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CENTRAL LIMIT THEOREMS FOR RANDOM POLYGONS IN AN
ARBITRARY CONVEX SET

BY JOHN PARDON

Princeton University

We study the probability distribution of the area and the number of ver-
tices of random polygons in a convex set K ⊂ R

2. The novel aspect of our
approach is that it yields uniform estimates for all convex sets K ⊂ R

2 with-
out imposing any regularity conditions on the boundary ∂K . Our main result
is a central limit theorem for both the area and the number of vertices, set-
tling a well-known conjecture in the field. We also obtain asymptotic results
relating the growth of the expectation and variance of these two functionals.

1. Introduction. Consider a Poisson point process in a convex set K ⊂ R
2

of intensity equal to the Lebesgue measure. We denote by �K the convex hull
of the points of this process; �K is called a random Poisson polygon. We denote
by N = N(�K) the number of vertices of �K and by A = A(�K) the area of
K \ �K . In this paper, we develop techniques to study the distributions of these
random variables. Our main result is a central limit theorem, which is uniform over
the set of all convex K ⊂ R

2:

THEOREM 1.1. As Area(K) → ∞, we have the following central limit theo-
rems for �K :

sup
x

∣∣∣∣P
(

N − E[N ]√
VarN

≤ x

)
− �(x)

∣∣∣∣ � log2
E[N ]√

E[N ] ,(1.1)

sup
x

∣∣∣∣P
(

A − E[A]√
VarA

≤ x

)
− �(x)

∣∣∣∣ � log2
E[A]√

E[A] .(1.2)

Here �(x) = P(Z ≤ x) where Z is the standard normal distribution.

The novel aspect of our approach is that we require no regularity on ∂K ; it is
this that enables us to obtain bounds which are uniform over all convex sets. Pre-
vious results on random polygons analogous to Theorems 1.1 have been confined
to two cases: (i) K a polygon [4, 7] and (ii) ∂K of class C2 with nonvanishing
curvature [8]. The key part of our argument is our use of a new compactness result
for various types of local configuration spaces of convex boundaries.

As a consequence of our techniques, we also prove the following:
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THEOREM 1.2. As Area(K) → ∞, we have the following estimates for �K
1:

E[N ] � VarN � E[A] � VarA.(1.3)

In other words, there is (up to a constant factor) only one parameter, say E[A],
which controls the asymptotics of the distributions of N and A. Thus, for example,
the error terms in Theorem 1.1 could have instead been stated in terms of the
variances.

For completeness, we should mention what is known about the growth of (say)
E[A], which can be effectively estimated using elementary geometric and combi-
natorial techniques. In dimension two, one has

log[Area(K)] � E[A] � [Area(K)]1/3.(1.4)

[In particular, the error terms in Theorem 1.1 go to zero as Area(K) → ∞.] The
estimate (1.4) is a consequence of the economic cap covering lemma of Bárány
and Larman [1] in combination with other estimates in [1] and those of Groemer
[6] (in fact, their results apply to higher dimensions as well). We remark that the
lower asymptotic is achieved when K is a polygon, and the upper asymptotic is
achieved when ∂K is C2 with nonvanishing curvature.

We conclude by remarking that in recent years there has been significant
progress in the study of random polytopes, but again most results deal only with
the cases when (i) K is a polytope [3], and (ii) ∂K is C2 with nonvanishing Gauss
curvature [10, 15]. We believe that an approach similar to ours should be possible
in higher dimensions as well. This would shed new light on problems in that set-
ting, and ultimately show that there is no qualitative difference between the cases
(i) and (ii).

1.1. The uniform model random polygons. A model related to �K is PK,n :=
conv. hull.(X1, . . . ,Xn) where Xi are i.i.d. uniformly in K ; PK,n is called a ran-
dom polygon. This is often referred to as the “uniform model” whereas �K is the
“Poisson model.” Morally they are the same process in the limit Area(K) = n →
∞ (though making this precise is often difficult). It has been a well-known open
problem to prove central limit theorems for functionals of PK,n. For instance, Van
Vu [5] has asked the question of whether a central limit theorem holds for A(PK,n),
though the problem is a very natural one in the study of random polygons, a subject
that began with work of Rényi and Sulanke [11, 12]. Theorems 1.1 and 1.2 both
carry over to the setting of PK,n, thus answering this question in the affirmative.

1After this paper was written, we learned that Imre Bárány and Matthias Reitzner have indepen-
dently proved this result, as well as the closely related Corollary 1.4.
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COROLLARY 1.3. As n → ∞, we have the following central limit theorems
for PK,n:

sup
x

∣∣∣∣P
(

N − E[N ]√
VarN

≤ x

)
− �(x)

∣∣∣∣ → 0,(1.5)

sup
x

∣∣∣∣P
(

A − E[A]√
VarA

≤ x

)
− �(x)

∣∣∣∣ → 0(1.6)

uniformly over all convex K . Here �(x) = P(Z ≤ x) where Z is the standard
normal distribution.

COROLLARY 1.4. As n → ∞, we have the following estimates for PK,n:

E[N ] � VarN � n

Area(K)
E[A] �

(
n

Area(K)

)2
VarA(1.7)

uniformly over all convex K .

As in the case of the Poisson model, these results are well known in the field in
the two cases (i) K a polygon and (ii) ∂K of class C2 with nonvanishing curvature.
The innovation in this paper is that all K are treated uniformly.

A detailed derivation of Corollaries 1.3 and 1.4 from Theorems 1.1 and 1.2
will appear elsewhere [9]. Suffice it to say here that they are almost immediate
consequences of the corresponding results on the Poisson model once one proves
that when n = Area(K), the variables N(PK,n) and N(�K) [as well as A(PK,n)

and A(�K)] have the same expectation and variance up to a small enough error.

2. The basic decomposition. In this section, we illustrate our basic approach.
We will aim for Theorem 1.1, and Theorem 1.2 will be a corollary of our methods.

