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Given an n × n complex matrix A, let

μA(x, y) := 1

n
|{1 ≤ i ≤ n,Reλi ≤ x, Imλi ≤ y}|

be the empirical spectral distribution (ESD) of its eigenvalues λi ∈ C, i =
1, . . . , n.

We consider the limiting distribution (both in probability and in the almost
sure convergence sense) of the normalized ESD μ1/

√
nAn

of a random matrix
An = (aij )1≤i,j≤n, where the random variables aij − E(aij ) are i.i.d. copies
of a fixed random variable x with unit variance. We prove a universality prin-
ciple for such ensembles, namely, that the limit distribution in question is
independent of the actual choice of x. In particular, in order to compute this
distribution, one can assume that x is real or complex Gaussian. As a related
result, we show how laws for this ESD follow from laws for the singular
value distribution of 1√

n
An − zI for complex z.

As a corollary, we establish the circular law conjecture (both almost surely
and in probability), which asserts that μ1/

√
nAn

converges to the uniform
measure on the unit disc when the aij have zero mean.

1. Introduction.

1.1. Empirical spectral distributions. This paper is concerned with the con-
vergence of empirical spectral distributions of random matrices, both in the sense
of convergence in probability and in the almost sure sense.

DEFINITION 1.1 (Modes of convergence). For each n, let Fn be a random
variable taking values in some Hausdorff topological space X and let F be another
element of X.
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• We say that Fn converges in probability to F if, for every neighbourhood V

of F , we have limn→∞ P(Fn ∈ V ) = 1.
• We say that Fn converges almost surely to F if we have P(limn→∞ Fn = F) = 1.

Similarly, if Xn is a scalar random variable, we say that Xn is bounded in proba-
bility if we have

lim
C→∞ lim inf

n→∞ P(|Xn| ≤ C) = 1

and almost surely bounded if we have

P
(
lim sup

n
|Xn| < ∞

)
= 1.

Let Mn(C) denote the set of n × n complex matrices. For A ∈ Mn(C), we let

μA(s, t) := 1

n
|{1 ≤ i ≤ n,Reλi ≤ s, Imλi ≤ t}|

be the empirical spectral distribution (ESD) of its eigenvalues λi ∈ C, i = 1, . . . , n.
This is a discrete probability measure on C.

Now, suppose that An ∈ Mn(C) is a random matrix ensemble [i.e., a probability
distribution on Mn(C)] and let μ∞ be a probability measure on C. We give the
space of probability measures on C the usual vague topology. Thus, a sequence
of deterministic measures μn converges to μ if

∫
C

f dμn converges to
∫
C

f dμ for
every test function (i.e., continuous and compactly supported function) f : C → R.
Thus, by Definition 1.1, we see that μ1/

√
nAn

converge in probability to μ∞ if, for
every continuous and compactly supported function f : C → R, the expression∫

C

f (z) dμ1/
√

nAn
(z) −

∫
C

f (z) dμ∞(1.1)

converges to zero in probability, thus

lim
n→∞ P

(∣∣∣∣
∫

C

f (z) dμ1/
√

nAn
(z) −

∫
C

f (z) dμ∞
∣∣∣∣ ≥ ε

)
= 0

for every ε > 0. Similarly, μ1/
√

nAn
converges almost surely to μ∞ if, with proba-

bility 1, the expression (1.1) converges to zero for all f : C → R.

REMARK 1.2. In practice, our matrices An will have bounded entries on the
average, which suggests (by the Weyl comparision inequality—see Lemma A.2)
that their eigenvalues should be of size about O(

√
n). Thus, the normalization by

1√
n

is natural.



UNIVERSALITY OF ESDs AND THE CIRCULAR LAW 2025

1.2. Universality. A fundamental problem in the theory of random matrices
is to determine the limiting distribution of the ESD of a random matrix ensemble
(either in probability or in the almost sure sense) as the size of the random matrix
tends to infinity.

The situation with this problem, thus far, is that the analysis depends very much
on which ensemble one is dealing with. In some cases, such as when the entries
have a Gaussian distribution, powerful group theoretic structure [e.g., invariance
under the orthogonal group O(n) or unitary group U(n)] plays an essential role,
as one can use it to derive an explicit formula for the joint distribution of the eigen-
values. The limiting distribution can then be computed directly from this formula.
In the majority of cases, however, there is little symmetry and such a formula is
not available. Consequently, the problem becomes much harder and its analysis
typically requires tools from various areas of mathematics.

On the other hand, there is a well-known intuition behind this problem (and
many others concerning random matrices), the universality phenomenon, that as-
serts that the limiting distribution should not depend on the particular distribution
of the entries. This phenomenon motivates many theorems and conjectures in this
area. In the following, we mention two famous examples: Wigner’s semicircle law
and the circular law conjecture.

Wigner’s semicircle law. In the 1950s, motivated by numerical experiments,
Wigner [27] proved that the ESD of an n × n Hermitian matrix with (upper di-
agonal) entries being i.i.d. Gaussian random variables converge to the semicircle
law F whose density is given by

ρ(x) =
⎧⎨
⎩

1

2π

√
4 − x2, |x| ≤ 2,

0, |x| > 2.

Wigner’s result (which holds for both modes of convergence) was later extended
to many other ensembles. The most general form only requires the mean and vari-
ance of the entries [2, 15].

THEOREM 1.3. Let An be the n × n Hermitian random matrix whose upper
diagonal entries are i.i.d. complex random variables with mean 0 and variance 1.
The ESD of 1√

n
An then converges (both in probability and in the almost sure sense)

to the semicircle distribution.

Circular law conjecture. The well-known circular law conjecture deals with
non-Hermitian matrices.

CONJECTURE 1.4. Let An be the n × n random matrix whose entries are
i.i.d. complex random variables with mean 0 and variance 1. The ESD of 1√

n
An

then converges (both in probability and in the almost sure sense) to the uniform
distribution on the unit disk.
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Similarly to Wigner’s law, this conjecture was posed, based on numerical ev-
idence, in the 1950s. The case when the entries have a complex Gaussian distri-
bution was verified by Mehta [13] in 1967, using Ginibre’s formula for the joint
density function of the eigenvalues of An (see, e.g., [2], Chapter 10):

p(λ1, . . . , λn) = cn

∏
i<j

|λi − λj |2 exp

(
−n

n∑
i=1

|λi |2
)
.(1.2)

Another case where such a formula is available is when the entries have a real
Gaussian distribution and, for this case, the conjecture was confirmed by Edel-
man [6]. For the general case when there is no formula, the problem appears much
harder. Important partial results were obtained by Girko [7, 8], Bai [1, 2] and,
more recently, Götze and Tikhomirov [9, 10], Pan and Zhou [14] and the present
authors [25]. These results establish the conjecture (in almost sure or in probability
forms) under additional assumptions on the distribution x. The strongest result in
the previous literature is from [10, 25], in which the almost sure and in-probability
forms of the conjecture were shown under the extra assumption that the entries
have finite (2 + ε)th moment for any positive constant ε. An attempt to remove
this extra ε (and thus to prove Conjecture 1.4 in full generality) was a motivation
for this paper.

A demonstration of the circular law for the Bernoulli and Gaussian cases ap-
pears in Figure 1.

