ [1 − δ,1 + δ]ar,R(x;A)k

]
(4.9)

≤ 4 exp
(
−Cδ2ar,R(x;A)

ρ(r)
k

)
,

where C > 0 is independent of r,R, δ.

PROOF. Let μ be the measure on ∂A(r) induced by the law of X(τ0(A)) given
that X has a stationary initial distribution. For each δ > 0, let M(δ) be the set of
measures ν on ∂A(r) which are uniformly mutually absolutely continuous with
respect to μ in the sense that

max
z∈∂A(r)

∣∣∣∣ ν(z)

μ(z)
− 1

∣∣∣∣+ max
z∈∂A(r)

∣∣∣∣μ(z)

ν(z)
− 1

∣∣∣∣ ≤ δ.(4.10)

Let μy(z) = Py[X(τγ (A)) = z] where τγ (A) = min{t ≥ T U
γ :X(t) ∈ ∂A(r)}.

Mixing considerations imply that μy ∈ M(Ce−Cγ ) for some C > 0. Fix δ > 0,
δ′ < δ/2, and take β − α = γ so large that Ce−Cγ ≤ δ′/2. Let μ, μ be elements

of M(δ′/2) such that P[Sα,β
0 (x)|X(τ0(A)) = Z] where Z ∼ μ,μ stochastically
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dominates from above and below, respectively, all other choices in M(δ′/2). As-
sume that γ0 is chosen sufficiently large so that the previous lemma applies for
δ′/2 when n is sufficiently large.

Let (Uj ), (Lj ) be i.i.d. sequences with laws P[Sα,β
0 (x)|X(τ0(A)) = Z], Z ∼

μ,μ, respectively. With U = EU1 and L = EL1, obviously

(1 − δ′)pr,R(x;A) ≤ L ≤ U ≤ (1 + δ′)pr,R(x;A).

By construction, we can find a coupling of Uj ,Lj ,p
α,β
j (x;A) so that

Lj ≤ p
α,β
j (x;A) ≤ Uj almost surely for all j.

Corollary 2.4.5 of [14] implies

EeλU1 ≤ 1

2ρ(r)

(
Ue2λρ(r) + 2ρ(r) − U

)
hence Exercise 2.2.26 of [14] gives that the Fenchel–Legendre transform �∗ of
the law of U1 satisfies

�∗(u) ≥ �̃∗(u) ≡ u

2ρ(r)
log

(
u

U

)
+
(

1 − u

2ρ(r)

)
log

(
1 − u/(2ρ(r))

1 − U/(2ρ(r))

)
.

As

�̃∗(U) = (�̃∗)′(U) = 0 and (�̃∗)′′(u) ≥ 1

2ρ(r)u

we have

inf
u≥(1+δ′)U

�∗(u) ≥ 1

4ρ(r)U
(δ′)2U2 = (δ′)2U

4ρ(r)
,

assuming δ′ < 1. Consequently, Cramér’s theorem (Theorem 2.2.3, part (c), of
[14]) implies that

P

[
k∑

i=1

Ui ≤ (1 + δ′)Uk

]
≥ 1 − 2 exp

(
−(δ′)2Uk

4ρ(r)

)
.(4.11)

An analogous estimate also holds for (Li) with U replaced by L. The proof of
concentration for the a

α,β
j (x;A) is the same. �

4.2. Excursion lengths. We will make use of the same notation in this sub-
section as in the previous. The main result is Lemma 4.5, which is that the em-
pirical average of successive excursion lengths τ

β
k+1(A) − τ

β
k (A) is exponentially

concentrated around its mean. The proof requires two auxiliary inputs. The first,
Lemma 4.3, is an estimate of the Radon–Nikodym derivative of the law of random
walk conditioned not to hit A(r) with respect to the stationary measure π . The
second, Lemma 4.4, gives that the mean length of an excursion does not depend
strongly on its starting point. Let τ(A) = τ0(A).
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LEMMA 4.3. For α, s ≥ 0 we have

Py[X(T U
α ) = z|A] = [

1 + O
(
e−cα + |A|ρ(s, r)

)+ o(1)
]
π(z) as n → ∞,

where A = {τ(A) ≥ T U
α , d(X(T U

α ),A) ≥ s}.

PROOF. For z ∈ V with d(z,A) ≥ s, observe

Py[X(T U
α ) = z|A] = Py[X(T U

α ) = z, τ (A) ≥ T U
α ]

Py[A]

= Py[τ(A) ≥ T U
α |X(T U

α ) = z]Py[X(T U
α ) = z]

Py[A](4.12)

= (
1 + O(e−cα)

)Py[τ(A) ≥ T U
α |X(T U

α ) = z]π(z)

Py[A] .

Fix α′ < α. The idea of the proof is now to argue it is unlikely for τ(A) to occur
in the interval [T U

α − T U
α′ , T U

α ). This allows us to replace T U
α above by T U

α −
T U

α′ in (4.12). This in turn allows us to use mixing considerations to deduce that
conditioning on {X(T U

α ) = z} has little effect on the probability of {τ(A) ≥ T U
α −

T U
α′ }. We compute

Py[τ(A) ≥ T U
α |X(T U

α ) = z]
= Py[τ(A) ≥ T U

α − T U
α′ |X(T U

α ) = z]
− Py[T U

α > τ(A) ≥ T U
α − T U

α′ |X(T U
α ) = z].

We have

Py[τ(A) ≥ T U
α − T U

α′ |X(T U
α ) = z]

= 1 − Py[τ(A) < T U
α − T U

α′ ,X(T U
α ) = z]

Py[X(T U
α ) = z]

= 1 − 1 + O(e−cα)

π(z)
Py[X(T U

α ) = z|τ(A) < T U
α − T U

α′ ]

× Py[τ(A) < T U
α − T U

α′ ]
= Py[τ(A) ≥ T U

α − T U
α′ ] + O

(
e−c(α−α′)).

Note that

Py[T U
α > τ(A) ≥ T U

α − T U
α′ |X(T U

α ) = z]

= 1 + O(e−cα)

π(y)π(z)
Py[T U

α > τ(A) ≥ T U
α − T U

α′ ,X(T U
α ) = z]π(y).
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By reversing time, we see that this is equal to

1 + O(e−cα)

π(y)
Pz[τ(A) ≤ T U

α′ , d(X(t),A) > r for all T U
α′ < t ≤ T U

α ,X(T U
α ) = y]

≤ 1 + O(e−cα)

π(y)
Pz[X(T U

α ) = y|τ(A) ≤ T U
α′ ]Pz[τ(A) ≤ T U

α′ ]

= (
1 + O

(
e−c(α−α′)))Pz[τ(A) ≤ T U

α′ ].
A union bound along with uniform local transience implies this is of order
O(|A|ρ(s, r) + o(1)). With A1 = {d(X(T U

α ),A) ≥ s},
Py[A] = Py[τ(A) ≥ T U

α , A1]
= (

Py[τ(A) ≥ T U
α − T U

α′ |A1] − Py[T U
α > τ(A) ≥ T U

α − T U
α′ |A1])Py[A1]

= Py[τ(A) ≥ T U
α − T U

α′ ] + O
(
e−c(α−α′) + |A|ρ(s, r) + o(1)

)
,

the last line coming from a similar analysis as before. Consequently,

Py[τ(A) ≥ T U
α |X(T U

α ) = z]
Py[A] = 1 + O

(
e−c(α−α′) + |A|ρ(s, r) + o(1)

)
.