First, we observe that the functionals N and A both enjoy decompositions into
local pieces. We define N(α,β) to equal the number of edges of � whose angle
lies in the interval [α,β] ⊂ R/2π . The definition of A(α,β) is best explained
graphically (see Figure 1). Thus for any fixed sequence of angles α1 < α2 < · · · <
αL, we have the following decompositions:

N = N(α1, α2) + · · · + N(αL,α1),(2.1)

A = A(α1, α2) + · · · + A(αL,α1).(2.2)

During the proof, we often do not need to distinguish between whether we are
dealing with N or A. Thus we will use X(�) to denote either N or A when a
statement holds for both.

A central limit theorem will follow if we can find a choice of {αi} such that the
moments of X(αi,αi+1) are bounded uniformly, and such that the dependence be-
tween X(αi,αi+1) and X(αj ,αj+1) becomes small as |i −j | → ∞. Our construc-
tion is to choose {αi} so that the intervals [αi,αi+1] have constant affine invariant
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FIG. 1. Illustration of A(α,β).

measure (a measure depending on K). In this paper, we give a more or less explicit
description of the affine invariant measure, which in practice should allow its easy
estimation for any given class of convex sets, and thus a complete description of
the behavior of random Poisson polygons and random polygons. As we remarked
in the Introduction, a key result is the compactness of various configuration spaces.

After fixing notation in Section 3, we define the affine invariant measure in
Section 4. Section 5 is devoted to the crucial step of proving the compactness of
the configuration spaces. Using the information coming from compactness:

• In Section 6, we estimate the moments of X (Proposition 6.1).
• In Section 7, we estimate the long range dependence of X (Proposition 7.5).
• In Section 8, we recall an estimate the variance of X due to Imre Bárány and

Matthias Reitzner (Proposition 8.1).

The remainder of the paper contains the explicit deduction of Theorems 1.1
and 1.2.

3. Notation and definitions. In this paper, K will always denote a (bounded)
convex set in R

2.
We warn the reader that in most of the literature, one fixes Area(K) = 1 and

then considers a Poisson process of intensity λ → ∞. We have chosen instead
to use the normalization λ = 1 and let Area(K) → ∞. This is convenient for us
because it makes many of our formulas simpler to state.

Any constants implied by the symbols �, 	 or � are absolute; in partic-
ular they are not allowed to depend on K . There will be times when we re-
quire Area(K) 	 1; this is no real restriction to us since in the end we will take
Area(K) → ∞. The group Aff(2) = R

2
� SL2(R) is the group of (oriented) area

preserving affine transformations of R
2; it acts naturally on the entire problem

studied here.
Many of the following definitions are illustrated in Figure 2. We may leave out

the subscript K later when doing so is unambiguous.
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FIG. 2. Illustration of some definitions.

DEFINITION 3.1. We define the random variable WK(θ) to be the vertex of
�K which has an oriented tangent line at angle θ . This is illustrated in Figure 2(a).

DEFINITION 3.2. A cap at angle θ is the intersection of K with a half-plane
Hθ at angle θ . We may specify a cap at angle θ by giving either its area r or a
point p ∈ ∂Hθ . These are denoted CK(r, θ) and CK(p, θ), respectively; the latter
is illustrated in Figure 2(b).

DEFINITION 3.3. We define the real number AK(p, θ) to be the area of the
cap CK(p, θ).

LEMMA 3.4. The random variable WK(θ) has probability distribution given
by exp(−AK(p, θ)) dp where dp is the Lebesgue measure.

PROOF. This follows directly from the definition of a Poisson point process.
�

DEFINITION 3.5. We define the function fK(x, θ) : [0,1] × R/2π → R as
follows:

fK(x, θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

length of (∂Hθ) ∩ K ,

where CK

(
log

1

x
, θ

)
= Hθ ∩ K ,

if x > exp(−Area(K)),

0, if x ≤ exp(−Area(K)).

(3.1)

It will be important to have the following bound on the growth of f :

LEMMA 3.6. If y ≤ x, then

f (y)√− logy
≤ f (x)√− logx

.(3.2)
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FIG. 3. Illustration of the function h.

The bound above is sharp; for instance f (x) = const ·√− logx for K = {x, y ≥
0} (i.e., the first quadrant).

PROOF OF LEMMA 3.6. Project K along the lines at angle θ to get a height
function h : [0,∞) → R≥0; in Figure 3, h(
) is the length of the thick segment.
Now if A(
) = ∫ 


0 h(
′) d
′ then f (exp(−A(
))) = h(
). Thus we see that it suf-
fices to show that the function

h(
)√
A(
)

(3.3)

is decreasing. Differentiating with respect to 
, we see that it suffices to show that

h(
)2 − 2h′(
)A(
) ≥ 0.(3.4)

For 
 = 0, the left-hand side is clearly nonnegative, and the derivative of the left-
hand side equals −2h′′(
)A(
), which is ≥ 0 by concavity of h. �

LEMMA 3.7. If Area(K) ≥ 2 log 1
x

, then f (y) ≤ 2f (x) for y ≥ x.

PROOF. Refer to Figure 4. The area of the upper trapezoid is ≤ log 1
x

since it
is contained in C(log 1

x
, θ). The area of the lower triangle is ≥ log 1

x
since it con-

tains K \ C(log 1
x
, θ) and Area(K) ≥ 2 log 1

x
. Similar triangles gives the following

inequality:

f (y) − f (x)

log(1/x)
≤ f (x)

log(1/x)
.(3.5)

Simplifying yields f (y) ≤ 2f (x). �
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FIG. 4. Illustration of an inequality.

4. The affine invariant measure.

PROPOSITION 4.1. For every g ∈ Aff(2), we have

r∗
g [fgK(x, θ)2 dθ ] = fK(x, θ)2 dθ,(4.1)

where rg : R/2π → R/2π is the action of g on line slopes. We say “f (x, θ)2 dθ is
affine invariant.”