FIG. 1. Eigenvalue plots of two randomly generated 5000 × 5000 matrices. On the left, each entry
was an i.i.d. Bernoulli random variable, taking the values +1 and −1 each with probability 1/2.
On the right, each entry was an i.i.d. Gaussian normal random variable, with probability density
function 1√

2∗π
exp(−x2/2). [These two distributions were shifted by adding the identity matrix, thus

the circles are centered at (1,0), rather than at the origin.]
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In both the semicircular law and the circular law, we observe that only the mean
and variance of the entries play a role in the limiting distribution. This is, in fact,
a common situation for many other conjectures in random matrix theory, such as
Dyson’s conjecture [13], Chapter 1, and this phenomenon is sometimes referred to
as universality in the literature.

In this paper, we rigorously prove the universality phenomenon for the ESD
of random matrices. More precisely, we show that the limiting distribution of the
ESD of a random matrix ensemble An depends only on the mean and variance of
its entries, under a mild size condition on the mean EAn and under the assumption
that the matrix An − EAn has i.i.d. entries.

For any matrix A, we define the Hilbert–Schmidt norm ‖A‖2 by the formula
‖A‖ := trace(AA∗)1/2 = trace(A∗A)1/2.

THEOREM 1.5 (Universality principle). Let x and y be complex random
variables with zero mean and unit variance. Let Xn = (xij )1≤i,j≤n and Yn :=
(yij )1≤i,j≤n be n × n random matrices whose entries xij , yij are i.i.d. copies of x

and y, respectively. For each n, let Mn be a deterministic n × n matrix satisfying

sup
n

1

n2 ‖Mn‖2
2 < ∞.(1.3)

Let An := Mn + Xn and Bn := Mn + Yn. Then, μ1/
√

nAn
− μ1/

√
nBn

converges
in probability to zero. If, furthermore, we make the additional hypothesis that the
ESDs

μ(1/
√

nMn−zI )(1/
√

nMn−zI )∗(1.4)

converge to a limit for almost every z, then μ1/
√

nAn
− μ1/

√
nBn

converges almost
surely to zero.

REMARK 1.6. The theorem still holds if we restrict the size of the matrices to
an infinite subsequence n1 < n2 < · · · of positive integers. This freedom to pass to
a subsequence is useful for technical reasons involving compactness arguments.

The condition (1.3) has the following useful consequence, which we shall use
repeatedly.

LEMMA 1.7 (Tightness of ESDs). Let Mn and An be as in Theorem 1.5. Then,
the quantities 1

n2 ‖An‖2
2 and

∫
C

|z|2 dμ1/
√

nAn
(z) are almost surely bounded (and

hence also bounded in probability).

PROOF. By the Weyl comparison inequality (Lemma A.2), it suffices to show
that 1

n2 ‖An‖2
2 is almost surely bounded. By (1.3) and the triangle inequality, it

suffices to show that 1
n2 ‖Xn‖2

2 is almost surely bounded. However, this follows
from the finite second moment of x and the strong law of large numbers. �

As an immediate corollary of Theorem 1.5, we have the following result.
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COROLLARY 1.8 (Universality principle). Let x, y be complex random vari-
ables with zero mean and unit variance. Let Xn and Yn be n × n random matrices
whose entries are i.i.d. copies of x and y, respectively. For each n, let Mn be a de-
terministic n × n matrix satisfying (1.3). Let An := Mn + Xn and Bn := Mn + Yn.
Then, if μ1/

√
nBn

converges in probability to a limiting measure μ, then μ1/
√

nAn

also converges in probability to μ. If, furthermore, we make the additional hypoth-
esis that the ESDs (1.4) converge to a limit for almost every z, then we can replace
“in probability” by “almost surely” in the previous sentence.

A demonstration of this corollary appears in Figure 2.

REMARK 1.9. One consequence of Corollary 1.8 [in the case where (1.4)
converges to a limit] is that the ESD μ1/

√
nAn

behaves asymptotically determinis-

tically,3 in the sense that there exists a deterministic measure μn for each n such
that μ1/

√
nAn

−μn converges almost surely to zero. Indeed, one can simply take μn

to be an instance of μ1/
√

nBn
, where the Bn are selected independently of the An,

and the claim will hold almost surely. The question remains as to whether μn itself

FIG. 2. Eigenvalue plots of randomly generated n × n matrices of the form Dn + Mn, where
n = 5000. In the left column, each entry of Mn was an i.i.d. Bernoulli random variable, taking
the values +1 and −1 each with probability 1/2, and in the right column, each entry was an i.i.d.
Gaussian normal random variable with probability density function 1√

2π
exp(−x2/2). In the first

row, Dn is the deterministic matrix diag(1,1, . . . ,1,2.5,2.5, . . . ,2.5) and in the second row, Dn

is the deterministic matrix diag(1,1, . . . ,1,2.8,2.8, . . . ,2.8) (in each case, the first n/2 diagonal
entries are 1’s, and the remaining entries are 2.5 or 2.8, as specified).

3The authors thank Oded Schramm for this observation.
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converges to some limit as n → ∞; we partially address this issue in Theorem
1.17 below.

1.3. The circular law conjecture. Thanks to Corollary 1.8, we can reduce the
problem of computing the limiting distribution to the case where the entries are
Gaussian4 (or having any special distribution satisfying the variance bound). In
particular, since the circular law is verified for random matrices with complex
Gaussian entries (see [13]), it follows that this law (both in probability and in
the almost sure sense) holds in full generality. In other words, we have shown the
following theorem.

THEOREM 1.10 (Circular law). Let Xn be the n × n random matrix whose
entries are i.i.d. complex random variables with mean zero and variance one. Then,
the ESD of 1√

n
Xn converges (both in probability and in the almost sure sense) to

the uniform distribution on the unit disk.

REMARK 1.11. In [25] (see also [10] for an alternate proof for the in-
probability sense), this theorem was proven with the extra assumption that the
entries have finite (2 + ε)th moment for any fixed ε > 0; earlier, related, results
appear in [1, 2, 7–9].

Notice that in Theorem 1.10, we set Mn to be the all-zero matrix (for which the
boundedness and convergence hypotheses are trivial). In [11], explicit distributions
were computed for the case where Mn is an arbitrary diagonal matrix and Xn

has i.i.d. Gaussian entries. The formula for the limiting distribution is somewhat
technical, but its support is easy to describe: it is exactly the set of z ∈ C for which∫ |z − x|−2 dμ(x) ≥ 1, where μ is the limiting distribution of the ESD of Mn. (In
the case where Mn is all-zero, μ has all of its mass at the origin and so the set of z

is the unit disk.)
The proof of Theorem 1.5 actually shows that if Mn and M ′

n both obey (1.3) and
have the property that the difference between the ESD (1.4) and the counterpart
for M ′

n converges to zero for almost every z, then Theorem 1.5 holds with An :=
Mn + Xn and Bn := M ′

n + Yn (see Remark B.3).
This has the following interesting consequence. Assume that Mn is a matrix

with low rank, say o(n). In this case, it is easy to see that the ESD (1.4) concen-
trates at |z|2 since the matrix involved here is a self-adjoint low rank perturbation
of |z|2I . Thus, we can replace Mn by the zero matrix and obtain the following.

COROLLARY 1.12 (Circular law for shifted matrices). Let Xn be the n × n

random matrix whose entries are i.i.d. complex random variables with mean zero

4The idea of establishing a limiting law by first replacing a general random variable with a
Gaussian one is sometimes referred to as the “Lindeberg trick” in the literature.
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and variance one and let Mn be a deterministic matrix with rank o(n) and obey-
ing (1.3). Let An := Mn + Xn. Then, the ESD of 1√

n
An converges (in either sense)

to the uniform distribution on the unit disk.

