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SPECTRUM OF LARGE RANDOM REVERSIBLE MARKOV
CHAINS: HEAVY-TAILED WEIGHTS ON THE COMPLETE GRAPH

BY CHARLES BORDENAVE, PIETRO CAPUTO1 AND DJALIL CHAFAÏ

Université de Toulouse III, Università Roma Tre
and Université Paris-Est Marne-la-Vallée

We consider the random reversible Markov kernel K obtained by as-
signing i.i.d. nonnegative weights to the edges of the complete graph over n

vertices and normalizing by the corresponding row sum. The weights are as-
sumed to be in the domain of attraction of an α-stable law, α ∈ (0,2). When
1 ≤ α < 2, we show that for a suitable regularly varying sequence κn of in-
dex 1 − 1/α, the limiting spectral distribution μα of κnK coincides with the
one of the random symmetric matrix of the un-normalized weights (Lévy
matrix with i.i.d. entries). In contrast, when 0 < α < 1, we show that the em-
pirical spectral distribution of K converges without rescaling to a nontrivial
law μ̃α supported on [−1,1], whose moments are the return probabilities of
the random walk on the Poisson weighted infinite tree (PWIT) introduced by
Aldous. The limiting spectral distributions are given by the expected value
of the random spectral measure at the root of suitable self-adjoint operators
defined on the PWIT. This characterization is used together with recursive
relations on the tree to derive some properties of μα and μ̃α . We also study
the limiting behavior of the invariant probability measure of K .

1. Introduction. Let Gn = (Vn,En) denote the complete graph with vertex
set Vn = {1, . . . , n}, and edge set En = {{i, j},1 ≤ i, j ≤ n}, including loops {i, i},
1 ≤ i ≤ n. Assign a nonnegative random weight (or conductance) Ui,j = Uj,i to
each edge {i, j} ∈ En, and assume that the symmetric weights U = {Ui,j ; {i, j} ∈
En} are i.i.d. with common law L independent of n. This defines a random net-
work, or weighted graph, denoted (Gn,U). Next, consider the random walk on
(Gn,U) defined by the transition probabilities

Ki,j := Ui,j

ρi

with ρi :=
n∑

j=1

Ui,j .(1.1)
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The Markov kernel K is reversible with respect to the measure ρ =∑
i∈Vn

ρiδi in
that

ρiKi,j = ρjKj,i

for all i, j ∈ Vn. Note that we have not assumed that L has no atom at 0. If ρi = 0
for some i, then for that index i we set Ki,j = δi,j , 1 ≤ j ≤ n. However, as soon as
L is not concentrated at 0 then almost surely, for all n sufficiently large, ρi > 0 for
all 1 ≤ i ≤ n, K is irreducible and aperiodic and ρ is its unique invariant measure,
up to normalization (see, e.g., [11]).

For any square n×n matrix M with eigenvalues λ1(M), . . . , λn(M), the Empir-
ical Spectral Distribution (ESD) is the discrete probability measure with at most n

atoms defined by

μM := 1

n

n∑
j=1

δλj (M).

All matrices M to be considered in this work have real spectrum, and the eigen-
values will be labeled in such a way that λn(M) ≤ · · · ≤ λ1(M).

Note that K defines a square n × n random Markov matrix whose entries are
not independent due the normalizing sums ρi . By reversibility, K is self-adjoint in
L2(ρ) and its spectrum σ(K) is real. Moreover, σ(K) ⊂ [−1,+1], and 1 ∈ σ(K).
Since K is Markov, its ESD μK carries further probabilistic content. Namely, for
any � ∈ N, if p�(i) denotes the probability that the random walk on (Gn,U) started
at i returns to i after � steps, then the �th moment of μK satisfies∫ +1

−1
x�μK(dx) = 1

n
tr(K�) = 1

n

∑
i∈V

p�(i).(1.2)

Convergence of the ESD. The asymptotic behavior of μK as n →∞ depends
strongly on the tail of L at infinity. When L has finite mean

∫∞
0 xL(dx) = m we

set m = 1. This is no loss of generality since K is invariant under the dilation
t → tUi,j . If L has a finite second moment we write σ 2 = ∫∞

0 (x − 1)2L(dx) for
the variance.

The following result, from [11], states that if 0 < σ 2 < ∞, then the bulk of the
spectrum of

√
nK behaves, when n →∞, as if we had truly i.i.d. entries (Wigner

matrix). Without loss of generality, we assume that the weights U come from the
truncation of a unique infinite table (Ui,j )i,j≥1 of i.i.d. random variables of law L.
This gives a meaning to the almost sure (a.s.) convergence of μ√

nK . The symbol
w→ denotes weak convergence of measures with respect to continuous bounded

functions. Note that λ1(
√

nK) =√
n→∞.

THEOREM 1.1 (Wigner-like behavior). If L has variance 0 < σ 2 < ∞, then
a.s.

μ√
nK := 1

n

n∑
k=1

δ√nλk(K)
w−→

n→∞ W2σ ,(1.3)
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where W2σ is the Wigner semi-circle law on [−2σ,+2σ ]. Moreover, if L has finite
fourth moment, then λ2(

√
nK) and λn(

√
nK) converge a.s. to the edge of the

limiting support [−2σ,+2σ ].

This Wigner-like scenario can be dramatically altered if we allow L to have a
heavy tail at infinity. For any α ∈ (0,∞), we say that L belongs to the class Hα if
L is supported in [0,∞) and has a regularly varying tail of index α, that is, for all
t > 0,

G(t) := L((t,∞))= L(t)t−α,(1.4)

where L is a function with slow variation at ∞; that is, for any x > 0,

lim
t→∞

L(xt)

L(t)
= 1.

Set an = inf{a > 0 :nG(a) ≤ 1}. Then nG(an) = nL(an)a
−α
n → 1 as n→∞, and

nG(ant) → t−α as n →∞ for all t > 0.(1.5)

It is well known that an has regular variation at ∞ with index 1/α, that is,

an = n1/α�(n)

for some function � with slow variation at ∞ (see, e.g., Resnick [24], Sec-
tion 2.2.1). As an example, if V is uniformly distributed on the interval [0,1],
then for every α ∈ (0,∞), the law of V −1/α , supported in [1,∞), belongs to Hα .
In this case, L(t) = 1 for t ≥ 1, and an = n1/α .

To understand the limiting behavior of the spectrum of K in the heavy-tailed
case it is important to consider first the symmetric i.i.d. matrix corresponding to
the un-normalized weights Ui,j . More generally, we introduce the random n × n

symmetric matrix X defined by

X = (Xi,j )1≤i,j≤n,(1.6)

where (Xi,j )1≤i≤j≤n are i.i.d. such that Ui,j := |Xi,j | has law in Hα with α ∈
(0,2), and

θ = lim
t→∞

P(Xi,j > t)

P(|Xi,j |> t)
∈ [0,1].(1.7)

It is well known that, for α ∈ (0,2), a random variable Y is in the domain of
attraction of an α-stable law iff the law of |Y | is in Hα and the limit (1.7) exists
(cf. [17], Theorem IX.8.1a). It will be useful to view the entries Xi,j in (1.6) as the
marks across edge {i, j} ∈ En of a random network (Gn,X), just as the marks Ui,j

defined the network (Gn,U) introduced above.
Remarkable works have been devoted recently to the asymptotic behavior of the

ESD of matrices X defined by (1.6), sometimes called Lévy matrices. The analysis
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of the Limiting Spectral Distribution (LSD) for α ∈ (0,2) is considerably harder
than the finite second moment case (Wigner matrices), and the LSD is nonexplicit.
Theorem 1.2 below has been investigated by the physicists Bouchaud and Cizeau
[15] and rigorously proved by Ben Arous and Guionnet [7], and Belinschi, Dembo
and Guionnet [5] (see also Zakharevich [28] for related results).

THEOREM 1.2 [Symmetric i.i.d. matrix, α ∈ (0,2)]. For every α ∈ (0,2),
there exists a symmetric probability distribution μα on R depending only on α

such that [with the notation of (1.5) and (1.6)] a.s.

μ
a−1
n X

:= 1

n

n∑
i=1

δ
λi(a

−1
n X)

w−→
n→∞μα.

In Section 3.2, we give a new independent proof of Theorem 1.2. The key idea
of our proof is to exhibit a limiting self-adjoint operator T for the sequence of
matrices a−1

n X, defined on a suitable Hilbert space, and then use known spec-
tral convergence theorems of operators. The limiting operator will be defined as
the “adjacency matrix” of an infinite rooted tree with random edge weights, the
so-called Poisson weighted infinite tree (PWIT) introduced by Aldous [1] (see
also [3]). In other words, the PWIT will be shown to be the local weak limit of
the random network (Gn,X) when the edge marks Xi,j are rescaled by an. In this
setting the LSD μα arises as the expected value of the (random) spectral measure
of the operator T at the root of the tree. The PWIT and the limiting operator T
are defined in Section 2. Our method of proof can be seen as a variant of the re-
solvent method, based on local convergence of operators. It is also well suited to
investigate properties of the LSD μα (cf. Theorem 1.6 below).

Let us now come back to our random reversible Markov kernel K defined by
(1.1) from weights with law L ∈ Hα . We obtain different limiting behavior in the
two regimes α ∈ (0,1) and α ∈ (1,2). The case α > 2 corresponds to a Wigner-
type behavior (special case of Theorem 1.1). We set

κn = na−1
n .

THEOREM 1.3 [Reversible Markov matrix, α ∈ (1,2)]. Let μα be the prob-
ability distribution which appears as the LSD in the symmetric i.i.d. case (Theo-
rem 1.2). If L ∈ Hα with α ∈ (1,2) then a.s.

μκnK := 1

n

n∑
k=1

δλk(κnK)
w−→

n→∞μα.

THEOREM 1.4 [Reversible Markov matrix, α ∈ (0,1)]. For every α ∈ (0,1),
there exists a symmetric probability distribution μ̃α supported on [−1,1] depend-
ing only on α such that a.s.

μK := 1

n

n∑
k=1

δλk(K)
w−→

n→∞ μ̃α.
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The proofs of Theorems 1.3 and 1.4 are given in Sections 3.3 and 3.1, respec-
tively. As in the proof of Theorem 1.2, the main idea is to exploit convergence of
our matrices to suitable operators defined on the PWIT. To understand the scaling
in Theorem 1.3, we recall that if α > 1, then by the strong law of large numbers,
we have n−1ρi → 1 a.s. for every row sum ρi , and this is shown to remove, in the
limit n →∞, all dependencies in the matrix na−1

n K , so that we obtain the same
behavior of the i.i.d. matrix of Theorem 1.2. On the other hand, when α ∈ (0,1),
both the sum ρi and the maximum of its elements are on scale an. The proof of
Theorem 1.4 shows that the matrix K converges (without rescaling) to a random
stochastic self-adjoint operator K defined on the PWIT. The operator K can be
described as the transition matrix of the simple random walk on the PWIT and is
naturally linked to Poisson–Dirichlet random variables. This is based on the obser-
vation that the order statistics of any given row of the matrix K converges weakly
to the Poisson–Dirichlet law PD(α,0) (see Lemma 2.4 below for the details). In
fact, the operator K provides an interesting generalization of the Poisson–Dirichlet
law.

Since μK is supported in [−1,1], (1.2) and Theorem 1.4 imply that for all � ≥ 1,
a.s.

1

n

n∑
i=1

p�(i)=
∫

R

x�μK(dx) −→
n→∞

∫
R

x�μ̃α(dx) =: γ�.(1.8)

The LSD μ̃α will be obtained as the expectation of the (random) spectral measure
of K at the root of the PWIT. It will follow that γ� (the �th moment of μ̃α) is the
expected value of the (random) probability that the random walk returns to the root
in �-steps. In particular, the symmetry of μ̃α follows from the bipartite nature of
the PWIT.

It was proved by Ben Arous and Guionnet [7], Remark 1.5, that α ∈ (0,2) 	→ μα

is continuous with respect to weak convergence of probability measures, and by
Belinschi, Dembo and Guionnet [5], Remark 1.2 and Lemma 5.2, that μα tends to
the Wigner semi-circle law as α ↗ 2. We believe that Theorem 1.3 should remain
valid for α = 2 with LSD given by the Wigner semi-circle law. Further properties
of the measures μα and μ̃α are discussed below.

The case α = 1 is qualitatively similar to the case α ∈ (1,2) with the difference
that the sequence κn in Theorem 1.3 has to be replaced by κn = na−1

n wn where

wn =
∫ an

0
xL(dx).(1.9)

Indeed, here the mean of Ui,j may be infinite and the closest one gets to a law of
large numbers is the statement that ρi/nwn → 1 in probability (see Section 3.4).
The sequence wn (and therefore κn) is known to be slowly varying at ∞ for α = 1
(see, e.g., Feller [17], VIII.8). The following mild condition will be assumed: There
exists 0 < ε < 1/2 such that

lim inf
n→∞

w�nε�
wn

> 0.(1.10)



HEAVY-TAILED WEIGHTS ON THE COMPLETE GRAPH 1549

For example, if U−1
i,j is uniform on [0,1], then κn = wn = logn and limn→∞ w�nε�/

wn = ε. In the next theorem μ1 stands for the LSD μα from Theorem 1.2, at α = 1.

THEOREM 1.5 (Reversible Markov matrix, α = 1). Suppose that L ∈ Hα with
α = 1 and assume (1.10). If μκnK is the ESD of κnK , with κn = na−1

n wn, then, as

n →∞, a.s. μκnK
w−→

n→∞μ1.

Properties of the LSD. In Section 4 we prove some properties of the LSDs μα

and μ̃α .

THEOREM 1.6 (Properties of μα). Let μα be the symmetric LSD in Theo-
rems 1.2 and 1.3.

(i) μα is absolutely continuous on R.
(ii) The density of μα at 0 is equal to

1

π



(
1 + 2

α

)(

(1 − α/2)


(1 + α/2)

)1/α

.

(iii) μα is heavy tailed, and as t goes to +∞,

μα((t,+∞))∼ 1
2 t−α.

Statements (i) and (ii) answer some questions raised in [5, 7]. Statement (iii)
is already contained in [5], Theorem 1.7, but we provide a new proof based on a
Tauberian theorem for the Cauchy–Stieltjes transform that may be of independent
interest.

THEOREM 1.7 (Properties of μ̃α). Let μ̃α be the symmetric LSD in Theo-
rem 1.4, with moments γ� as in (1.8). Then the following statements hold true.