PROOF. Define v(θ) to be the vector of length f (x, θ) parallel to the chord
whose length gives f (x, θ). Then we have

∫ θ2

θ1

f (x, θ)2 dθ =
∫ θ2

θ1

v(θ) × dv(θ).(4.2)

The right-hand side is invariant under the action of Aff(2), so the result follows.
�

DEFINITION 4.2. We define the affine invariant measure to be μK :=
fK(e−1, θ)2 dθ .

The ε-wet part of K is defined as the union of all caps of area ε. In the literature,
estimates for random polygons are frequently expressed in terms of the area of the
ε-wet part of K . It is, perhaps, not surprising that our notion of the affine invariant
measure is related to the area of the wet part in the following manner:

LEMMA 4.3. One has the following relation:

Area
( ⋃

γ∈[α,β]
CK(1, γ )

)
= 1 + 1

8
μK([α,β]).(4.3)
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PROOF. Consider the area swept out by the line segments bounding the caps
of area 1 at angles γ ∈ [α,β] (area covered twice is counted twice). On the one
hand, this area just equals

2 Area
( ⋃

γ∈[α,β]
CK(1, γ )

)
− Area(CK(1, α)) − Area(CK(1, β)).(4.4)

On the other hand, we may express the area as an integral dθ . Each line segment
rotates about its midpoint (since the area of the caps is constant), so the area cov-

ered is just the dθ integral of
∫ f (e−1,θ)/2
−f (e−1,θ)/2 |y|dy = 1

4f (e−1, θ)2. Comparing this
with (4.4) yields the result. �

5. Compactness of configuration spaces.

DEFINITION 5.1. Define a configuration space C(r) for r > 0 as follows. The
objects of C(r) are convex subsets of R

2 of area r with a distinguished line segment
on their boundary. As a set, C(r) is equal to everything of the form (H ∩K, (∂H)∩
K), where K is any convex set of area ≥ 2r and H is a half-plane such that H ∩K

has area r . A typical member of C(r) is illustrated in Figure 5(a). We emphasize
that the space C(r) does not depend on any choice of convex set K ; rather it is the
space of all caps of area r that come from some convex set of area ≥ 2r .

We call C(r) the configuration space of caps of area r . If c ∈ C(r), then we call
the distinguished part of its boundary its flat boundary and the undistinguished part
of its boundary its convex boundary. We let the half-plane of c equal the unique
half-plane which contains c and whose boundary contains the flat boundary of c

(this is exactly the H appearing above).

We topologize C(r) by using the Hausdorff metric to compare both the set and
its distinguished subset. Explicitly, d((A,A0), (B,B0)) = d(A,B) + d(A0,B0).
Let us observe that there is a natural action of Aff(2) on C(r); it is continuous.
Certainly C(r) is not compact, since the group Aff(2) is noncompact. However,
we will show directly that C(r)/Aff(2) is compact. This simple fact will be an
essential tool in virtually all of the estimates in the remainder of this paper.

FIG. 5. A series of caps.
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FIG. 6. Compactness of C(r)/Aff(2).

LEMMA 5.2. The space C(r)/Aff(2) is compact.

PROOF. Let c1, c2, . . . be a sequence of elements of C(r)/Aff(2). Pick repre-
sentatives c̃1, c̃2, . . . in C(r) so that the flat part of ∂c̃i is the unit line segment on
the x-axis, c̃i is contained in the upper half-plane, and the highest y-coordinate of
any point in c̃i is attained at (1

2 , hi). This is illustrated in Figure 6.
By Lemma 3.7, we conclude that Area(K) ≥ 2r implies that every hori-

zontal chord in c̃i has length ≤ 2. This implies that −3
2 ≤ x ≤ 5

2 for any x-
coordinate of a point in c̃i . On the other hand, c̃i contains a triangle of base 1
and height hi , so by comparing areas we must have 1

2hi ≤ r . Thus we conclude
that c̃i ⊆ [−3

2 , 5
2 ] × [0,2r]. It is well known that the space of convex sets of fixed

volume in some bounded region of R
d given the Hausdorff topology is compact

(this is the so-called Blaschke selection theorem). Thus we conclude that there
exists a subsequence of c̃i that converges. �

DEFINITION 5.3. We define the complex configuration space C(r1, ε, r2) for
r1, r2 > 0 and 0 < ε < min(r1, r2) as follows. We let C(r1, ε, r2) denote a particular
subset of C(r1) × C(r2). An ordered pair (c1, c2) ∈ C(r1) × C(r2) is in C(r1, ε, r2)

if and only if it satisfies the following:

• Area(c1 ∩ c2) = ε.
• If H1 is the half-plane of c1, then H1 ∩ c2 = c1 ∩ c2.
• If H2 is the half-plane of c2, then c1 ∩ H2 = c1 ∩ c2.
• It holds that angle(H1) < angle(H2) < angle(H1) + π .

We then give C(r1, ε, r2) the subspace topology.
One can see that the middle two conditions taken together just mean that c1 and

c2 coincide on H1 ∩ H2, and the last condition just says that c1 precedes c2 if we
traverse their convex boundary counterclockwise. Examples appear in Figure 5(b)
and in Figure 8.

LEMMA 5.4. The space C(r1, ε, r2)/Aff(2) is compact.

PROOF. Let (c1, d1), (c2, d2), . . . be a sequence of elements of the quotient
C(r1, ε, r2)/Aff(2). Lift these to a sequence (c̃1, d̃1), (c̃2, d̃2), . . . in C(r1, ε, r2)
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FIG. 7. Compactness of C(r1, ε, r2)/Aff(2).

where we assume (after passing to a subsequence using Lemma 5.2) that c̃1, c̃2, . . .

is convergent to c̃ ∈ C(r1).
Now refer to Figure 7. Label the intersection of the flat boundary of d̃i with the

convex boundary of c̃i as pi . Label the intersection of the flat boundaries of d̃i and
c̃i as qi . Label the intersection of the flat boundary of d̃i with its convex boundary
other than pi as ri . Clearly we can extract a subsequence for which pi converges
to a point p on the convex boundary of c̃, and then extract a further subsequence
for which qi converges to a point q on the flat boundary of c̃. The only subtlety in
this proof is to observe that 0 < ε < r1 shows that p and q are not on the corners
of c̃.