In particular, this shows that Theorem 1.10 still holds if the entries have (the
same) nonzero mean. This extends a result of Chafaï [5], which, in addition, as-
sumed that the entries had finite fourth moment.

1.4. Extensions. We can extend Theorem 1.5 in several ways. First, by condi-
tioning, we can obtain a theorem for Mn being a random matrix.

THEOREM 1.13 (Universality from a random base matrix). Let x and y

be complex random variables with zero mean and unit variance. Let Xn =
(xij )1≤i,j≤n and Yn = (yij )1≤i,j≤n be n × n random matrices whose entries are
i.i.d. copies of x and y, respectively. For each n, let Mn be a random n×n matrix,
independent of Xn or Yn, such that 1

n2 ‖Mn‖2
2 is bounded in probability (see Def-

inition 1.1). Let An := Mn + Xn and Bn := Mn + Yn. Then, μ1/
√

nAn
− μ1/

√
nBn

converges in probability to zero. If, furthermore, we assume that 1
n2 ‖Mn‖2

2 is al-
most surely bounded and (1.4) converges almost surely to some limit for almost
every z, then μ1/

√
nAn

− μ1/
√

nBn
converges almost surely to zero.

We can also address a more general form of random matrices (cf. [8]). Let
Kn,Ln be two sequences of matrices. Define An := Mn + KnXnLn and Bn :=
Mn + KnYnLn. We can show that under some mild assumptions on Mn,Kn,Ln,
Theorem 1.5 still holds.

THEOREM 1.14. Let x and y be complex random variables with zero mean
and unit variance. Let Xn and Yn be n × n random matrices whose entries are
i.i.d. copies of x and y, respectively. Let Mn,Kn,Ln be random n × n matrices
(independent of Xn,Yn) and let An := Mn + KnXnLn and Bn := Mn + KnYnLn.
Assume that the expressions

1

n2 ‖An‖2
2 + 1

n2 ‖Bn‖2
2 + 1

n2 ‖K−1
n MnL

−1
n ‖2

2 + 1

n
‖K−1

n L−1
n ‖2

2(1.5)

are bounded in probability. If, furthermore, we assume that (1.5) is almost surely
bounded and that for almost every z, the ESDs

μ
(1/

√
nK−1

n MnL−1
n −zK−1

n L−1
n )(1/

√
nK−1

n MnL−1
n −zK−1

n L−1
n )∗(1.6)

converge almost surely to a limit, then μ1/
√

nAn
−μ1/

√
nBn

converges almost surely
to zero.
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FIG. 3. Eigenvalue plots of two randomly generated 5000×5000 matrices of the form A+BMnB ,
where A and B are diagonal matrices having n/2 entries with the value 1 followed by n/2 entries
with the value 5 (resp., 2) for D (resp., X). On the left, each entry of Mn was an i.i.d. Bernoulli ran-
dom variable, taking the values +1 and −1 each with probability 1/2. On the right, each entry of Mn

was an i.i.d. Gaussian normal random variable with probability density function 1√
2∗π

exp(−x2/2).

Note that Theorem 1.13 is the special case of Theorem 1.14 in which Kn =
Ln = I . It seems of interest to see whether the hypotheses on (1.5) can be veri-
fied for various natural random or deterministic matrices Mn,Kn,Ln, normalized
appropriately by a suitable power of n. We do not pursue this matter here.

A demonstration of the above theorem for the Bernoulli and Gaussian cases
appears in Figure 3.

The proofs of these extensions are discussed in Section 7.
Another direction for generalization is to consider random matrices whose en-

tries are independent, but not necessarily identically distributed. Most of the tools
used in this paper (e.g., the law of large numbers, Talagrand’s inequality and the
least singular value bound from [25]) extend without difficulty to this setting. Fur-
thermore, Krishnapur pointed out that one can also prove a “universal” version of
Theorem B.1. This leads to a generalization in Appendix C (written by Krishna-
pur).

For similar reasons, one expects to be able to extend the above results to the case
where Xn and Yn are sparse i.i.d. random matrices; for instance, the least singular
value bounds from [25] extend to this case and the circular law for sparse i.i.d.
matrices is already known in several cases [9, 25]. We, however, will not pursue
these matters here.

1.5. Computing the ESD of a random non-Hermitian matrix via the ESD of a
Hermitian one. Theorem 1.5 provides one useful way to compute the (limiting
distribution of) the ESD of a random non-Hermitian matrix, namely, that one can
restrict to any particular distribution (such as complex Gaussian) of the entries. The
proof of this theorem (with some modification) also provides another way to deal
with this problem, namely, that one can reduce the problem of computing the ESD
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of 1√
n
An to that of ( 1√

n
An − zI)( 1√

n
An − zI)∗ for fixed z ∈ C. More precisely, we

have the following equivalences.

THEOREM 1.15 (Equivalences for convergence). Let An be as in Theorem 1.5
and let μ be a probability measure on C with the second moment condition∫ |z|2 dμ(z) < ∞. The following are then equivalent:

(i) the ESD μ1/
√

nAn
of 1√

n
An converges in probability to μ;

(ii) for almost every complex number z, 1
n

log|det( 1√
n
An − zI)| converges in

probability to
∫
C

log|w − z|dμ(w);
(iii) for almost every complex number z, there exists a sequence εn > 0 of posi-

tive numbers converging to zero such that 1
n

log det((( 1√
n
An − zI)+ εnI )( 1√

n
An −

zI)∗ + εnI ) converges in probability to 2
∫
C

log|w − z|dμ(w).

If, furthermore, the ESDs (1.4) converge to a limit for almost every z, then we
can replace convergence in probability by almost sure convegence in the above
equivalences.

We prove this result in Section 8. As a corollary, we have the following criterion
for when 1√

n
An converges to a distribution μ.

COROLLARY 1.16. Let An be as in Theorem 1.5 and let μ be a probability
measure on C with the second moment condition

∫ |z|2 dμ(z) < ∞. Suppose that
for almost every complex number z, the ESD of ( 1√

n
An − zI)( 1√

n
An − zI)∗ con-

verges in probability to a limiting distribution ηz on [0,+∞) such that the integral∫
C

log t dηz(t) is absolutely convergent and equal to 2
∫
C

log|w − z|dμ(w). Then,
the ESD of 1√

n
An converges in probability to μ. If the ESDs (1.4) converge to a

limit for almost every z, then we can replace convergence in probability by almost
sure convergence in the above implication.

PROOF. We verify the claim for almost sure convergence only; the proof for
convergence in probability is similar and is left as an exercise to the reader.

By Lemma 1.7, we see that for fixed z, | 1
n

trace( 1√
n
An − zI)( 1√

n
An − zI)∗| is

also almost surely bounded. Taking limits, we conclude that∫
C

t dηz(t) < ∞.

We then see from the dominated convergence theorem that for any ε > 0,
1
n

log det((( 1√
n
An − zI) + εI)( 1√

n
An − zI)∗ + εI) converges almost surely to∫

C
log(t + ε) dηz(t). From this, we obtain hypothesis (iii) of Theorem 1.15 (if

εn is chosen to decay to zero sufficiently slowly) and the claim follows. �
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Since the eigenvalues of ( 1√
n
An−zI)( 1√

n
An−zI)∗ are the squares of the singu-

lar values of 1√
n
An − zI , we can also say that Theorem 1.15 reduces the problem

of computing the limiting distribution of the eigenvalues of 1√
n
An to that of the

singular values of 1√
n
An − zI .

The big gain here is that the matrix ( 1√
n
An − zI)( 1√

n
An − zI)∗ is Hermitian.