(i) For α ∈ (0,1), there exists δ > 0 such that

γ2n ≥ δn−α for all n ≥ 1.

Moreover, we have lim infα↗1 γ2 > 0.
(ii) For the topology of the weak convergence, the map α 	→ μ̃α is continuous in

(0,1).
(iii) For the topology of the weak convergence,

lim
α↘0

μ̃α = 1

4
δ−1 + 1

2
δ0 + 1

4
δ1.

It is delicate to provide liable numerical simulations of the ESDs. Nevertheless,
Figure 1 provides histograms for various values of α and a large value of n, illus-
trating Theorems 1.3–1.7.
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FIG. 1. Histograms of scaled ESDs illustrating the convergence stated by Theorems 1.3 and 1.4,
for the following values of α : 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00. Here n = 5000 and L
is the law of V−1/α where V is a uniform random variable on (0,1). The first three plots are the
histogram of the spectrum of a single realization of K . The fourth plot corresponds to α = 1 and is
a histogram of the spectrum of a single realization of log(n)K . The four last plots are the histogram
of the spectrum of a single realization of κnK . In order to avoid scaling problems, an asymptotically
negligible portion of the spectrum edge was discarded: only λ�log(n)�, . . . , λ�n−log(n)� were used.

Invariant measure and edge behavior. Finally, we turn to the analysis of the
invariant probability distribution ρ̂ for the random walk on (G,U). This is obtained
by normalizing the vector of row sums ρ

ρ̂ = (ρ1 + · · · + ρn)
−1(ρ1, . . . , ρn).

Following [11], Lemma 2.2, if α > 2, then nmax1≤i≤n |ρ̂i − n−1| → 0 as n →∞
a.s. This uniform strong law of large numbers does not hold in the heavy-tailed
case α ∈ (0,2): the large n behavior of ρ̂ is then dictated by the largest weights in
the system.

Below we use the notation ρ̃ = (ρ̃1, . . . , ρ̃n) for the ranked values of ρ̂1, . . . , ρ̂n,

so that ρ̃1 ≥ ρ̃2 ≥ · · · and their sum is 1. The symbol
d−→ denotes convergence

in distribution. We refer to Section 2.4 for more details on weak convergence in
the space of ranked sequences and for the definition of the Poisson–Dirichlet law
PD(α,0).

THEOREM 1.8 (Invariant probability measure). Suppose that L ∈ Hα .
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(i) If α ∈ (0,1), then

ρ̃
d−→

n→∞
1
2(V1,V1,V2,V2, . . .),(1.11)

where V1 > V2 > · · · stands for a Poisson–Dirichlet PD(α,0) random vector.
(ii) If α ∈ (1,2), then

κn(n+1)/2ρ̃
d−→

n→∞
1
2(x1, x1, x2, x2, . . .),(1.12)

where x1 > x2 > · · · denote the ranked points of the Poisson point process on
(0,∞) with intensity measure αx−α−1 dx. Moreover, the same convergence
holds for α = 1 provided the sequence κn is replaced by na−1

n wn, with wn as
in (1.9).

Theorem 1.8 is proved in Section 5. These results will be derived from the statis-
tics of the ranked values of the weights Ui,j , i < j , on the scale an(n+1)/2 (diagonal
weights Ui,i are easily seen to give negligible contributions). The duplication in
the sequences in (1.12) and (1.11) then comes from the fact that each of the largest
weights belongs to two distinct rows and determines alone the limiting value of
the associated row sum.

Theorem 1.8 is another indication that the random walk with transition matrix
K shares the features of a trap model. Loosely speaking, instead of being trapped
at a vertex, as in the usual mean field trap models (see [6, 14, 16, 18]) here the
walker is trapped at an edge.

Large edge weights are responsible for the large eigenvalues of K . This phe-
nomenon is well understood in the case of symmetric random matrices with i.i.d.
entries, where it is known that, for α ∈ (0,4), the edge of the spectrum gives rise
to a Poisson statistics (see [4, 26]). The behavior of the extremal eigenvalues of
K when L has finite fourth moment has been studied in [11]. In particular, it is
shown there that the spectral gap 1 − λ2 is 1 − O(n−1/2). In the present case of
heavy-tailed weights, in contrast, by localization on the largest edge weight it is
possible to prove that, a.s. and up to corrections with slow variation at ∞,

1 − λ2 =
{

O(n−1/α), α ∈ (0,1),
O
(
n−(2−α)/α

)
, α ∈ [1,2).

(1.13)

Similarly, for α ∈ (2,4) one has that λ2 is bounded below by n−(α−2)/α . Un-
derstanding the statistics of the extremal eigenvalues remains an interesting open
problem.

2. Convergence to the Poisson weighted infinite tree. The aim of this sec-
tion is to prove that the matrices X and K appearing in Theorems 1.2, 1.3 and 1.4,
when properly rescaled, converge “locally” to a limiting operator defined on the
Poisson weighted infinite tree (PWIT). The concept of local convergence of oper-
ators is defined below. We first recall the standard construction of the PWIT.
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2.1. The PWIT. Given a Radon measure ν on R, PWIT(ν) is the random
rooted tree defined as follows. The vertex set of the tree is identified with N

f :=⋃
k∈N N

k by indexing the root as N
0 = ∅, the offsprings of the root as N and, more

generally, the offsprings of some v ∈ N
k as (v1), (v2), . . . ∈ N

k+1 [for short nota-
tion, we write (v1) in place of (v,1)]. In this way the set of v ∈ N

n identifies the
nth generation.

We now assign marks to the edges of the tree according to a collection {�v}v∈Nf

of independent realizations of the Poisson point process with intensity measure ν

on R. Namely, starting from the root ∅, let �∅ = {y1, y2, . . .} be ordered in such
a way that |y1| ≤ |y2| ≤ · · · , and assign the mark yi to the offspring of the root
labeled i. Now, recursively, at each vertex v of generation k, assign the mark yvi

to the offspring labeled vi, where �v = {yv1, yv2, . . .} satisfy |yv1| ≤ |yv2| ≤ · · · .
2.2. Local operator convergence. We give a general formulation and later spe-

cialize to our setting. Let V be a countable set, and let L2(V ) denote the Hilbert
space defined by the scalar product

〈φ,ψ〉 := ∑
u∈V

φ̄uψu, φu = 〈δu,φ〉,

where φ,ψ ∈ C
V and δu denote the unit vector with support u. Let D denote the

dense subset of L2(V ) of vectors with finite support.

DEFINITION 2.1 (Local convergence). Suppose Sn is a sequence of bounded
operators on L2(V ), and S is a closed linear operator on L2(V ) with dense domain
D(S) ⊃ D. Suppose further that D is a core for S (i.e., the closure of S restricted
to D equals S). For any u, v ∈ V we say that (Sn, u) converges locally to (S, v)

and write

(Sn, u)→ (S, v),

if there exists a sequence of bijections σn :V → V such that σn(v) = u and, for all
φ ∈ D,

σ−1
n Snσnφ → Sφ,

in L2(V ), as n→∞.

In other words, this is the standard strong convergence of operators up to a re-
indexing of V which preserves a distinguished element. With a slight abuse of
notation we have used the same symbol σn for the linear isometry σn :L2(V ) →
L2(V ) induced in the obvious way, that is, such that σnδv = δσn(v) for all v ∈ V .
The point for introducing Definition 2.1 lies in the following theorem on strong
resolvent convergence. Recall that if S is a self-adjoint operator its spectrum is
real, and for all z ∈ C+ := {z ∈ C :�z > 0}, the operator S − zI is invertible with
bounded inverse. The operator-valued function z 	→ (S − zI)−1 is the resolvent
of S.
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THEOREM 2.2 (From local convergence to resolvents). If Sn and S are self-
adjoint operators that satisfy the conditions of Definition 2.1 and (Sn, u)→ (S, v)

for some u, v ∈ V , then, for all z ∈ C+,

〈δu, (Sn − zI)−1δu〉→ 〈δv, (S − zI)−1δv〉.(2.1)

PROOF. It is a special case of [23], Theorem VIII.25(a). Indeed, if we de-
fine S̃n = σ−1

n Snσn, then S̃nφ → Sφ for all φ in a common core of the self-
adjoint operators S̃n,S. This implies the strong resolvent convergence, that is,
(S̃n − zI)−1ψ → (S − zI)−1ψ for any z ∈ C+, ψ ∈ L2(V ). The conclusion fol-
lows by taking the scalar product

〈δv, (̃Sn − zI)−1δv〉 = 〈δu, (Sn − zI)−1δu〉. �

We shall apply the above theorem in cases where the operators Sn and S are
random operators on L2(V ), which satisfy with probability one the conditions of
Definition 2.1. In this case we say that (Sn, u) → (S, v) in distribution if there
exists a random bijection σn as in Definition 2.1 such that σ−1

n Snσnφ converges in
distribution to Sφ, for all φ ∈ D [where a random vector ψn ∈ L2(V ) converges in
distribution to ψ if

lim
n→∞Ef (ψn) = Ef (ψ)

for all bounded continuous functions f :L2(V ) → R]. Under these assumptions
then (2.1) becomes convergence in distribution of (bounded) complex random vari-
ables. In our setting the Hilbert space will be L2(V ), with V = N

f , the vertex set
of the PWIT, the operator Sn will be a rescaled version of the matrix X defined by
(1.6) or the matrix K defined by (1.1). The operator S will be the corresponding
limiting operator defined below.

2.3. Limiting operators. Let θ be as in Theorem 1.2, and let �θ be the positive
Borel measure on the real line defined by d�θ (x) = θ1{x>0} dx+ (1−θ)1{x<0} dx.
Consider a realization of PWIT(�θ ). As before the mark from vertex v ∈ N

k to
vk ∈ N

k+1 is denoted by yvk . We note that almost surely∑
k

|yvk|−2/α < ∞,(2.2)

since a.s. limk |yvk|/k = 1 and
∑

k k−2/α converges for α ∈ (0,2). Recall that for
V = N

f , D is the dense set of L2(V ) of vectors with finite support. We may a.s.
define a linear operator T : D → L2(V ) by letting, for v,w ∈ N

f ,

T(v,w) = 〈δv,Tδw〉
(2.3)

=
⎧⎨⎩ sign(yw)|yw|−1/α, if w = vk for some integer k,

sign(yv)|yv|−1/α, if v = wk for some integer k,
0, otherwise.
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Note that if every edge e in the tree with mark ye is given the “weight”
sign(ye)|ye|−1/α then we may look at the operator T as the “adjacency matrix”
of the weighted tree. Clearly, T is symmetric, and therefore it has a closed ex-
tension with domain D(T) ⊂ L2(Nf ) such that D ⊂ D(T) (see, e.g., [23], Chap-
ter VIII, Section 2). We will prove in Proposition A.2 below that T is essentially
self-adjoint, that is, the closure of T is self-adjoint. With a slight abuse of notation,
we identify T with its closed extension. As stated below, T is the weak local limit
of the sequence of n× n i.i.d. matrices a−1

n X, where X is defined by (1.6). To this
end we view the matrix X as an operator in L2(V ) by setting 〈δi,Xδj 〉 = Xi,j ,
where i, j ∈ N denote the labels of the offsprings of the root (the first genera-
tion), with the convention that Xi,j = 0 when either i > n or j > n, and by setting
〈δu,Xδv〉 = 0 when either u or v does not belong to the first generation.

Similarly, taking now θ = 1, in the case of Markov matrices K defined by (1.1),
for α ∈ [1,2), T is the local limit operator of κnK . To work directly with symmetric
operators we introduce the symmetric matrix

Si,j = Ui,j√
ρiρj

,(2.4)

which is easily seen to have the same spectrum of K (see, e.g., [11], Lemma 2.1).
Again the matrix S can be embedded in the infinite tree as described above for X.

In the case α ∈ (0,1) the Markov matrix K has a different limiting object that is
defined as follows. Consider a realization of PWIT(�1), where �1 is the Lebesgue
measure on [0,∞). We define an operator corresponding to the random walk on
this tree with conductance equal to the mark to the power −1/α. More precisely,
for v ∈ N

f , let

ρ(v) = y−1/α
v + ∑

k∈N

y
−1/α
vk

with the convention that y
−1/α
∅ = 0. Since a.s. limk |yvk|/k = 1, ρ(v) is almost

surely finite for α ∈ (0,1). We define the linear operator K on D, by letting, for
v,w ∈ N

f ,

K(v,w)= 〈δv,Kδw〉 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y
−1/α
w

ρ(v)
, if w = vk for some integer k,

y
−1/α
v

ρ(v)
, if v = wk for some integer k,

0, otherwise.

(2.5)

Note that K is not symmetric, but it becomes symmetric in the weighted Hilbert
space L2(V ,ρ) defined by the scalar product

〈φ,ψ〉ρ := ∑
u∈V

ρ(u)φ̄uψu.
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Moreover, on L2(V ,ρ), K is a bounded self-adjoint operator since Schwarz’s in-
equality implies

〈Kφ,Kφ〉2
ρ =∑

u
ρ(u)

∣∣∣∣∑
v

K(u,v)φv

∣∣∣∣2
≤∑

u
ρ(u)

∑
v

K(u,v)|φv|2

=∑
v

ρ(v)|φv|2 = 〈φ,φ〉2
ρ

so that the operator norm of K is less than or equal to 1. To work with self-adjoint
operators in the unweighted Hilbert space L2(V ) we shall actually consider the
operator S defined by

S(v,w) :=
√

ρ(v)

ρ(w)
K(v,w)= T(v,w)√

ρ(v)ρ(w)
.(2.6)

This defines a bounded self-adjoint operator in L2(V ). Indeed, the map δv →√
ρ(v)δv induces a linear isometry D :L2(V ,ρ)→ L2(V ) such that

〈φ,Sψ〉 = 〈D−1φ,KD−1ψ〉ρ,(2.7)

for all φ,ψ ∈ L2(V ). In this way, when α ∈ (0,1), S will be the limiting operator
associated with the matrix S defined in (2.4). Note that no rescaling is needed here.
The main result of this section is the following.

THEOREM 2.3 (Limiting operators). As n goes to infinity, in distribution:

(i) if α ∈ (0,2) and θ ∈ [0,1], then (a−1
n X,1)→ (T,∅);

(ii) if α ∈ (1,2) and θ = 1, then (κnS,1)→ (T,∅);
(iii) if α ∈ (0,1), then (S,1)→ (S,∅).