Given p and q , the boundedness of the area of d̃i implies that ri is bounded, so
we extract another subsequence for which additionally ri converges to a point r .
Now it is easy to see that the fixing of c̃, p, q, r provide only a bounded set for d̃i

to range over, so compactness follows again using the Blaschke selection theorem.
�

LEMMA 5.5. There exists an absolute constant M0 < ∞ such that if we are
given K and angles α < β with μK([α,β]) ≥ M0, then we can find a sequence
α ≤ γ0 < γ1 < · · · < γL ≤ β so that (CK(γi−1,1),CK(γi,1)) ∈ C(1, 1

2 ,1) and
L � μK([α,β]).

PROOF. Let γ0 = α. Now define γi inductively for i ≥ 1 as follows. The func-
tion

Area
(
C(1, γi−1) ∩ C(1, γ )

)
for γ ∈ [γi−1, γi−1 + π ](5.1)

is strictly decreasing until it reaches zero, where it remains constant. Thus there
exists a unique γi so that Area(C(1, γi−1)∩C(1, γi)) = 1

2 . We now have an infinite
chain of angles α = γ0 < γ1 < γ2 < · · · so that C(1, γi) ∩ C(1, γi+1) has area 1

2
for i ≥ 0. This is illustrated in Figure 5.
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Let L be the maximum index such that γL ≤ β . Note that since C(1, 1
2 ,1) is

compact, there exist absolute constants 0 < Y1 < Y2 < ∞ (not depending on K)
such that

Y1 < μK([γi, γi+1]) < Y2(5.2)

for all i. Thus we conclude that

Y1L < μK([γ0, γL]) ≤ μK([α,β]) < Y2(L + 1),(5.3)

which is sufficient. �

6. A moment estimate. An ingredient in the central limit theorems for the
polygonal case is a moment estimate [7], page 341, Lemma 2.5, and [4], page 36,
Lemma 2.1. Here, we prove an analogous estimate in general.

PROPOSITION 6.1. Let X denote either N or A. There exist absolute con-
stants M0 < ∞ and ε > 0 such that for any convex K and interval [α,β] with
μK([α,β]) ≥ M0, we have the following estimate:

E exp(λXK(α,β)) � 1 for all |λ| < ε/μK([α,β]).(6.1)

PROOF. We can split up [α,β] into subintervals of small affine invariant mea-
sure, and use Cauchy’s inequality,

E exp(λ[A + B]) ≤
√

[E exp(2λA)][E exp(2λB)],(6.2)

so it suffices to show that there exist δ > 0 and ε > 0 so that for all K and
[α,β] satisfying μK([α,β]) ≤ δ, it holds that the moment generating function
E exp(λXK(α,β)) is � 1 for all |λ| < ε.

Since C(1, 1
2 ,1) is compact, the affine invariant measure of the interval between

the angles of c1 and c2 is bounded below. Thus we conclude that it suffices to show
that for every (c1, c2) ∈ C(1, 1

2 ,1), the moment generating function of XK(α,β)

is defined in a neighborhood of zero where α is the angle of c1 and β is the angle
of c2.

Now we may put such an element (c1, c2) ∈ C(1, 1
2 ,1) in a standard position

in R
2 by requiring that both boundary segments have equal length, and that the

angles of c1 and c2 are 0 and π
2 , respectively, (see Figure 8).

Thus, given the configuration in Figure 8, we would like to show that for suffi-
ciently small λ > 0, we have E exp(λXK(0, π

2 )) � 1. First, write

E exp
(
λXK

(
0,

π

2

))

(6.3)

=
∫
K

E

[
exp

(
λXK

(
0,

π

2

))∣∣∣W(0) = p

]
dP

(
W(0) = p

)
.
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FIG. 8. Two adjacent caps.

If X = N , then XK(0, π
2 ) is bounded by the number of points of the Poisson

process in the region C(W(0), π
2 ) \ C(W(0),0). An elementary calculation shows

that E exp(λ�(k)) = exp(k[eλ − 1]), where �(k) is a Poisson distribution of para-
meter k. We may assume |λ| < 1, so eλ − 1 < 2|λ|. Thus in this case

E

[
exp

(
λXK

(
0,

π

2

))∣∣∣W(0) = p

]

(6.4)

≤ exp
(

2|λ|Area
(
C

(
p,

π

2

) ∖
C(p,0)

))
.

If X = A, then XK(0, π
2 ) is bounded by C(W(0), π

2 ) \ C(W(0),0), so we have

E

[
exp

(
λXK

(
0,

π

2

))∣∣∣W(0) = p

]

(6.5)

≤ exp
(
|λ|Area

(
C

(
p,

π

2

) ∖
C(p,0)

))
.

Thus in both cases, we have the estimate

E exp
(
λXK

(
0,

π

2

))

(6.6)

≤
∫
K

exp
(

2|λ|Area
(
C

(
p,

π

2

) ∖
C(p,0)

))
exp(−A(p,0)) dp

recalling Lemma 3.4.
By compactness of C(1, 1

2 ,1)/Aff(2), the angle where the convex part of ci

meets the flat boundary of ci is bounded below by an absolute constant (say by ω,
see Figure 8). Similarly, the lengths of the flat parts of c1 and c2 are bounded
above absolutely (say by R ≥ 1). Thus the area above the dotted line in Figure 8 is
bounded above absolutely, say by B = 2 + R2 + R2 cotω.

Now we claim that

Area
(
C

(
p,

π

2

) ∖
C(p,0)

)
≤ B + f (p,0)2 cotω(6.7)
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[recall that f (p,0) is the length of 
 ∩ K where 
 is the horizontal line passing
through p]. If p ∈ c1, then the area of C(p, π

2 ) \ C(p,0) is ≤ B by definition. If
p /∈ c1, then argue as follows: the area of C(p, π

2 ) \ C(p,0) above the dotted line
is certainly less than B , and the area of C(p, π

2 ) \ C(p,0) below the dotted line is
bounded by f (p,0)2 cotω.

