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AN EXTENSION OF THE LÉVY CHARACTERIZATION TO
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Kiev University and Aalto University

Assume that X is a continuous square integrable process with zero mean,
defined on some probability space (�,F,P). The classical characterization
due to P. Lévy says that X is a Brownian motion if and only if X and X2

t − t ,
t ≥ 0, are martingales with respect to the intrinsic filtration FX . We extend
this result to fractional Brownian motion.

1. Introduction. In classical stochastic analysis, Lévy’s characterization re-
sult for standard Brownian motion is a fundamental result. We extend Lévy’s char-
acterization result to fractional Brownian motion, giving three necessary and suf-
ficient properties for the process X to be a fractional Brownian motion. Fractional
Brownian motion is a self-similar Gaussian process with stationary increments.
However, these two properties are not explicitly present in the three conditions we
shall give.

Fractional Brownian motion is a popular model in applied probability, in partic-
ular, in teletraffic modeling and, to some extent, in finance. Fractional Brownian
motion is not a semimartingale and there has been much research on how to de-
fine stochastic integrals with respect to fractional Brownian motion. A large part
of the developed theory depends on the fact that fractional Brownian motion is a
Gaussian process. Since we want to prove that X is a special Gaussian process,
we cannot use this machinery for our proof. Lévy’s characterization result is based
on Itô calculus. We cannot perform computations using the process X. Instead,
we use the representation of the process X with respect to a certain martingale.
In this way, we can perform computations using methods from classical stochastic
analysis.

Notation and definitions. We use the following notation:
Lp(P)→ means con-

vergence in the space Lp(P),
P→ (resp.,

a.s.→) means convergence in probabil-
ity (resp., almost sure convergence) and B(a, b) is the beta integral B(a, b) =∫ 1

0 xa−1(1 − x)b−1 dx, defined for a, b > 0. The notation Xn ≤ Y + oP(1) means
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that we can find random variables εn such that εn = oP(1) and Xn ≤ Y + εn. If, in
addition, we have X = P − limXn in such a situation, then X ≤ Y .

If M is a continuous square integrable martingale, then the bracket of M is
denoted by [M]. Recall that, in this case, we have

[M]t = P − lim|πn|→0

n∑
k=1

(Mtk − Mtk−1)
2.

Fractional Brownian motion. A continuous square integrable centered process
X = (Xt)t≥0 with X0 = 0 is a fractional Brownian motion with self-similarity
index H ∈ (0,1) if it is a Gaussian process with zero mean and covariance function

E(XsXt) = 1
2(t2H + s2H − |t − s|2H), s, t ≥ 0.(1.1)

If X is a continuous Gaussian process with covariance (1.1), then, obviously, X has
stationary increments and X is self-similar with index H . Mandelbrot named the
Gaussian process X from (1.1) fractional Brownian motion and proved an im-
portant representation result for fractional Brownian motion in terms of standard
Brownian motion in [3]. For results concerning fractional Brownian motion before
Mandelbrot, we refer to [5].

Characterization of fractional Brownian motion. Throughout this paper, we
work with special partitions. For t > 0, we put tk := t k

n
, k = 0, . . . , n. Further,

let FX be the filtration generated by the process X. Fix H ∈ (0,1). Fractional
Brownian motion has the following three properties:

(a) the sample paths of the process X are β-H ölder continuous for any β ∈ (0,H);
(b) for t > 0, we have

n2H−1
n∑

k=1

(Xtk − Xtk−1)
2 L1(P)−→ t2H(1.2)

as n → ∞;
(c) the process

Mt =
∫ t

0
s1/2−H (t − s)1/2−H dXs(1.3)

is a martingale with respect to the filtration FX .

If the process X satisfies (a), then we say that it is Hölder up to H . The prop-
erty (b) characterizes the weighted quadratic variation of the process X and the
process M in (c) is the fundamental martingale of X. It is a martingale with the
bracket cH t2−2H for some constant cH and is actually a time-changed Brownian
motion, up to a constant. It follows from property (a) that the integral (1.3) can
be understood as a Riemann–Stieltjes integral (see [6] and Section 2.3 for more
details).
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Fractional Brownian motion satisfies property (a): from (1.1), we have that

E(Xt − Xs)
2 = (t − s)2H .

Since the process X is a Gaussian process, we obtain from Kolmogorov’s theo-
rem [7], Theorem I.2.1, page 26, that the process X is β-Hölder continuous with
β < H . Fractional Brownian motion also satisfies property (b). The proof of this
fact is based on the self-similarity and the ergodicity of the fractional Gaussian
noise sequence Zk := Xk − Xk−1, k ≥ 1. The fact that property (c) holds for frac-
tional Brownian motion was established in Molchan [5] and recently rediscovered
by several authors (see [6]).

We now summarize our main result.

THEOREM 1.1. Assume that X is a continuous square integrable centered
process with X0 = 0. Then, the following properties are equivalent:

• the process X is a fractional Brownian motion with self-similarity index H ∈
(0,1);

• the process X has properties (a), (b) and (c) for some H ∈ (0,1).

REMARK 1.1. Theorem 1.1 appears in [4] with a different proof.

Discussion. If H = 1
2 , then assumption (c) means that the process X is a mar-

tingale. If X is a martingale, then condition (b) means that X2
t − t is a martingale.

Hence, we obtain the classical Lévy characterization theorem when H = 1
2 . Note

that, in this case, property (a) follows from the fact that X is a standard Brownian
motion.

Fractional Brownian motion X also has the following property (see, e.g., [8]):
for t > 0,

n∑
k=1

|Xtk − Xtk−1 |1/H L1(P)→ E|X1|1/H t(1.4)

as n → ∞. To check that (1.4) holds for fractional Brownian motion, similarly
to (1.2), one can use self-similarity and ergodicity of the fractional Gaussian noise
sequence. This provides another possibility to generalize the quadratic variation
property of standard Brownian motion. However, it is difficult to replace condition
(b) by the condition (1.4).

REMARK 1.2. In the recent work of Hu et al. [2], condition (b) is replaced
by the condition (1.4), with the additional assumption that [M] is absolutely con-
tinuous with respect to the Lebesgue measure for H > 1

2 . The authors show that
conditions (a), (c) and (1.4) also characterize fractional Brownian motion. In our
work, we do not suppose the absolute continuity of [M], but prove it under other
assumptions; however, we restrict ourselves to (b).



442 Y. MISHURA AND E. VALKEILA

In the next section we give one auxiliary result. The rest of the paper is devoted
to the proof of the main result, first for H > 1

2 and then for H < 1
2 .

2. Auxiliary result.

2.1. Martingales and random variables. In the proof, we will use random
variables which are final values of martingales of a special type. All martingales
vanish at zero.

Two continuous martingales M,N are (strongly) orthogonal if [M,N ] = 0; we
write this as M ⊥ N . Integration by parts gives that for such M,N , the product
MN is a local martingale and it then has a bracket [MN]. We use the notation
N · M for the stochastic integral of N with respect to M : (N · M)t = ∫ t

0 Ns dMs .
Let M be a continuous martingale. Put I2(M)t := (M · M)t = ∫ t

0 Ms dMs .
Let 0 < a < b < t and suppose that p,q are deterministic continuous func-

tions. Define martingales N and Ñ by Ns = ∫ s
0 pu1(0,a](u) dMu and Ñs =∫ s

0 qu1(a,b](u) dMu, respectively. The martingales N and Ñ are orthogonal by
construction and hence their product is a martingale. Note that NsÑs = 0 when-
ever s ≤ a and NsÑs = NaÑs for s > a. The bracket of the martingale NÑ is
[NÑ ]s = 0 whenever s ≤ a and [NÑ ]s = N2

a [Ñ ]s for s > a.
For orthogonal martingales, we have following lemma, which we will use in our

proof.