From the remark after Theorem 2.2 we see that Theorem 2.3 implies conver-
gence in distribution of the resolvent at the root. As we shall see in Section 3, this
in turn gives convergence of the expected values of the Cauchy–Stieltjes transform
of the ESD of our matrices. The rest of this section is devoted to the proof of
Theorem 2.3.

2.4. Weak convergence of a single row. In this paragraph, we recall some facts
about the order statistics of the first row of the matrix X and K , that is,

(X1,1, . . . ,X1,n) and (U1,1, . . . ,U1,n)/ρ1,

where U1,j = |X1,j | has law Hα . Let us denote by V1 ≥ V2 ≥ · · · ≥ Vn the order
statistics of the variables U1,j , 1 ≤ j ≤ n. Recall that ρ1 =∑n

j=1 Vj . Let us define
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�k,n =∑n
j=k+1 Vj for k < n and �2

k,n =
∑n

j=k+1 V 2
j . Call A the set of sequences

{vj } ∈ [0,∞)N with v1 ≥ v2 ≥ · · · ≥ 0 such that limj→∞ vj = 0, and let A1 ⊂ A
be the subset of sequences satisfying

∑
j vj = 1. We shall view

Yn =
(

V1

an

, . . . ,
Vn

an

)
and Zn =

(
V1

ρ1
, . . . ,

Vn

ρ1

)
as elements of A and A1, respectively, simply by adding zeros to the right of
Vn/an and Vn/ρ1. Equipped with the standard product metric, A and A1 are com-
plete separable metric spaces (A1 is compact), and convergence in distribution
for A, A1-valued random variables is equivalent to finite-dimensional convergence
(cf., e.g., Bertoin [9]).

Let E1,E2, . . . denote i.i.d. exponential variables with mean 1 and write γk =∑k
j=1 Ej . We define the random variable in A

Y = (γ
−1/α
1 , γ

−1/α
2 , . . .).

The law of Y is the law of the ordered points of a Poisson process on (0,∞) with
intensity measure αx−α−1 dx. For α ∈ (0,1) we define the variable in A1

Z =
(

γ
−1/α
1∑∞

n=1 γ
−1/α
n

,
γ
−1/α
2∑∞

n=1 γ
−1/α
n

, . . .

)
.

For α ∈ (0,1) the sum
∑

n γ
−1/α
n is a.s. finite. The law of Z in A1 is called the

Poisson–Dirichlet law PD(α,0) (see Pitman and Yor [22], Proposition 10). The
next result is rather standard but we give a simple proof for convenience.

LEMMA 2.4 (Poisson–Dirichlet laws and Poisson point processes).

(i) For all α > 0, Yn converges in distribution to Y . Moreover, for α ∈ (0,2),
(a−1

n Vj )j≥1 is a.s. uniformly square integrable, that is, a.s. limk supn>k a−2
n ×

�2
k,n = 0.

(ii) If α ∈ (0,1), Zn converges in distribution to Z. Moreover, (a−1
n Vj )j≥1 is a.s.

uniformly integrable, that is, a.s. limk supn>k a−1
n �k,n = 0.

(iii) If I ⊂ N is a finite set and V I
1 ≥ V I

2 ≥ · · · denote the order statistics of
{U1,j }j∈{1,...,n}\I then (i) and (ii) hold with Y I

n = (V I
1 /an,V

I
2 /an, . . .) and

ZI
n = (V I

1 /ρ1,V
I
2 /ρ1, . . .).

As an example, from (i), we retrieve the well-known fact that for any α > 0, the
random variable a−1

n max(U1,1, . . . ,U1,n) converges weakly as n →∞ to the law

of γ
−1/α
1 . This law, known as a Fréchet law, has density αx−α−1e−x−α

on (0,∞).

PROOF OF LEMMA 2.4. As in LePage, Woodroofe and Zinn [20] we take
advantage of the following well-known representation for the order statistics of
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i.i.d. random variables. Let G be the function in (1.4) and write

G−1(u) = inf{y > 0 :G(y)≤ u},
u ∈ (0,1). We have that (V1, . . . , Vn) equals in distribution the vector(

G−1(γ1/γn+1), . . . ,G
−1(γn/γn+1)

)
,(2.8)

where γj has been defined above. To prove (i) we start from the distributional
identity

Yn
d=
(

G−1(γ1/γn+1)

an

, . . . ,
G−1(γn/γn+1)

an

)
,

which follows from (2.8). It suffices to prove that for every k, almost surely the first
k terms above converge to the first k terms in Y . Thanks to (1.5), almost surely, for
every j ,

a−1
n G−1(γj /γn+1) → γ

−1/α
j ,(2.9)

and the convergence in distribution of Yn to Y follows. Moreover, from (1.5), for
any δ > 0 we can find n0 such that

a−1
n Vj = a−1

n G−1(γj /γn+1) ≤ (
nγj/(1 + δ)γn+1

)−1/α
,

for n ≥ n0, j ∈ N. Since n/γn+1 → 1, a.s. we see that the expression above is a.s.

bounded by 2(1 + δ)1/αγ
−1/α
j , for n sufficiently large, and the second part of (i)

follows from a.s. summability of γ
−2/α
j .

Similarly, if α ∈ (0,1), �k,n has the same law of
n∑

j=k+1

G−1(γj /γn+1),

and the second part of (ii) follows from a.s. summability of γ
−1/α
j . To prove the

convergence of Zn we use the distributional identity

Zn
d=
(

G−1(γ1/γn+1)∑n
j=1 G−1(γj /γn+1)

, . . . ,
G−1(γn/γn+1)∑n

j=1 G−1(γj /γn+1)

)
.

As a consequence of (2.9), we then have almost surely

a−1
n

n∑
j=1

G−1(γj /γn+1) →
∞∑

j=1

γ
−1/α
j ,

and (ii) follows. Finally, (iii) is an easy consequence of the exchangeability of the
variable (U1,i)

P(V I
k �= Vk) ≤ P(∃j ∈ I :U1,j ≥ Vk) ≤ |I |P(U1,1 ≥ Vk) = |I |k

n
. �

The intensity measure αx−α−1 dx on (0,∞) is not locally finite at 0. It will be
more convenient to work with Radon (i.e., locally finite) intensity measures.
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LEMMA 2.5 (Poisson point processes with Radon intensity measures). Let
ξn

1 , ξn
2 , . . . be sequences of i.i.d. random variables on R := R∪ {±∞} such that

nP(ξn
1 ∈ ·) w−→

n→∞ν,(2.10)

where ν is a Radon measure on R. Then, for any finite set I ⊂ N the random
measure ∑

i∈{1,...,n}\I
δξn

i

converges weakly as n →∞ to PPP(ν), the Poisson point process on R with in-
tensity law ν, for the usual vague topology on Radon measures.

We refer to [24], Theorem 5.3, page 138, for a proof of Lemma 2.5. Note that for
ξ

(n)
j = an/U1,j it is a consequence of Lemma 2.4(iii). In the case ξ

(n)
j = an/X1,j ,

where Xi,j is as in (1.6) and (1.7), the above lemma yields convergence to
PPP(να,θ ), where

να,θ (dx) = [
θ1{x>0} + (1 − θ)1{x<0}

]
α|x|α−1 dx.(2.11)

2.5. Local weak convergence to PWIT. In the previous paragraph we have
considered the convergence of the first row of the matrix a−1

n X. Here we gen-
eralize this by characterizing the limiting local structure of the complete graph
with marks an/Xi,j . Our argument is based on a technical generalization of an
argument borrowed from Aldous [1]. This will lead us to Theorems 2.3 and 2.8
below.

Let Gn be the complete network on {1, . . . , n} whose mark on edge (i, j) equals
ξn
i,j , for some collection (ξn

ij )1≤i≤j≤n of i.i.d. random variables with values in R,
with ξn

j,i = ξn
i,j . We consider the rooted network (Gn,1) obtained by distinguish-

ing the vertex labeled 1.
We follow Aldous [1], Section 3. For every fixed realization of the marks (ξn

ij ),

and for any B,H ∈ N, such that (BH+1−1)/(B−1) ≤ n, we define a finite rooted
subnetwork (Gn,1)B,H of (Gn,1), whose vertex set coincides with a B-ary tree
of depth H with root at 1.

To this end we partially index the vertices of (Gn,1) as elements in

JB,H =
H⋃

�=0

{1, . . . ,B}� ⊂ N
f ,

the indexing being given by an injective map σn from JB,H to Vn := {1, . . . , n}.
The map σn can be extended to a bijection from a subset of N

f to Vn. We set
I∅ = {1} and the index of the root 1 is σ−1

n (1) = ∅. The vertex v ∈ Vn \ I∅ is
given the index (k) = σ−1

n (v), 1 ≤ k ≤ B , if ξn
(1,v) has the kth smallest absolute
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value among {ξn
1,j , j �= 1}, the marks of edges emanating from the root 1. We

break ties by using the lexicographic order. This defines the first generation. Now
let I1 be the union of I∅ and the B vertices that have been selected. If H ≥ 2, we
repeat the indexing procedure for the vertex indexed by (1) (the first child) on the
set Vn \ I1. We obtain a new set {11, . . . ,1B} of vertices sorted by their weights
as before [for short notation, we concatenate the vector (1,1) into 11]. Then we
define I2 as the union of I1 and this new collection. We repeat the procedure for
(2) on Vn \ I2 and obtain a new set {21, . . . ,2B}, and so on. When we have con-
structed {B1, . . . ,BB}, we have finished the second generation (depth 2) and we
have indexed (B3 − 1)/(B − 1) vertices. The indexing procedure is then repeated
until depth H so that (BH+1 − 1)/(B − 1) vertices are sorted. Call this set of
vertices V B,H

n = σnJB,H . The subnetwork of Gn generated by V B,H
n is denoted

(Gn,1)B,H (it can be identified with the original network Gn where any edge e

touching the complement of V B,H
n is given a mark xe =∞). In (Gn,1)B,H , the

set {u1, . . . ,uB} is called the set of children or offsprings of the vertex u. Note that
while the vertex set has been given a tree structure, (Gn,1)B,H is still a complete
network. The next proposition shows that it nevertheless converges to a tree (i.e.,
all circuits vanish, or equivalently, the extra marks diverge to ∞) if the ξn

i,j satisfy
a suitable scaling assumption.

Let (T ,∅) denote the infinite random rooted network with distribution
PWIT(ν). We call (T ,∅)B,H the finite random network obtained by the sort-
ing procedure described in the previous paragraph. Namely, (T ,∅)B,H consists of
the sub-tree with vertices of the form u ∈ JB,H , with the marks inherited from the
infinite tree. If an edge is not present in (T ,∅)B,H , we assign to it the mark +∞.

We say that the sequence of random finite networks (Gn,1)B,H converges in
distribution (as n →∞) to the random finite network (T ,∅)B,H if the joint dis-
tributions of the marks converge weakly. To make this precise we have to add the
points {±∞} as possible values for each mark, and continuous functions on the
space of marks have to be understood as functions such that the limit as any one
of the marks diverges to +∞ exists and coincides with the limit as the same mark
diverges to −∞. The next proposition generalizes [1], Section 3.

PROPOSITION 2.6 (Local weak convergence to a tree). Let (ξn
i,j )1≤i≤j≤n be

a collection of i.i.d. random variables with values in R := R ∪ {±∞} and set
ξn
j,i = ξn

i,j . Let ν be a Radon measure on R with no mass at 0 and assume that

nP(ξn
12 ∈ ·) w−→

n→∞ν as n →∞.(2.12)

Let Gn be the complete network on {1, . . . , n} whose mark on edge (i, j) equals ξn
ij .

Then, for all integers B,H , as n goes to infinity, in distribution,

(Gn,1)B,H −→ (T ,∅)B,H .
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Moreover, if T1, T2 are independent with common law PWIT(ν), then, in distribu-
tion,

((Gn,1)B,H , (Gn,2)B,H ) −→ ((T1,∅)B,H , (T2,∅)B,H ).

The second statement is the convergence of the joint law of the finite networks,
where (Gn,2)B,H is obtained with the same procedure as for (Gn,1)B,H , by start-
ing from the vertex 2 instead of 1. In particular, the second statement implies the
first.

This type of convergence is often referred to as local weak convergence, a notion
introduced by Benjamini and Schramm [8] and Aldous and Steele [3] (see also Al-
dous and Lyons [2]). Let us give some examples of application of this proposition.
Consider the case where ξn

ij = 1 with probability λ/n and ξn
i,j = ∞ otherwise.

The network Gn is an Erdős–Rényi random graph with parameter λ/n. From the
proposition, we retrieve the well-known fact that it locally converges to the tree
of a Yule process of intensity λ. If ξn

i,j = nYi,j , where Yi,j is any nonnegative
continuous random variable with density 1 at 0+, then the network converges to
PWIT(�1), where �1 is the Lebesgue measure on [0,∞). The relevant application
for our purpose is given by the choice ξn

i,j = (an/Xi,j ), and ν = να,θ , where Xi,j

are such that |Xi,j | ∈ Hα and (1.7) is satisfied, and να,θ is defined by (2.11). Note
that the proposition applies to all α > 0 in this setting.

PROOF OF PROPOSITION 2.6. We order the elements of JB,H in the lexi-
cographic order, that is, ∅ ≺ 1 ≺ 2 ≺ · · · ≺ B ≺ 11 ≺ 12 ≺ · · · ≺ B · · ·B . For
v ∈ JB,H , let Ov denote the set of offsprings of v in (Gn,1)B,H . By construction,
we have I∅ = {1} and Iv = σn(

⋃
w≺v Ow). At every step of the indexing proce-

dure, we sort the marks of the neighboring edges that have not been explored at an
earlier step {1, . . . , n} \ I1, {1, . . . , n} \ I2, . . . . Therefore, for all u,(

ξn
σn(u),i

)
i /∈Iu

d= (ξn
1,i )1≤i≤n−|Iu|.(2.13)

Thus, from Lemma 2.5 and the independence of the variables ξn, we infer that the
marks from a parent to its offsprings in (Gn,1)B,H converge weakly to those in
(T ,∅)B,H . We now check that all other marks diverge to infinity. For v,w ∈ JB,H ,
we define

xn
v,w = ξn

σn(v),σn(w).