Thus we have

E exp
(
λXK

(
0,

π

2

))

(6.8)
≤ e2|λ|B

∫
K

exp(2|λ|f (p,0)2 cotω) exp(−A(p,0)) dp.

If we substitute x = exp(−A(p,0)), then the integral becomes

E exp
(
λXK

(
0,

π

2

))
≤ e2|λ|B

∫ 1

0
exp(2|λ|f (x,0)2 cotω)dx.(6.9)

Now f (e−1,0) ≤ R, so f (x,0) ≤ R
√− logx for x ≤ e−1 by Lemma 3.6, and

Area(K) 	 1 implies f (x,0) ≤ 2R for x ≥ e−1 by Lemma 3.7. Thus we conclude
that

E exp
(
λXK

(
0,

π

2

))
≤ e2|λ|B

∫ e−1

0
x−2|λ|R2 cotω dx

(6.10)

+ e2|λ|B
∫ 1

e−1
e8|λ|R2 cotω dx,

which is bounded absolutely for small enough |λ|. �

7. A dependence estimate.

DEFINITION 7.1. If S ⊂ R/2π is an interval, then we let F (K)
S be the σ -

algebra which keeps track of WK(θ) for θ ∈ S.

For example, �K is F (K)
S -measurable if and only if S = R/2π .

The type of dependence estimate we prove will be an α-mixing estimate, that
is, an estimate on |P(A ∩ B) − P(A)P (B)| where A and B are events that are
supposed to be almost independent. This type of estimate has been used previously
in studying random polygons; we were motivated to prove our estimate by a similar
result in [7], page 341, Theorem 2.3.

LEMMA 7.2. Let [θ1, θ2] and [ψ1,ψ2] be two disjoint intervals in R/2π . Let
A ∈ F[θ1,θ2] and B ∈ F[ψ1,ψ2]. Then

|P(A ∩ B) − P(A)P (B)|
(7.1)

� ∑
i,j∈{1,2}

∫
K

exp(−A(p, θi)) exp(−A(p,ψj )) dp.
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The proof is an elementary calculation and is given in the Appendix. The object
of this section is to reexpress the right-hand side of (7.1) in terms of the affine
invariant measure.

LEMMA 7.3. There exists an absolute constant δ > 0 such that if θ ≤ ψ ≤
θ + π , then area of C(1, θ) ∩ C(1,ψ) is � exp(−δμK([θ,ψ])).

PROOF. We use Lemma 5.5 to construct a sequence θ = γ0 < γ1 < · · · < γL ≤
ψ so that Area(C(γi,1)∩C(γi+1,1)) = 1

2 and L � μK([θ,ψ]). From this decom-
position, we see that it suffices to show that there exists δ > 0 such that for all i

Area
(
C(γi,1) ∩ C(γ0,1)

) ≤ (1 − δ)Area
(
C(γi−1,1) ∩ C(γ0,1)

)
.(7.2)

Now we know that C(γ0,1) = K ∩ H for some half-plane H and that additionally
Area(C(γi−1,1) ∩ C(γ0,1)) = Area(C(γi−1,1) ∩ H) ≤ 1

2 . Hence it suffices to
show that

Area
(
C(γi,1) ∩ H

) ≤ (1 − δ)Area
(
C(γi−1,1) ∩ H

)
,(7.3)

whenever Area(C(γi−1,1) ∩ H) ≤ 1
2 and angle(H) ∈ (γi − π,γi−1).

Remember that C(γi,1) and C(γi−1,1) have intersection 1
2 . Thus it suffices to

show that for every (c1, c2) ∈ C(1, 1
2 ,1), the following is true:

Area(c2 ∩ H)

Area(c1 ∩ H)
< 1 − δ,(7.4)

whenever Area(c1 ∩ H) ≤ 1
2 and angle(H) ∈ (angle(c2) − π, angle(c1)) [see Fig-

ure 9(a)]. Here, if we put c1 and c2 in standard position (i.e., as in Figure 9, with
both flat boundaries of equal length), then ∂H has negative slope. Denote by q the
intersection of the flat boundaries of c1 and c2. Then since Area(c1 ∩ H) ≤ 1

2 , we
must have q /∈ H . From this, we see that c2 ∩H ⊆ c1 ∩H , so we may rewrite (7.4)
as

Area((c1 \ c2) ∩ H)

Area(c2 ∩ H)
> δ.(7.5)

FIG. 9. Intersecting caps.
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The minimum of this expression is clearly a continuous function on C(1, 1
2 ,1),

and is by definition invariant under the action of Aff(2). We know that C(1, 1
2 ,1)/

Aff(2) is compact, so it suffices to show that for any fixed configuration (c1, c2),
expression (7.5) is bounded below away from zero. Certainly, if this ratio were
approaching zero, then Area((c1 \ c2) ∩ H) → 0. However in this case, the situa-
tion is illustrated in Figure 9(b), where it is clear that ratio (7.5) in fact does not
approach zero, but rather some appropriate ratio of lengths of the boundaries of
the caps. Thus we are done. �

LEMMA 7.4. There exists an absolute constant δ > 0 such that if θ ≤ ψ ≤
θ + π ∫

K
exp(−A(p, θ)) exp(−A(p,ψ)) dp � exp(−δμK([θ,ψ])).(7.6)

PROOF. We pick the unique θ1,ψ1 so that θ < θ1 < ψ1 < ψ and μK([θ ,
θ1]) = μK([θ1,ψ1]) = μK([ψ1,ψ]).