LEMMA 2.1. Assume that (M
n,k
t )t≥0 is a double array of continuous square

integrable martingales with the properties:

(i) for n fixed and k �= l, Mn,k and Mn,l are orthogonal martingales;
(ii) for any t ≥ 0,

∑kn

k=1[Mn,k]t ≤ C, where C is a constant;

(iii) for any t ≥ 0, maxk[Mn,k]t P→ 0 as n → ∞,

where 1 ≤ k ≤ kn and kn → ∞ as n → ∞; then, for any t ≥ 0,
kn∑

k=1

I2(M
n,k)t

L2(P)→ 0(2.1)

as n → ∞.

PROOF. Since the martingales Mn,k are pairwise orthogonal, when n is fixed,
the same is true for the iterated integrals I2(M

n,k). Recall [1], Theorem 1,
page 354, which states that E(I2(M

n,k)t )
2 ≤ B2,2E[Mn,k]2

t . Here, B2,2 is constant
independent of n, t and k, and this, together with property (ii), gives that the iter-
ated integrals I2(M

n,k) are square integrable. Hence, by the orthogonality of the
iterated integrals, we have

E

(
kn∑

k=1

I2(M
n,k)t

)2

=
kn∑

k=1

E(I2(M
n,k)t )

2.
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However,
kn∑

k=1

[Mn,k]2
t ≤ max

k
[Mn,k]t

kn∑
k=1

[Mn,k]t P→ 0

as n → ∞. The claim (2.1) now follows since maxk[Mn,k]t ≤ ∑kn

k=1[Mn,k]t and
this, together with property (ii), gives

kn∑
k=1

[Mn,k]2
t ≤ max

k
[Mn,k]t

kn∑
k=1

[Mn,k]t ≤ C2.
�

2.2. A consequence of (b). We now fix t and let Rt := {s ∈ [0, t] : s
t

∈ Q}.
Note that the set Rt is dense on the interval [0, t]. Now, also fix s ∈ Rt and let
ñ = ñ(s) be a subsequence of n ∈ N such that ñ s

t
∈ N. Put �Xtk,n

:= Xtk − Xtk−1 .
The next lemma opens the way to bound from below and above the bracket [M]

on [0, T ] for any T > 0 and this goal will be achieved in Section 3.4.

LEMMA 2.2. Fix t > 0, s ∈ Rt and suppose that ñ s
t
∈ N and ñ → ∞. Then,

ñ2H−1
ñ∑

k=ñs/t+1

(�Xtk,ñ
)2 L1(P)−→ t2H−1(t − s).

PROOF. We have that

ñ2H−1
ñs/t∑
k=1

(�Xtk,ñ
)2

= ñ2H−1
ñs/t∑
k=1

(�Xsk,ñs/t
)2

=
(

t

s

)2H−1

·
(
ñ
s

t

)2H−1 ñs/t∑
k=1

(�Xsk,ñs/t
)2 L1(P)−→ s2H ·

(
t

s

)2H−1

= st2H−1.

Since ñ2H−1 ∑ñ
k=1(�Xtk,ñ

)2 L1(P)−→ t2H , we obtain the proof. �

In what follows, we shall write n for ñ and tk for t k
n

.

2.3. Some representation results. We shall use the following notation. Let
Yt = ∫ t

0 s1/2−H dXs . We then we have Xt = ∫ t
0 sH−1/2 dYs and can write the fun-

damental martingale M as

Mt =
∫ t

0
(t − s)1/2−H dYs.(2.2)
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We also work with the martingale Wt = ∫ t
0 sH−1/2 dMs . We have [W ]t =∫ t

0 s2H−1 d[M]s and [M]t = ∫ t
0 s1−2H d[W ]s .

The equation (2.2) is a generalized Abel integral equation and the process Y can
be expressed in terms of the process M :

Yt = 1

�(H + 1/2)�(3/2 − H)

∫ t

0
(t − s)H−1/2 dMs.(2.3)

Note that all of the integrals can be understood as pathwise Riemann–Stieltjes
integrals (see [6]).

3. Proof of Theorem 1.1: H > 1
2 .

3.1. Basic representation. We shall now prove that M is a martingale with a
bracket cH t2−2H for some constant cH and this, together with Lemma 3.1, will
give that X is a fractional Brownian motion with index H .

We shall use the following modified representation result between X and M .

LEMMA 3.1. Assume that H > 1
2 and that properties (a) and (c) hold. Then,

the process X has the representation

Xt = 1

B1

∫ t

0

(∫ t

u
sH−1/2(s − u)H−3/2 ds

)
dMu(3.1)

with B1 = B(H − 1
2 , 3

2 − H).

PROOF. Integration by parts in (2.3) gives

Yt = 1

B1

∫ t

0
(t − s)H−3/2Ms ds.

Next, by using integration by parts and Fubini’s theorem, we obtain

Xt =
∫ t

0
sH−1/2 dYs

= tH−1/2Yt −
(
H − 1

2

)∫ t

0
sH−3/2Ys ds

= tH−1/2

B1

∫ t

0
(t − s)H−3/2Ms ds

− H − 1/2

B1

∫ t

0
sH−3/2

∫ s

0
(s − u)H−3/2Mu duds

= tH−1/2

(H − 1/2)B1

∫ t

0
(t − s)H−1/2 dMs

− 1

B1

∫ t

0
sH−3/2

∫ s

0
(s − u)H−1/2 dMu ds
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= tH−1/2

(H − 1/2)B1

∫ t

0
(t − s)H−1/2 dMs

− 1

B1

∫ t

0

[∫ t

u
sH−3/2(s − u)H−1/2 ds

]
dMu

= 1

B1

∫ t

0

[
tH−1/2

H − 1/2
(t − u)H−1/2

−
∫ t

u
sH−3/2(s − u)H−1/2 ds

]
dMu

= 1

B1

∫ t

0

[∫ t

u
sH−1/2(s − u)H−3/2 ds

]
dMu.

This proves claim (3.1). �

Our plan is now as follows: we will attempt to prove that M is a martingale
with the bracket CH t2−2H and this, together with Lemma 3.1, will give that X is
a fractional Brownian motion with parameter H .

3.2. The basic estimation. We can assume that the processes M , W , [M] and
[W ] are bounded with a deterministic constant L. If this is not the case, then con-
sider a stopping time τ ,

τ = inf{s : |Ms | ≥ L or |Ws | ≥ L or [M]s ≥ L or [W ]s ≥ L}.
Note that τ is independent of the partition (tnk ), k = 0, . . . , n, and hence we have

1{τ≥t}n2H−1
n∑

k=1

(�Xtk,n
)2 P−→ 1{τ≥t}t2H .

Given ε > 0, take L big enough such that P(τ < t) < ε. Since our asymptotic
results concern convergence in probability, it is enough to prove them only in the
set {τ ≥ t}. We do not write the stopping time τ or the indicator 1{τ≥t} explicitly
in the proof below.

We want to use the expression

n2H−1
n∑

k=ns/t+1

(�Xtk,n
)2

to obtain estimates for the increment of the bracket [M], with the help of (3.1).
Use (3.1) to obtain

�Xtk,n
= 1

B1

(∫ tk−1

0
f t

k (s) dMs +
∫ tk

tk−1

gt
k(s) dMs

)
,(3.2)
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where we have used the notation

f t
k (s) :=

∫ tk

tk−1

uH−1/2(u − s)H−3/2 du(3.3)

and

gt
k(s) :=

∫ tk

s
uH−1/2(u − s)H−3/2 du.

Rewrite the increment of X as

�Xtk,n
= 1

B1
(I

n,1
k + I

n,2
k + I

n,3
k )

(3.4)

:= 1

B1

(∫ tk−2

0
f t

k (s) dMs +
∫ tk−1

tk−2

f t
k (s) dMs +

∫ tk

tk−1

gt
k(s) dMs

)
.