Also, let {yn
v,w,v,w ∈ JB,H } denote independent variables distributed as |ξn

1,2|. Let
EB,H denote the set of edges {u,v} ∈ JB,H × JB,H that do not belong to the finite
tree (i.e., there is no k ∈ {1, . . . ,B} such that u = vk or v = uk). Lemma 2.7 below
implies that the vector {|xn

v,w|, {v,w} ∈ EB,H } stochastically dominates the vector
Y n := {yn

v,w, {v,w} ∈ EB,H }, that is, there exists a coupling of the two vectors
such that almost surely |xn

v,w| ≥ yn
v,w, for all {v,w} ∈ EB,H . Since JB,H is finite
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(independent of n), Y n contains a finite number of variables and (2.12) implies that
the probability of the event {min{v,w}∈EB,H |xn

v,w| ≤ t} goes to 0 as n→∞, for any
t > 0. Therefore it is now standard to obtain that if xe denote the mark of edge e in
T B,H , the finite collection of marks (xn

e )e∈JB,H×JB,H
converges in distribution to

(xe)e∈JB,H×JB,H
as n →∞. In other words, (Gn,1)B,H converges in distribution

to (T ,∅)B,H .
It remains to prove the second statement. It is an extension of the above ar-

gument. We consider the two subnetworks (Gn,1)B,H and (Gn,2)B,H obtained
from (Gn,1) and (Gn,2). This gives rise to two increasing sequences of sets of
vertices Iv,1 and Iv,2 with v ∈ JB,H and two injective maps σn,1, σn,2 from JB,H

to {1, . . . , n}. We need to show that, in distribution,

((Gn,1)B,H , (Gn,2)B,H ) −→ ((T1,∅)B,H , (T2,∅)B,H ).(2.14)

Let V
B,H
n,i = σn,i(JB,H ) be the vertex set of (Gn, i)

B,H , i = 1,2. There are

C := BH+1 − 1

B − 1

vertices in V
B,H
n,i , hence the exchangeability of the variables implies that

P(2 ∈ V
B,H
n,1 ) ≤ C

n
.

Let G̃n = Gn \ V
B,H
n,1 , the subnetwork of Gn spanned by the vertex set V \ V

B,H
n,1 .

Assuming that 2(BH+1 − 1)/(B − 1) < n and 2 /∈ V
B,H
n,1 , we may then define

(G̃n,2)B,H . If 2 ∈ V
B,H
n,1 , (G̃n,2)B,H is defined arbitrarily. The above analysis

shows that, in distribution,

((Gn,1)B,H , (G̃n,2)B,H ) −→ ((T1,∅)B,H , (T2,∅)B,H ).

Therefore in order to prove (2.14) it is sufficient to prove that with probability
tending to 1,

V
B,H
n,1 ∩ V

B,H
n,2 = ∅.

Indeed, on the event {V B,H
n,1 ∩ V

B,H
n,2 = ∅}, (Gn,2)B,H and (G̃n,2)B,H are equal.

For v ∈ JB,H , let Ov,2 denote the set of offsprings of v in (Gn,2)B,H . We have

Iv,2 = {2} ∪ ⋃
w≺v

Ow,2

and

P(V
B,H
n,1 ∩ V

B,H
n,2 �= ∅)

≤ P(2 ∈ V
B,H
n,1 )+

B···B∑
v=∅

P(Ov,2 ∩ V
B,H
n,1 �= ∅|V B,H

n,1 ∩ Iv,2 = ∅).
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For any u,v ∈ JB,H , if V
B,H
n,1 ∩ Iv,2 = ∅, then σn,2(v) is neither the ancestor

of σn,1(u), nor an offspring of σn,1(u). From Lemma 2.7 below we deduce that
|ξn

σn,1(u),σn,2(v)| given V
B,H
n,1 ∩ Iv,2 = ∅ dominates stochastically |ξn

1,2|, and is in-
dependent of the i.i.d. vector (|ξn

σn,2(v),k|)k∈{1,...,n}\(V B,H
n,1 ∪Iv,2)

, with law |ξn
1,2|. It

follows that

P
(
σn,1(u) ∈ Ov,2|V B,H

n,1 ∩ Iv,2 = ∅
)≤ B

n−C − |Iv,2| .

Therefore,

P(Ov,2 ∩ V
B,H
n,1 �= ∅|V B,H

n,1 ∩ Iv,2 = ∅)

≤ ∑
u∈JB,H

P
(
σn,1(u) ∈ Ov,2|V B,H

n,1 ∩ Iv,2 = ∅
)

≤ CB

n− 2C
.

Finally,

P(V
B,H
n,1 ∩ V

B,H
n,2 �= ∅) ≤ C

n
+ C2B

n− 2C
,

which converges to 0 as n →∞. �

We have used the following stochastic domination lemma. For any B,H and
n let E H,B

n denote the (random) set of edges {i, j} of the complete graph on
{1, . . . , n}, such that {σ−1

n (i), σ−1
n (j)} is not an edge of the finite tree on JB,H .

By construction, any loop {i, i} belongs to E B,H
n . Also, for u �= ∅ on the finite

tree, let g(u) denote the parent of u.

LEMMA 2.7 (Stochastic domination). For any n ∈ N, and B,H ∈ N such that

BH+1 − 1

B − 1
≤ n,

the random variables

{|ξn
i,j |, {i, j} ∈ E B,H

n }
stochastically dominate i.i.d. random variables with the same law as law |ξn

1,2|.
Moreover, for every ∅ �= u ∈ JB,H , the random variables{∣∣ξn

σn(u),i

∣∣, i ∈ {1, . . . , n} \ σn(g(u))
}
,

stochastically dominate i.i.d. random variables with the same law as law |ξn
1,2|.
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PROOF. The censoring process which deletes the edges that belong to the tree
on JB,H has the property that at each step the B lowest absolute values are deleted
from some fresh (previously unexplored) subset of edge marks. Using this and the
fact that the edge marks ξn

i,j are i.i.d. we see that both claims in the lemma are
implied by the following simple statement.

Let Y1, . . . , Ym denote i.i.d. positive random variables. Suppose m = n1 + · · · +
n�, for some positive integers �, n1, . . . , n�, and partition the m variables in �

blocks I 1, . . . , I � of n1, . . . , n� variables each. Fix some nonnegative integers kj

such that kj ≤ nj and call q
j
1 , . . . , q

j
kj

, the (random) indexes of the kj lowest values

of the variables in the block I j (so that Yq1
1

is the lowest of the Y1, . . . , Yn1 , Yq1
2

is
the second lowest of the Y1, . . . , Yn1 and so on). Consider the random index sets

of the kj minimal values in the j th block, J j :=⋃kj

i=1{qj
i }, and set J =⋃�

j=1 J j .

If kj = 0 we set J j = ∅. Finally, let Ỹ denote the vector {Yi, i = 1, . . . ,m; i /∈ J }.
Then we claim that Ỹ stochastically dominates m−∑�

j=1 kj i.i.d. copies of Y1.
Indeed, the coupling can be constructed as follows. We first extract a realization

y1, . . . , ym of the whole vector. Given this we isolate the index sets J 1, . . . , J �

within each block. We then consider two vectors Z, V obtained as follows. The
vector Z1 = (z1

1, . . . , z
1
n1−k1

, z2
1, . . . , z

2
n2−k2

, . . . , z�
n�−k�

) is obtained by extracting

the n1 − k1 values z1
1, . . . , z

1
n1−k1

uniformly at random (without replacement) from

the values y1, . . . , yn1 (in the block I 1), the n2 − k2 variables z2
1, . . . , z

2
n2−k2

in the

same way from the values yn1+1, . . . , yn1+n2 (in the block I 2), and so on. On the
other hand, the vector V = (v1

1, . . . , v1
n1−k1

, v2
1, . . . , v2

n2−k2
, . . . , v�

n�−k�
) is obtained

as follows. For the first block we take v1
i , i = 1, . . . , n1 − k1 equal to z1

i whenever
an index i ∈ I 1 \ J 1 was picked for the vector z1

1, . . . , z
1
n1−k1

, and we assign the
remaining values (if any) through an independent uniform permutation of those
variables yi, i ∈ I 1 \ J 1 which were not picked for the vector z1

1, . . . , z
1
n1−k1

. We
repeat this procedure for all other blocks to assign all values of V . By construction,
V ≥ Z coordinate-wise. The conclusion follows from the observation that Z is
distributed like a vector of m−∑�

j=1 kj i.i.d. copies of Y1, while V is distributed
like our vector Ỹ . �

2.6. Proof of Theorem 2.3.

PROOF OF THEOREM 2.3(i). Let ν = να,θ be as in (2.11), and let (Tα,∅)

be a realization of the PWIT(ν). The mark on edge (v,vk) in Tα is denoted
by x(v,vk) or simply xvk . By definition, we have x(v,w) = ∞ if v and w are at
graph-distance different from 1. In particular, if we set yv = sign(xv)|xv|α , then
the point sets �v = {yvk}k≥1 are independent Poisson point processes of intensity
�θ = θ1{x>0} dx + (1− θ)1{x<0} dx. We may thus build a realization of the opera-
tor T on Tα [cf. (2.3)]. Let Gn be the complete network on {1, . . . , n} whose mark
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on edge (i, j) is ξn
i,j := an/Xi,j . Next, we apply Proposition 2.6. For all B , H ,

(Gn,1)B,H converges weakly to (Tα,∅)B,H . Let σB,H
n be the map σn associated

with the network (Gn,1)B,H (see the construction given before Proposition 2.6).
From the Skorokhod representation theorem we may assume that (Gn,1)B,H con-
verges a.s. to (Tα,∅)B,H for all B,H . Thus we may find sequences Bn,Hn tending
to infinity, such that (B

Hn+1
n −1)/(Bn−1) ≤ n and such that for any pair u,v ∈ N

f

we have ξn
(σ̃n(u),σ̃n(v)) → x(u,v) a.s. as n →∞, where σ̃n := σ

Bn,Hn
n . The map σ̃n

can be extended to a bijection N
f → N

f . It follows that a.s.

〈δu, σ̃−1
n (a−1

n X)σ̃nδv〉 = 1

ξn
(σ̃n(u),σ̃n(v))

→ 1

x(u,v)

= 〈δu,Tδv〉.(2.15)

Fix v ∈ N
f , and set ψv

n := σ̃−1
n (a−1

n X)σ̃nδv. To prove Theorem 2.3(i) it is sufficient
to show that ψv

n → Tδv in L2(Nf ) almost surely as n →∞, that is,∑
u

(〈δu,ψv
n〉 − 〈δu,Tδv〉)2 → 0.(2.16)

Since from (2.15) we know that 〈δu,ψv
n〉 → 〈δu,Tδv〉 for every u, the claim fol-

lows if we have (almost surely) uniform (in n) square-integrability of (〈δu,ψv
n〉)u.

This in turn follows from Lemmas 2.7 and 2.4(i). The proof of Theorem 2.3(i) is
complete. �

PROOF OF THEOREM 2.3(ii). We need the following two facts:

lim
n→∞

ρ1

n
= 1 in probability,(2.17)

and there exists δ > 0 such that

lim inf
n→∞ min

1≤i≤n

ρi

n
> δ a.s.(2.18)

Clearly, (2.17) is a law of large numbers and holds actually a.s. (recall that for
α > 1 we assume the mean of Ui,j to be 1). Let us establish the a.s. uniform bound
(2.18). For every ε > 0, there exists R > 0 such that E(Ui,j1{Ui,j<R}) ≥ 1 − ε. If
we define ρR

i =∑n
j=1 Ui,j1{Ui,j<R}, then

lim inf
n→∞ min

1≤i≤n

ρi

n
≥ lim inf

n→∞ min
1≤i≤n

ρR
i

n
.

Therefore (2.18) is implied by the uniform law of large numbers in [11], Lem-
ma 2.2, applied to the bounded variables Ui,j1{Ui,j<R}.

Next, we claim that for all u ∈ N
f , in probability

lim
n→∞

ρσ̃n(u)

n
= 1.(2.19)
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To prove this we first observe that by Lemma 2.7 and (2.17) we have in probability

lim sup
n→∞

(ρσ̃n(u) −Uσ̃n(u),σ̃n(g(u)))

n
≤ 1.

On the other hand Uσ̃n(u),σ̃n(g(u)) is stochastically dominated by the maximum of
n i.i.d. variables with law Ui,j . The latter converges in distribution on the scale
an [cf. Lemma 2.4(i)], and we know that an/n → 0. It follows that in probability
lim supn→∞ ρσ̃n(u)/n ≤ 1. Next, we can estimate

ρσ̃n(u) ≥
∑

i∈{1,...,n}\Iu

Uσ̃n(u),i .

Now, observe that if u ∈ N
f belongs to generation h, then the set Iu contains

at most O(Bh
n) elements, while n is at least of order B

Hn
n , where Bn,Hn are

the sequences used in the proof of Theorem 2.3(i). In particular, it follows that
|Iu| = o(n) and therefore (2.13) and (2.17) imply that lim infn→∞ ρσ̃n(u)/n ≥ 1 in
probability. This proves (2.19).

Thanks to (2.19), from the Slutsky lemma and the Skorokhod representation
theorem, we may also assume that for each v ∈ N

f , ρσ̃n(v)/n converges a.s. to 1.
We need to show that for each v ∈ N

f , (2.16) holds with the new vector ψv
n :=

σ̃−1
n (κnS)σ̃nδv,

〈δw,ψv
n〉 = κn

Uσ̃n(w),σ̃n(v)√
ρσ̃n(v)ρσ̃n(w)

.

Thanks to (2.18), (〈δw,ψv
n〉)w is uniformly square-integrable [cf. the proof of

(2.16)], and all we have to check is that (〈δw,ψv
n〉 − 〈δw,Tδv〉)2 → 0 for fixed

w. Here T is the operator appearing in the proof of Theorem 2.3(i) above, now
with the choice θ = 1. We have

(〈δw,ψv
n〉 − 〈δw,Tδv〉)2

≤ 2
(
a−1
n Uσ̃n(w),σ̃n(v)

(
1 − n/

√
ρσ̃n(v)ρσ̃n(w)

))2

+ 2
(
a−1
n Uσ̃n(w),σ̃n(v) − 〈δw,Tδv〉)2

.

The second term above converges to zero as in the proof of point (i). For the first
term we use ρσ̃n(v)/n → 1 and ρσ̃n(w)/n → 1. This proves point (ii). �

PROOF OF THEOREM 2.3(iii). The setting is as in the proof of point (ii) above,
but now α ∈ (0,1). We build the operator S on the tree Tα as in (2.6). We need to
prove that for any v ∈ N

f , a.s.∑
w

(〈δw,ψv
n〉 − 〈δw,Sδv〉)2 → 0,(2.20)
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with ψv
n := σ̃−1

n Sσ̃nδv, that is,

〈δw,ψv
n〉 =

Uσ̃n(w),σ̃n(v)√
ρσ̃n(v)ρσ̃n(w)

.