Define

Sp = C(p, θ) ∪ C(p,ψ) = ⋃
θ≤α≤ψ

C(p,α),(7.7)

so Area(Sp) ≤ A(p, θ) + A(p,ψ).
Now if A(p,α) ≥ 1 for all α ∈ [θ, θ1], then by Lemma 4.3, the area of

Sp is 	 μK([θ, θ1]) = 1
3μK([θ,ψ]). The same applies if A(p,α) ≥ 1 for α ∈

[ψ1,ψ]. Thus in both of these cases, we conclude that A(p, θ) 	 μK([θ,ψ]) or
A(p,ψ) 	 μK([θ,ψ]).

If A(p, θ2) < 1 for some θ2 ∈ [θ, θ1] and A(p,ψ2) < 1 for some ψ2 ∈ [ψ1,ψ],
then necessarily p ∈ C(1, θ1)∩C(1,ψ1). Thus we know that for all p ∈ K , at least
one of the following is true:

• p ∈ C(1, θ1) ∩ C(1,ψ1),
• A(p, θ) 	 μK([θ,ψ]),
• A(p,ψ) 	 μK([θ,ψ]).
By elementary integration, the integral over the second and third regions is �
exp(−δμK(θ,ψ)). The area of the first region is � exp(−δμK(θ,ψ)) by Lem-
ma 7.3, so we are done. �

PROPOSITION 7.5. There exists an absolute constant δ > 0 so that if [θ1, θ2]
and [ψ1,ψ2] are two disjoint intervals in R/2π , and we have events A ∈ F[θ1,θ2]
and B ∈ F[ψ1,ψ2], then

|P(A ∩ B) − P(A)P (B)| � ∑
i,j∈{1,2}

exp(−δdK(θi,ψi)),(7.8)

where dK(α,β) denotes μK([α,β]) if α ≤ β ≤ α + π and μK([β,α]) if instead
β ≤ α ≤ β + π .
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The reader may wonder exactly what follows from an α-mixing estimate. We
won’t answer that here, though we will record here two lemmas that will be useful
later whose hypotheses are α-mixing estimates.

LEMMA 7.6 ([13], page 115, Lemma 1(6)). Suppose X and Y are random
variables taking values in R such that

|P(X ∈ A & Y ∈ B) − P(X ∈ A)P (Y ∈ B)| < α(7.9)

for all A,B ⊆ R. Then we have

|Cov(X,Y )| ≤ 6(E|X|3)1/3(E|Y |3)1/3α1/3.(7.10)

LEMMA 7.7. Suppose X and Y are random variables taking values in R such
that

|P(X ∈ A & Y ∈ B) − P(X ∈ A)P (Y ∈ B)| < α(7.11)

for all A,B ⊆ R. Let Z = X + Y , and let Z̃ equal the sum of independent copies
of X and Y . Then we have

sup
x

|P(Z ≤ x) − P(Z̃ ≤ x)| � √
α.(7.12)

PROOF. Let −∞ = x0 < x1 < · · · < xN = ∞ be any finite increasing se-
quence of real numbers. Then we have

P(Z ≤ 0) ≥
N∑

i=1

P
(
X ∈ (xi−1, xi] & Y ≤ −xi

)
(7.13)

≥ −Nα +
N∑

i=1

P
(
X ∈ (xi−1, xi])P(Y ≤ −xi).

Now using the definition of Z̃, we can bound this below by

P(Z ≤ 0) ≥ −Nα + P(Z̃ ≤ 0)
(7.14)

−
N∑

i=1

P
(
X ∈ (xi−1, xi)

)
P

(
Y ∈ (−xi,−xi−1)

)
.

Thus we find that

P(Z ≤ 0) − P(Z̃ ≤ 0)
(7.15)

≥ −Nα −
N∑

i=1

P
(
X ∈ (xi−1, xi)

)
P

(
Y ∈ (−xi,−xi−1)

)
.
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Now choose K − 1 real numbers −∞ = u0 < u1 < · · · < uK = ∞ so that the
probability that X falls in the open interval (ui−1, ui) is ≤ K−1 for all i. Do the
same for Y to get vi ’s. Then let the xi ’s be the union of the ui’s and −vi ’s (so
N ≤ 2K). With this choice, we see that each of the probabilities in the last sum
of (7.15) is ≤ K−1, so their product is ≤ K−2. Hence the right-hand side is ≥
−2Kα − 2KK−2. Now choosing K to equal the nearest integer to α−1/2, we
conclude that P(Z ≤ 0) − P(Z̃ ≤ 0) ≥ −const · α1/2. By a symmetric argument,
we get the other inequality, so |P(Z ≤ 0)−P(Z̃ ≤ 0)| � α1/2, which is sufficient.

�

8. A variance estimate. The task of providing a lower bound on the vari-
ance of N and A has already been completed by Bárány and Reitzner [2], page 4,
Theorem 2.1. They prove the following theorem.

PROPOSITION 8.1. Provided μK([α,β]) 	 1, we have the estimates

VarN(α,β) 	 μK([α,β]),(8.1)

VarA(α,β) 	 μK([α,β]).(8.2)

In fact, Bárány and Reitzner’s result is valid for random polytopes as well. They
only state this estimate in the case [α,β] = R/2π , though their proof is valid in
general. We also note that they phrase their result in terms of the area of the ε-wet
part of K ; we have replaced this with the affine invariant measure using Lem-
ma 4.3.

9. Proof of Theorem 1.2. Let X denote either N or A.
From linearity of the expectation, one immediately observes that E[X] �

μK(R/2π). Proposition 8.1 implies that

μK(R/2π) � VarX.(9.1)

Thus it suffices to show the reverse inequality. For this, simply decompose R/2π

into L intervals of affine invariant measure � 1, and then write

VarX =
L∑

i=1

VarX(αi,αi+1)

(9.2)
+ 2

∑
1≤i<j≤L

Cov(X(αi, αi+1),X(αj ,αj+1)).