We need such a decomposition because the behavior of the kernels in the inte-
grands is different for different arguments. Now, we intend to use this decom-
position and to show that the sequence n2H−1 ∑n

k=ns/t+1(�Xtk,n
)2 verifies rela-

tion (e) from Section 3.4. In order to do this, we use Lemma 3.1, decompose
the increment �Xtk,n

according to (3.4) into several terms and apply Itô’s for-
mula to the square of the increments. We then try to find asymptotically non-
trivial terms and terms of order oP(1), and nontrivial terms must be of the form
that will be appropriate for finding the bounds for [M]. Even at this point, we
can note that the nontrivial terms will appear when we consider sums of the form
n2H−1 ∑n

k=ns/t+2
∫ tk−2

0 (f t
k (u))2 d[M]u, etc. So, at first, we estimate the sums with

such a form and only then consider the remainder terms.
We note that the random variables I

n,j
k are the final values at moment t of

the martingales
∫ tk−2∧v

0 f t
k (u) dMu,

∫ tk−1∧v
tk−2∧v f t

k (u) dMu and
∫ tk∧v
tk−1∧v gt

k(u) dMu, 0 ≤
v ≤ t , respectively. By construction, these martingales are orthogonal.

Next, the following upper bound holds for the functions f t
k :

f t
k (s) ≤ t

H−1/2
k (tk−1 − s)H−3/2 t

n
;(3.5)

note that this estimate is finite (not bounded) for s ∈ [0, tk−1) and bounded for
s ∈ [0, tk−2]. Further, we need the following technical result.

LEMMA 3.2. For u < s, we have

n∑
k=ns/t+2

(tk−1 − u)2H−3 ≤
(
s + t

n
− u

)2H−3

(3.6)

+ n

(2 − 2H)t

(
s + t

n
− u

)2H−2
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and for u ≤ ti , we have

n∑
k=i+2

(tk−1 − u)2H−3 ≤ (ti+1 − u)2H−3 + n

(2 − 2H)t
(ti+1 − u)2H−2.(3.7)

PROOF. For u < s, we have

n∑
k=ns/t+2

(tk−1 − u)2H−3

=
(
s + t

n
− u

)2H−3

+ n

t

n∑
k=ns/t+3

(tk−1 − u)2H−3 t

n

≤
(
s + t

n
− u

)2H−3

+ n

(2 − 2H)t

(
s + t

n
− u

)2H−2

by estimating the second sum in the first line from above by the integral. This
proves (3.6). Inequality (3.7) is proved in the same way. �

We can now give two-sided bounds for the brackets of the martingales in (3.4).
As was mentioned before, these brackets give rise to nontrivial terms in our esti-
mates.

LEMMA 3.3. Fix t > 0 and s ∈ Rt , and let ñ be such that ñ s
t
∈ N and ñ → ∞

(we write n instead of ñ in what follows). Then, there exist two constants, C1,
C2 > 0, such that

C1t
2H−1

∫ t−2t/n

s−t/n
u2H−1 d[M]u ≤ n2H−1

n∑
k=ns/t+2

∫ tk−2

0
(f t

k (u))2 d[M]u
(3.8)

≤ C2t
4H−2([M]t − [M]s) + oP(1).

PROOF. We will not write the constants explicitly.
Upper bound in (3.8). First, we estimate

in := n2H−1
n∑

k=ns/t+2

∫ tk−2

0
(f t

k (u))2 d[M]u

from above. From (3.5), we obtain the following estimate for in:

in ≤ n2H−3t2H+1
n∑

k=ns/t+2

∫ tk−2

0
(tk−1 − u)2H−3 d[M]u.(3.9)
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We can assume that 0 < s < t and 2 ≤ ns
t
≤ n − 4, and rewrite the estimate in

(3.9) as

in ≤ n2H−3t2H+1

(ns/t∑
i=1

n∑
k=ns/t+2

+
n−2∑

i=ns/t+1

n∑
k=i+2

)

×
∫ ti

ti−1

(tk−1 − u)2H−3 d[M]u
(3.10)

= n2H−3t2H+1
ns/t∑
i=1

∫ ti

ti−1

(
n∑

k=ns/t+2

(tk−1 − u)2H−3

)
d[M]u

+ n2H−3t2H+1
n−2∑

i=ns/t+1

∫ ti

ti−1

(
n∑

k=i+2

(tk−1 − u)2H−3

)
d[M]u.

We estimate the first term in the last equation in (3.10) by (3.6):

Rt
n := n2H−3t2H+1

ns/t∑
i=1

∫ ti

ti−1

n∑
k=ns/t+2

(tk−1 − u)2H−3 d[M]u

≤ t2H−1
∫ s

0

(
t2(ns + t − nu)2H−3(3.11)

+ t

2 − 2H
(ns + t − u)2H−2

)
d[M]u.

Note that (ns+ t −nu)2H−3 and (ns+ t −nu)2H−2 are bounded and both converge
to 0 as n → ∞. So, Rt

n = oP(1), by the dominated convergence theorem.
For the second term in the last equation of (3.10), we obtain, from (3.7), using

the estimate (ti+1 − u)H−1/2 ≤ ( t
n
)H−1/2 and summing,

n2H−3t2H+1
n∑

i=ns/t+1

∫ ti

ti−1

[
(ti+1 − u)2H−3 + n

(2 − 2H)t
(ti+1 − u)2H−2

]
d[M]u

≤ cH t4H−2([M]t − [M]s).
Hence, we have proven the upper bound (3.8) and have

in ≤ cH t4H−2([M]t − [M]s) + oP(1).

Lower bound in (3.8). We complete the proof of Lemma 3.3 by giving the lower
bound. From the definition of in, we easily obtain a lower estimate:

in ≥ n2H−1
n∑

k=ns/t+2

∫ tk−2

tk−3

(f t
k (u))2 d[M]u.(3.12)
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Further, for u ∈ (tk−3, tk−2), v ∈ (tk−1, tk), we have v − u ≤ 3
n
t , u < v and we

get the estimate

(f t
k (u))2 ≥ 32H−3t2H−1n1−2Hu2H−1.(3.13)

We use (3.13) in the lower bound (3.12) to obtain

in ≥ 32H−3t2H−1
n∑

k=ns/t+2

∫ tk−2

tk−3

u2H−1 d[M]u

= 32H−3t2H−1
∫ t−2t/n

s−t/n
u2H−1 d[M]u

and this gives the lower bound in (3.8). The proof of Lemma 3.3 is now complete.
�

REMARK 3.1. Clearly, we can rewrite in similarly to (3.10) as

in = n2H−3t2H+1

(ns/t∑
i=1

n∑
k=ns/t+2

+
n−2∑

i=ns/t+1

n∑
k=i+2

)∫ ti

ti−1

(f t
k (u))2 d[M]u

= n2H−3t2H+1
ns/t∑
i=1

∫ ti

ti−1

n∑
k=ns/t+2

(f t
k (u))2 d[M]u(3.14)

+ n2H−3t2H+1
n−2∑

i=ns/t+1

∫ ti

ti−1

n∑
k=i+2

(f t
k (u))2 d[M]u

and obtain from (3.5), and similarly to (3.11), that

n2H−3t2H+1
ns/t∑
i=1

∫ ti

ti−1

n∑
k=ns/t+2

(f t
k (u))2 d[M]u P→ 0,(3.15)

change summation indices for further convenience and deduce from (3.14), (3.15)
that

P − lim
n→∞ in

(3.16)

= P − lim
n→∞n2H−3t2H+1

n−2∑
k=ns/t+1

∫ tk

tk−1

n∑
i=k+2

(f t
i (u))2 d[M]u.

We now return to (3.4), take the bracket of the next term and so estimate the
term ∫ tk−1

tk−2

(f t
k (s))2 d[M]s .
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LEMMA 3.4. There exists a constant C3 > 0 such that

n2H−1
n∑

k=ns/t+2

∫ tk−1

tk−2

(f t
k (u))2 d[M]u ≤ C3t

4H−2([M]t − [M]s).(3.17)

PROOF. We have the following upper estimate for the function f t
k :

f t
k (u) ≤ t

H−1/2
k

∫ tk

tk−1

(v − u)H−3/2 dv

= 1

H − 1/2
t
H−1/2
k

(
(tk − u)H−1/2 − (tk−1 − u)H−1/2)

≤ 1

H − 1/2
tH−1/2

(
t

n

)H−1/2

.

This gives the claim (3.17). �

The last estimate for nontrivial terms in (3.4) concerns the terms of the form∫ tk

tk−1

(gt
k(s))

2 d[M]s .