Taking α′ = α/2 gives the lemma. �

Let τk(A) = τ 0
k (A), σk(A) = σ 0

k (A), and Tr,R(A) = Eπ [τ1(A) − τ0(A)]. We
will now show that mean excursion length does not depend too strongly on the
starting point of X. The idea is to argue that X will typically run for some multiple
of the mixing time before getting close to A provided it is initialized sufficiently
far away from A, then invoke the previous lemma to replace the induced law on V

by π .

LEMMA 4.4 (Mean excursion length). For every r, δ > 0 there exists R0 > r

such that R ≥ R0 implies

(1 − δ)Tr,R(A) ≤ min
y /∈A(R)

Eyτ0(A) ≤ max
y /∈A(R)

Eyτ0(A) ≤ (1 + δ)Tr,R(A)

for all n large enough.

PROOF. We have that

Eπ [τ1(A) − τ0(A)] = Eπ [σ0(A) − τ0(A)] + Eπ [τ1(A) − σ0(A)].
Obviously,

Eπ [σ0(A) − τ0(A)] ≤ max
y∈A(r)

Eyσ0(A) ≤ cT U
mix(G)
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for some c > 0 since in each interval of length T U
mix(G), random walk started in

A(r) has probability uniformly bounded from below of leaving A(R) provided n

is large enough. It is also obvious that

min
y /∈A(R)

Eyτ0(A) ≤ Eπ [τ1(A) − σ0(A)] ≤ max
y /∈A(R)

Eyτ0(A).

The previous lemma implies

(1 − δ)Eπ [τ0(A)] ≤ Ey[τ0(A)|A] ≤ T U
α + (1 + δ)Eπ [τ0(A)]

for all y /∈ A(R) provided we choose R,α, s, n large enough to accommodate our
choice of δ. Hence,

(1 − δ)Eπ [τ0(A)] ≤ Ey[τ0(A)] ≤ (1 + δ)Eπ [τ0(A)]
as it is not difficult to see that T U

mix(G) = o(Tr,R(A)) as n → ∞. Therefore

max
y1,y2 /∈A(R)

Ey1τ0(A)

Ey2τ0(A)
≤ 1 + δ,

which proves the lemma. �

We end with the main result of the subsection, the concentration of the empirical
average of excursion lengths. The proof is an adaptation of [10], Lemma 24, to
our setting and is based on Kac’s moment formula ([17], Equation 6) for the first
hitting time of a strong Markov process along with the approximate i.i.d. structure
of excursion lengths.

LEMMA 4.5 (Concentration of excursions). For each β ≥ 0 and r, δ > 0 there
exists R0 > r such that

Py[τβ
k (A) ≤ (1 − δ)Tr,R(A)k] ≤ e−Cδ2k,(4.13)

Py[τβ
k (A) ≥ (1 + δ)Tr,R(A)k] ≤ e−Cδ2k(4.14)

for all R ≥ R0, y ∈ V and n large enough.

PROOF. First of all, it follows from Lemma 4.4 that

max
y

Ey[τ0(A)] ≤ CTr,R(A)

for some C > 0 provided R,n are sufficiently large. Consequently, Kac’s moment
formula (see [17], Equation 6) for the first hitting time of a strong Markov process
implies for any j ∈ N we have that

max
y

Ey[(τ0(A))j ] ≤ j !cjT
j
r,R(A)(4.15)
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for some c > 0. This implies that there exists λ0 > 0 so that

max
y

Ey exp[λτ0(A)/Tr,R(A)] < ∞ for all λ ∈ (0, λ0).

Using E[σ0(A) − τ0(A)] = o(Tr,R(A)), a similar argument implies that, by possi-
bly decreasing λ0,

max
y

Ey exp[λσ0(A)/Tr,R(A)] < ∞ for all λ ∈ (0, λ0).

Combining the strong Markov property with T U
β = o(Tr,R(A)) yields

max
y

Ey exp[λτ
β
k (A)/Tr,R(A)] < ∞ for all λ ∈ (0, λ0).

Let R0 be large enough so that the previous lemma implies

(1 − δ/2)Tr,R(A) ≤ min
y /∈A(R)

Eyτ0(A) ≤ max
y /∈A(R)

Eyτ0(A) ≤ (1 + δ/2)Tr,R(A)

for R ≥ R0 and n large enough. We compute

max
y /∈A(R)

Eye
−θτ0(A) ≤ 1 − θ min

y /∈A(R)
Eyτ0(A) + θ2 max

y /∈A(R)
Eyτ

2
0 (A)

≤ 1 − θ(1 − δ/2)Tr,R(A) + ζθ2

≤ exp
(
ζθ2 − θ(1 − δ/2)Tr,R(A)

)
,

where ζ = cT 2
r,R(A) for some c > 0. Since τ0(A) ≥ 0, Chebychev’s inequality

leads to (4.13). Indeed,

Py[τβ
k (A) ≤ (1 − δ)Tr,R(A)k]
≤ exp

(
θ(1 − δ)Tr,R(A)k

)
Eye

−θτ
β
k (A)

≤ exp
(
θ(1 − δ)Tr,R(A)k

)[
max

y /∈A(R)
Eye

−θτ0(A)
]k

≤ exp
(
θ(1 − δ)Tr,R(A)k

)
exp

(
ζθ2k − θ(1 − δ/2)Tr,R(A)k

)
.

Taking

θ = δTr,R(A)

c1ζ

we get that

Py[τβ
k (A) ≤ (1 − δ)Tr,R(A)k]
≤ exp

(
ζθ2k − θTr,R(A)kδ/2

)
≤ exp

(
ζ δ2T 2

r,R(A)k/(c2
1ζ

2) − δ2T 2
r,R(A)k/(2c1ζ )

)
≤ exp(−cδ2k)

provided we take c1 sufficiently large.
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To prove (4.14), we need to bound

Py[τβ
k (A) ≥ (1 + δ)Tr,R(A)k]
≤ exp

(−θ(1 + δ)Tr,R(A)k
)(

e
θT U

β max
y

Eye
θτ0(A) max

y∈A(r)
Eye

θ [σ0(A)−τ0(A)])k
.

We again take

θ = δTr,R(A)

c1ζ

with c1 to be fixed shortly, and note that

max
y

Eye
θτ0(A) ≤ (

1 + o(1)
)

max
y /∈A(R)

Eye
θτ0(A)

≤ exp
(
θ(1 + δ/2)Tr,R(A) + c2ζθ2 + o(1)

)
.

Since maxy∈A(r) Ey[σ0(A) − τ0(A)] = o(Tr,R(A)) as n → ∞, Kac’s formula
yields

max
y∈A(r)

Eye
θ [σ0(A)−τ0(A)] = 1 + o(1) as n → ∞.

Since T U
β = o(Tr,R(A)) as n → ∞ as well, we have

Py[τβ
k (A) ≥ (1 + δ)Tr,R(A)k]
≤ exp

(−θ(1 + δ)Tr,R(A)k + θ(1 + δ/2)Tr,R(A)k + c2ζθ2k + o(1)k
)

≤ exp
(−θδTr,R(A)k/2 + c2ζθ2k + o(1)k

)
.

Taking c1 > 0 large enough gives the result. �

4.3. Hitting and covering. The purpose of this subsection is to estimate the
maximal hitting time (Lemma 4.6) and cover time (Lemma 4.8).