Proposition 6.1 shows that the sum of variances is � L. Proposition 7.5, Lem-
ma 7.6 and Proposition 6.1 imply that the sum of covariances is � L. Hence the
right-hand side is � L as needed.
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10. Proof of Theorem 1.1. We need the following central limit theorem ap-
pearing in a survey article by Sunklodas [14]:

THEOREM 10.1 (In English translation [13], page 133, Theorem 10). Let X =∑L
i=1 Xi where X1, . . . ,XL are random variables. Additionally suppose that:

• E|Xi |3 ≤ C1,
• X1, . . . ,XL are α-mixing with α ≤ C2 exp(−δ|i − j |),
for some δ > 0 and C1,C2 < ∞. Then there exists M < ∞ such that

sup
x∈R

∣∣∣∣P
(

X − EX√
VarX

≤ x

)
− �(x)

∣∣∣∣ ≤ M
L(logL)2

(VarX)−3/2 .(10.1)

We have everything necessary to apply Theorem 10.1 to N and A, except that
our decomposition is “circular.” Thus, for example, Theorem 10.1 shows immedi-
ately that N(α,α + π) satisfies a central limit theorem for any α, but does not di-
rectly apply to give a central limit theorem for N . For completeness, we include the
following proof, where we derive Theorem 1.1 just using Theorem 10.1 as a black
box. The reader who is willing to believe the natural extension of Theorem 10.1 to
our situation may want to omit it, as it is essentially just a straightforward calcula-
tion.

PROOF OF THEOREM 1.1. Suppose K is given with Area(K) 	 1. Let X

denote either N or A. In this proof δ > 0 denotes some positive absolute constant,
possibly different at each occurrence.

The function f (α) = μK([α,α + π ]) on R/2π satisfies f (α) + f (α + π) =
μK(R/2π). Thus by continuity we may find α such that μK([α,α + π ]) =
μK([α + π,α + 2π ]). Without loss of generality, we may assume μK([0, π]) =
μK([π,2π ]). Set L = μK(R/2π).

We let 
 denote a quantity much smaller than L (we will eventually let 


equal some large multiple of logL). We pick α1, β1, α2, β2 so that μ([0, α1]) =
μ([β1, π]) = μ([π,α2]) = μ([β2,2π ]) = 
. Then we set

X1 = X(α1, β1),(10.2)

X2 = X(α2, β2).(10.3)

Observe that by partitioning [αi, βi] into intervals of affine invariant measure � 1,
we may apply Theorem 10.1 (appealing to Propositions 6.1 and 7.5). Thus remem-
bering Proposition 8.1, we may write

∣∣∣∣P
(

Xi − E[Xi]√
VarXi

≤ x

)
− �(x)

∣∣∣∣ � log2 L√
L

.(10.4)
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Let Ỹ equal the sum of independent copies of X1 and X2. Then (10.4) implies that
∣∣∣∣P

(
Ỹ − E[Ỹ ]√

Var Ỹ
≤ x

)
− �(x)

∣∣∣∣ � log2 L√
L

.(10.5)

By Proposition 7.5, X1 and X2 are α-mixing with α � e−δ
. Proposition 6.1
shows E[|Xi |3]1/3 � L. If we let Y = X1 + X2, then Lemma 7.7 implies that
|P(Y ≤ x) − P(Ỹ ≤ x)| � e−δ
. Lemma 7.6 implies

Cov(X1,X2) � L2e−δ
.(10.6)

Since VarY = Var Ỹ + 2 Cov(X1,X2) and Var Ỹ � L, we have VarY = (1 +
O(Le−δL))Var Ỹ . Hence |�(

√
VarYx) − �(

√
Var Ỹ x)| � Le−δ
. Hence we con-

clude that
∣∣∣∣P

(
Y − E[Y ]√

VarY
≤ x

)
− �(x)

∣∣∣∣ � log2 L√
L

+ e−δ
 + Le−δ


(10.7)

� log2 L√
L

+ Le−δ
.

Now the final part of our argument is to translate this into a statement about X.
Let E = X(β2, α1) + X(β1, α2). Thus by definition, we have X = Y + E. Using
Proposition 6.1, it is evident that E[exp(δ
−1E)] � 1 for some absolute δ > 0.
From this, we conclude that P(exp(δ
−1E) ≥ M) � M−1. Thus P(E ≥ M) �
e−δM/
. Now we pick M = 
2, so that

P(E ≥ 
2) � e−δ
.(10.8)

Now examine (10.7), and consider what this says about P(Y+E−E[Y ]√
VarY

≤ x). We

have
√

VarY � √
L, so (10.8) implies that P(E/

√
VarY /∈ [0, 
2/

√
L]) � e−δ
.

Thus ∣∣∣∣P
(

Y + E − E[Y ]√
VarY

≤ x

)
− �(x)

∣∣∣∣

�
∣∣∣∣P

(
Y − E[Y ]√

VarY
≤ x

)
− �(x)

∣∣∣∣ + e−δ
 + 
2
√

L
(10.9)

� log2 L√
L

+ Le−δ
 + 
2
√

L
.

Now E[E] � 
, so adding E[E] in the numerator adds at most 
/
√

L to the error.
Hence

∣∣∣∣P
(

X − E[X]√
VarY

≤ x

)
− �(x)

∣∣∣∣ � log2 L√
L

+ Le−δ
 + 
2
√

L
.(10.10)
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Observe that VarE � 
, so VarX = VarY + 2 Cov(Y,E) + VarE = VarY +
O(

√
L

√

) + O(
), so the relative error is �

√

√
L

+ 

L

. Thus we have

∣∣∣∣P
(

X − E[X]√
VarX

≤ x

)
− �(x)

∣∣∣∣
(10.11)

� log2 L√
L

+ Le−δ
 + 
2
√

L
+

√

√
L

+ 


L
.

Taking 
 to equal a sufficiently large multiple of logL, we achieve the desired
estimate. �

APPENDIX: PROOF OF LEMMA 7.2

Lemmas A.1 and A.2 below combine easily to give Lemma 7.2. The proof of
Lemma A.1 follows [7], where similar manipulations are performed.