LEMMA 3.5. There exists a constant C4 such that

n2H−1
n∑

k=ns/t+1

∫ tk

tk−1

(gt
k(u))2 d[M]u ≤ C4t

4H−2([M]t − [M]s).(3.18)

PROOF. We have that

gt
k(z) =

∫ tk

z
vH−1/2(v − z)H−3/2 dv ≤ (tk)

H−1/2 (tk − z)H−1/2

H − 1/2

≤ C(tk)
H−1/2

(
t

n

)H−1/2

≤ Ct2H−1
(

1

n

)H−1/2

.

This gives the claim (3.18). �

3.3. The oP(1) terms. We shall now prove that after the decomposition of the
increment �Xtk,n

according to (3.4), taking the square of this increment and ap-
plying Itô’s formula to the decomposition, all the terms except the three brackets
of the martingales become asymptotically trivial. In this order, we take the terms
of the form (I

n,j
k )2, j = 1,2,3, decompose them by Itô’s formula on the bracket

and martingale part and also prove that the terms containing the cross products
I

n,i
k I

n,j
k , i �= j , are asymptotically trivial. More exactly, Itô’s formula implies that

(I
n,1
k )2 =

∫ tk−2

0
(f t

k (v))2 d[M]v + 2
∫ tk−2

0
f t

k (u)

(∫ u

0
f t

k (v) dMv

)
dMu.



CHARACTERIZATION OF FBM 451

We shall show that

n2H−1
n∑

k=ns/t+2

∫ tk−2

0
f t

k (u)

(∫ u

0
f t

k (v) dMv

)
dMu

P→ 0(3.19)

as n → ∞. Clearly, it is sufficient to consider the sums of the form

Sn = n2H−1
n∑

k=3

∫ tk−2

0

(∫ u

0
f t

k (s) dMs

)
f t

k (u) dMu,

(note that ns
t
≥ 1) since the sums

ns/t+1∑
k=3

∫ tk−2

0

(∫ u

0
f t

k (s) dMs

)
f t

k (u) dMu

for ns
t
≥ 2 can be considered in a similar way. We rewrite Sn as

Sn = n2H−1
n−2∑
i=1

∫ ti

ti−1

(
n∑

k=i+2

f t
k (u)

∫ u

0
f t

k (s) dMs

)
dMu

= n2H−1
∫ tn−2

0
ϒM

u,n dMu,

where

ϒM
u,n =

n∑
k=i+2

f t
k (u)

∫ u

0
f t

k (s) dMs, u ∈ [ti−1, ti).

We use the following version of the Lenglart inequality: if N is a locally square
integrable continuous martingale, then, for any ε > 0, t > 0 and A > 0,

P
{

sup
0≤s≤t

|N(s)| ≥ ε
}

≤ A

ε2 + P{[N ]t ≥ A}.(3.20)

It follows from inequality (3.20) that it is sufficient to prove the relation

n4H−2
∫ tn−2

0
(ϒM

u,n)
2 d[M]u P→ 0, n → ∞.(3.21)

First, using integration by parts, we estimate the function

ϒM
u,n =

n∑
k=i+2

f t
k (u)

[
f t

k (u)Mu −
∫ u

0
Ms(f

t
k (s))′s ds

]
, u ∈ [ti−1, ti).

Clearly,

(f t
k (u))′u =

(
3

2
− H

)∫ tk

tk−1

vH−1/2(v − u)H−5/2 dv.
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Therefore,

|ϒM
u,n| ≤ L

n∑
k=i+2

(f t
k (u))2

+ L

(
3

2
− H

) n∑
k=i+2

f t
k (u)

∫ u

0

∫ tk

tk−1

vH−1/2(v − s)H−5/2 dv ds,

u ∈ [ti−1, ti).

We estimate the terms separately: since f t
k (u) ≤ tH+1/2

n
(tk−1 −u)H−3/2, we have

that, for u ∈ [ti−1, ti),

n∑
k=i+2

(f t
k (u))2 ≤ t2H+1

n2

n∑
k=i+2

(tk−1 − u)2H−3

≤ t2H+1

n2 (ti+1 − u)2H−3 + t2H+1

n

∫ 1

ti+1

(tx − u)2H−3 dx

≤ t4H−2

n2H−1 + t2H

n

(ti+1 − u)2H−2

2 − 2H

≤ Cn1−2H

and
n∑

k=i+2

f t
k (u)

∫ u

0

∫ tk

tk−1

vH−1/2(v − s)H−5/2 dv ds

≤ C

n∑
k=i+2

f t
k (u)

∫ tk

tk−1

vH−1/2(v − u)H−3/2 dv

≤ C

n∑
k=i+2

(f t
k (u))2 ≤ Cn1−2H .

From these estimates, it follows that n4H−2(ϒM
u,n)

2 ≤ C. Therefore, the
bounded majorant in (3.21) exists. So, in order to establish (3.19), it is sufficient

to prove that ϒM
u,nn

2H−1 P→ 0, 0 < u < t . We have that

E(ϒM
u,nn

2H−1)2

= n4H−2E
∫ u

0

(
n∑

k=i+2

f t
k (u)f t

k (s)

)2

d[M]s,(3.22)

u ∈ [ti−1, ti).
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Similarly to previous estimates, we obtain that

n4H−2

(
n∑

k=i+2

f t
k (u)f t

k (s)

)2

≤ Cn4H−2

(
n∑

k=i+2

1

n2 (tk−1 − u)H−3/2(tk−1 − s)H−3/2

)2

≤ Cn4H−4
(

1

n

n∑
k=i+2

(tk−1 − u)2H−3
)2

≤ Cn4H−4
(

n3−2H

n
+ n2−2H

)2

≤ C for some C > 0.

This means that the bounded dominant in (3.22) exists. Moreover,

n2H−1
n∑

k=i+2

f t
k (u)f t

k (s)

≤ Cn2H−1
n∑

k=i+2

f t
k (u) · 1

n
(u − s)H−3/2

≤ Cn2H−1 · 1

n

∫ 1

(i+1)/n
vH−1/2(v − u)H−3/2 dv · (u − s)H−3/2 → 0

for any s < u. Putting together, this means that ϒM
u,nn

2H−1 P→ 0, 0 < u < 1,
whence Sn P→ 0 and, consequently, (3.19) holds. Next, consider the sums

n2H−1
n∑

k=ns/t+2

∫ tk−1

tk−2

f t
k (u)

∫ u

tk−2

f t
k (v) dMv dMu

and

n2H−1
n∑

k=ns/t+1

∫ tk

tk−1

gt
k(u)

∫ u

tk−1

gt
k(v) dMv dMu.

The assumptions of Lemma 2.1 are satisfied with martingales

Nn,k
v := nH−1/2

∫ tk−1∧v

tk−2∧v
f t

k (u) dMu

and

Ñn,k
v := nH−1/2

∫ tk∧v

tk−1∧v
gt

k(u) dMu.
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Indeed, property (ii) follows from (3.17) and (3.18), and property (iii) can be easily
checked. Hence, both sums are of the order oP(1). The next statement is an imme-
diate consequence of Lemma 3.3 and (3.19). There exist two constants C1 > 0,
C2 > 0 such that

C1t
2H−1

∫ t

s
u2H−1 d[M]u ≤ P − lim

n→∞n2H−1
n∑

k=ns/t+1

(I
n,1
k )2

(3.23)
≤ C2t

4H−2([M]t − [M]s).
Similarly, one can show that the cross product sums with i �= j satisfy n2H−1 ×∑
k I

n,i
k I

n,j
k = oP(1). Indeed, let i = 1 and j = 2; other cases can be considered

similarly. We have that, in this case,

n4H−2E

(
n∑

k=1

I
n,1
k I

n,2
k

)2

= n4H−2E
n∑

k=1

(I
n,1
k )2J

n,2
k ,

where J
n,2
k = ∫ tk−1

tk−2
(f t

k (s))2 d[M]s , since I
n,1
k , I

n,2
k , I

n,3
k are pairwise orthogonal.