(Random matrices of this type are often called sample covariance matrices in the
literature.) This allows one to use standard tools such as truncation, Wigner’s mo-
ment method and Stieljes transform (see, e.g., the proof of Theorem 1.3 in [2],
Chapter 2), or results such as Theorem B.1; techniques from free probability are
also very powerful for such problems. These methods cannot be applied to non-
Hermitian matrices, for various reasons (see [2], Chapter 10 for a discussion) and
their failure has been the main difficulty in attacking problems such as the circular
law conjecture.

One can use Corollary 1.16 to give another proof of Theorem 1.10, without
relying on explicit formulas such as (1.2). We omit the details.

1.6. Existence of the limit. The results in the previous chapters provide two
different ways to compute (explicitly) the limiting measure of the ESD of random
matrices. In fact, there is a simple compactness argument that guarantees the exis-
tence of the limit, assuming, of course, that the deterministic ESDs (1.4) already
converge, although the argument does not provide too much information on what
the limit actually is. More precisely, we have the following result.

THEOREM 1.17. Let x be a complex random variable with zero mean and
unit variance. Let Xn be the n × n random matrix whose entries are i.i.d. copies
of x. For each n, let Mn be a deterministic n × n matrix satisfying

sup
n

1

n2 ‖Mn‖2
2 < ∞.(1.7)

Assume, furthermore, that the ESD (1.4) converges for almost every z ∈ C. Then,
the ESD of 1√

n
An, where An := Mn + Xn, converges (in both senses) to a limiting

measure μ.

PROOF. We let f1, f2, f3, . . . be an enumeration of a sequence of test func-
tions which is dense in the uniform topology (such a sequence exists thanks to
the Stone–Weierstrass theorem and the compact support of test functions). By ap-
plying the Bolzano–Weierstrass theorem once for each function in this sequence
and then using the Arzelá–Ascoli diagonalization argument, we can refine the sub-
sequence so that

∫
C

fj (z) dμ1/
√

nAn
(z) converges in probability to some limit for

each j and hence, by a limiting argument,
∫
C

g(z) dμ1/
√

nAn
(z) converges in prob-

ability to a limit for each test function g. By the Riesz representation function, we
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conclude that along this subsequence, μ1/
√

nAn
converges in probability to some

limit μ, which is also a probability measure, by the tightness bounds in Lemma 1.7.
Applying Theorem 1.15, we conclude that for almost every z, the expression

1

n
log det

(((
1√
n
An − zI

)
+ εnI

)((
1√
n
An − zI

)∗
+ εnI

))
(1.8)

converges in probability to 2
∫
C

log|w − z|dμ(w) along this sequence for some εn

converging to zero. On the other hand, from the hypotheses and the theorem of
Dozier and Silverstein (see Theorem B.1), we know that for almost every z, the
expression (1.8) has an almost sure limit for the entire sequence of n. Combining
the two facts, we see that for almost every z, (1.8) in fact converges almost surely
to 2

∫
C

log|w−z|dμ(w) for all n. The claim now follows from another application
of Theorem 1.15. �

1.7. Notation. Asymptotic notation is used under the assumption that n → ∞,
holding all other parameters fixed. Thus, for instance, if we say that a quantity az,n,
depending on n and another parameter z, is equal to o(1), this means that az,n

converges to zero as n → ∞ for fixed z, but this convergence need not be uniform
in z. As another example, the condition (1.3) is equivalent to asserting that ‖Mn‖ =
O(n) as n → ∞.

2. The replacement principle. The first step toward Theorem 1.5 is the fol-
lowing result that gives a general criterion for two random matrix ensembles

1√
n
An,

1√
n
Bn to converge to the same limit.

THEOREM 2.1 (Replacement principle). Suppose, for each n, that An,Bn ∈
Mn(C) are ensembles of random matrices. Assume that:

(i) the expression

1

n2 ‖An‖2
2 + 1

n2 ‖Bn‖2
2(2.1)

is bounded in probability (resp., almost surely);
(ii) for almost all complex numbers z,

1

n
log

∣∣∣∣det
(

1√
n
An − zI

)∣∣∣∣ − 1

n
log

∣∣∣∣det
(

1√
n
Bn − zI

)∣∣∣∣
converges in probability (resp., almost surely) to zero and, in particular, for each
fixed z, these determinants are nonzero with probability 1 − o(1) for all n (resp.,
almost surely nonzero for all but finitely many n).

Then, μ1/
√

nAn
− μ1/

√
nBn

converges in probability (resp., almost surely) to zero.



UNIVERSALITY OF ESDs AND THE CIRCULAR LAW 2035

We would like to remark here that we do not need to require independence
among the entries of An and Bn. The proof of this theorem is rather “soft” in na-
ture, relying primarily on the Stieltjes transform technique (following Girko [7])
that analyzes the ESD μ1/

√
nAn

in terms of the log-determinants 1
n

log|det( 1√
n
An −

zI)|, combined with tools from classical real analysis, such as the dominated con-
vergence theorem (see Lemma 3.1 for the precise version of this theorem that we
need). The details are given in Section 3.

In view of Lemma 1.7, we see that Theorem 1.5 follows immediately from
Theorem 2.1 and the following proposition.

PROPOSITION 2.2 (Converging determinant). Let x and y be complex random
variables with zero mean and unit variance. Let Xn and Yn be n × n random
matrices whose entries are i.i.d. copies of x and y, respectively. For each n, let Mn

be a deterministic n × n matrix satisfying (1.3). Set An := Mn + Xn and Bn :=
Mn + Yn. Then, for every fixed z ∈ C,

1

n
log

∣∣∣∣det
(

1√
n
An − zI

)∣∣∣∣ − 1

n
log

∣∣∣∣det
(

1√
n
Bn − zI

)∣∣∣∣(2.2)

converges in probability to zero. If, furthermore, we assume that (1.4) converges to
a limit for this value of z, then (2.2) converges almost surely to zero.

For any square matrix A of size n, let λi(A) and si(A) be the eigenvalues and
singular values of A. Furthermore, let di(A) be the distance from the ith row vector
of A to the subspace formed by the first i − 1 row vectors. From linear algebra, we
have the fundamental identity

|detA| =
n∏

i=1

|λi(A)| =
n∏

i=1

si(A) =
n∏

i=1

di(A).(2.3)

We will need to study the singular values and distances of 1√
n
An − zI and

1√
n
Bn − zI in order to estimate their determinants. The proof of Proposition 2.2,

which occupies Sections 4, 5 and 6, is the heart of the paper. This proof relies on
the following three ingredients:

• a result by Dozier and Silverstein [3] that compares the ESD of the singular
values of the matrices 1√

n
An − zI and 1√

n
Bn − zI—this will let us handle all

the rows from 1 to (1 − δ)n for some small δ > 0;
• a lower tail estimate for the distance between a random vector and a fixed sub-

space of relatively large codimension, using a concentration inequality of Tala-
grand [12]—this will handle the contribution of the rows between (1 − δ)n and
(say) n − n0.99;

• a polynomial lower bound for the least singular value of 1√
n
An−zI and 1√

n
Bn−

zI from [25, 26]—this bound enables us to handle the contribution of the last
n0.99 rows.
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3. The replacement principle. The purpose of this section is to establish
Theorem 2.1. We begin with a version of the dominated convergence theorem.

LEMMA 3.1 (Dominated convergence). Let (X, ν) be a finite measure space.
For integers n ≥ 1, let fn :X → R be random functions which are jointly measur-
able with respect to X and the underlying probability space. Assume that:

(i) (uniform integrability) there exists δ > 0 such that
∫
X |fn(x)|1+δ dν is

bounded in probability (resp., almost surely);
(ii) (pointwise convergence in probability) for ν-almost every x ∈ X, fn(x)

converges in probability (resp., almost surely) to zero.