Let us first show that for any v,w ∈ N
f we have a.s.

Uσ̃n(w),σ̃n(v)√
ρσ̃n(v)ρσ̃n(w)

→ 〈δw,Tδv〉√
ρ(v)ρ(w)

= 〈δw,Sδv〉.(2.21)

Multiplying and dividing by an and using (2.15) with θ = 1, we see that (2.21)
holds if

a−1
n ρσ̃n(v) → ρ(v),(2.22)

almost surely, for every v ∈ N
f . In turn, (2.22) can be proved as follows. Let k ∈ N,

and consider the tree with vertex set Jk,k , obtained as in Proposition 2.6 with B =
H = k. Since Jk,k is a finite set, for any v, (2.15) implies that a.s.

a−1
n

∑
u∈Jk,k

Uσ̃n(v),σ̃n(u) →
∑

u∈Jk,k

x−1
v,u.

By Lemmas 2.7 and 2.4(ii),
∑

u/∈Jk,k
a−1
n Uσ̃n(v),σ̃n(u) a.s. converges uniformly (in n)

to 0 as k goes to infinity. This proves (2.21) and (2.22).
Once we have (2.21), to conclude the proof it is sufficient to show that a.s.

lim
k→∞ sup

n

∑
w/∈Jk,k

(〈δw,ψv
n〉)2 = 0.(2.23)

However, using (2.22) and the simple bound (〈δw,ψv
n〉)2 ≤ Uσ̃n(v),σ̃n(w)

ρσ̃n(v)
, we have that

(2.23) again follows from an application of Lemmas 2.7 and 2.4(ii). This completes
the proof of Theorem 2.3(iii). �

2.7. Two-points local operator convergence. In the proof of the main theo-
rems, we will need a stronger version of Theorem 2.3. Define the 2n×2n matrices

X ⊕X and S ⊕ S,

where “⊕” denotes the usual direct sum decomposition, X ⊕ X(φ1, φ2) = (Xφ1,
Xφ2), for n-dimensional vectors φ1, φ2. As for the limiting operators, we realize
them on the Hilbert space L2(V )⊕L2(V ) with V = N

f . We consider two indepen-
dent realizations T 1

α , T 2
α of the PWIT(�θ ), and call T1,S1,T2,S2 the associated

operators as in Section 2.3. We may then define

T1 ⊕ T2 and S1 ⊕ S2.

By Proposition 2.6, ((Gn,1))B,H , (Gn,2)B,H ) converges weakly to ((T 1
α ,∅)B,H ,

(T 2
α ,∅)B,H ). As before we can view the matrices X ⊕ X and S ⊕ S as bounded
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self-adjoint operators on L2(V ) ⊕ L2(V ). Therefore, arguing as in the proof of
Theorem 2.3, it follows that, in distribution, for all (φ1, φ2) ∈ D × D,

σ−1
n a−1

n X ⊕Xσn(φ1, φ2) → T1 ⊕ T2(φ1, φ2),

where, σn = σ 1
n ⊕ σ 2

n , and, as above, for i ∈ {1,2}, σ i
n is a bijection on N

f , ex-
tension of the injective indexing map from N

f to {1, . . . , n}, such that σ i
n(∅) = i.

Analogous convergence results hold for the matrix S ⊕ S. We can thus extend
the statement of Theorem 2.3 to the following local convergence of operators in
L2(V )⊕L2(V ). To avoid lengthy repetitions we omit the details of the proof.

THEOREM 2.8. As n goes to infinity, in distribution:

(i) if α ∈ (0,2), then (a−1
n X ⊕ a−1

n X, (1,2))→ (T1 ⊕ T2, (∅,∅));
(ii) if α ∈ (1,2) and θ = 1, then (κnS ⊕ κnS, (1,2))→ (T1 ⊕ T2, (∅,∅));

(iii) if α ∈ (0,1), then (S ⊕ S, (1,2))→ (S1 ⊕ S2, (∅,∅)).

3. Convergence of the empirical spectral distributions.

3.1. Markov matrix, α ∈ (0,1): Proof of Theorem 1.4. Recall that S is a
bounded self-adjoint operator on L2(V ), whose spectrum is contained in [−1,1]
[cf. (2.7)]. The resolvents of S and S are the functions on C+ = {z ∈ C :�z > 0}:

R(n)(z) = (S − zI)−1 and R(z) = (S − zI)−1.

For � ∈ N, set

p� := 〈δ∅,S�δ∅〉.(3.1)

Note that p� = 1
ρ(∅)

〈δ∅,K�δ∅〉ρ is the probability that the random walk on the
PWIT associated with the stochastic operator K comes back to the root (where it
started) after � steps. In particular, p� = 0 for � odd. We set p0 = 1. Let μ∅ denote
the spectral measure of S associated with δ∅ (see e.g., [23], Chapter VII). Equiv-
alently, μ∅ is the spectral measure of K associated with the L2(V ,ρ) normalized
vector δ̂∅ := δ∅/

√
ρ(∅) [cf. (2.7)]. In particular, μ∅ is a probability measure sup-

ported on [−1,1] and such that p� = ∫ 1
−1 x�μ∅(dx), for every �. Since all odd

moments vanish μ∅ is symmetric. Moreover, for any z ∈ C+ we have

〈δ∅,R(z)δ∅〉 =
∫ 1

−1

μ∅(dx)

x − z
,

that is, 〈δ∅,R(z)δ∅〉 is the Cauchy–Stieltjes transform of μ∅. Recall that the
Cauchy–Stieltjes transform of a probability measure μ on R is the analytic func-
tion on C+ given by

mμ(z) =
∫

R

μ(dx)

x − z
.
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The function mμ characterizes the measure μ, |mμ(z)| ≤ (�z)−1, and weak con-
vergence of μn to μ is equivalent to the convergence mμn(z) → mμ(z) for all
z ∈ C+. By construction

1

n
trR(n)(z) =

∫ 1

−1

μK(dx)

x − z
= mμK

(z),

where μK is the ESD of K , which coincides with the ESD of S. Using exchange-
ability and linearity, we get

ER
(n)
1,1(z) = EmμK

(z) = mEμK
(z).

Since R(n)(z)1,1 ≤ (�z)−1 is bounded, we may apply Theorems 2.2 and 2.3, and
obtain, for all z ∈ C+,

lim
n→∞mEμK

(z) = mEμ∅
(z).(3.2)

We define

μ̃α = Eμ∅.

Next, we shall prove that, for all z ∈ C+,

lim
n→∞E|mμK

(z)−mEμ∅
(z)| = 0.(3.3)

We have

E|mμK
(z)−mEμ∅

(z)| ≤ E|mμK
(z)−EmμK

(z)| + |mEμK
(z)−mEμ∅

(z)|.
On the right-hand side, the second term converges to 0 by (3.2). The first term is
equal to

E

∣∣∣∣∣1n
n∑

k=1

[
R

(n)
k,k(z)−ER

(n)
k,k(z)

]∣∣∣∣∣.
By exchangeability, we note that

E

[(
1

n

n∑
k=1

[
R

(n)
k,k(z)−ER

(n)
k,k(z)

])2]

= 1

n
E
(
R

(n)
1,1 −ER

(n)
1,1

)2 + n(n− 1)

n2 E
[(

R
(n)
1,1 −ER

(n)
1,1

)(
R

(n)
2,2 −ER

(n)
2,2

)]
≤ 1

n(�z)2 +E
[(

R
(n)
1,1 −ER

(n)
1,1

)(
R

(n)
2,2 −ER

(n)
2,2

)]
.

Theorems 2.2 and 2.8 imply that (R1,1(z),R2,2(z)) are asymptotically indepen-
dent. Since these variables are bounded, they are also asymptotically uncorrelated,
and (3.3) follows.

Finally, observe that the sequence of measures μK is a.s. tight. Therefore the
convergence (3.3) is sufficient to establish a.s. convergence of μK to μ̃α . This
completes the proof of Theorem 1.4.
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3.2. I.i.d. matrix, α ∈ (0,2): Proof of Theorem 1.2. Set An = a−1
n X. For z ∈

C+, we define the Cauchy–Stieltjes transform,

mAn(z) =
∫

dμAn(x)

x − z
= 1

n

n∑
k=1

R
(n)
k,k(z),

where

R(n)(z) = (An − zI)−1,

is the resolvent of An. By exchangeability, EmAn(z) = ER
(n)
1,1(z). From Proposi-

tion A.2 we know that T is self-adjoint. Therefore from Theorems 2.2 and 2.3 we
infer

EmAn(z) → Eh(z), h(z) := 〈δ∅, (T − zI)−1δ∅〉.(3.4)

As in the proof of Theorem 1.4 we may write Eh(z) = Emμ∅
= mEμ∅

, that is the
Cauchy–Stieltjes transform of the expected value of the random spectral measure
μ∅ associated to T at the root vector δ∅. From (3.4) we obtain the weak conver-
gence of EμAn to μα := Eμ∅. To obtain a.s. weak convergence of μAn to μα , from
Lemma B.1 it suffices to prove the L1 convergence of Cauchy–Stieltjes transforms
as in (3.3). This in turn is obtained by repeating word by word the argument in the
proof of Theorem 1.4.

Thus, we have obtained μAn → μα almost surely. Since the operator T only
depends on the two parameters α and θ , where the latter is defined by (1.7), the
LSD μα might still depend on the parameter θ . However, the fact that μα is inde-
pendent of θ follows from Lemma 4.2 below, which implies in particular that the
values mμα(it) = E[h(it)], t > 0, are uniquely determined by α, and therefore by
analyticity, all values mμα(z), z ∈ C+ are uniquely determined by α. This ends the
proof of Theorem 1.2.

We remark that in the proof of Theorem 1.2 one can avoid establishing (3.3) plus
almost sure tightness [Lemma B.1(i)] as we do above. Namely, the convergence of
expected values Eμ

a−1
n X

→ μα is sufficient. This follows from an a priori concen-
tration estimate (see [12]). However, we did that piece of extra work here since we
need it anyway in the case of Markov matrices, where the mentioned concentration
estimate is not available.

3.3. Markov matrix, α ∈ (1,2): Proof of Theorem 1.3. The proof given above
for the matrix An = a−1

n X applies without modifications to the new matrix An :=
κnS, where Si,j = Ui,j√

ρiρj
. In particular, we use Theorems 2.3(ii), 2.8(ii) and Lem-

ma B.1(ii) to obtain the a.s. weak convergence of μAn to μα = Eμ∅, where μ∅ is
the random spectral measure of T at the root. This ends the proof of Theorem 1.3.
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3.4. Markov matrix, α = 1: Proof of Theorem 1.5. Suppose now that α = 1
and set wn = ∫ an

0 xL(dx) and κn = na−1
n wn. A close inspection of the proof of

Theorem 2.3(ii) and Theorem 1.3 reveals that all arguments used for α ∈ (1,2)

can be applied to the case α = 1 without modifications except for the two estimates
(2.17) and (2.18), which have to be replaced by (3.5) and (3.6) below, respectively.
For (3.6) we shall use the hypothesis (1.10) on wn. Let us start by proving that, in
probability

lim
n→∞

ρ1

nwn

= 1.(3.5)

We recall that, for fixed i, a−1
n (ρi −nwn) converges in distribution to a 1-stable law

(see, e.g., [20], Theorem 1). Therefore it suffices to show that κn = a−1
n nwn →∞.

To see this we may argue as follows. Observe that, for any ε > 0

κn = E

n∑
i=1

a−1
n Vi1{a−1

n Vi≤1} ≥ E

n∑
i=1

a−1
n Vi1{ε≤a−1

n Vi≤1},

where V1 ≥ V2 ≥ · · · are the ranked values of U1,j , j = 1, . . . , n. From Lem-
ma 2.4(i) the right-hand side above, for any ε > 0, converges to E

∑
i xi1{ε≤xi≤1},

where the xi are distributed according to the PPP with intensity x−2 dx on (0,∞).
While this sum is finite for every ε > 0 it is easily seen to diverge (logarithmically)
for ε → 0. This achieves the proof of (3.5).

Next, we claim that if wn satisfies (1.10), then there exists δ > 0 such that, a.s.

lim inf
n→∞ min

1≤i≤n

ρi

nwn

≥ δ.(3.6)

To establish (3.6), let us define bn = a�nε� so that E(U1,i1{U1,i≤bn}) = w�nε� and

ρ1 ≥ Sn :=
n∑

i=1

U1,i1{U1,i≤bn}.

From the union bound,

P

(
min

1≤i≤n

ρi

nwn

< δ

)
≤ nP

(
ρ1

nwn

< δ

)
.

From the Borel–Cantelli lemma, it is thus sufficient to prove that for some δ > 0∑
n≥1

nP(Sn < δnwn) < ∞.(3.7)

By assumption, there exists δ > 0 such that for all n large enough, w�nε� ≥ 2δwn.
We define

Vi = Ui,11{U1,i≤bn} −w�nε� and Sn =
n∑

i=1

Vi.
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Note that EVi = ESn = 0. We get for all n large enough

P(Sn < δnwn) = P
(
Sn < δnwn − nw�nε�

)≤ P(Sn < −δnwn).(3.8)

By construction, wn is slowly varying and an =L(n)n where L(n) is slowly vary-
ing. Hence |Vi | ≤ max(w�nε�, bn)= L(n)nε where L(n) is another slowly varying
sequence. By the Hoeffding inequality, we get from (3.8)

P(Sn < −δnwn) ≤ exp
(
− δ2n2w2

n

nL(n)2n2ε

)
= exp(−L̃(n)n1−2ε),

where L̃(n) is a slowly varying sequence. Since ε < 1/2 we obtain (3.7) and thus
(3.6).

4. Properties of the limiting spectral distributions. Recall that μα is char-
acterized by the Cauchy–Stieltjes transform mμα(z) = Eh(z), z ∈ C+, where h(z)

is the random variable h(z) = 〈δ∅, (T − zI)−1δ∅〉 [cf. (3.4)]. The main novelty in
our analysis of the LSD μα with respect to previous works [5, 7] is that we can
work here with the distribution of h(z) rather than only with its expectation.

4.1. Recursive distributional equation. The symbol d= stands for equality in
distribution. The following result is at the heart of our analysis of the LSD μα .