Moreover, the product sum n2H−1 ∑
k I

n,i
k I

n,j
k can be considered as a final value

of a square integrable martingale with quadratic characteristic
∑n

k=1(I
n,1
k )2J

n,2
k .

So, it follows from the Lenglart inequality that it is sufficient to prove the relation

n4H−2
n∑

k=1

(I
n,1
k )2J

n,2
k

P→ 0.(3.24)

According to (3.23), we have that

P − lim
n→∞n2H−1

n∑
k=1

(I
n,1
k )2 ≤ C2t

4H−2[M]t

and, also,

n2H−1 max
1≤k≤n

∫ tk−1

tk−2

(f t
k (s))2 d[M]s ≤

(
H − 1

2

)−2

max
1≤k≤n

([M]tk−1 − [M]tk−2)
P→ 0,

whence (3.24) follows.
We are now ready to finish the proof of Theorem 1.1 in the case H > 1

2 .

3.4. Completion of the proof for the case H > 1
2 . Suppose, for the moment,

that we consider the fixed interval [0, t]. By using our estimates, we can conclude
that for rational s, consequently for any s < t , the following claims hold:

(d) there exist two constants, C1 > 0 and C2 > 0, such that

C1

∫ t

s
u2H−1 d[M]u ≤ t − s ≤ C2t

2H−1([M]t − [M]s);
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this estimate can be rewritten in terms of W and [W ] (recall that Wt =∫ t
0 sH−1/2 dMs ) as

C1([W ]t − [W ]s) ≤ t − s ≤ C2t
2H−1

∫ t

s
u1−2H d[W ]u;

(e)

P − lim
n→∞n2H−1

n∑
k=ns/t+1

(�Xtk )
2 = P − lim

n→∞

∫ t

s
ϕt

n(u) d[M]u,

where we can take ϕt
n(u) from (3.16), (3.17) and (3.18), and they equal

ϕt
n(u) =

(
n2H−3t2H+1

n∑
i=k+2

(f t
i (u))2 + n2H−1(gt

k(u))2

)
1{u∈[tk−1,tk)}

+ n2H−1(f t
k (u))21{u∈[tk−2,tk−1)}.

Clearly, ϕt
n(u) are positive, bounded, nonrandom functions and it follows from

(3.13) that they are separated from 0 by some constant multiplied by u2H−1.
From the left-hand side of (d), it follows that [W ]t is absolutely continuous

with respect to the Lebesgue measure, so [W ]t = ∫ t
0 θs ds, where θs is a bounded,

possibly random, variable. From the right-hand side of (d), it follows that∫ t

s
u1−2Hθu du ≥ 1

C2
(t2−2H −st1−2H ) ≥ C3(t

2−2H −s2−2H ) = C3

∫ t

s
u1−2H du.

This means that ∫ t

s
u1−2H (θu − C3) du ≥ 0,

whence we immediately obtain that θu(ω) > C3 > 0 for almost all u,ω, concluding
that [W ] is equivalent to the Lebesgue measure and so Wt = ∫ t

0 θ
1/2
s dVs , where

{Vs,Fs, s ≥ 0} is some Wiener process.
Now, if we perform all of the same calculations as before, but for “true” frac-

tional Brownian motion BH
t , we obtain that

P − lim
n→∞n2H−1

n∑
k=ns/t+1

(�BH
tk,n

)2 = P − lim
n→∞

∫ t

s
ϕn

s s2H−1 ds

= t2H−1(t − s).

(It is sufficient to take s = 0.) Therefore, P − limn→∞
∫ t
s ψn

u du = 0, where ψn
u =

u2H−1ϕn
u(θu − 1).

From this, we obtain that θu ≡ 1 [otherwise, consider the set D = {(ω,u) : θu >

1 + α, or θu < 1 − α} for α > 0; clearly, it has zero measure].
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4. Proof of Theorem 1.1: H < 1
2 . For H < 1

2 , we use, in general, principally
the same ideas. However, technical details are different. Indeed, it is well known
(see, e.g., [6]) that the kernel z(t, s) participating in the representation of X via
M or W [see (4.2)] is more complicated in the case H < 1

2 . The brackets of the
martingales that are to be estimated as before also have an additional singularity
because the power 2H − 1, or any other power of such a form, is now negative.
Therefore, the proofs are more technical and the reasons for this will be mentioned
below in all relevant places.

4.1. Starting point. At first, consider the Hölder properties of the processes
involved. We can note the following: since H < 1

2 , it is very simple to prove, using
integration by parts, that the process Y has the same Hölder properties as X, that
is, it is Hölder up to order H . Further, it follows from Lemma 2.1 [6] that M is
Hölder up to order 1

2 . Therefore, for any 0 < s0 ≤ s < t ≤ T and β < 1
2 , there

exists a constant K = Ks0,β such that |Wt − Ws | ≤ Ks0,β(t − s)β . Now, it is more
convenient to consider W instead of M . We shall show the inequality

C1([W ]t − [W ]s) ≤ t − s ≤ C2([W ]t − [W ]s)(4.1)

first for arbitrary t > 0 and s ∈ Rt , s < t . Recall that we can assume the processes
W and [W ] to be bounded, as in Section 3.2.

For H < 1
2 , we use the following representation result, which can be proven as

[6], Theorem 5.2.

LEMMA 4.1. Assume that H < 1
2 and that properties (a) and (c) hold. The

process X then has the representation

Xt =
∫ t

0
z(t, s) dWs(4.2)

with the kernel

z(t, s) =
(

s

t

)1/2−H

(t − s)H−1/2

− (H − 1/2)s1/2−H
∫ t

s
uH−3/2(u − s)H−1/2 du.

Put

pt
k(z) =

∫ tk

tk−1

(
z

u

)1/2−H

(u − z)H−3/2 du

for z < tk−1.
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Using Lemma 4.1 and integration by parts, we can now write the increment of
X as

Xtk − Xtk−1 =
(

1

2
− H

)∫ tk−2

0
pt

k(s) dWs

+
(

1

2
− H

)∫ tk−1

tk−2

pt
k(s) dWs

+
∫ tk

tk−1

(
s

tk

)1/2−H

(tk − s)H−1/2 dWs

+
(

1

2
− H

)∫ tk

tk−1

s1/2−H
∫ tk

s
uH−3/2(u − s)H−1/2 dudWs

=: Jn,1
k + J

n,2
k + J

n,3
k + J

n,4
k .

Clearly,

lim
n→∞n2H−1

n∑
k=ns/t+2

(�Xtk )
2

= lim
n→∞n2H−1

(
n∑

k=ns/t+2

(J
n,1
k )2 +

n∑
k=ns/t+2

(J
n,2
k + J

n,3
k + J

n,4
k )2

+ 2
n∑

k=ns/t+2

J
n,1
k (J

n,2
k + J

n,3
k + J

n,4
k )

)
.

As before,

lim
n→∞n2H−1

n∑
k=ns/t+2

(�Xtk,n
)2 L1(P)→ t2H−1(t − s).(4.3)

First, estimate

lim
n→∞n2H−1

n∑
k=ns/t+2

(J
n,1
k )2

from below and above. We start with the analog of Lemma 3.3.

4.2. Two-sided estimates for the sums n2H−1 ∑n
k=ns/t+2

∫ tk−2
0 (pt

k(z))
2 d[W ]z

and n2H−1 ∑n
k=ns/t+2(J

n,1
k )2. Put

jn,1 = n2H−1
n∑

k=ns/t+2

∫ tk−2

0
(pt

k(z))
2 d[W ]z.
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We decompose this sum as in the case of the proof for H > 1
2 [see (3.10) and

(3.14)]:

jn,1 := n2H−1

(ns/t∑
i=1

n∑
k=ns/t+2

+
n−2∑

i=ns/t+1

n∑
k=i+2

)∫ ti

ti−1

(pt
k(u))2 d[W ]u.

Clearly, for s ≤ tk−2,

pt
k(s) ≤

(
(tk−1 − s)H−3/2 t

n

)
∧

(
1

1/2 − H

(
t

n

)H−1/2)
.