LEMMA 4.6 (Hitting time estimate). For every δ > 0 there exists r0 such
that for each r ≥ r0 there is an R0 > r so that if R ≥ R0 the following holds.
If An = {xn1, . . . , xn�} ⊆ Vn with d(xni, xnj ) ≥ 2R for i = j and yn ∈ Vn is such
that d(xni, yn) ≥ 2R for all n, then

1 − δ ≤ lim inf
n→∞

Eynτ (xni)

Tr,R(An)/pr,R(xni;A)
(4.16)

≤ lim sup
n→∞

Eynτ (xni)

Tr,R(An)/pr,R(xni;A)
≤ 1 + δ.(4.17)

As the proof of the lemma is long, we pause momentarily to highlight the
main steps. The primary tools will be the results from the previous subsections.
The first ingredient (though we leave this to the end of the proof) is to ar-
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gue that it is unlikely for X to hit a point xnk ∈ An in the “remixing” intervals
[σβ

k (A)+T U
α ,σ

β
k (A)+T U

β ]. Once we have established this, it suffices to estimate

the expectation of the first time τ̃ (xnk) that X hits xnk in
⋃

k[τβ
k (A), σ

β
k (A)+ T U

α ]
in place of the expectation of τ(xnk). In particular, this implies that the probability
that xnk is first hit by the (j + 1)st excursion is well approximated by

Eyn

[
p

α,β
j+1(xnk;An)

j∏
i=1

(
1 − p

α,β
i (xnk;An)

)]
.

We now apply the concentration of the empirical mean of the p
α,β
j (x;A) proved

in Lemma 4.2 in order to replace the product with exp(−(1 +O(ρ(r)))jpr,R(xnk ;
An)), where we recall that ρ is the transience function. We conclude that the mean
number of excursions required to hit xnk is approximately 1/pr,R(xnk;A). The
result now follows by invoking Lemma 4.5.

PROOF OF LEMMA 4.6. We will omit the indices n and i and just write x

for xni , y for yn and A for An. Fix r sufficiently large so that ρ(r) < δ2/100.
Recall that S

α,β
k (x;A) is the event that X hits x in [τβ

k (A), σ
β
k (A) + T U

α ] where

τ
β
k (A), σ

β
k (A) are as in (4.1)–(4.4). Let N(x;A) = min{k ≥ 1 :Sα,β

k (x;A) occurs}
and let

τ̃ (x) = min{t ≥ 0 :X(t) = x and t ∈ I },
where

Ik = [τβ
k (A), σ

β
k (A) + T U

α ] and I = ⋃
k

Ik.

Then

τ
β
N(x;A)(A) ≤ τ̃ (x) ≤ τ

β
N(x;A)+1(A).

Let

W(M; δ) = ⋂
j≥M

B(j ; δ) ≡ ⋂
j≥M

{(1 − δ)Tr,R(A)j ≤ τ
β
j (A) ≤ (1 + δ)Tr,R(A)j}.

With ‖τ̃ (x)‖ = maxz Ezτ̃ (x), note that

Ey τ̃ (x)1Wc(M;δ) ≤ ∑
j≥M

Ey τ̃ (x)1Bc(j ;δ)

≤ ∑
j≥M

[
Eyτ

β
j (x)1Bc(j ;δ) + ‖τ̃ (x)‖Py[Bc(j ; δ)]]

(4.18)
≤ 2C0

∑
j≥M

[jTr,R(A) + ‖τ̃ (x)‖]e−Cδ2j

≤ C1‖τ̃ (x)‖ ∑
j≥M

(1 + j)e−Cδ2j ≤ C2‖τ̃ (x)‖e−Cδ2M

δ4 .
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To see the second step, we let

τ̃j (x) = min{t ≥ τ
β
j (x) :X(t) = x}.

Then we have that

Ey τ̃ (x)1Bc(j ;δ) ≤ Ey τ̃j (x)1Bc(j ;δ) = Ey

[(
τ

β
j (x) + (

τ̃j (x) − τ
β
j (x)

))
1Bc(j ;δ)

]
≤ Eyτ

β
j (x)1Bc(j ;δ) + Ey

[(
τ̃j (x) − τ

β
j (x)

)|Bc(j ; δ)]Py[Bc(j ; δ)].
By the strong Markov property, Ey[τ̃j (x)− τ

β
j (x)|Bc(j ; δ)] ≤ ‖τ̃ (x)‖. In the third

step, we used that

Eyτ
β
j (A)1Bc(j ;δ) ≤ (Ey[τβ

j (A)]2)1/2(Py[Bc(j ; δ)])1/2

≤ 2Tr,R(A)

λ
j
(
Ey exp

(
λτ

β
j (A)/(jTr,R(A))

))1/2
Ce−Cδ2j ,

where λ ∈ (0, λ0), λ0 as in the proof of Lemma 4.5. We used in the fourth step that
Tr,R(A) = O(‖τ̃ (x)‖). Indeed, this is true since uniform local transience implies
that with uniformly positive probability more than one excursion is required to hit
x and, by Lemma 4.4, the mean length of the second excursion is at least 1

2Tr,R(A).
The final step in (4.18) comes from summing the geometric series. Uniform local
transience implies ∣∣Ey τ̃ (x) − ‖τ̃ (x)‖∣∣ ≤ δEy τ̃ (x),(4.19)

when R is large enough. Consequently, there exists M > 0 large enough depending
only on δ so that

Ey τ̃ (x)1W(M;δ) ≤ Ey τ̃ (x) ≤ (1 + δ)Ey τ̃ (x)1W(M;δ).
Now,

Eyτ
β
N(x;A)+1(A)1W(M;δ) = Ey

[
N(x;A)

(τ
β
N(x;A)+1(A)

N(x;A)

)
1W(M;δ)

]
≤ (1 + δ)Tr,R(x)EyN(x;A) + Eyτ

β
M(A)

≤ (1 + δ)Tr,R(A)EyN(x;A) + CMTr,R(A).

In order to derive the inequality, we used that if N(x;A) ≥ M then by the defi-
nition of W(M; δ) we have τ

β
N(x;A)+1(A)/N(x;A) ≤ (1 + δ)Tr,R(A) and, in case

N(x;A) < M , we clearly have that τ
β
N(x;A)+1(A) ≤ τ

β
M(A). The final inequality is

a consequence of Lemma 4.4. Similarly, we also have

EyτN(x;A)(A)1W(M;δ) ≥ (1 − δ)Tr,R(A)EyN(x;A).

Therefore,

(1−δ)Tr,R(A)EyN(x;A) ≤ Ey τ̃ (x) ≤ (1+2δ)Tr,R(A)EyN(x;A)+CMTr,R(A).
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By Lemma 4.2,

pr,R(x;A)

[
exp

(−(1 + δ)pr,R(x;A)j
)− C exp

(
−Cδ2pr,R(x;A)

ρ(r)
j

)]

≤ Eyp
α,β
j+1(x;A) exp

(
−[1 + O(ρ(r))]

j∑
i=1

p
α,β
i (x;A)

)

≤ pr,R(x;A)

[
exp

(−(1 − δ)pr,R(x;A)j
)+ C exp

(
−Cδ2pr,R(x;A)

ρ(r)
j

)]
.

Taking r sufficiently large gives

EyN(x;A)

=
∞∑

j=1

jP[N(x;A) = j ]

≤ CM2ρ(r) +
∞∑

j=M+1

j
(
1 + o(1)

)(
pr,R(x;A) exp

(−(1 − δ)pr,R(x;A)j
))

≤ 2CM2ρ(r) + 1 + δ

pr,R(x;A)
.

Similarly,

EyN(x;A) ≥ 1 − δ

pr,R(x;A)
.