THEOREM 4.1 (Recursive distributional equation). For all z ∈ C+, the ran-
dom variable

h(z) = 〈δ∅, (T − zI)−1δ∅〉
satisfies to h(−z̄) =−h̄(z) and

h(z)
d=−

(
z+ ∑

k∈N

ξkhk(z)

)−1
,(4.1)

where (hk)k∈N(z) are i.i.d. with the same law of h(z), and {ξk}k∈N is an indepen-
dent Poisson point process with intensity α

2 x−α/2−1 dx on (0,∞).

PROOF. Since the PWIT is bipartite, the property h(−z̄) =−h̄(z) is a conse-
quence of Lemma A.1. We are left with the RDE (4.1). This can be interpreted as
an operator version of the Schur complement formula (see, e.g., Proposition 2.1
in Klein [19] for a similar argument). Denote, as usual, by k ∈ N the descendants
of the root ∅, and let T (k) denote the subtree rooted at k (the set of vertices of
T (k) is then kN

f ). We have the direct sum decomposition N
f = {∅} ∪⋃

k kN
f .

We define T(k) as the projection of T on kN
f . Its skeleton is thus T (k). Finally,

define the operator U on D by its matrix elements

uk := 〈δ∅,Uδk〉 = 〈δk,Uδ∅〉 = 〈δ∅,Tδk〉
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for all k ∈ N (offsprings of ∅) and 〈δu,Uδv〉 = 0 otherwise. In this way we have

T = U + T̃ with T̃ =⊕
k∈N

T(k).

As T, each T(k) can be extended to a self-adjoint operator, which we denote
again by T(k). Therefore T̃ is self-adjoint. We shall write R(z) = (T − zI)−1 and
R̃(z) = (T̃ − zI)−1 for the associated resolvents, z ∈ C+. These operators satisfy
the resolvent identity

R̃(z)(T − T̃)R(z) = R̃(z)−R(z).(4.2)

Set R̃u,v(z) := 〈δu, R̃(z)δv〉 and Ru,v(z) := 〈δu,R(z)δv〉. Observe that R̃∅,∅(z) =
−z−1 and that the direct sum decomposition N

f = {∅} ∪ ⋃
k kN

f implies
R̃k,l(z) = 0 for k �= l. Similarly we have that R̃∅,k(z) = 0 = R̃k,∅(z) for every
k ∈ N. From (4.2) we then obtain, for k ∈ N,

R̃k,k(z)ukR∅,∅(z) =−Rk,∅(z).

It follows that

〈δ∅, R̃(z)(T − T̃)R(z)δ∅〉 =
∑
k∈N

R̃∅,∅(z)ukRk,∅(z)

=−∑
k∈N

R̃∅,∅(z)R̃k,k(z)u
2
kR∅,∅(z).

From (4.2) we then conclude that

R∅,∅(z) = R̃∅,∅(z)

1 − R̃∅,∅(z)
∑

k∈N R̃k,k(z)u
2
k

.

Or, using R̃∅,∅(z) =−z−1,

R∅,∅(z) =−
(
z+ ∑

k∈N

R̃k,k(z)u
2
k

)−1

.

Then (4.1) follows from the recursive construction of the PWIT: T (k) are i.i.d. with
distribution T and therefore R̃k,k(z) are i.i.d. with the same law of R∅,∅(z), for
every z ∈ C+. �

Concerning the uniqueness of the solution to the RDE (4.1) we can establish the
following useful result. For z = it , with t > 0, the identity, h(−z̄) =−h̄(z) reads
�h(it)= 0. Thus, the equation satisfied by g(it)=�h(it)≥ 0 is

g(it)
d=
(
t + ∑

k∈N

ξkgk(it)

)−1

.(4.3)
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LEMMA 4.2 (Uniqueness of solution for the RDE). For each t > 0, there ex-
ists a unique probability measure Lit on R+, solution of (4.3).

PROOF. Set β = α/2. If (Yk) is an i.i.d. sequence of nonnegative random vari-
ables, independent of {ξk}k∈N, such that E[Yβ

1 ]< ∞ then it is well known that∑
k

ξkYk
d=∑

k

ξk(E[Yβ
1 ])1/β

(see, e.g., [27], Lemma 6.5.1, or (4.5) below). This implies the unicity for (4.3)
provided that the equation satisfied by E[g(it)β] has a unique solution. Recall the
formulas of Laplace transforms, for y ≥ 0, η > 0 and 0 < η < 1, respectively,

y−η = 
(η)−1
∫ ∞

0
xη−1e−xy dx and

(4.4)
yη = 
(1 − η)−1η

∫ ∞
0

x−η−1(1 − e−xy) dx.

From the Lévy–Khinchine formula we deduce that, with s ≥ 0,

E exp
(
−s

∑
k

ξkYk

)
= exp

(
E

∫ ∞
0

(e−xsY1 − 1)βx−β−1 dx

)
(4.5)

= exp
(−
(1 − β)sβ

E[Yβ
1 ]

)
.

From (4.3), E[g(it)β] is the solution of the equation in y:

y = 1


(β)

∫ ∞
0

xβ−1e−txe−xβ
(1−β)y dx.

The last equation has a unique solution for any t ≥ 0. Indeed, the function from
R+ to R+

ϕ :y 	→ 1


(β)

∫ ∞
0

xβ−1e−txe−xβ
(1−β)y dx

tends to 0 as y →∞, and it is decreasing since

ϕ′(y) =−
(1 − β)


(β)

∫ ∞
0

x2β−1e−txe−xβ
(1−β)y dx.

Thus ϕ has a unique fixed point. �

Before going into the proof of Theorem 1.6, we introduce some notation. Let
β = α/2 as above, and let Kα denote the set of probability measures on (0,∞)

with finite β moment. We define the map � on probability measures on R+∪{∞},
where �(Q) is the law of

Z =
(∑

k∈N

ξkYk

)−1

,(4.6)
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with (Yk, k ∈ N) i.i.d. with law Q independent of � = {ξk}k∈N a Poisson point
process on R+ of intensity βx−β−1 dx.

LEMMA 4.3. � satisfies the following:

(i) � is a map from Kα to Kα . Let (Pn)n∈N and P in Kα , if limn→∞
∫

xβ dPn =∫
xβ dP then �(Pn) converges weakly to �(P ) and limn→∞

∫
xβ d�(Pn) =∫

xβ d�(P ).
(ii) The unique fixed point of � in Kα is the law of 1/S where S is the

one-sided β-stable law with Laplace transform E exp(−tS) = exp(−tβ ×√

(1 + β)/
(1 − β)), t ≥ 0.

(iii) ES−β = (
(β + 1)
(1 − β))−1/2.

PROOF. As in the proof of Lemma 4.2, we get

EZβ = E

(∑
k

ξkYk

)−β

= E
1


(β)

∫ ∞
0

xβ−1e−x
∑

k ξkYk dx

= 1


(β)

∫ ∞
0

xβ−1e−xβ
(1−β)EY
β
1 dx

= 1

β
(β)

∫ ∞
0

e−s
(1−β)EY
β
1 ds

= (

(β + 1)
(1 − β)EY

β
1

)−1
,

[in the last line we have used the identity z
(z) = 
(z + 1)]. Therefore, � is a
map from Kα to Kα . Also as a consequence of (4.5)

E exp(−tZ−1) = exp
(−tβ
(1 − β)EY

β
1

)
.

Statement (i) follows from the continuity of the map x 	→ 1/x in (0,∞). If Z is a
fixed point of � then from the computation above EZβ = (
(β+1)
(1−β))−1/2.
Finally, from (4.5) we obtain for all t ≥ 0,

E exp(−tZ−1) = exp
(−tβ
(1 − β)EZβ)= exp

(
−tβ

√

(1 + β)


(1 − β)

)
. �

4.2. Proof of Theorem 1.6(i). From Theorem 4.1, for z ∈ C+,

mμα(z) = Eh(z),

where h solves RDE (4.1). Set f (z) =�h(z) and g(z) =�h(z). For z = u+ iv ∈
C+, f and g satisfy the RDE

f (z)
d=− u+∑

k ξkfk(z)

(u+∑
k ξkfk(z))2 + (v +∑

k ξkgk(z))2
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and

g(z)
d= v +∑

k ξkgk(z)

(u+∑
k ξkfk(z))2 + (v +∑

k ξkgk(z))2 .

By construction, 0 ≤ g(z) ≤ 1/v, thus the law of g(z) is in Kα . If the stochastic
domination of P by Q is denoted by P ≤st Q, we have

g(z)≤st

(
v +∑

k

ξkgk(z)

)−1

≤st

(∑
k

ξkgk(z)

)−1

.(4.7)

[In fact, we also have |h(z)| ≤st (
∑

k ξkgk(z))
−1.] Using the computation in Lem-

ma 4.3, we obtain Eg(z)β ≤ (
(β + 1)
(1 − β)Eg(z)β)−1. Thus

Eg(z)β ≤ 1√

(β + 1)
(1 − β))

.(4.8)

Again, the formula y−η = 
(η)−1 ∫∞
0 xη−1e−xy dx, for y ≥ 0, η > 0, gives

E

[(∑
k

ξkgk(z)

)−η]
= 1


(η)

∫ ∞
0

xη−1e−xβ
(1−β)Eg(z)β dx.(4.9)

We now study the weak limit of g(u + iv) when v ↓ 0, u ∈ R. Equation (4.8)
implies tightness, so let g(u + i0) be a weak limit. If this limit is nonzero then
Egβ(u+ i0) > 0, and equations (4.7)–(4.9) imply for all η > 0 and u ∈ R,

lim sup
u+iv : v↓0

Egη(u+ iv) < ∞.

Since Eh(z) is the Cauchy–Stieltjes transform of μα , taking η = 1, we deduce that
μα is absolutely continuous (see, e.g., [25], Theorem 11.6).

4.3. Proof of Theorem 1.6(ii). In view of [25], Theorem 11.6, it is sufficient
to show that

lim
t↓0

Eg(it)= 


(
1 + 1

β

)(

(1 + β)


(1 − β)

)1/(2β)

.(4.10)

As above, (4.8) implies the tightness of (g(it), t > 0). So let g(i0) be a weak limit.
It is in Kα and, by continuity, g(i0) is solution of the RDE

g(i0)
d=
(∑

k

ξkgk(i0)

)−1

.

By Lemma 4.3, g(i0)
d= 1/S, and (4.9) gives

Eg(i0) =
∫ ∞

0
e−xβ

√

(1−β)/
(1+β) dx = 1

β



(
1

β

)(

(1 + β)


(1 − β)

)1/(2β)

.

Using the identity z
(z) = 
(z+ 1), we get (4.10).
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4.4. Proof of Theorem 1.6(iii). We start with a Tauberian-type theorem for the
Cauchy–Stieltjes transform of symmetric probability measures. As usual, let mμ

denote the Cauchy–Stieltjes transform of a symmetric probability measure μ on R.
Then, for all t > 0, mμ(it) ∈ iR+ and

�mμ(it)=
∫ ∞
−∞

t

t2 + x2 μ(dx)= 2
∫ ∞

0

t

t2 + x2 μ(dx).

LEMMA 4.4 (Tauberian-like lemma). If L is slowly varying and 0 < α < 2,
the following are equivalent: as t goes to +∞

μ((t,∞)) ∼ L(t)t−α,(4.11)

�mμ(it)− t−1 ∼−�(α)L(t)t−α−1(4.12)

with �(α) = 2α
∫∞

0
x1−α

1+x2 dx.

SKETCH OF PROOF OF LEMMA 4.4. The proof is an adaptation of the proof
of the Karamata’s Tauberian theorem in [10], pages 37 and 38. Let M denote the
set of symmetric measures on R such that

∫∞
0 min(1, x2)μ(dx) < +∞. On M,

define the transform

Sμ : t 	→
∫ ∞

0

2x2

t2 + x2 μ(dx).

Note that Sμ(t)= 1− t�mμ(it)= 1+ itmμ(it). Recall that the Cauchy–Stieltjes
transform characterizes the measure. Thus if for all t > 0, (Sμn(t))n∈N converges
to Sμ, then (μn)n∈N converges to μ over all bounded continuous function with 0
outside the support. Now, assume that (4.12) holds, namely

Sμ(t) ∼ �(α)L(t)t−α.(4.13)

Since limx→∞ L(tx)/L(t) = 1, we deduce that for all t > 0, as x →∞
Sμ(xt)

L(x)x−α
→ �(α)t−α.

The left-hand side is the S transform of the measure μx(dy) = μ(x dy)/(L(x)x−α)

while the right-hand side is the S transform of μ∞(dy) = α|y|−α−1 dy, thus

μ((x,∞))

L(x)x−α
= μx((1,∞)) → μ∞(1,∞)= 1.

We get precisely (4.11). The reciprocal implication can be proved similarly
(see [10], pages 37 and 38) [it is straightforward for L(t) = c, the case that we
will actually use]. �
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We now come back to the RDE (4.3) and define Q(t) = E[g(it)β]. From (4.3),
we have a.s. tg(it) ≤ 1. Note also, from a.s.

∑
k ξkgk(it) ≤ t−1 ∑

k ξk , that a.s.
limt→+∞ tg(it)= 1. The dominated convergence theorem leads to

lim
t→∞ tβQ(t) = 1.(4.14)

Moreover, as already pointed in Lemma 4.2,∑
k

ξkgk(it)
d= Q(t)1/β

∑
k

ξk.

We deduce, with C(t) = (tQ(t)1/β)−1/2, that

�mμα(it) = Eg(it)= E
t

t2 + tQ(t)1/β
∑

k ξk

= C(t)E
tC(t)

(tC(t))2 +∑
k ξk

(4.15)

= C(t)�mL(Y )(iC(t)t),

where L(Y ) is the law of

Y = ε

√∑
k

ξk,

and ε is independent of {ξk}k , P(ε = 1) = P(ε =−1) = 1/2. We have

P(Y > t) = 1

2
P

(∑
k

ξk > t2
)
.

By (4.5), as s ↓ 0, E exp(−s
∑

k ξk)= exp(−sβ
(1−β)) ∼ 1−sβ
(1−β). Using
[10], Corollary 8.7.1, we obtain P(

∑
k ξk > t) ∼ t−β and

P(Y > t) ∼ t−α

2
.

By Lemma 4.4, �mL(Y )(it)− t−1 ∼− t−α−1

2 �(α). Thus by (4.14) and (4.15),

�mμα(it)− t−1 ∼− t−α−1

2
�(α).

Theorem 1.6(iii) now follows from Lemma 4.4.