Then,
∫
X fn(x) dν(x) converges in probability (resp., almost surely) to zero.

PROOF. We first prove the claim for convergence in probability. We can nor-
malize ν to be a probability measure. Let ε > 0 be arbitrary. It suffices to show
that ∫

X
fn(x) dν(x) = O(ε)

with probability 1 − O(ε) − o(1).
By hypothesis (i), we already know that with probability 1 − O(ε) − o(1),∫

X
|fn(x)|1+δ dν(x) ≤ Cε

for some Cε depending on ε. This implies that∫
X

fn(x)I
(|fn(x)| ≥ M

)
dν(x) ≤ Cε/M

δ

for any M > 0, where I(E) denotes the indicator of an event E. In particular, for
M large enough, we have∫

X
fn(x)I

(|fn(x)| ≥ M
)
dν(x) ≤ ε

with probability 1 − O(ε) − o(1) and so it will suffice to show that∫
X

fn(x)I
(|fn(x)| ≤ M

)
dν(x) = O(ε)(3.1)

with probability 1 − o(1).
Fix M . By hypothesis, we have limn→∞ P(|fn(x)| ≥ ε) = 0 for ν-almost every

x ∈ X. By the dominated convergence theorem, we conclude that∫
X

P
(|fn(x)| ≥ ε

)
dν(x) = o(1).

By Fubini’s theorem, we conclude that

E
∫
X

I
(|fn(x)| ≥ ε

)
dν(x) = o(1)
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and so by Markov’s inequality, we have∫
X

I
(|fn(x)| ≥ ε

)
dν(x) = O(ε/M)

with probability 1 − o(1). The claim (3.1) easily follows.
We now prove the claim for almost sure convergence. Again, we let ν be a

probability measure and ε > 0 be arbitrary. With probability 1 − O(ε), we have∫
X

|fn(x)|1+δ dν(x) ≤ Cε

for all sufficiently large n, and some Cε depending on n. Also, with probability 1,
fn(x) converges to zero for almost every x. The claim now follows by invoking
(the deterministic special case of) the convergence in probability version of the
lemma that we have just proven. �

We now begin the proof of Theorem 2.1. We thus assume that An,Bn are as
in that theorem. We shall first prove the claim for convergence in probability and
later indicate how to modify the proof to obtain the principle for almost sure con-
vergence.

From the boundedness in probability of (2.1) and Weyl’s comparison inequality
(Lemma A.2), we see that for every ε > 0, there exists Cε > 0 such that for each n,
the eigenvalues λ1, . . . , λn of An obey the bound

n∑
j=1

1

n2 |λj |2 ≤ Cε(3.2)

or, equivalently, that ∫
C

|z|2 dμ1/
√

nAn
(z) ≤ Cε

with probability 1 − O(ε) − o(1). Similarly, we have∫
C

|z|2 dμ1/
√

nBn
(z) ≤ Cε.

In particular, for each n, we see that, with probability 1 − O(ε) − o(1), we have
the tightness bounds

μ1/
√

nAn
{z ∈ C : |z| ≥ R} ≤ Cε/R

2(3.3)

and

μ1/
√

nBn
{z ∈ C : |z| ≥ R} ≤ Cε/R

2(3.4)

for all R > 0.
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We now take the standard step of passing from the ESDs μ1/
√

nAn
,μ1/

√
nBn

to

the characteristic functions m1/
√

nAn
,m1/

√
nBn

: R2 → C, which are defined by the
formulae

m1/
√

nAn
(u, v) :=

∫
C

eiuRe(z)+iv Im(z) dμ1/
√

nAn
(z),

m1/
√

nBn
(u, v) :=

∫
C

eiuRe(z)+iv Im(z) dμ1/
√

nBn
(z).

Thus, the functions m1/
√

nAn
,m1/

√
nBn

are continuous and are bounded uniformly
in magnitude by 1.

Thanks to the tightness bounds (3.3) and (3.4), we can easily pass back and
forth between convergence of ESDs and convergence of characteristic functions.

LEMMA 3.2. Let the notation and assumptions be as above. The following are
then equivalent:

(i) μ1/
√

nAn
− μ1/

√
nBn

converges in probability;
(ii) for almost every u, v, m1/

√
nAn

(u, v) − m1/
√

nBn
(u, v) converges in proba-

bility.

PROOF. We first show that (i) implies (ii). Fix u, v and let ε > 0 be arbitrary.
From (3.3), (3.4) we can find an R depending on Cε and ε such that

μ1/
√

nAn
({z ∈ C : |z| ≥ R}) + μ1/

√
nBn

({z ∈ C : |z| ≥ R}) ≤ ε

with probability 1 − O(ε) − o(1). In particular, with probability 1 − O(ε) − o(1),
we have

m1/
√

nBn
(u, v) − m1/

√
nAn

(u, v)

=
∫

ψ(z/R)eiuRe(z)+iv Im(z)[dμ1/
√

nBn
(z) − dμ1/

√
nAn

(u, v)(z)
] + O(ε),

where ψ is any smooth compactly supported function which equals one on the unit
ball. However, since μ1/

√
nBn

−μ1/
√

nAn
converges in probability, the integral here

converges to zero in probability. The claim follows.
We now prove that (ii) implies (i). Since continuous compactly supported func-

tions are the uniform limit of smooth compactly supported functions, it suffices
to show that

∫
C

f dμ1/
√

nAn
− ∫

C
f dμ1/

√
nBn

converges in probability to zero for
every smooth compactly supported function f : C → C.

Now, fix a smooth compactly supported function f : C → C. By Fourier analy-
sis, we can write∫

C

f dμ1/
√

nAn
−

∫
C

f dμ1/
√

nBn

(3.5)
=

∫
R

∫
R

f̂ (u, v)
(
m1/

√
nAn

(u, v) − m1/
√

nBn
(u, v)

)
dudv
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for some smooth, rapidly decreasing function f̂ . In particular, the measure
dν = f̂ (u, v) dudv is finite. The claim now follows from dominated convergence
(Lemma 3.1). Note that the function m1/

√
nAn

−m1/
√

nBn
is bounded and so clearly

obeys the moment condition required in that lemma. �

In view of the above lemma, it suffices to show that m1/
√

nAn
(u, v) −

m1/
√

nBn
(u, v) converges in probability to zero for almost every u, v ∈ R.

Fix u, v. Since we can exclude a set of measure zero, we can assume that u, v

are nonzero. We allow all implied constants in the arguments below to depend on
u, v.

Following Girko [7], we now proceed via the Stieltjes-like transform g1/
√

nAn
:

C → R, defined almost everywhere by the formula

g1/
√

nAn
(z) := 2 Re

∫
C

z − w

|z − w|2 dμ1/
√

n(w)

(3.6)

= 2

n
Re

n∑
j=1

z − 1/
√

nλj

|z − 1/
√

nλj |2 .

Observe that this is a locally integrable function on C and that

g1/
√

nAn
(z) = ∂

∂ Re(z)

2

n
log

∣∣∣∣det
(

1√
n
An − zI

)∣∣∣∣(3.7)

for all but finitely many z.
We have the following fundamental identity.

LEMMA 3.3 (Girko’s identity [7]). For every nonzero u, v, we have

m1/
√

nAn
(u, v) = u2 + v2

4πiu

∫
R

(∫
R

g1/
√

nAn
(s + it)eius+ivt dt

)
ds,

where the inner integral is absolutely integrable for almost every s and the outer
integral is absolutely convergent.