Increasing r if necessary so that M2ρ(r) ≤ δ yields

1 − 2δ

pr,R(x;A)
≤ EyN(x;A) ≤ 1 + 2δ

pr,R(x;A)
.(4.20)

This proves that

Ey τ̃ (x) = (
1 + o(1)

) Tr,R(A)

pr,R(x;A)
as n → ∞.

Let Fk be the event that X hits A(r) in Jk = [σβ
k (A) + T U

α ,σ
β
k (A) + T U

β ]. With

F = ⋃N(x;A)+1
k=1 Fk , we have

Ey τ̃ (x)1Fc ≤ Eyτ (x) ≤ Ey τ̃ (x),

where we recall that τ(x) is the first time X hits x.
We now claim that

Ey τ̃ (x)1Fc =
[
1 + O

( T U
β |A|	r(G)

|V |p2
r,R(x;A)

+ p2
r,R(x;A)

)1/2]
Ey τ̃ (x).(4.21)
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Note that this will complete the proof of the lemma as pr,R(x;A) ≥ C	−r (G) so
that, by Assumption 1.1, the error term can be made as small as we like by making
r,R large enough. Using the Kac moment formula ([17], Equation 6) in the second
inequality, we trivially have

Ey τ̃ (x)1F ≤ Eyτ (x)1F + ‖τ̃ (x)‖P[F ]
(4.22)

≤ C1‖τ(x)‖√P[F ] + ‖τ̃ (x)‖P[F ].
In view of (4.19) we have ‖τ(x)‖ ≤ ‖τ̃ (x)‖ ≤ (1 + δ)Ey τ̃ (x). Thus, using P[F ] ≤√

P[F ], we see that we can bound (4.22) from above by C2‖τ̃ (x)‖√P[F ]. Using
exactly the same proof of (4.20), we have that

Ey[N2(x;A)] ≤ C3

p2
r,R(x;A)

.(4.23)

Applying (4.23) along with Markov’s inequality in the second step, we conse-
quently have

Py[F ] ≤ Py[F,N(x;A) + 1 ≤ 1/(pr,R(x;A))2]
+ P[N(x;A) + 1 ≥ 1/(pr,R(x;A))2]

≤
1/(pr,R(x;A))2∑

k=1

Py[Fk] + O((pr,R(x;A))2).

Since |A(r)| ≤ |A|	r(G), a union bound implies Py[Fk] = O(T U
β |A|	r(G)/|V |),

which proves (4.21). �

If G were vertex transitive so that pr,R(x) and Tr,R(x) did not depend on x,
then by the Matthews method ([21]; see also Theorem 11.2 and Proposition 11.4
of [20]) it is possible to deduce that Tcov(G) is asymptotically well approximated
by Tr,R/pr,R log|V |. Our goal is to prove something similar even if G is not vertex
transitive. The idea of the proof will be to group vertices together based on their
hitting time Tr,R(x)/pr,R(x). In particular, we will argue that the amount of time
it takes to cover a set VF ⊆ V of vertices each of whose hitting time is close
TF is approximately TF log|VF |. The cover time of G is then well approximated
by maxF TF log|VF | where F ranges over subsets of vertices with approximately
constant hitting time.

The first step in implementing this strategy is to show that if we want to estimate
Tcov(G) to a multiple of εTcov(G), ε > 0 fixed, we only need to consider a finite
number, depending only on ε, of groups of vertices. This will be accomplished by
relating pr,R(x)/Tr,R(x) to π(x) and then invoking Assumption 1.1.

We will now specialize to the case A = {x}; for simplicity of notation we will
omit A. Let

Or,R(x) = ar,R(x)

Tr,R(x)
.
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LEMMA 4.7. For every δ > 0, there exists r0 such that if r ≥ r0 there is R0 > r

such that R ≥ R0 implies

(1 − δ)π(x) ≤ Or,R(x) ≤ (1 + δ)π(x)

for all n large enough.

PROOF. Let N(x,T ) = min{k : τβ
k (x) ≥ T }, Jk as in the previous lemma, J =⋃

k Jk and G(x) = σ(X(τ
β
j (x)) : j ≥ 1). Then

N(x,T )∑
j=1

a
α,β
j (x) ≤ E

[
T∑

t=1

1{X(t)=x}1{t /∈J }
∣∣∣G(x)

]
≤

N(x,T )+1∑
j=1

a
α,β
j (x).

Lemmas 4.2 and 4.5 give that

(1 − δ)Tr,R(x) ≤ N(x,T )

T
≤ (1 + δ)Tr,R(x)

and

(1 − δ)ar,R(x) ≤
∑k

j=1 a
α,β
j (x)

k
(1 + δ)ar,R(x)

with high probability as T → ∞, for all r,R, k, n,β − α large enough. Conse-
quently, using that (a

α,β
j (x) : j ≥ 1) is uniformly bounded, it is not hard to see

that

(1 − δ)
ar,R(x)

Tr,R(x)
≤ 1

T

N(x,T )∑
j=1

a
α,β
j (x) ≤ (1 + δ)

ar,R(x)

Tr,R(x)

with high probability as T → ∞, for all r,R,n,β − α large enough. The middle
term converges to π(x) as T → ∞ since

lim
T →∞

1

T
E

T∑
t=1

1{X(t)∈A(r)}1{t∈J } = 0.
�

Uniform local transience implies that there exists constants c,C > 0 so that
car,R(x) ≤ pr,R(x) ≤ Car,R(x); combining this with the previous lemma yields

c deg(x)

|E| ≤ pr,R(x)

Tr,R(x)
≤ C deg(x)

|E| .

Let ε > 0 and let

Hε
n,k =

{
x ∈ Vn :

	(Gn)kε

|En| <
pr,R(x)

Tr,R(x)
≤ 	(Gn)(k + 1)ε

|En|
}
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be a partition of Vn into at most 	0ε
−1 subsets, where 	0 is the constant from

Assumption 1.1. By passing to a subsequence, we may assume without loss of
generality that

dε
k = lim

n→∞dε
n,k ≡ lim

n→∞
log|Hε

n,k|
log|Vn|

exists for every k. Note that dε
k ∈ [0,1] for those k so that |Hε

n,k| = 0 for all n large
enough and, since the partition is finite, necessarily there exists k so that dε

k = 1.
In particular, there exists k so that dε

k = 0. Let

Cε
n,k = |En|

	(Gn)kε
dε
k log|Vn| and Cε

n = max
k

Cε
n,k.(4.24)

LEMMA 4.8 (Cover time estimate). For each δ > 0, there exists r0, ε0 so that
if r ≥ r0 there is R0 > r such that R ≥ R0 and ε ∈ (0, ε0) implies

1 − δ ≤ lim inf
n→∞

Tcov(H
ε
n,k)

Cε
n,k

≤ lim sup
n→∞

Tcov(H
ε
n,k)

Cε
n,k

≤ 1 + δ(4.25)

for all k with dε
k > 0. Furthermore,

1 − δ ≤ lim inf
n→∞

Tcov(Gn)

Cε
n

≤ lim sup
n→∞

Tcov(Gn)

Cε
n

≤ 1 + δ.(4.26)

PROOF. Suppose k is such that dε
k > 0. Then |Hε

n,k| → ∞ as n → ∞. Let
r,R,n > 0 be sufficiently large so that Lemma 4.6 applies with our choice of δ.
By Assumption 1.1(1) we have that log|B(x, r)| = o(log|Vn|). Consequently, for
all n large enough there exists an R-net Eε

n,k of Hε
n,k such that

log|Eε
n,k| = log|Hε

n,k| + o(1) as n → ∞.