REMARK 4.5. In the proof of Lemma 4.2, we have seen that the distribution
of g(it)=�h(it) was function of Q(t) = E[gβ(it)] which satisfies the equation

Q(t) = 1


(β)

∫ ∞
0

xβ−1e−txe−xβ
(1−β)Q(t) dx = fβ(t,Q(t)).
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We could push further our investigation at t = 0 and compute the derivative
of Q at t = 0: Q′(0) = −fβ+1(0,Q(0)) − 
(1 − β)f2β(0,Q(0))Q′(0), with
Q(0) = (
(β + 1)
(1 − β))−1/2. There should be no obstacle for computing by
recursion the successive derivatives of Q(t) at t = 0. We would then obtain a series
expansion of the partition function μα((−∞, t)) in a neighborhood of 0.

4.5. Proof of Theorem 1.7: μ̃α , α ∈ (0,1). As in (3.1), let p� denote the return
probability after � steps starting from the root ∅, for the random walk on the PWIT
with transition kernel K given by (2.5). In particular, γ� = Ep� is the �th moment
of the LSD μ̃α .

PROOF OF THEOREM 1.7(i). For the first part, we shall show that there exists
δ > 0 such that for any ε ∈ (0,1/2] and any n

γ2n ≥ δεα(1 − ε)2n.(4.16)

Theorem 1.7 (i) follows by choosing ε = 1/2n. To prove (4.16) we use the simple
bound p2n ≥ (K(∅,1)K(1,∅))n, which states that to come back to the root in
2n steps the walk can move to the child with the highest weight, with probability
K(∅,1), go back to the root, with probability K(1,∅), and repeat this n times.
Taking expectation, it follows that

γ2n ≥ E[(K(∅,1)K(1,∅))n].(4.17)

Therefore (4.16) holds if the event

Aε = {K(∅,1)≥ (1 − ε) and K(1,∅)≥ (1 − ε)}
has probability at least δεα , for some δ > 0 and for any ε ∈ (0,1/2].

Let (xi)i denote the realization of the PPP at the root ∅, that is, x1 > x2 > · · ·
are the points of a PPP on (0,∞) with intensity measure αx−α−1 dx. We set φ :=∑∞

i=1 xi and let φ′ denote an independent copy of φ. We can use the representation
K(∅,1)= x1/φ and K(1,∅)= x1/(x1 + φ′). Therefore,

P(Aε) = P
(
x1 ≥ (1 − ε)φ, x1 ≥ (1 − ε)(x1 + φ′)

)
= P

(
x1 ≥ (1 − ε)φ,φ′ ≤ εx1

(1 − ε)

)
≥ P

(
x1 ≥ (1 − ε)φ, x1 ≥ ε−1, φ′ ≤ 1

)
.

Let δ1 := P(φ ≤ 1) = ∫ 1
0 f (t) dt > 0, where f (t) denotes the density of φ. The

function f (t) can be obtained from its Laplace transform, which is given by the
known identity E[e−uφ] = e−
(1−α)uα

, u > 0 (see [22], Proposition 10, or (4.5)
with β replaced by α and Yk = 1). Since φ′ is independent of (xi) we obtain

P(Aε) ≥ δ1P
(
x1 ≥ (1 − ε)φ, x1 ≥ ε−1).
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To estimate the last quantity we observe that if x̃ is a size-biased pick from (xi),
then x1 ≥ x̃. We recall that x̃ is a random variable such that, given the sequence
(xi) the probability that x̃ equals xi is xi/φ. It is not hard to check (see, e.g., [21],
Lemma 2.2) that the random variable x̃ has a probability density on (0,∞) given
by

αx−α−1
∫ ∞

0
f (t)

x

x + t
dt,(4.18)

where f (t) is the density of the variable φ. Therefore,

P
(
x1 ≥ (1 − ε)φ, x1 ≥ ε−1)

≥ P
(
x̃ ≥ (1 − ε)φ, x̃ ≥ ε−1)

= α

∫ ∞
0

dt f (t)

∫ ∞
0

dx x−α−1 x

x + t
1{x≥(1−ε)(x+t)}1{x≥ε−1}

≥ α

∫ 1

0
dt f (t)

∫ ∞
0

dx x−α−1(1 − ε)1{x≥ε−1}

= δ1(1 − ε)εα.

In conclusion, P(Aε) ≥ δ2
1(1 − ε)εα ≥ 1

2δ2
1εα , and the claim (4.16) follows.

It remains to show that lim infα↗1 γ2 > 0. If (xi), x̃, and φ are as above and if φ′
is independent of the sequence (xi) and identical in law to the random variable φ,
then

γ2 = E

[∑
i

xi

φ

xi

xi + φ′
]
= E

[
x̃

x̃ + φ′
]
=

∫ ∞
0

αx1−α

(∫ ∞
0

f (t)

x + t
dt

)2

dx.

Now, from the Laplace transform E[e−uφ] = e−
(1−α)uα
we have the identity∫ ∞

0

f (t)

x + t
dt =

∫ ∞
0

e−
(1−α)uα−ux du.

This gives

γ2 = α
(2 − α)

∫ ∞
0

∫ ∞
0

e−
(1−α)(uα+vα)(u+ v)−2+α dudv

= α
(2 − α)


(1 − α)

∫ ∞
0

∫ ∞
0

e−tα−sα

(t + s)−2+α ds dt.

Finally, the desired result follows from the bounds (for absolute constants c1,
c2 > 0) ∫ ∞

0

∫ ∞
0

e−tα−sα

(t + s)−2+α ds dt ≥ e−2
∫ 1

0

∫ 1

0
(t + s)−2+α ds dt

≥ c1

1 − α
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and


(1 − α) =
∫ ∞

0
t−αe−t dt ≤

∫ 1

0
t−α dt +

∫ ∞
1

e−t dt ≤ c2

1 − α
. �

PROOF OF THEOREM 1.7(ii). It is convenient to make here the dependence
over α explicit in all the notation. In particular, for every α ∈ (0,1), we denote by
Sα the operator S given by (2.6). These operators are defined on a common prob-
ability space, and are self-adjoint in L2(V ). Moreover, it follows from Section 3.1
that μ̃α = Eμα,∅, where μα,∅ is the spectral measure of Sα at the vector δ∅. By
the dominated convergence theorem, in order to prove that α 	→ μ̃α is continu-
ous in (0,1), it is sufficient to show that a.s. α 	→ μα,∅ is continuous. From [23],
Theorem VIII.25(a), it is in turn sufficient to prove that for all v ∈ V , α 	→ Sαδv
is a continuous map from (0,1) to L2(V ). From (2.6), for all u ∈ V , the map
α 	→ Sα(u,v) is continuous. It thus remains to check the uniform square integra-
bility of (Sα(v,u))u∈V . We start with the upper bound

(Sα(v,vk))2 = y
−1/α
vk

ρα(v)

y
−1/α
vk

ρα(vk)
≤ y

−1/α
vk

ρα(v)
.

Then, notice that for all α ∈ (0,1 − ε), one has y
−1/α
vk ≤ max(1, y

−1/(1−ε)
vk ) and

ρα(v) ≥ min(1, y
−1/(1−ε)
v1 ). We may conclude by recalling that a.s. limk yvk/k = 1

and yv1 > 0. �

PROOF OF THEOREM 1.7(iii). As in the proof of Theorem 1.7(ii), we make
here the dependence over α explicit in all the notation. It follows from Section 3.1∫

x2�μ̃α(dx) = E

∫
x2�μα,∅(dx) = Epα,2�,

where the expectation is over the randomness of the PWIT. We introduce for v ∈ V ,

Vα(v) =
(

y
−1/α
v1∑

k≥1 y
−1/α
vk

,
y
−1/α
v2∑

k≥1 y
−1/α
vk

, . . .

)
.

By construction Vα(v) is a PD(α,0) random variable. Thus, by [22], Corollary 18,
as α ↓ 0, Vα(v) converge weakly to the deterministic vector (1,0, . . .). We may
thus write

Kα(1,∅)= y
−1/α
1

y
−1/α
1 + y

−1/α
11 (1 + εα)

,

where as α goes to 0, εα goes in probability to 0. We define U = 1{y11>y1}, so that
U is a symmetric Bernoulli, that is, P(U = 0) = P(U = 1) = 1/2. We have proved
that in probability

lim
α↓0

Kα(∅,1)= 1 and lim
α↓0

Kα(1,∅)= U.
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In particular,

lim
α↓0

∫
x2�μα,∅(dx) =U.

Since μα,∅ is symmetric,

lim
α↓0

μα,∅ = U

2
δ−1 + (1 −U)δ0 + U

2
δ1.

Taking expectation, we obtain the claimed statement on μ̃α . �

5. Invariant measure: Proof of Theorem 1.8. We start with a lemma. Let
(X1, . . . ,Xn), X1 ≥ · · · ≥ Xn, denote the ranked values of ρ1, . . . , ρn and recall
the notion of convergence in the space A, cf. Section 2.4. We use the notation
bn := amn , where mn = n(n+ 1)/2.

LEMMA 5.1. For any α ∈ (0,2), the sequence b−1
n (X1,X2, . . .) converges in

distribution to (x1, x1, x2, x2, . . .), where x1 > x2 > · · · denote the ranked points
of the Poisson point process on (0,∞) with intensity αx−α−1 dx.

PROOF. There are mn = n(n + 1)/2 edges, including self-loops. Let us de-
note by Ue the weight of edge e ∈ {1, . . . ,mn}. The row sums are given by
ρi = ∑

e : e�i Ue. We write On for the set of off-diagonal edges e, that is, edges
of the form e = {i, j} with i �= j . Let Ue1 ≥ Ue2 ≥ · · · denote the ranked values of
the i.i.d. random vector (Ue)e∈On . Since there are mn − n edges in On, an applica-
tion of Lemma 2.4(i) yields convergence in distribution

b−1
n (Ue1,Ue2, . . .)

d−→
n→∞(x1, x2, . . .).(5.1)

Each ei = {ui, vi} ∈ On identifies two row sums ρui
and ρvi

. Set �i = max{ρui
−

Uei
, ρvi

−Uei
}. Then, for every k ∈ N and ε > 0,

lim
n→∞P

(
max

1≤�≤k
�� ≥ εbn

)
= 0.(5.2)

To prove this we use an estimate due to Soshnikov [26]. Let Bn denote the event
that there exists no i ∈ {1, . . . , n} such that{

ρi > b3/4+α/8
n and ρi − max

j
Ui,j > b3/4+α/8

n

}
.

Then, from [26] and [4], Lemma 3, one has

lim
n→∞P(Bn) → 1.(5.3)

Clearly, on the event Bn, if max1≤�≤k �� ≥ εbn, then Uek
≤ b

3/4+α/8
n which has

vanishing probability in the limit by (5.1). This proves (5.2).
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For simplicity, we introduce the notation R2�−1 = max{ρu�
, ρv�

}, R2� =
min{ρu�

, ρv�
}. Therefore (5.2) and (5.1) prove that

b−1
n (R1,R2,R3,R4, . . .)

d−→
n→∞(x1, x1, x2, x2, . . .).(5.4)

It remains to show that for every fixed k

lim
n→∞P

( ⋃
1≤i≤2k

{Ri �=Xi}
)
= 0.(5.5)

By construction, we have Xi ≥ Ri for i = 1,2. On the event Bn described above, to
have X1 > R1 or X2 > R2 implies that there exists an edge e �= e1 such that Ue ≥
Ue1 −b

3/4+α/8
n . However, this event has vanishing probability by (5.1) and the fact

that bδ−1
n maxi Ui,i → 0 in probability for all sufficiently small δ > 0 (indeed by

Lemma 2.4, a−1
n maxi Ui,i converges weakly to the Fréchet distribution, see first

comment after Lemma 2.4). Thanks to (5.3) this shows that P(X1 > R1 or X2 >

R2) → 0. Recursively, the probability of X2i+1 > R2i+1 or X2i+2 > R2i+2 on the
event Bn∩{Xj = Rj ,∀j = 1, . . . ,2i} vanishes as n→∞. Indeed, at each step we
have removed a row and a column corresponding to the largest off-diagonal weight
and we may repeat the same reasoning as above. This proves (5.5) as required. �

PROOF OF THEOREM 1.8(ii). Let us define mn = n(n+ 1)/2. Observe that
n∑

i=1

ρi = 2Sn +Dn where Sn :=
∑

e∈On

Ue and Dn :=
n∑

i=1

Ui,i .(5.6)

Here, as in the previous proof On denotes the set of off-diagonal edges. For α ∈
(1,2), we have by the weak law of large numbers Sn/mn → 1 and Dn/n → 1 in
probability. Therefore

lim
n→∞

1

mn

n∑
i=1

ρi = 2 in probability.(5.7)

Theorem 1.8(ii) thus follows directly from Lemma 5.1 and (5.7). The same reason-
ing applies in the case α = 1 replacing the law of large numbers by the statement
(3.5) which now gives (5.7) with mn replaced by mnwmn . �

PROOF OF THEOREM 1.8(i). If Ue1 ≥ Ue2 ≥ · · · are the ranked values of
the i.i.d. random vector (Ue)e∈On and Sn is their sum as in (5.6), then by Lem-
ma 2.4(ii), replacing n with mn, we have(

Ue1

Sn

,
Ue2

Sn

, . . .

)
d−→

n→∞

(
x1∑∞
i=1 xi

,
x2∑∞
i=1 xi

, . . .

)
,(5.8)

where x1 > x2 > · · · denote the ranked points of the Poisson point process on
(0,∞) with intensity αx−α−1.
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Write X1,X2, . . . for the ranked values of row sums as in Lemma 5.1, so that
ρ̃i =Xi/(2Sn +Dn), where Dn,Sn are as in (5.6). Let

Y2�−1 = X2�−1

2Sn +Dn

− Ue�

2Sn

, Y2� = X2�

2Sn +Dn

− Ue�

2Sn

.

Thanks to (5.8) it is sufficient to prove that P(max1≤i≤2k |Yi | > ε) → 0, as n →∞,
for any fixed ε > 0 and k ∈ N. This follows from the argument used in the proof of
(5.2) and (5.5). �

APPENDIX A: SELF-ADJOINT OPERATORS ON PWIT

The following classical lemma was used in Section 3. If S is a self-adjoint op-
erator on D(S) ⊂ L2(V ) with V countable, the skeleton of S is the graph on V

obtained by putting an edge between two vertices (v,w) iff 〈δv,Sδw〉 �= 0.

LEMMA A.1 (Resolvent of self-adjoint operators on bipartite graphs). Let S
be a self-adjoint operator on D(S) ⊂ L2(V ) with V countable. If the skeleton is a
bipartite graph then for v ∈ V , h(z) = 〈δv, (S − zI)−1δv〉 satisfies for all z ∈ C+,
h(−z̄) =−h̄(z).