PROOF. We argue as in [2], Lemma 3.1. Since

m1/
√

nAn
(u, v) = 1

n

n∑
j=1

ei(uRe(1/
√

nλj )+v Im(1/
√

nλj )),

it suffices, from (3.6), to show that

ei(uRe(w)+v Im(w)) = u2 + v2

2πiu

∫
R

(∫
R

Re(s + it − w)

|s + it − w|2 eius+ivt dt

)
ds
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for each complex number w, with an absolutely convergent inner integral and outer
integral. However, standard contour integration shows that∫

R

Re(s + it − w)

|s + it − w|2 eius+ivt dt

(3.8)
= π sgn

(
s − Re(w)

)
e−v|s−Re(w)|eiuseiv Im(w)

for every s �= Re(w) and the claim follows by an elementary integration. �

We can, of course, define g1/
√

nBn
similarly, with analogous identities. To con-

clude the proof of Theorem 2.1, it thus suffices to show that for any ε > 0 and
any n, we have∫

R

(∫
R

(
g1/

√
nAn

(s + it) − g1/
√

nBn
(s + it)

)
eius+ivt dt

)
ds = O(ε)(3.9)

with probability 1 − O(ε) − o(1).
Fix ε > 0. By (3.3), (3.4), we can find an R > 1 large enough that, with proba-

bility 1 − O(ε),

μ1/
√

nAn
({z ∈ C : |z| ≥ R}) + μ1/

√
nBn

({z ∈ C : |z| ≥ R}) ≤ ε.(3.10)

We now condition on the event that (3.10) holds.
We now smoothly localize the z variable to a compact set, as follows. Let

ψ : R → R
+ be a smooth cutoff function which equals 1 on [−1,1] and is sup-

ported on [−2,2].

LEMMA 3.4 (Truncation in s, t). Let w ∈ C.

(i) The integral∫
R

∣∣∣∣
∫

R

Re(w − (s + it))

|w − (s + it)|2 eius+ivt dt

∣∣∣∣(1 − ψ(s/R2)
)
ds

is of size O(1) and (if R is large enough) is of size O(ε) when |w| ≤ R.
(ii) The integral∫

R

∣∣∣∣
∫

R

Re(w − (s + it))

|w − (s + it)|2 eius+ivt (1 − ψ(t/R2)
)
dt

∣∣∣∣ψ(s/R2) ds(3.11)

is of size O(1) and (if R is large enough) is of size O(ε) when |w| ≤ R.

PROOF. Claim (i) follows easily from (3.8), so we turn to (ii). We first verify
the claim that (3.11) is bounded. Replacing everything by absolute values, one sees
that ∣∣∣∣

∫
R

Re(w − (s + it))

|w − (s + it)|2 eius+ivt (1 − ψ(t/R2)
)
dt

∣∣∣∣ = O(1)
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(in fact, one can obtain an explicit upper bound of π ), so we can dispose of the
region of integration in which s = Re(w) + O(1). For the remaining values of s,
we use repeated integration by parts, integrating the eivt term and differentiating
the others. After two such integrations, we obtain the bound∣∣∣∣

∫
R

Re(w − (s + it))

|w − (s + it)|2 eius+ivt (1 − ψ(t/R2)
)
dt

∣∣∣∣ = O
((

R−2 + |s − Re(w)|−1)2)
.

The claim then follows.
Finally, if |w| ≤ R, one can easily verify (by repeated integration by parts) that∫

R

Re(w − (s + it))

|w − (s + it)|2 eius+ivt (1 − ψ(t/R2)
)
dt = O(1/R4)

(say) and so the final claim of (ii) follows. �

From this lemma, (3.6), the triangle inequality and (3.10), we conclude that∫
R

(∫
R

g1/
√

nAn
(s + it)eius+ivt dt

)(
1 − ψ(s/R2)

)
ds = O(ε)(3.12)

and ∫
R

(∫
R

g1/
√

nAn
(s + it)eius+ivt (1 − ψ(t/R2)

)
dt

)
ψ(s/R2) ds = O(ε).(3.13)

From (3.12), (3.13) (and their counterparts for g1/
√

nBn
) and the triangle inequality,

we thus see that to prove (3.9), it suffices to show that∫
R

∫
R

(
g1/

√
nAn

(s + it) − g1/
√

nBn
(s + it)

)
eius+ivt

(3.14)
× ψ(t/R2)ψ(s/R2) dt ds

converges in probability to zero for every fixed R ≥ 1. Note that the integrands here
are now jointly absolutely integrable in t, s and so we may now freely interchange
the order of integration.

Fix R. Using (3.7) and integration by parts in the s variable, we can rewrite
(3.14) in the form ∫

R

∫
R

fn(s, t)φu,v,R(s, t) ds dt,

where

fn(s, t) := 1

n
log

∣∣∣∣det
(

1√
n
An − zI

)∣∣∣∣ − 1

n
log

∣∣∣∣det
(

1√
n
Bn − zI

)∣∣∣∣
and

φu,v,R(s, t) := − ∂

∂s

(
eius+ivtψ(t/R2)ψ(s/R2)

)
.
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(Note that there are finitely many values of t for which the integration by parts is
not justified due to singularities in g1/

√
nAn

or g1/
√

nBn
, but these values of t clearly

give a zero contribution at the end of the day.) Thus, it will suffice to show that∫
R

∫
R

|fn(s, t)||φu,v,R(s, t)|ds dt

converges in probability to zero.
From (2.3), we have

1

n
log

∣∣∣∣det
(

1√
n
An − zI

)∣∣∣∣ = 1

n

n∑
j=1

log
∣∣∣∣ 1√

n
λj − (s + it)

∣∣∣∣(3.15)

and similarly for Bn. From the boundedness and compact support of φu,v,R , we
observe that∫

R

∫
R

log
∣∣∣∣ 1√

n
λ − (s + it)|2

∣∣∣∣φu,v,R(s, t)|ds dt ≤ Oφu,v,R

(
1 + 1

n
|λ|2

)

for all λ ∈ C; from this, (3.15), (3.2) and the triangle inequality, we see that∫
R

∫
R

|fn(s, t)|2|φu,v,R(s, t)|ds dt(3.16)

is bounded uniformly in n. Since, by hypothesis, fn(s, t) converges in probability
to zero for almost every s, t , the claim now follows from dominated convergence
(Lemma 3.1). The proof of Theorem 2.1 is now complete in the case of conver-
gence in probability.

3.1. The almost sure convergence case. We now indicate how to adapt the
above arguments to the case of almost sure convergence. First, since (2.1) is now
almost surely bounded, instead of just bounded in probability, we can now say that
for every ε > 0, there exists Cε > 0 such that with probability 1 − O(ε), (3.3),
(3.4) holds for all sufficiently large n [as opposed to these bounds holding with
probability 1 − O(ε) − o(1) for each n separately].