The upper and lower bounds from the Matthews method ([21]; see also Theo-
rem 11.2 and Proposition 11.4 of [20]) combined with the definition of Cε

n,k im-
ply (4.25). Theorem 2 of [4] implies that

lim
n→∞

τcov(H
ε
n,k)

Eτcov(H
ε
n,k)

= 1.

As τcov(Gn) = maxk τcov(H
ε
n,k) and the maximum is over a finite set, it follows that

τcov(Gn) = (1 + o(1))maxk Tcov(H
ε
n,k). Taking expectations of both sides gives

(4.26). �
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5. Correlation decay. The purpose of this section is to prove Theorem 1.6.
Exactly the same proof will also yield Lemma 5.1, a technical result which will be
useful in the next section, which is stated after the proof. Note that vertex transi-
tivity implies pr,R(·) and Tr,R(·) do not depend on their arguments.

PROOF OF THEOREM 1.6. First, assume that we are in the case of bounded
maximal degree. Let A be as in the previous section and let δ > 0 be arbitrary.
Fix r so that ρ(r) ≤ δ3/100C� where � = |A| and pr,R(x;A) ≤ δ3 for all x ∈ A.
Let R0 > r and β − α be sufficiently large so that Lemmas 4.2 and 4.5 apply
with our choice of δ, r . Finally, let N(xi;A) = min{k :Sα,β

k (xi;A) occurs} and

G(A) = σ(p
α,β
j (x;A) :x ∈ A,j ≥ 1). Since d(xi, xj ) ≥ 2R, the probability that X

neither hits x nor x′ in the interval [τβ
j (x;A),σ

β
j (x;A) + T U

α ] is

1 − [1 + O(ρ(R))][pα,β
j (x;A) + p

α,β
j (x′;A)].(5.1)

Indeed, the reason for this is that the conditional probability X hits B(x′,R) in the
same excursion that it hits x given that it hits the latter first is O(ρ(R)) and the
probability that X hits x before B(x′,R) is trivially bounded by p

α,β
j (x;A). This

holds more generally for any subset of A, hence

E
[
P[N(x1;A) > k1, . . . ,N(x�;A) > k�|G(A)]]

= E
�∏

i=1

exp

(
−[1 + O(ρ(R))]

ki∑
j=1

p
α,β
j (xi;A)

)
(5.2)

= exp

(
−[1 + O(δ)]

�∑
i=1

pr,R(xi;A)ki

)

+
�∑

i=1

O
(
exp

(−pr,R(xi;A)ki/δ
))

,

where the last equality followed from our choice of r and Lemma 4.2. Let
Jk = [σβ

k (A) + T U
α ,σ

β
k (A) + T U

β ], as the in the previous section. Combining
this with Lemma 4.5 and that the probability X hits A(r) in Jk is at most
O(T U

β |A|	r(G)/|V |) = o(pr,R(x;A)) for any x ∈ A, we have

P[τ(x1) ≥ kTr,R(A)/pr,R(x1;A), . . . , τ (x�) ≥ kTr,R(A)/pr,R(xn;A)]
= (

1 + o(1)
)

exp
(−[1 + O(δ)]�k)+ O

(
exp

(−Cδ2k/ρ(r)
))

= (
1 + o(1)

)
exp

(−[1 + O(δ)]�k).
By vertex transitivity,

Thit(G) = (
1 + o(1)

) Tr,R(xi;A)

pr,R(xi;A)
.
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By Lemma 4.8, we know that the cover time is asymptotically Thit(G) log|V |. In-
serting this into (5.2) gives the result for bounded degree.

This proof works also for unbounded degree, but is not quite sufficient for the
statement of our theorem since we would like to allow for points in A to be adja-
cent. There are two parts that break down. First, in Section 4 we proved the con-
centration of p

α,β
j (x;A) when x ∈ A and we also assumed that x, y ∈ A implies

d(x, y) ≥ 2R. To allow for x, y adjacent, we define

p
α,β
j (y;A) = P[Sα,β

j (y;A)|X(τ
β
j (A)),X(τ

β
j+1(A))]

for y ∈ A(r/2). It is not difficult to see that for such y, p
α,β
j (y;A) exhibits nearly

the same concentration behavior as for y ∈ A. Second, the estimate (5.1) is no
longer good enough since ρ(1) does not decay in n. However, it is not difficult to
see that the same probability satisfies the estimate

1 − [1 + O(	−1(G))][pα,β
j (x;A) + p

α,β
j (x′;A)],(5.3)

which suffices since 	−1(Gn) → 0 as n → ∞. The rest of the proof is the same.
�

Vertex transitivity was used only to get that Tr,R(x;A)/pr,R(x;A) = (1 +
o(1))Thit(G). The same proof works more generally, but leads to more compli-
cated formulas. However, it is not difficult to see that the upper bound takes a very
similar form. This result will be especially useful in the next section to show that
points which have not been visited by X after time 1

2Tcov(G) are typically well
separated. Precisely, our estimate is:

LEMMA 5.1. If (xi
n) for 1 ≤ i ≤ � is a family of sequences with xi

n ∈ Hε
n,k(i)

and |xi
n − x

j
n | ≥ r for every n and i = j ,

P[xi
n ∈ L(α;Gn) for all i] ≤ (1 + δr,�)|Vn|−�dε

k α+δr,� ,(5.4)

where δr,� → 0 as r → ∞ while � is fixed. If 	(Gn) → ∞ then we take r = 1 and
δ1,� = o(1) as n → ∞.

6. Total variation bounds. We are now in a position to complete the proof
of Theorems 1.3 and 1.5. We will prove the lower bound first since it does not
require us to specialize depending on whether (Gn) satisfies part (1) or (2) of As-
sumption 1.2. As we have explained earlier, the upper bound will be proved by
estimating the exponential moment of the set of points not visited by two indepen-
dent random walks X,X′, each run for time 1

2Tcov(G). We will use Lemma 5.1 in
the proof of Lemma 6.4 to argue that those points L not visited by X are typically
far apart. This will be useful very useful because, as we prove in Section 6.2, the
hypothesis of Assumption 1.2 allows us to establish concentration for the empiri-
cal average of the conditional probability qj (x) that excursions between ∂B(x, r)

to ∂B(x,R) given both the entry and exit points, where R > r are very large.
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6.1. Lower bound. We will now prove the lower bound for Theorems 1.3
and 1.5. This is actually just a slight extension of Theorem 4.1 of [22], but we in-
clude it for the reader’s convenience. Recall from the Introduction that μ(·;α,G)

is the probability measure on X (G) = {f :V → {0,1}} given by first sampling
R(α;G) then setting

f (x) =
{

ξ(x), if x ∈ R(α;G),
0, otherwise,

where (ξ(x) :x ∈ V ) is a collection of i.i.d. variables such that P[ξ(x) = 0] =
P[ξ(x) = 1] = 1

2 and ν(·;G) is the uniform measure on X (G).

LEMMA 6.1 (Lower bound). For every δ > 0,

lim
n→∞

∥∥μ(·; 1
2 − δ,Gn

)− ν(·;Gn)
∥∥

TV = 1.

PROOF. For A ⊆ V and m > 0, let τcov(A;m) be the first time all but m of the
vertices of A have been visited by X. For each k such that dε

k > 0, we will show
that

lim
n→∞ P[τcov(H

ε
n,k; |Hε

n,k|α) < (1 − α − δ)Cε
n,k] = 0(6.1)

for each δ > 0 and ε ∈ (0, ε0(δ)). If not, then for some such k, δ,α we have

lim sup
n→∞

P[An,k(α, δ)] > 0,

where

An,k(α, δ) = {τcov(H
ε
n,k; |Hε

n,k|α) < (1 − α − δ)Cε
n,k}.