PROOF. Assume first that S is bounded: for all w ∈ V , ‖Sδw‖ ≤ C. For |z| >
C, the series expansion of the resolvent gives

h(z) =−∑
�≥0

〈δv,S�δv〉
z�+1 .

However, since the skeleton is a bipartite graph, all cycles have an even length,
and for � odd 〈δv,S�δv〉 = 0. We deduce that for |z| > C, h(−z̄) =−h̄(z). We may
then extend to C+ this last identity by analyticity.

If S is not bounded, then S is limit of a sequence of bounded operators, and we
conclude by invoking Theorem VIII.25(a) in [23]. �

The arguments of Section 3 were crucially based on the following fact.

PROPOSITION A.2. The operator T defined by (2.3) is essentially self-adjoint.

To prove the proposition, we start with a deterministic lemma. Let V = N
f

denote the vertex set of the PWIT, and let D be the space of finitely supported
vectors. We write u ∼ v if u = vk or v = uk for some k ∈ N (i.e., if u,v are
neighbors) and u �∼ v otherwise. Let A : D → L2(V ) denote the symmetric linear
operator defined by

〈δv,Aδw〉 =wu,v = wv,u,(A.1)

and such that wu,v = 0 whenever u �∼ v.
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LEMMA A.3 (Criterion of self-adjointness). Suppose that there exists a con-
stant κ > 0 and a sequence of connected finite subsets (Sn)n≥1 in V , such that
Sn ⊂ Sn+1,

⋃
n Sn = V , and for every n and v ∈ Sn,∑

u/∈Sn : u∼v

|wu,v|2 ≤ κ.

Then the operator A defined by (A.1) is essentially self-adjoint.

PROOF. It is sufficient to check that the only function ϕ ∈ D(A∗) ⊂ L2(V )

such that

A∗ϕ =±iϕ

is ϕ = 0 (see, e.g., [23], Theorem VIII.3). A similar argument is used in [13],
Proposition 3. We deal with the case A∗ϕ = iϕ, that is, for all u ∈ V ,

iϕ(u)= ∑
v∼u

wu,vϕ(v).

Here we use the notation ϕ(u) = 〈δu,ϕ〉. Taking conjugate, we also have for all
u ∈ V

−iϕ(u) = ∑
v∼u

wu,vϕ(v) = ∑
v∼u

wv,uϕ(v).

For any finite set S ⊂ V , we deduce

i
∑
v∈S

|ϕ(v)|2 =∑
v∈S

ϕ(v)(A∗ϕ)(v) =∑
v∈S

ϕ(v)
∑
u∼v

wv,uϕ(u)

= ∑
u∈S

ϕ(u)
∑
v∼u

wv,uϕ(v)+∑
v∈S

ϕ(v)
∑

u∼v : u/∈S

wv,uϕ(u)

−∑
u∈S

ϕ(u)
∑

v∼u : v/∈S

wv,uϕ(v)

=−i
∑
u∈S

|ϕ(u)|2 +∑
v∈S

ϕ(v)
∑

u∼v : u/∈S

wv,uϕ(u)

−∑
u∈S

ϕ(u)
∑

v∼u : v/∈S

wv,uϕ(v).

We obtain a Green formula,

2i
∑
v∈S

|ϕ(v)|2 =∑
v∈S

ϕ(v)
∑

u∼v : u/∈S

wv,uϕ(u)−∑
v∈S

ϕ(v)
∑

u∼v : u/∈S

wv,uϕ(u).

From Cauchy–Schwarz’s inequality,∑
v∈S

|ϕ(v)|2 ≤∑
v∈S

|ϕ(v)| ∑
u∼v : u/∈S

|wv,u||ϕ(u)|

≤
(∑

v∈S

|ϕ(v)|2
)1/2(∑

v∈S

( ∑
u∼v : u/∈S

|wv,u||ϕ(u)|
)2)1/2

.
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Now take S = Sn. From the assumption of the lemma, using again Cauchy–
Schwarz’s inequality,( ∑

u∼v : u/∈Sn

|wv,u||ϕ(u)|
)2

≤ κ
∑

u∼v : u/∈Sn

|ϕ(u)|2.

Since Sn is connected and the graph is a tree, if u /∈ Sn and u ∼ v then for any
v′ ∈ Sn \ v, then u �∼ v′. It follows that∑

v∈Sn

|ϕ(v)|2 ≤√
κ

(∑
v∈Sn

|ϕ(v)|2
)1/2(∑

u∈Sc
n

|ϕ(u)|2
)1/2

.

Therefore, ∑
v∈Sn

|ϕ(v)|2 ≤ κ
∑
v/∈Sn

|ϕ(v)|2.

Since limn Sn = V , as n grows, the right-hand side goes to 0, while the left-hand
side goes to ‖ϕ‖2

2. We obtain ϕ = 0. �

Next, we need a technical lemma.

LEMMA A.4. Let κ > 0, 0 < α < 2, and let 0 < x1 < x2 < · · · be a Poisson
process of intensity 1 on R+. Define τκ = inf{t ∈ N :

∑∞
k=t+1 x

−2/α
k ≤ κ}. Then

Eτκ is finite and goes to 0 as κ goes to infinity.

PROOF. First of all, the fact that τκ is a.s. finite follows from the a.s. summa-
bility of

∑∞
k=1 x

−2/α
k . We deduce also that a.s. there exists κ > 0 such that τκ = 0.

From monotone convergence, it remains to check that Eτκ < ∞. Let n ≥ 1 and
Sn =∑∞

k=1 x
−2/α
k 1{xk≥n}. From the Lévy–Khinchin formula, for θ > 0,

E exp(θSn) = exp
(∫ ∞

n
(eθx−2/α − 1) dx

)
.

As n goes to infinity, if θ = o(n2/α),∫ ∞
n

(eθx−2/α − 1) dx ∼ θ

2/α − 1
n−2/α+1.

Hence, taking θ = (2/α − 1)n2/α−1, we deduce from the Chernov bound, that for
any integer n≥ n0,

P(Sn > κ)≤ e−θκ
E exp(θSn) ≤ 3e−cn2/α−1

,

where n0 ≥ 1 and c = (2/α − 1)κ . Also recall (from the Chernov bound) that if N

is a Poisson random variable with mean n, then for all t > 0,

P(N ≥ t) ≤ exp
(
−t log

t

ne

)
.
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Now if the event {τκ > t} holds, then either the number of points of the Poisson
process (xk)k≥1 in [0, n] is larger than t or Sn > κ . We get for any integer n ≥ n0,

P(τ > t) ≤ e−t ln(t/(ne)) + 3e−cn2/α−1
.

We conclude by taking n = max(n0, t/(2e)). �

PROOF OF PROPOSITION A.2. We apply Lemma A.3 with A given by T, the
operator defined by (2.3). For κ > 0 and v ∈ N

f , we define the integer

τκ(v) = inf

{
t ≥ 0 :

∞∑
k=t+1

|yvk|−2/α ≤ κ

}
.

The variables (τκ(v))v are i.i.d., and by Lemma A.4, there exists κ > 0 such that
Eτκ(v) < 1. We fix such κ . Next, we give a green color to all vertices v such that
τκ(v) ≥ 1 and a red color otherwise. We consider an exploration procedure starting
from the root which stops at red vertices and goes on at green vertices. More for-
mally, define the sub-forest T g of the PWIT where we put an edge between green
vertices v and vk iff 1 ≤ k ≤ τκ(v).

The sets Sn appearing in Lemma A.3 are defined as follows. If the root ∅ is
red, we set S1 = {∅}. If the root is green, we consider T

g
∅ , the maximal subtree

of T g that contains the root. It is a Galton–Watson tree with offspring distribution
τκ(v). Thanks to our choice of κ , T

g
∅ is almost surely finite. Let V

g
∅ denote the set

of vertices of T
g
∅ , and consider the set L

g
∅ of the leaves of T

g
∅ . Note that L

g
∅ is the

set of vertices v ∈ V
g
∅ such that for all 1 ≤ k ≤ τκ(v), vk is red. Thus, when the

root is green, we set S1 = V
g
∅

⋃
v∈L

g
∅

{vk : 1 ≤ k ≤ τκ(v)}. By construction, the set
S1 satisfies the condition of Lemma A.3.

Next, define the outer boundary of the root as {∅} as ∂{∅} = {1, . . . , τκ(∅)},
and for v �= ∅, v = (i1, . . . , ik), set

∂{v} = {(i1, . . . , ik−1, ik + 1)} ∪ {(i1, . . . , ik,1), . . . , (i1, . . . , ik, τκ(v))}.
For a finite connected set S, its outer boundary is defined by

∂S =
(⋃

v∈S

∂{v}
)∖

S.

To define the set S2, suppose that ∂S1 = {u1, . . . , un}. The above procedure
defining S1 for the PWIT rooted at ∅ can be now repeated for the subtrees
rooted at u1, . . . , un to obtain sets S1(u1), . . . , S1(un). We can then define S2 =
S1 ∪ ⋃

1≤i≤n S1(ui). Iterating this procedure, we may thus almost surely define
an increasing connected sequence (Sn) of vertices with the properties required in
Lemma A.3. �
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APPENDIX B: TIGHTNESS ESTIMATES

Let X and K be the matrices defined by (1.6) and (1.1), respectively. Recall that,
when α ≥ 1 we set κn = nwna

−1
n , where wn = 1 if α > 1 and wn = ∫ an

0 xL(dx) if
α = 1.

LEMMA B.1.

(i) For every α ∈ (0,2), the sequence μ
a−1
n X

is a.s. tight.
(ii) For every α ∈ [1,2), the sequence μκnK is a.s. tight.

We first recall a classical lemma on truncated moments and a lemma on the
eigenvalues.

LEMMA B.2 (Truncated moments [17], Theorem VIII.9.2). For every p > α,

E
[|X1,1|p1{|X1,1|≤t}

]∼ c(p)L(t)tp−α,

where c(p) := α/(p − α). In particular, E[|X1,1|p1{|X1,1|≤an}] ∼ c(p)a
p
n /n.

LEMMA B.3 (Schatten bound [29], proof of Theorem 3.32). If A is an n× n

complex Hermitian matrix then for every 0 < r ≤ 2,

n∑
k=1

|λk(A)|r ≤
n∑

i=1

(
n∑

j=1

|Ai,j |2
)r/2

.(B.1)

PROOF OF LEMMA B.1.
Proof of (i). Let us fix r > 0. By definition of μX we have∫ ∞

0
|t |rμ

a−1
n X

(dt) = 1

n

n∑
k=1

|λk(a
−1
n X)|r .

By using (B.1) we get for any 0 ≤ r ≤ 2,∫ ∞
0

|t |rμ
a−1
n X

(dt) ≤ Zn := 1

n

n∑
i=1

Yn,i where Yn,i :=
(

n∑
j=1

a−2
n |Xi,j |2

)r/2

.

We need to show that (Zn)n≥1 is a.s. bounded. Assume for the moment that

sup
n≥1

E(Y 4
n,1) < ∞(B.2)

for some choice of r . Since Yn,1, . . . , Yn,n are i.i.d. for every n ≥ 1, we get from
(B.2) that

E
(
(Zn −EZn)

4)= n−4
E

((
n∑

i=1

Yn,i −EYn,i

)4)
= O(n−2).
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Therefore, by the monotone convergence theorem, we get E(
∑

n≥1(Zn−EZn)
4) <

∞, which gives
∑

n≥1(Zn−EZn)
4 < ∞ a.s. and thus Zn−EZn → 0 a.s. Now the

sequence (EZn)n≥1 = (EYn,1)n≥1 is bounded by (B.2), and it follows that (Zn)n≥1
is a.s. bounded.

It remains to show that (B.2) holds, say if 0 < 4r < α. To this end, let us define

Sn,a,b :=
n∑

j=1

a−2
n |X1,j |21{a−2

n |X1,j |2∈[a,b)} for every a < b.

Now Y 4
n,1 = (Sn,0,∞)2r = (Sn,0,1 + Sn,1,∞)2r and thus,

E(Y 4
n,1) ≤ 22r−1{E(S2r

n,0,1)+E(S2r
n,1,∞)}.(B.3)

We have supn E(S2r
n,0,1) < ∞. Indeed, since 2r < 1, from the Jensen inequality,

E(S2r
n,0,1) ≤ (ESn,0,1)

2r

and, by Lemma B.2, ESn,0,1 ∼n α/(2 − α).
To deal with the second term of the right-hand side of (B.3), we define

Mn := max
1≤j≤n

a−1
n |X1,j |1{a−1

n |X1,j |>1}

and

Nn := #{1 ≤ j ≤ n s.t. a−1
n |X1,j | > 1}.

From the Hölder inequality, if 1/p + 1/q = 1, we have

E(S2r
n,1,∞) ≤ E(N2r

n M4r
n ) ≤ (EN2rp

n )1/p(EM4rq
n )1/q .(B.4)

Recall that P(|X1,2| > an) = (1 + o(1))/n ≤ 2/n for large enough n. Using the
union bound, for large enough n,

P(Nn ≥ k) ≤
(

n

k

)
P(|X1,2| > an)

k ≤ nk

k!
2k

nk
= 2k

k! .

In particular for any η > 0, supn EN
η
n < ∞. Similarly, since L is slowly varying,

for large enough n and all t ≥ 1,

P(Mn ≥ t) ≤ nP(|X1,2| > tan) = na−α
n t−αL(ant) ≤ 2t−α.

It follows that if γ < α, supn EM
γ
n <∞. Taking p and q so that 4rq < α, we thus

conclude from (B.4) that supn E(S2r
n,1,∞) < ∞.

Proof of (ii). Recall that for any α ∈ [1,2), κn = wnna−1
n . Then, by using

(B.1) we get for any 0 ≤ r ≤ 2,∫ ∞
0

|t |rμκnK(dt) ≤ Z′
n :=

1

n

n∑
i=1

(
nwn

ρi

)r

Yn,i,
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where

Yn,i :=
(

n∑
j=1

a−2
n |Xi,j |2

)r/2

.

From (2.18) (for 1 < α < 2) and (3.6) (for α = 1), there exists c > 0 such that a.s.,

lim sup
n→∞

max
1≤i≤n

(
nwn

ρi

)r

< c.

Hence for all n large enough,

Z′
n ≤

c

n

n∑
i=1

Yn,i,

and we conclude by using the same argument as in the proof of (i). �
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