Next, we observe the (well-known) fact that Lemma 3.2 continues to hold when
convergence in probability is replaced by almost sure convergence throughout.
Indeed, the implication of (ii) from (i) is nearly identical and is left as an exercise
to the reader. To deduce (i) from (ii) in the almost sure case, observe, from the
separability of the space of smooth compactly supported functions in the uniform
topology, that it suffices to show that (3.5) converges almost surely to zero for
each f . On the other hand, from (ii) and Fubini’s theorem, we know that with
probability 1, m1/

√
nAn

(u, v) − m(u,v) converges to zero for almost every u, v

and the claim follows from the (ordinary) dominated convergence theorem.
Once again, we use Girko’s identity, Lemma 3.3, and reduce to showing that

for every ε > 0, one has, with probability 1 − O(ε), that (3.9) holds for all but
finitely many n. From our bounds on (3.3), (3.4), we see that, with probability
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1 − O(ε), (3.10) holds for all but finitely many n. We apply Lemma 3.4 (which is
deterministic) and reduce to showing that (3.14) converges almost surely to zero
for each fixed R ≥ 1. The rest of the argument proceeds as in the convergence in
probability case.

3.2. An alternate argument. There is an alternate derivation5 of Theorem 2.1
that avoids Fourier analysis and is instead based on the observation that, for any
complex polynomial P(z), the distributional Laplacian 
 log|P(z)| of the loga-
rithm of the magnitude of P is equal to the counting measure of the zeros of P

(counting multiplicity). In particular, we see from Green’s theorem that∫
C

f d
(
μ1/

√
nAn

− μ1/
√

nBn

) = 1

2πn

∫
C

(
f (z)) log
∣∣∣∣det

(
1√
n
An − zI

)∣∣∣∣
− 1

n
log

∣∣∣∣det
(

1√
n
Bn − zI

)∣∣∣∣
for any smooth, compactly supported f . Applying Lemma 3.1, we can then get
convergence of this integral (either in probability or in the almost sure sense, as
appropriate); the uniform integrability required can be established by repeating
the computations used to bound (3.16). One can then easily take limits to replace
smooth compactly supported f to continuous compactly supported f ; we omit the
details.

4. Proof of Proposition 2.2. In this section, we present the proof of Proposi-
tion 2.2, modulo several key lemmas. Let x, y,Mn,An,Bn, z be as in that proposi-
tion. By shifting Mn by

√
nzI if necessary, we can assume z = 0. Our task is now

to show that

1

n
log

∣∣∣∣det
(

1√
n
An

)∣∣∣∣ − 1

n
log

∣∣∣∣det
(

1√
n
Bn

)∣∣∣∣
converges in probability to zero and also almost surely to zero if μ1/nMnM∗

n
con-

verges.
Let us first remark that the almost sure convergence claim implies the conver-

gence in probability claim. Indeed, suppose that convergence in probability failed.
There would then exist an ε > 0 such that

P
(∣∣∣∣1

n
log

∣∣∣∣det
(

1√
n
An

)∣∣∣∣ − 1

n
log

∣∣∣∣det
(

1√
n
Bn

)∣∣∣∣
∣∣∣∣ ≥ ε

)
≥ ε(4.1)

for a subsequence of n. By vague sequential compactness, one can pass to a further
subsequence along which μ1/nMnM∗

n
converges and, hence, by hypothesis, one has

almost sure (and hence in-probability) convergence to zero along this sequence,

5We thank Manjunath Krishnapur for this simpler argument.
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contradicting (4.1). Thus, it suffices to establish almost sure convergence assuming
the convergence of μ1/nMnM∗

n
.

Let Z1, . . . ,Zn be the rows of Mn. By assumption (1.3), we have

n∑
j=1

‖Zi‖2 = O(n2).

In particular, at least half of the Zi have norm O(
√

n). By permuting the rows of
Mn,An,Bn if necessary, we may assume that the last half of the rows have this
property, thus

‖Zi‖ = O
(√

n
)

for all n/2 ≤ i ≤ n.(4.2)

Let σ1(A) ≥ · · · ≥ σn(A) ≥ 0 denote the singular values of a matrix A. We have
the following fundamental lower bound.

LEMMA 4.1 (Least singular value bound). With probability 1, we have

σn(An), σn(Bn) ≥ n−O(1)(4.3)

for all but finitely many n. In particular, with probability 1, An and Bn are invert-
ible for all but finitely many n.

PROOF. This follows immediately from [25], Theorem 2.1 or [26], Theo-
rem 4.1 and the Borel–Cantelli lemma, noting from (1.3) of Proposition 2.2 that
the operator norm of Mn is of polynomial size nO(1). There are previous results in
[16, 19, 23, 24] which handled special cases with more assumptions on Mn and the
underlying distributions x, y (e.g., in some of the prior results, Mn was assumed
to vanish or x, y were assumed to be integer-valued or to have finite higher mo-
ments). One can obtain explicit bounds on the tail probability and on the exponent
O(1); see [26]. However, for our applications, the above bounds will suffice. �

We also have, with probability 1, the crude upper bound

σ1(An), σ1(Bn) ≤ nO(1)(4.4)

for all but finitely many n, which follows easily from the polynomial size of Mn,
the bounded second moment of x, y and the Borel–Cantelli lemma. Again, much
sharper bounds are available, especially if x and y have finite fourth moment, but
we will not need these bounds here.

Let X1, . . . ,Xn be the rows of An and, for each 1 ≤ i ≤ n, let Vi be the (i − 1)-
dimensional space generated by X1, . . . ,Xi−1. From (2.3), we have

1

n
log

∣∣∣∣det
(

1√
n
An

)∣∣∣∣ = 1

n

n∑
i=1

log dist
(

1√
n
Xi,Vi

)
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and, similarly,

1

n
log

∣∣∣∣det
(

1√
n
Bn

)∣∣∣∣ = 1

n

n∑
i=1

log dist
(

1√
n
Yi,Wi

)
,

where Y1, . . . , Yn are the rows of 1√
n
Bn and Wi is spanned by Y1, . . . , Yi−1. Our

task is then to show that

1

n

n∑
i=1

log dist
(

1√
n
Xi,Vi

)
− log dist

(
1√
n
Yi,Wi

)

converges almost surely to zero.
From (4.3), (4.4) and Lemma A.4, we almost surely obtain the bound

log dist
(

1√
n
Xi,Vi

)
, log dist

(
1√
n
Yi,Wi

)
= O(logn)

for all but finitely many n. It thus suffices to show that

1

n

∑
1≤i≤n−n0.99

log dist
(

1√
n
Xi,Vi

)
− log dist

(
1√
n
Yi,Wi

)

(say) converges almost surely to zero. This follows immediately from the following
two lemmas.

LEMMA 4.2 (High-dimensional contribution). For every ε > 0, there exists
0 < δ < 1/2 such that, with probability 1, one has

1

n

∑
(1−δ)n≤i≤n−n0.99

∣∣∣∣log dist
(

1√
n
Xi,Vi

)∣∣∣∣ = O(ε)

for all but finitely many n. A similar result holds with dist( 1√
n
Xi,Vi) replaced by

dist( 1√
n
Yi,Wi).

LEMMA 4.3 (Low-dimensional contribution). For every ε > 0, there exists
0 < δ < 1/2 such that, with probability 1 − O(ε), one has

1

n

∑
1≤i≤(1−δ)n

log dist
(

1√
n
Xi,Vi

)
− log dist

(
1√
n
Yi,Wi

)
= O(ε)

for all but finitely many n.

The next two sections will be devoted to the proofs of these two lemmas.
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5. Proof of Lemma 4.2. We now prove Lemma 4.2. We can, of course, take n

to be large depending on all fixed parameters. Let 0 < δ < 1/2 be a small number
depending on ε, to be chosen later.

Clearly, it suffices to prove this lemma for dist( 1√
n
Xi,Vi). We first prove the

(much easier) bound for the positive component of the logarithm. By the Borel–
Cantelli lemma, it suffices to show that

∞∑
n=1

P
(

1

n

∑
(1−δ)n≤i≤n−n0.99

max
(

log dist
(

1√
n
Xi,Vi

)
,0

)
≥ ε

)
< ∞.