It follows from the Matthews method upper bound ([21]; see also Theorem 11.2 of
[20]) that

E[τcov(H
ε
n,k) − τcov(H

ε
n,k; |Hε

n,k|α)|An,k(α, δ)]
≤ α

(
1 + O(ε)

)
Cε

n,k ≤ α(1 + δ/4)Cε
n,k,

where we take ε so small that the O(ε) term is at most δ/4. Markov’s inequality
now implies

P[τcov(H
ε
n,k) < (1 − δ/2)Cε

n,k|An,k(α, δ)] > 0.

This is a contradiction as Theorem 2 of [4] implies τcov(H
ε
n,k)/Cε

n,k → 1 in prob-
ability.

For each n let k0(n) be an index that achieves the maximum in maxk Cε
n,k . Now,

(6.1) implies that whp at time 1
2(1 − 3δ)Tcov(Gn) = 1

2(1 − 3δ + O(ε))Cε
n,k0(n) the

size of the subset of Hε
n,k0(n) not visited by X is at least |Hε

n,k0(n)|(1+2δ+O(ε))/2
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but less than |Hε
n,k0(n)|(1+4δ+O(ε))/2. Thus, the number of zeros in a marking of

Hε
n,k0(n) sampled from μ(·; 1

2(1 − 3δ),Gn) is whp at least

1
2

∣∣Hε
n,k0(n)

∣∣+ (
1 + o(1)

)∣∣Hε
n,k0(n)

∣∣(1+2δ+O(ε))/2 as n → ∞.

This proves the lemma since the probability of having deviations of this magnitude
from the mean tends to zero in a uniform marking. �

6.2. Concentration of qj . Let σj (x) = σ
0,0
j (x) and define τj (x) likewise

where σ
α,β
j , τ

α,β
j are as in (4.1)–(4.4). Let Sj (x) be the event that X hits x in the in-

terval [τj (x), σj (x)] and set qj (x) = P[Sj (x)|X(τj (x)),X(σj (x))]. The purpose
of this subsection is to study the concentration behavior of qj (x), which will in
turn depend on whether we assume part (1) or (2) of Assumption 1.2; note that
qj (x) differs from p

α,β
j (x) from Section 4. Indeed, the excursions on which we

condition are different since we do not allow the random walk to run for a multi-
ple for T U

mix(G) after exiting ∂B(x,R) and we condition on the entrance and exit
points of the current excursion rather than the entrance points of the current and
successive excursion. While both of these changes may seem cosmetic, they affect
the concentration behavior, since while p

α,β
j (x) satisfies (4.6), in locally tree-like

graphs it can be that qj (x) = 1 with positive probability; see Figure 4 for an illus-
tration of this behavior.

We shall first suppose that (Gn) satisfies Assumption 1.2(1). Let ε > 0 be ar-
bitrary, R

γ
n be as in Assumption 1.2, γ > 0 to be determined later, and let A be

(a) (b)

FIG. 4. The concentration behavior of the qj (x) is very different from the p
α,β
j (x) since it is not in

general true that qj (x) ≤ Cρ(r) while it is true that p
α,β
j (x) ≤ Cρ(r). For example, in a graph which

is locally tree like as depicted above, it can be that qj (x) = 1 for some combinations of entrance
and exit points. (a) Entrance and exit points of an excursion from B(x,4) to B(x,6), respectively,
conditional on which random walk has a low probability of hitting x. (b) Entrance and exit points
of an excursion from B(x,4) to B(x,6), respectively, conditional on which random walk is forced to
hit x.
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a set of points in Vn such that if x, y are distinct in A then d(x, y) ≥ 4R
γ
n . Fix

R > r > 0 and let τk+1(A) = min{t ≥ σk(x) :X(t) ∈ ∂A(r)}. Fix β > 0 and define
indices i(j, x) inductively as follows. Set

i(1, x) = min{k ≥ 1 : τk+1(A) − σk(x) ≥ T U
β }

and, for each j ≥ 1, let

i(j + 1, x) = min{k ≥ i(j, x) + 1 : τk+1(A) − σk(x) ≥ T U
β }.

When x is clear from the context we will write i(j) for i(j, x).

LEMMA 6.2. For each δ > 0 and r > 0 there exists R0 > r such that for
R > R0 fixed there exists i.i.d. random variables (I (j, x) :x ∈ A,j ≥ 1) which
stochastically dominate from above (i(j, x) :x ∈ A,j ≥ 1) and satisfy

P
[
I
(
(1 − δ)j, x

) ≥ j
] ≤ C exp(−Cδ2j)

for all n large enough. Let G(j, x) = σ({qi(k)(x) :k = j}∪{qi(k)(y) :y ∈ A\ {x}}).
There exists i.i.d. random variables (Qj (x) : j ≥ 1) taking values in [0,2ρ(r)]
such that

1 − O(e−cβ) ≤ E[qi(j)(x)|G(j, x)]
Qj(x)

≤ 1 + O(e−cβ)

and

1 − O(e−cβ) ≤ pr,R(x)

EQj(x)
≤ 1 + O(e−cβ)

for all n large enough. Furthermore, the families {(Qj (x) : j ≥ 1) :x ∈ A} are
independent.

PROOF. Define stopping times

σk0(A) = min{t ≥ σk(x) :d(X(t),A) ≥ 2Rγ
n },

τk1(A) = min{t ≥ σk0(x) :d(X(t),A) ≤ Rγ
n }.

For j ≥ 1, inductively set

σkj (A) = min{t ≥ τkj (A) :d(X(t),A) ≥ 2Rγ
n },

τk(j+1)(A) = min{t ≥ σkj (A) :d(X(t),A) ≤ Rγ
n }.

Note that σkj (A) − τkj (A) ≥ R
γ
n . Thus, for jβ = T U

β /R
γ
n we have that τkjβ (A) ≥

σk(x) + T U
β . Let Fk(x) = {X(t) ∈ A(r) for t ∈ [σk(x), σk(x) + T U

β ]}. Let xkj be

the element in A such that d(X(τkj (A)), xkj ) ≤ R
γ
n . Observe

PX(τkj (A))

[
X(t) ∈ A(r) for t ∈ [τkj (A), σkj (A)]|xkj

]
≤ C max

d(y,xkj )=R
γ
n

g(y,B(xkj , r);Gn).
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Uniform local transience also yields

PX(σk(x))

[
X(t) ∈ A(r) for t ∈ [σk(x), τk0(A)]] ≤ Cρ(R, r) ≤ δ/2,

provided R > r is large enough. A union bound thus gives

PX(τk(x))[Fk(x)] ≤ max
z

max
d(y,z)=R

γ
n

g(y,B(z, r);Gn)
T U

β

R
γ
n

+ δ/2

(6.2)
≤ δ/2 + o(1) ≤ δ

as n → ∞ by part (1) of Assumption 1.2. Note that if x1, . . . , x� ∈ A and
j (1), . . . , j (k) are such that τj (k)(xk) ≤ τj (k+1)(xk+1) then we have

P
[
Fj(1)(x1), . . . ,Fj (�)(x�)

]
= E

[
PX(τj (�))(x�)

[
Fj(�)(x�)

]
1Fj(1)(x1) · · ·1Fj(�−1)(x�−1)

]
≤ δP

[
Fj(1)(x1), . . . ,Fj (�−1)(x�−1)

] ≤ · · · ≤ δ�.