Therefore, for n such that ns
t
∈ N, we have that

jn,1 ≤ n2H−2t

∫ s

0

(
s + t

n
− u

)2H−2

d[W ]u

+ n2H−3t2
∫ s

0

(
s + t

n
− u

)2H−3

d[W ]u
(4.4)

+ t

2 − 2H

(
t

n

)2H−2

n2H−2
n−2∑

i=ns/t+1

∫ ti

ti−1

d[W ]u

+ t2n2H−3
n−2∑

i=ns/t+1

∫ ti

ti−1

d[W ]u
(

t

n

)2H−3

.

We divide the integral
∫ s

0 (s + t
n

− u)2H−2 d[W ]u into two parts,
∫ s/2

0 (s + t
n

−
u)2H−2 d[W ]u and

∫ s
s/2(s + t

n
−u)2H−2 d[W ]u. The first integral can be estimated

as ∫ s/2

0

(
s + t

n
− u

)2H−2

d[W ]u ≤
(

s

2
+ t

n

)2H−2

[W ]s/2,

whence n2H−2t
∫ s/2

0 (s + t
n

−u)2H−2 d[W ]u → 0 as n → ∞ a.s. As for the second
part, we apply the following inequality from [6]: let the function f : [a, b] → R be
Hölder on [a, b] of order β , |f (t) − f (s)| ≤ K|t − s|β . Then, for any ρ > −1 + β

and b < v, we have that∣∣∣∣∫ b

a
(v − u)ρ df (u)

∣∣∣∣ ≤ K

(
1 +

∣∣∣∣ ρ

ρ + β

∣∣∣∣)(
(v − b)ρ+β + (v − a)ρ+β)

.(4.5)

According to the Hölder properties of W mentioned above, we can take any 0 <

β < 1
2 and define, for any r ∈ ( s

2 , t], the random variable

Kr(ω) = sup
s/2≤u<v≤r

|Wv − Wu|
(v − u)β

.



CHARACTERIZATION OF FBM 459

Clearly, P{Kt(ω) ≥ N} → 0 as N → ∞. Therefore, it is enough to prove that∫ s∧τN

s/2 (s + t
n

− u)2H−2 d[W ]un2H−2 P→ 0 as N → ∞ for any N > 1, where τN =
inf{r ≥ s

2 :Kr ≥ N} ∧ t . According to the Burkholder–Gundy inequality and (4.5),

n2H−2E
(∫ s∧τN

s/2

(
s + t

n
− u

)2H−2

d[W ]u
)

≤ Cn2H−2E
(∫ s∧τN

s/2

(
s + t

n
− u

)H−1

dWu

)2

≤ CN2n2H−2
(

β

H + β − 1

)

×
((

t

n

)H+β−1

+
(

s

2
+ t

n

)H+β−1)2

→ 0

as n → ∞.

Finally, we obtain that n2H−2 ∫ s
0 (s + t

n
− u)2H−2 d[W ]u P→ 0 as n → ∞.

The same is true for∫ s

0

(
s + t

n
− u

)2H−3

d[W ]u · n2H−3.

The last two integrals from (4.4) admit the obvious estimate t2H−1C2([W ]t −
[W ]s).

The “remainder” term for
∑

(J k
1 )2, that is, the difference between

∑
(J k

1 )2 and
jn,1, equals

Rn := n2H−1
n∑

k=ns/t+2

∫ tk−2

0

(∫ z

0
pt

k(v) dWv

)
× pt

k(u) dWu.

For technical simplicity, it is enough to consider
∑nr

k=3 for any r ∈ N, instead of∑n
k=ns/t+2 = −∑ns/t+1

k=3 +∑n
k=3. We obtain that

E(Rn)
2 = n4H−2E

(
nr∑

k=3

k−2∑
i=1

∫ ti

ti−1

∫ u

0
pt

k(v) dWv · pt
k(u) dWu

)2

= n4H−2E

(
nr−2∑
i=1

nr∑
k=i+3

∫ ti

ti−1

∫ u

0
pt

k(v) dWv · pt
k(u) dWu

)2

= n4H−2
nr−2∑
i=1

E
∫ ti

ti−1

(
nr∑

k=i+3

∫ u

0
pt

k(v) dWv · pt
k(u)

)2

d[W ]u.
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Let us estimate∣∣∣∣∫ u

0
pt

k(v) dWv

∣∣∣∣ =
∣∣∣∣pt

k(u)Wu −
∫ u

0
Wv(p

t
k(v))′v dv

∣∣∣∣
≤ L|pt

k(u)| + L

∣∣∣∣∫ u

0
(pt

k(v))′v dv

∣∣∣∣.
We have that∣∣∣∣∫ u

0
(pt

k(v))′v dv

∣∣∣∣ = |pt
k(u) − pt

k(0)| ≤ C

(
t

n

)H−1/2

for some C > 0.

Moreover,

n2H−1

(
nr∑

k=i+3

pt
k(u)

)2

≤ n2H−1
(∫ tr

ti+1

(v − u)H−3/2 dv

)2

= Cn2H−1[−(tr − u)H−1/2 + (ti+1 − u)H−1/2]2

≤ C

and the integrand

n4H−2

(
nr∑

k=i+2

∫ u

0
pt

k(v) dWv · pt
k(u)

)2

≤ C,

that is, the integrable dominant exists. Therefore, it is sufficient to establish that
for any u,

n2H−1
nr∑

k=i+3

∫ u

0
pt

k(v) dWv · pt
k(u)

P→ 0.

We take the mathematical expectation in the left-hand side and obtain that

n4H−2E
∫ u

0

(
nr∑

k=i+3

pt
k(v)pt

k(u)

)2

d[W ]v.

Also, here, the bounded dominant exists. Indeed,

n4H−2

(
nr∑

k=i+3

pt
k(v)pt

k(u)

)2

≤ n2H−1

(
nr∑

k=i+2

pt
k(v)

)2

≤ C,

as before. Further, we must prove that

n2H−1
nr∑

k=i+3

pt
k(v)pt

k(u) → 0
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for all fixed 0 < v < u. We have that

n2H−1
nr∑

k=i+2

pt
k(v)pt

k(u)

≤ n2H−1
nr∑

k=i+3

∫ tk

tk−1

(s − u)H−3/2 ds

∫ tk

tk−1

(s − v)H−3/2 ds

≤ n2H−1
nr∑

k=i+3

(tk−1 − u)H−3/2 1

n

∫ tk

tk−1

(s − v)H−3/2 ds

≤ n2H−2(ti+2 − u)H−3/2
∫ tr

ti+2

(s − v)H−3/2 ds

≤ CnH−3/2(u − v)H−3/2 → 0

as n → ∞ for any 0 < v < u.

From all of these estimates, the remainder term Rn
P→ 0.

For the lower bounds, we return to [M] instead of [W ]:

jn,1 = n2H−1
n∑

k=ns/t+2

∫ tk−2

0
(f k

t (u))2 d[M]u

≥ t2n2H−3
n∑

k=ns/t

(tk)
2H−1

∫ tk−2

0
(tk − u)2H−3 d[M]u

≥ t2n2H−3

(ns/t−1∑
i=1

n∑
k=ns/t+2

+
n−2∑

i=ns/t+1

n∑
k=i+2

)
(tk)

2H−1

×
∫ ti

ti−1

(tk − u)2H−3 d[M]u

= Ct2H+1n2H−2
n−2∑

i=ns/t+1

∫ ti

ti−1

1

t

(
(ti+2 − u)2H−2 − (t − u)2H−2)

d[M]u.

Note that

n2H−2
n−2∑

i=ns/t+1

∫ ti

ti−1

(t − u)2H−2 d[M]u

∼
(
t − t + 2

n

)2H−2+β

· n2H−2 → 0 as n → ∞.
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Therefore,

lim
n→∞n2H−1

n∑
k=ns/t+1

(J k
1 )2

≥ Ct2Hn2H−2
n−2∑

i=ns/t+1

∫ ti

ti−1

(ti+2 − u)2H−2 d[M]u

≥ Ct2Hn2H−2
n−2∑

i=ns/t+1

(ti+2 − ti−1)
2H−2

∫ ti

ti−1

d[M]u.