LEMMA A.1. Let [θ1, θ2] and [ψ1,ψ2] be two disjoint intervals in R/2π . Let
A ∈ F[θ1,θ2] and B ∈ F[ψ1,ψ2]. Then

|P(A ∩ B) − P(A)P (B)|
(A.1)

≤ 2
∑

i,j∈{1,2}

∫ ∫
(p,q)∈R(θi ,ψj )

dP
(
W(θi) = p

)
dP

(
W(ψj) = q

)
,

where R(α,β) is the set of pairs (p, q) ∈ K × K such that it is impossible that
W(α) = p and W(β) = q .

PROOF. We have that P(A ∩ B) is given by
∫ ∫ ∫ ∫

K4
P

(
A ∩ B|(W(θ1),W(θ2),W(ψ1),W(ψ2)) = (p1,p2, q1, q2)

)
(A.2)

× dP
(
(W(θ1),W(θ2),W(ψ1),W(ψ2)) = (p1,p2, q1, q2)

)

and P(A)P (B) by
∫ ∫

K2
P

(
A|(W(θ1),W(θ2)) = (p1,p2)

)
dP

(
(W(θ1),W(θ2)) = (p1,p2)

)

×
∫ ∫

K2
P

(
B|(W(ψ1),W(ψ2)) = (q1, q2)

)
(A.3)

× dP
(
(W(ψ1),W(ψ2)) = (q1, q2)

)
.

Now given W(θ1), W(θ2), W(ψ1) and W(ψ2), the events A and B are indepen-
dent. In other words the two integrands above are equal (although the measures are
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not). Hence we conclude that

|P(A ∩ B) − P(A)P (B)|
≤

∫ ∫ ∫ ∫
K4

∣∣dP
(
(W(θ1),W(θ2),W(ψ1),W(ψ2)) = (p1,p2, q1, q2)

)
(A.4)

− dP
(
(W(θ1),W(θ2)) = (p1,p2)

)
dP

(
(W(ψ1),W(ψ2)) = (q1, q2)

)∣∣.
Now define the set

Rθ1,θ2,ψ1,ψ2 = {(p1,p2, q1, q2) ∈ K4 :

(W(θ1),W(θ2),W(ψ1),W(ψ2)) = (p1,p2, q1, q2)(A.5)

is impossible}.
We will calculate the right-hand side of (A.4) by splitting up the integral as
I (Rθ1,θ2,ψ1,ψ2) + I (R�

θ1,θ2,ψ1,ψ2
) (i.e., the integral over Rθ1,θ2,ψ1,ψ2 and the inte-

gral over its complement). Since the first measure in question dP ((W(θ1),W(θ2),
W(ψ1),W(ψ2)) = (p1,p2, q1, q2)) is supported on R�

θ1,θ2,ψ1,ψ2
, we trivially have

that∫ ∫ ∫ ∫
R�

θ1,θ2,ψ1,ψ2

[
dP

(
(W(θ1),W(θ2),W(ψ1),W(ψ2)) = (p1,p2, q1, q2)

)

− dP
(
(W(θ1),W(θ2)) = (p1,p2)

)
dP

(
(W(ψ1),W(ψ2)) = (q1, q2)

)]
(A.6)

=
∫ ∫ ∫ ∫

Rθ1,θ2,ψ1,ψ2

dP
(
(W(θ1),W(θ2)) = (p1,p2)

)

× dP
(
(W(ψ1),W(ψ2)) = (q1, q2)

)
.

Now observe that on R�
θ1,θ2,ψ1,ψ2

, we have

dP
(
(W(θ1),W(θ2),W(ψ1),W(ψ2)) = (p1,p2, q1, q2)

)
(A.7)

≥ dP
(
(W(θ1),W(θ2)) = (p1,p2)

)
dP

(
(W(ψ1),W(ψ2)) = (q1, q2)

)
.

From this, it is clear that equation (A.6) is equivalent to

I (R�
θ1,θ2,ψ1,ψ2

) = I (Rθ1,θ2,ψ1,ψ2).(A.8)

Thus the right-hand side of (A.4) in fact equals 2I (Rθ1,θ2,ψ1,ψ2). Hence we con-
clude that |P(A ∩ B) − P(A)P (B)| is bounded above by

2
∫ ∫ ∫ ∫

Rθ1,θ2,ψ1,ψ2

dP
(
(W(θ1),W(θ2)) = (p1,p2)

)
(A.9)

× dP
(
(W(ψ1),W(ψ2)) = (q1, q2)

)
.
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If we define R(θ,ψ) := {(p, q) ∈ K2 : (W(θ),W(ψ)) = (p, q) is impossible},
then

Rθ1,θ2,ψ1,ψ2 = ⋃
i,j∈{1,2}

R(θi,ψj ) × K2.(A.10)

Thus we conclude that

|P(A ∩ B) − P(A)P (B)|
≤ 2

∑
i,j∈{1,2}

∫ ∫ ∫ ∫
R(θi ,ψj )×K2

dP
(
(W(θ1),W(θ2)) = (p1,p2)

)
(A.11)

× dP
(
(W(ψ1),W(ψ2)) = (q1, q2)

)
.

Integrating out the undesired indices on the right-hand side yields the correct re-
sult. �

LEMMA A.2. We have∫ ∫
Rα,β

dP
(
W(α) = p

)
dP

(
W(β) = q

)
(A.12)

≤ 2
∫
K

exp(−A(p,α)) exp(−A(p,β)) dp.

PROOF. This relies on the observation that Rα,β = {(p, q) ∈ K2 :q /∈ Hp,β} ∪
{(p, q) ∈ K2 :p /∈ Hq,α}. Now recalling that dP (W(α) = p) = A(p,α)dp

(Lemma 3.4), we calculate∫
K

[∫
K−Hp,β

dP
(
W(β) = q

)]
dP

(
W(α) = p

)

=
∫
K

exp(−A(p,β)) dP
(
W(α) = p

)
(A.13)

=
∫
K

exp(−A(p,β)) exp(−A(p,α)) dp.

Thus the result follows. �
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[13] STATULEVIČIUS, V. ed. (2000). Limit Theorems of Probability Theory. Springer, Berlin.
MR1798811
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