This can of course be repeated with any subset of the above events which implies
the stochastic domination claim. It easily now follows from Cramér’s theorem that

P
[
I
(
(1 − δ)k, x

) ≥ k
] ≤ 2 exp(−Cδ2k).

For the second part of the lemma, we just need to get a bound on μx(z)/π(z)

where μx is the law of random walk started at x conditioned not to get within
distance r of A by, say, time T U

β/2. This can be done in exactly the same way as in
the proof of Lemma 4.3. Indeed, the term |A|ρ(s, r) in the statement of that lemma
comes from a bound on the probability that random walk at distance s from A hits
A in time T U

α . In the situation of this lemma, the role of s is replaced by R
γ
n and

we can use the scheme developed above to estimate the error contributed by this
term by O(δ) provided n is sufficiently large. �

We now turn to the case that (Gn) satisfies part (2) of Assumption 1.2. This case
will turn out to be substantially easier, the reason being that the Harnack inequality
implies the quenched bound qj (x) ≤ 2Cρ(r). We emphasize once more that this
is not the case in locally tree-like graphs.

LEMMA 6.3. If (Gn) satisfies part (2) of Assumption 1.2, then for each r, δ >

0 there exists R0 > r such that R ≥ R0 implies

P

[
k∏

j=1

(
1 − qj (x)

) ≥ (
1 − (1 + δ)pr,R(x)

)k(1+δ)

]
(6.3)

≤ C
[
exp

(−Cδ2pr,R(x)k/ρ(r)
)+ exp(−Cδ2k)

]
for all n large enough.
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PROOF. The uniform Harnack inequality implies that qj (x) ≤ 2Cρ(r) where
C = C(R/r) is the constant from the statement of part (2) of Assumption 1.2. Let
Fj = {τj (x) − σj−1(x) ≤ T U

β }. Arguing as in the previous lemma and invoking
uniform local transience, there exists i.i.d. random variables F̃j (x) with P[F̃j (x) =
1] = δ = 1 − P[F̃j (x) = 0] that stochastically dominate (1Fj (x) : j) provided R is
sufficiently large. We let ι(j) be the j th smallest index i such that Fi(x) occurs.
The lemma now follows from an argument similar to that of Lemma 4.2. Indeed,
we can stochastically dominate qι(j)(x) from below by i.i.d. random variables Lj

with ELj ≥ (1 − δ)pr,R(x) and Lj ≤ 10Cρ(r). By Cramér’s theorem,

P

[
k∏

j=1

(1 − Lj) ≥ (
1 − (1 + δ)pr,R(x)

)k] ≤ C exp
(−Cδ2pr,R(x)k/ρ(r)

)
.

The lemma now follows since, again by Cramér’s theorem,

P
[
ι
(
(1 − δ)k

) ≥ k
] ≤ C exp(−Cδ2k). �

6.3. Proof of Theorem 1.3. We begin by showing that the points not visited by
X by time 1

2Tcov(Gn) are typically well separated, which in turn will be helpful
when we estimate the exponential moment in Proposition 3.2. To this end, we let
δ > 0 be arbitrary and assume that R > r,n0, ε have been chosen so that for all
n ≥ n0 we have

1 − δ ≤ Tcov(Gn)

Cε
n

≤ 1 + δ.

We may assume without loss of generality that dε
k > 0 for all relevant k and, in

particular, that |Hε
n,k|−δ → 0 for every k. Indeed, Lemmas 4.6 and 4.7 imply that

Thit(Gn) = �(|Vn|), consequently if log|Hε
n,k| → 0 as n → ∞ then Tcov(H

ε
n,k) is

negligible in comparison to Tcov(Gn). If (Gn) satisfies Assumption 1.2(1) we take
R

γ
n as given there. Otherwise, we take R

γ
n = max{R > 0 : maxx∈Vn |B(x,R)| ≤

|Vn|γ }.
LEMMA 6.4. Let R(t) denote the range of random walk at time t and L(t) =

V \ R(t). Letting

M =
⎧⎨⎩20	0 sup

n
	R(Gn)/(δεd

ε), if supn 	(Gn) < ∞,

20	0/(δεd
ε), otherwise,

and

T0 = min
{
T ≥ 0 : max

x
|L(t) ∩ B(x,Rγ

n )| ≤ M
}
,

we have that P[T0 > 1+5δ
2 Tcov(Gn)] = o(1) provided γ is sufficiently small, R is so

large that δR,m ≤ 1, dε = min{dε
k :dε

k > 0} and m = 20/dε . Furthermore, letting

T1 = min{T ≥ 0 : |L(t) ∩ Hε
n,k| ≤ |Hε

n,k|1/2−δ for all k}
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we have that P[T1 > 1+5δ
2 Tcov(Gn)] = o(1).

PROOF. First, suppose that (Gn) has uniformly bounded maximal degree. Fix
R > r and let A be an R-net of Hε

n,k . Fix x ∈ Hε
n,k and suppose that x1, . . . , x� ∈

B(x,R
γ
n ) ∩ Hε

n,k ∩ A are distinct. Lemma 5.1 gives us

P
[
x1, . . . , x� ∈ L

(
(1 + δ)/2;Gn

)] ≤ (1 + δR,�)|Vn|−(1+δ)�dε
k /2+δR,� .

Consequently, a union bound yields

P
[∣∣L

(
(1 + δ)/2;Gn

)∩ B(x,Rγ
n ) ∩ A

∣∣ ≥ �
]

≤ (1 + δR,�)|B(x,Rγ
n )|�|Vn|−(1+δ)�dε

k /2+δR,�

≤ (1 + δR,�)|Vn|(γ−(1+δ)dε
k /2)�+δR,� .

Hence, choosing γ ≤ dε/4 the above is O(|Vn|−3). Since the number of disjoint
R-nets necessary to cover Hε

n,k is at most 	R(Gn), the result now follows from
a union bound. In the case of unbounded maximal degree, we can skip the step
of subdividing the Hε

n,k into R-nets since in this case δ1,m → 0, otherwise the
proof is the same. The second claim is immediate from Markov’s inequality and
Lemma 5.1. �

We can now complete the proof of Theorem 1.3. We will handle the two cases
depending on whether (Gn) satisfies part (1) or (2) of Assumption 1.2. Throughout,
we let N(x,T ) be the number of such excursions from ∂B(x, r) to ∂B(x,R) that
have occurred by time T .

PROOF OF THEOREM 1.3, UNDER ASSUMPTION 1.2(2). Let

T2 = min

{
T ≥ 0 : max

x∈Hε
n,k

N(x,T )∏
k=1

(
1 − qj (x)

) ≤ |Hε
n,k|−1/2−δ for all k

}

and set

T = T0 ∨ T1 ∨ T2 ∨
(

1 + 5δ

2

)
Tcov(Gn).(6.4)

Let k0(n) be a sequence so that lim infn→∞ dε
k0(n) ≥ δ0 > 0. For x ∈ Hε

n,k0(n), we
have (

1 + 3δ

2

)
Cε

n,k0(n) ≥
(

1 + 3δ + O(ε)

2

)
δ0Tr,R(x) log|Vn|

4ρ(r)

for all n large enough. Thus letting Mε
n,k0(n)(x) = (1 + 3δ)/2 · Cε

n(x)/Tr,R(x), we
have

Mε
n,k0(n)(x) ≥

(
1 + 3δ + O(ε)

2

)
δ0 log|Vn|

4ρ(r)
.
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Now,

P
[
(1 − δ)Tr,R(x)Mε

n,k0(n)(x) ≤ τMε
n,k0(n)

(x) ≤ (1 + δ)Tr,R(x)Mε
n,k0(n)(x)

]
≥ 1 − C exp

(
−Cδ0δ

2

ρ(r)
log|Vn|

)
≥ 1 − O(|Vn|−100),

provided we choose r large enough. Choosing R > r sufficiently large, Lemma 6.3
gives us

P

[Mε
n,k0(n)(x)∏
j=1

(
1 − qj (x)

) ≥ ∣∣Hε
n,k0(n)

∣∣−1/2−δ

]
≤ O(|V |−100).