Combining this with the upper estimate and taking into account the estimate of
the remainder term, we have

C1t
4H−2([M]t − [M]s) ≤ lim

n→∞n2H−1
n∑

k=ns/t+2

(J k
1 )2

(4.6) ≤ C2t
2H−1([W ]t − [W ]s).

[Note that, for H ∈ (1/2,1), we have obtained opposite estimates.] Also, note
that we cannot immediately estimate

∑
(J k

i )2, i > 1, from above. Indeed, the
integrand of the form (t l

n
− u)H−1/2 that admits the estimate < ( 1

n
)H−1/2 → 0

for H ∈ (1/2,1), now, for H ∈ (0,1/2), tends to ∞. So, we can mention that∑n
k=ns/t+2(J

k
2 + J k

3 + J k
4 )2 ≥ 0, intend to prove that

∑
J k

1 (J k
2 + J k

3 + J k
4 ) → 0,

and, from this, condition (b) [or (4.3)] and (4.6), obtain the following estimate
from above:

C1t
2H−1([M]t − [M]s) ≤ (t − s).

In the sequel, we realize this plan.

4.3. Auxiliary estimates for “mixed” terms. We will show that as n → ∞, we
have

n2H−1
∑
k

J
n,1
k (J

n,2
k + J

n,3
k + J

n,4
k )

P→ 0.(4.7)

It is sufficient to estimate the sums from k = 2 up to k = n. By applying the
Lenglart inequality to n2H−1 ∑n

k=2 J
n,1
k J

n,2
k as well as to the final value of cor-

responding martingale, we obtain that it is sufficient to prove that

n4H−2
n∑

k=2

(∫ tk−2

0

∫ tk

tk−1

(
s

u

)1/2−H

(u − s)H−3/2 dudWs

)2

×
(∫ tk−1

tk−2

(∫ tk

tk−1

(
s

u

)1/2−H

(u − s)H−3/2 du

)2

d[W ]s
)

≤ Cn4H−2
n∑

k=2

(∫ tk−2

0
pt

k(s) dWs

)2 ∫ tk−1

tk−2

(tk−1 − s)2H−1 d[W ]s P→ 0.
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Integrate the last integral by parts:∫ tk−1

tk−2

(tk−1 − s)2H−1d[W ]s

= (tk−1 − tk−2)
2H−1([W ]tk−1 − [W ]tk−2)

− (2H − 1)

∫ tk−1

tk−2

(tk−1 − s)2H−2([W ]tk−1 − [W ]s) ds

≤ Cn1−2H�[W ]tk−1 + C

∫ tk−1

tk−2

(tk−1 − s)2H−2([W ]tk−1 − [W ]s) ds.

Now, recall that(∫ tk−2

0
pt

k(s) dWs

)2

=
∫ tk−2

0
(pt

k(s))
2 d[W ]s

+ 2
∫ tk−2

0

∫ s

0
pt

k(v) dWv · pt
k(s) dWs.

Clearly,

σn,1 := n2H−1
n∑

k=2

∫ tk−2

0
(pt

k(s))
2 d[W ]s ≤ jn,1,

so, it is bounded in probability and, similarly to Rn,

σn,2 := n2H−1
n∑

k=2

∫ tk−2

0

∫ s

0
pt

k(v) dWv · pt
k(s) dWs

P→ 0 as n → ∞.

Therefore,

n4H−2
n∑

k=2

(∫ tk−2

0
pt

k(s) dWs

)2

· Cn1−2H�[W ]tk−1

≤ Cσn,1 · max
k

�[W ]tk−1 + Cσn,2 · max
k

�[W ]tk−1

P→ 0, n → ∞.

Also,

n4H−2
n∑

k=2

(∫ tk−2

0
pt

k(s) dWs

)2

·
∫ tk−1

tk−2

(tk−1 − s)2H−2

× ([W ]tk−1 − [W ]s) ds

≤ C(ω)(σn,1 + σn,2)n2H−1
∫ tk−1

tk−2

(tk−1 − s)2H−1−ε ds

≤ C(ω)(σn,1 + σn,2)n2H−1(tk−1 − tk−2)
2H−ε

∼
(

1

n

)1−ε

→ 0 as n → ∞.
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This means that we have proven one of the necessary relations: n2H−1 ∑n
k=2 J

n,1
k ×

J
n,2
k

P→ 0 as n → ∞.
Consider

n2H−1
n∑

k=2

J
n,1
k J

n,2
k

= n2H−1
n∑

k=2

∫ tk−2

0
pt

k(s) dWs

×
∫ tk

tk−1

(
s

tk

)1/2−H

(tk − s)H−1/2 dWs.

As before, it is sufficient to prove that

n4H−2
n∑

k=2

(∫ tk−2

0
pt

k(s) dWs

)2

·
∫ tk

tk−1

(
s

tk

)1−2H

(tk − s)2H−1 d[W ]s P→ 0

as n → ∞
or, equivalently,

n2H−1 max
k

∫ tk

tk−1

(tk − s)2H−1 d[W ]s · (σn,1 + σn,2)
P→ 0.(4.8)

Note that by [6] and due to the Hölder properties of [W ],∫ tk

tk−1

(tk − s)2H−1 d[W ]s ≤ C(ω)(tk − tk−1)
2H−ε ∼

(
1

n

)2H−ε

,

whence we obtain (4.8).
Now, consider n2H−1 ∑

J
n,1
k J

n,4
k ; other sums can be estimated similarly. After

some transformations, we obtain

n4H−2
n∑

k=2

(∫ tk−2

0
pt

k(v) dWu

)2

×
∫ tk

tk−1

s1−2H

(∫ tk

s
uH−3/2(u − s)H−1/2 du

)2

d[W ]s

≤ n2H−1 max
k

∫ tk

tk−1

(∫ tk

s
uH−3/2(u − s)H−1/2 du

)2

d[W ]s(σ n,1 + σn,2)

≤ n2H−1 max
k

∫ tk

tk−1

(∫ tk

s
u2H−3 du

∫ tk

s
(u − s)2H−1 du

)
d[W ]s

× (σn,1 + σn,2)
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≤ Cn2H−1 max
k

∫ tk

tk−1

s2H−2(tk − s)2H d[W ]s · (σn,1 + σn,2)

≤ Cn · 1

n
max

k

∫ tk

tk−1

(tk − s)2H−1 d[W ]s · (σn,1 + σn,2)

≤ C max
k

(tk − tk−1)
2H−ε · (σn,1 + σn,2) → 0 as n → ∞.

4.4. Upper bounds for [M] and [W ]. Due to all previous estimates, we can
realize our plan and conclude that

t2H−1(t − s) = lim
n→∞n2H−1

n∑
k=ns/t+2

(�Xtk )
2 ≥ C1t

4H−2([M]t − [M]s),

that is,

[M]t − [M]s ≤ C2t
1−2H (t − s) = C2(t

−2H − st1−2H)

≤ C2(t
−2H − s−2H)

or ∫ t

s
u1−2H d[W ]u ≤ C2

∫ t

s
u1−2H du.

As before, it follows that [W ]t is absolutely continuous with respect to Lebesgue
measure,

[W ]t =
∫ t

0
θs ds,(4.9)

0 ≤ θs ≤ C, where C is some constant and θs is possibly random. Of course,
this is not our final goal, but we can now proceed with the above estimates for
n2H−1 ∑n

k=ns/t+2(J
n,i)2, i > 1, and this, together with condition (b) [or (4.3)]

and (4.6), will give us the possibility to obtain a lower bound for [W ]t −[W ]s , that
is, to obtain (4.1).

4.5. Lower bound for [W ]t − [W ]s . We can continue estimating from above:
for example, if we take, for simplicity, the sums over k = 2 up to k = n, then

n2H−1
n∑

k=2

(J
n,2
k )2

= σ̃ n,1 + σ̃ n,2

:= Cn2H−1
n∑

k=1

∫ tk−1

tk−2

(∫ tk

tk−1

(
s

u

)1/2−H

(u − s)H−3/2 du

)2

d[W ]s

+ Cn2H−1
n∑

k=1

∫ tk−1

tk−2

(∫ u

tk−2

pt
k(v) dWv

)
pt

k(u) dWu
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and we now need an estimate pt
k(s) ≤ (tk−1 − s)H−1/2C.