Combining everything,

P
[

T =
(

1 + 5δ

2

)
Tcov(Gn)

]
= o(1) as n → ∞.(6.5)

Let μ be the probability on X (Gn) given by first sampling R ⊆ Vn according
to μ0, the measure on subsets of Vn given by running X to time (1 + 5δ)/2 ·
Tcov(Gn), then sampling f |R by marking with i.i.d. fair coins and f |Vn\R ≡ 0.
Define μ̃ similarly except by sampling R ⊆ Vn according to μ̃0, the measure given
by running X up to time T rather than (1 + 5δ)/2 · Tcov(Gn). As a consequence
of (6.5),

‖μ − μ̃‖TV ≤ P
[

T =
(

1 + 5δ

2

)
Tcov(Gn)

]
= o(1) as n → ∞.

Suppose we have two independent random walks X,X′ on Gn, each with sta-
tionary initial distribution, and let T , T ′ be stopping times for each as in (6.4). Let
R, R′ be their ranges at time T , T ′, respectively, and L = Vn \ R, L′ = Vn \ R′.
Let q ′

j (x) be the quantity analogous to qj (x) for X′ and G = σ(q ′
j (x) : j ≥ 1).

The previous lemma implies that we can divide L into M disjoint sets A1, . . . ,AM

such that if x, y ∈ A� with x = y then d(x, y) ≥ R
γ
n > R. Consequently, letting

G(A�) = ⊗x∈A�
G(x) we have

E[exp(ζ |L ∩ L′ ∩ A�|)|G(A�)] ≤ ∏
x∈A�

(
1 + eζ

(
N(x,T ′)∏

j=1

(
1 − q ′

j (x)
)))

≤ exp
(
eζ

∑
k

|Hε
n,k|−δ

)
.

Since A1, . . . ,AM cover L, it follows from Hölder’s inequality that

E exp(ζ |L ∩ L′|) ≤
[
exp

(
eζM

∑
k

|Hε
n,k|−δ

)]1/M

(6.6)

≤ 1 + 2
exp(ζM)

M

∑
k

|Hε
n,k|−δ. �



574 J. MILLER AND Y. PERES

PROOF OF THEOREM 1.3, UNDER ASSUMPTION 1.2(1). Let

T2 = min
{
T ≥ 0 : max

k
max

x∈Hε
n,k

(1 + 2δ) log|Hε
n,k|

2N(x,T )pr,R(x)
≤ 1

}
and

T = T0 ∨ T1 ∨ T2 ∨
(

1 + 5δ

2

)
Tcov(Gn).(6.7)

It follows from Lemmas 4.5 and 4.8 and the definition of Hε
n,k that

P
[

T =
(

1 + 5δ

2

)
Tcov(Gn)

]
= o(1) as n → ∞.(6.8)

Let μ be the probability on X (Gn) given by first sampling R ⊆ Vn according
to μ0, the measure on subsets of Vn given by running X to time (1 + 5δ)/2 ·
Tcov(Gn), then sampling f |R by marking with i.i.d. fair coins and f |Vn\R ≡ 0.
Define μ̃ similarly except by sampling R ⊆ Vn according to μ̃0, the measure given
by running X up to time T rather than (1 + 5δ)/2 · Tcov(Gn). As a consequence
of (6.8),

‖μ − μ̃‖TV ≤ P
[

T =
(

1 + 5δ

2

)
Tcov(Gn)

]
= o(1) as n → ∞.

Suppose we have two independent random walks X,X′ on Gn, each with sta-
tionary initial distribution, and let T , T ′ be stopping times for each as in (6.7).
Using the same notation as the previous proof, by the definition of T ′

2 , we have

E
[
E[exp(ζ |L ∩ L′ ∩ A�|)|G(A�)]]

≤ E
∏

x∈A�

(
1 + eζ

(
N(x,T ′)∏

j=1

(
1 − q ′

j (x)
)))

(6.9)

≤ E
∏

x∈A�

(
1 + eζ

(
N(x)∏
j=1

(
1 − q ′

j (x)
)))

,

where N(x) = (1 + 2δ) log|Hε
n,k|/2pr,R(x) and k is such that x ∈ Hε

n,k . Let

Ñ(x) = (1 − δ)N(x) ≥ (1 + δ/2) log|Hε
n,k|

2pr,R(x)
.

Observe that (6.9) is bounded by

E
∏

x∈A�

(
1 + eζ

(
Ñ(x)∏
j=1

(
1 − q ′

i(j)(x)
)+ 1{I (Ñ(x))>N(x)}

))
.
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As A� satisfies the hypotheses of Lemma 6.2, this is in turn bounded by

E
∏

x∈A�

(
1 + eζ

(
Ñ(x)∏
j=1

(
1 − (1 − δ/4)Q′

j (x)
))+ O(|Vn|−100)

)

≤ exp
(
eζ

∑
k

|Hε
n,k|−δ

)
.

The theorem now follows from Hölder’s inequality, as in the previous proof. �

6.4. The lamplighter.

PROOF OF THEOREM 1.5. This is proved by making several small modifica-
tions to the proof of Theorem 1.3. Namely, rather than considering the range of
X run up to time T as in either (6.4) or (6.7), one considers the range R̃(x) of
X run up to time T , conditioned on the event {X(T ) = x} for a given point x.
Exactly the same argument shows that the total variation distance of the law μ̃x

on markings X (Gn) induced by i.i.d. coin flips on R̃(x) and 0 on (R̃(x))c from
the uniform measure on X (Gn) is o(1). This implies that the law μx on mark-
ings of X (Gn) given by i.i.d. coin flips on the range R(x) of X run up to time
T = 1+ε

2 Tcov(Gn), conditioned on {X(T ) = x}, and the uniform measure is o(1).
At time T , the random walk is well mixed, from which the result is clear. �

7. Further questions.

1. Theorem 1.3 yields a wide class of examples where the threshold for indis-
tinguishability is at 1

2Tcov, and Z2
n is an example where the threshold is at Tcov.

Does there exist a sequence (Gn) of vertex transitive graphs where the threshold
is at αTcov(Gn) for α ∈ (1/2,1)?

2. Our statistical test for uniformity is only valid for α > 1/2. For α ≤ 1/2, the
natural reference measure is i.i.d. markings conditioned on the number of zeros
being on the order of |V |1−α . Can analogous results be proved in this setting?

3. Our definition of uniform local transience is given in terms of Green’s func-
tion summed up to the uniform mixing time. Does it suffice to assume only the
uniform decay of

g(x, y;G) =
T∑

t=1

pt(x, y;G),

where T = Tmix(G) or even T = Trel(G)?
4. The complete graph Kn does not satisfy the hypotheses of Theorem 1.3 yet

the lamplighter walk on Kn has a threshold at 1
2Tcov(Kn). Is there a more general

theorem allowing for a unified treatment of this case?
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