Therefore,

σ̃ n,1 ≤ Cn2H−1
n∑

k=1

∫ tk−1

tk−2

(tk−1 − s)2H−1 d[W ]s .

We cannot now continue to estimate the last expression directly (because of the
singularity at the upper point tk−1). So, we take an indirect route: for some A > 0,∫ tk−1

tk−2

(tk−1 − s)2H−1 d[W ]s

≤
∫ tk−1−t/(nA)

tk−2

+
∫ tk−1

tk−1−t/(nA)

≤ (
tk−1 − (

tk−1 − t/(nA)
))2H−1 · �[W ]tk

+ [thanks to (4.9)] C

∫ tk−1

tk−1−t/(nA)
(tk−1 − s)2H−1 ds

≤
(

t

nA

)2H−1

�[W ]tk + C

(
t

nA

)2H

.

Taking the sum, we obtain

σ̃ n,1 ≤ Cn2H−1
n∑

k=1

(
t

nA

)2H−1

�[W ]tk + Cn2H−1n

(
t

nA

)2H

≤ CA1−2H t2H−1[W ]t + C
1

A2H
t2H .

If we estimate the sum from k = ns
t
+ 1 to k = n, then

σ̃ n,1 ≤ CA1−2H t2H−1([W ]t − [W ]s) + C
1

A2H
t2H

(
1 − s

t

)
= CA1−2H t2H−1([W ]t − [W ]s) + C

1

A2H
t2H−1(t − s).

We now want to prove that σ̃ n,2 P→ 0 as n → ∞. As usual, it is enough to
establish that

n4H−2
n∑

k=1

∫ tk−1

tk−2

(∫ u

tk−2

pt
k(v) dWv

)2

(pt
k(u))2 d[W ]u P→ 0.

We can now bound [W ]u by C du, take the mathematical expectation and note that
(pt

k(u))2 ≤ Cn1−2H . Therefore, it is sufficient to prove that

n4H−2
n∑

k=1

∫ tk−1

tk−2

∫ u

tk−2

(pt
k(v))2 d[W ]v(pt

k(u))2 du
P→ 0.
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Since C dv bounds d[W ]v , we have that this value can be bounded by

Cn4H−2
n∑

k=1

∫ tk−1

tk−2

(∫ u

tk−2

(pt
k(v))2 dv

)
(pt

k(u))2 du

≤ C

n∑
k=1

∫ tk−1

tk−2

(∫ u

tk−2

dv

)
du ≤ 1

n
C → 0 as n → ∞.

Finally,

n2H−1
n∑

k=ns/t+2

(J
n,2
k )2 ≤ CA1−2H t2H−1([W ]t − [W ]s) + C

1

A2H
t2H−1(t − s).

Now, proceed with J
n,3
k :

n2H−1
n∑

k=1

(J
n,3
k )2

= n2H−1
n∑

k=1

∫ tk

tk−1

((
s

tk

)1/2−H

(tk − s)H−1/2
)2

d[W ]s

+ n2H−1
n∑

k=1

∫ tk

tk−1

(∫ u

tk−1

(
s

tk

)1/2−H

(tk − s)H−1/2 dWs

)

×
(

u

tk

)1/2−H

(tk − u)H−1/2 dWu.

The first term can be estimated as

n2H−1
n∑

k=1

∫ tk

tk−1

(tk − s)2H−1 d[W ]s

≤ C

(
t

A

)2H−1

([W ]t − [W ]s) + C

A2H
t2H−1(t − s)

as before.
And, with the bound d[W ]s ≤ C ds, the second term can be estimated as

n4H−2 ∑n
k=1

∫ tk
tk−1

∫ u
tk−1

(tk − s)2H−1 ds · (tk − u)2H−1 du ≤ Cn−2 → 0. Therefore,

for
∑

(J
n,3
k )2, we have the same estimate as for

∑
(J

n,2
k )2. Finally, estimate

n2H−1
n∑

k=1

(J
n,4
k )2

= Cn2H−1
n∑

k=1

(∫ tk

tk−1

s1/2−H
∫ tk

s
uH−3/2(u − s)H−1/2 dudWs

)2
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= Cn2H−1
n∑

k=1

∫ tk

tk−1

s1−2H

(∫ tk

s
uH−3/2(u − s)H−1/2 du

)2

d[W ]s

+ Cn2H−1
n∑

k=1

∫ tk

tk−1

∫ u

tk−1

s1/2−H
∫ tk

s
vH−3/2(v − s)H−1/2 dv dWs

× u1/2−H
∫ tk

u
vH−3/2(v − u)H−1/2 dv dWu.

The first term can be estimated with the help of (4.9) as

n2H−1t1−2H
n∑

k=2

∫ tk

tk−1

(∫ tk

s
uH−3/2(u − s)H−1/2 du

)2

d[W ]s

≤ Cn−2H → 0 as n → ∞.

If k = 1, then, for 1
p

+ 1
q

= 1, p,q > 1,

n2H−1t1−2H
∫ t/n

0

(∫ t/n

s
uH−3/2(u − s)H−1/2 du

)2

ds

≤ n2H−1t1−2H
∫ t/n

0

(∫ t/n

s
up(H−3/2) du

)2/p

×
(∫ t/n

s
(u − s)(H−1/2)q du

)2/q

ds

≤ n2H−1t1−2H
∫ t/n

0
s(pH−3p/2+1)2/p

(
t

n
− s

)(Hq−q/2+1)2/q

ds

= n2H−1t1−2H
∫ t/n

0
s2H−3+2/p

(
t

n
− s

)2H−1+2/q

ds

∼ n2H−1t1−2H

(
t

n

)4H−1

→ 0,

that is, the “main term” of n2H−1 ∑n
k=1(J

n,4
k )2 tends to 0. For the remainder term

of n2H−1 ∑n
k=1(J

n,4
k )2, it is sufficient to prove that for any ε > 0,

σ̃ n,3 := n4H−2
n∑

k=nε/t

∫ tk

tk−1

∫ u

tk−1

(
s1/2−H

∫ tk

s
vH−3/2(v − s)H−1/2 dv

)2

ds

× u1−2H

(∫ tk

u
vH−3/2(v − u)H−1/2 dv

)2

du → 0

as n → ∞.
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However,

σ̃ n,3 ≤ n4H−2
n∑

k=nε/t

∫ tk

tk−1

∫ u

tk−1

(∫ tk

s
vH−3/2(v − s)H−1/2 dv

)2

ds

×
(∫ tk

u
vH−3/2(v − u)H−1/2 dv

)2

du

≤ n−6
n∑

k=nε/t

(tk−1)
−4 ∼ n−2 → 0 as n → ∞.

After all estimates, for s > 0,

lim
n→∞n2H−1

n∑
k=ns/t+2

(�Xtk,n
)2

≤ C2A
1−2H t2H−1([W ]t − [W ]s) + C2

1

A2H
t2H−1(t − s).

We have the opposite estimate,

C1t
2H−1(t − s) ≤ lim

n→∞n2H−1
n∑

k=ns/t+2

(�Xtk,n
)2

≤ C2A
1−2H t2H−1([W ]t − [W ]s) + C2

1

A2H
t2H−1(t − s).

So, for A sufficiently large, C3 := C1 − C2
1

A2H > 0, and we obtain that

C3t
2H−1(t − s) ≤ C2A

1−2H t2H−1([W ]t − [W ]s),
whence [W ]t − [W ]s ≥ C3

C2
A2H−1(t − s), where the constants do not depend on

s and t . Therefore, if we write [W ]t = ∫ t
0 ps ds, then ε1 ≤ ps ≤ ε2, εi > 0 and

Wt = ∫ t
0 p

1/2
s dVs for some Wiener process V . We can then complete the proof of

the theorem using the same arguments as for H ∈ (1/2,1).
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