To establish this, we use the crude bound

max
(

log dist
(

1√
n
Xi,Vi

)
,0

)
≤ max

(
log

1√
n
‖Xi‖,0

)

and thus

1

n

∑
(1−δ)n≤i≤n−n0.99

max
(

log dist
(

1√
n
Xi,Vi

)
,0

)
(5.1)

≤ O

( ∞∑
m=0

1

n

∑
(1−δ)n≤i≤n−n0.99

I
(‖Xi‖ ≥ 2m

√
n
))

.

Thus if the left-hand side of (5.1) exceeds ε, we must have

1

n

∑
(1−δ)n≤i≤n−n0.99

I
(‖Xi‖ ≥ 2m

√
n
) ≥ ε/(100 + m)2

(say) for some m ≥ 0. On the other hand, from (4.2) and the second moment
method, we see that P(‖Xi‖ ≥ 2m

√
n) = O(2−2m) and, thus, by Hoeffding’s in-

equality, we have

P
(

1

n

∑
(1−δ)n≤i≤n−n0.99

I
(‖Xi‖ ≥ 2m

√
n
)
ε/(100 + m)2

)

≤ C exp(−cn−0.01 − cm−0.01)

(say) for some constants C,c > 0 depending on ε, if δ is chosen sufficiently small,
depending on ε. The claim follows.

It remains to establish the bound for the negative component of the logarithm.
By the Borel–Cantelli lemma, it suffices to show that

∞∑
n=1

P
(

1

n

∑
(1−δ)n≤i≤n−n0.99

max
(
− log dist

(
1√
n
Xi,Vi

)
,0

)
≥ ε

)
< ∞.

This will follow from the union bound and the following estimate.
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PROPOSITION 5.1 (Lower tail bound). Let 1 ≤ d ≤ n − n0.99 and 0 < c < 1,
and let W be a (deterministic) d-dimensional subspace of C

n. Let X be a row of
An (the exact choice of row is not important). Then,

P
(
dist(X,W) ≤ c

√
n − d

) = O(exp(−n0.01)).

(The implied constant of course depends on c.)

Indeed, since Xi and Vi are independent of each other, the proposition implies
that

dist
(

1√
n
Xi,Vi

)
≥ 1

2
√

n

√
n − i + 1

(say) for each (1−δ)n ≤ i ≤ n−n0.99, with probability 1−O(n−10) (say). Setting
δ sufficiently small (compared to ε), taking logarithms and summing in i and n,
one obtains the claim.

It remains to prove the proposition. Similar lower bounds concerning the dis-
tance of a random vector to a fixed subspace have appeared in [18, 19, 21]. Here,
however, we have the complication that the coefficients of X have nonzero mean
and no higher moment bounds than the second moment; in particular, they can be
unbounded.

We first eliminate the problem that X has nonzero mean. Write X = v + X′,
where v := E(X) is a deterministic vector (which could be quite large) and X′
has mean zero. We then have dist(X,W) ≥ dist(X′, span(W,v)). Thus, Proposi-
tion 5.1 follows from the mean zero case (after making the harmless change of
incrementing d to d + 1 and adjusting the parameters slightly to suit this).

Henceforth, we assume that X has mean zero, thus X = (x1, . . . , xn) for some
i.i.d. copies x1, . . . , xn of x. We now deal with the problem that the x1, . . . , xn

can be unbounded. By Chebyshev’s inequality, we have P(|xi | ≥ n0.1) = O(n−0.2)

for all 1 ≤ i ≤ n. The event |xi | ≥ n0.1 are jointly independent in i. By Cher-
noff’s inequality (see, e.g., [22], Chapter 1), we can show that, with probability
1 − O(exp(−n0.01)), there are at most n0.9 indices i for which |xi | ≥ n0.1. (One
can also verify this directly using binomial coefficients and Sterling’s formula.)

By conditioning on the various possible sets of indices for which |xi | ≥ n0.1, we
see that it suffices to show that

P
(
dist(X,W) ≤ c

√
n − d|EI

) = O(exp(−n0.01))

for each I ⊂ {1, . . . , n} of cardinality at most n0.9, where EI is the event that
I = {1 ≤ i ≤ n : |xi | ≥ n0.1}.

Without loss of generality, we can take I = {n′ + 1, . . . , n} for some n − n0.9 ≤
n′ ≤ n. We then observe that

dist(X,W) ≥ dist(π(X),π(W)),
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where π : Cn → C
n′

is the orthogonal projection. By conditioning on the coor-
dinates xn′+1, . . . , xn and making the minor change of replacing n with n′ (and
adjusting c slightly), we may thus reduce to the case where I is empty. It thus
suffices to show that

P
(
dist(X,W) ≤ c

√
n − d||xi | < n0.1 for all i

) = O(exp(−n0.01)).

Let x̃ be the random variable x conditioned on the event |x| < n0.1 and let X̃ =
(x̃1, . . . , x̃n) be a vector consisting of i.i.d. copies of x̃. It then suffices to show that

P
(
dist(X̃,W) ≤ c

√
n − d

) = O(exp(−n0.01)).(5.2)

Note that x̃ might have a nonzero mean, but this can be easily dealt with using
the same trick as was used before: subtracting Ex̃ from x̃ to make X have zero
mean. Since x had variance 1, we see from monotone convergence that x̃ has
variance 1 − o(1).

To prove (5.2), we recall the following inequality of Talagrand.

THEOREM 5.2 (Talagrand’s inequality). Let D be the unit disk {z ∈ C, |z| ≤
1}. For every product probability μ on Dn, every convex 1-Lipschitz function
F : Cn → R and every r ≥ 0,

μ
(|F − M(F)| ≥ r

) ≤ 4 exp(−r2/8),

where M(F) denotes the median of F .

PROOF. This is the complex version of [12], Corollary 4.10, in which D was
replaced by the unit interval [0,1]. The proof is the same, with a slight modification
that implies a worse constant (1/8 instead of 1/4) in the exponent. �

We apply this theorem with μ equal to the distribution of X̃/n0.1 and F : Cn →
R equal to the convex 1-Lipschitz function F(v) := dist(v,W), and conclude that

P
(|dist(X̃,W) − M(dist(X̃,W))| ≥ n0.1r

) ≤ 4 exp(−r2/8)(5.3)

for every r > 0. On the other hand, we can easily compute the second moment (cf.
[21], Lemma 2.5):

LEMMA 5.3. We have

E(dist(X̃,W)2) = (
1 − o(1)

)
(n − d).

PROOF. Let π = (πij )1≤i,j≤n be the orthogonal projection matrix to W . Ob-
serve that dist(X̃,W)2 = ∑n

i=1
∑n

j=1 x̃iπij x̃j . Since the x̃i are i.i.d. with mean
zero, we thus have

E(dist(X̃,W)2) = (Ex̃2)

n∑
i=1

πii.
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However,
∑n

i=1 πii = trace(π) is equal to ñ. Since x̃ had variance 1 − o(1), the
claim follows. �

Since n − d ≥ n0.99 and c < 1, the claim (5.2) follows from (5.3) and the above
lemma. The proof of Lemma 4.2 is now complete.

6. Proof of Lemma 4.3. We now begin the proof of Lemma 4.3. Fix ε and
assume that δ is sufficiently small, depending on ε. Write n′ := 
(1 − δ)n�. Ob-
serve that

∏n′
i=1 dist( 1√

n
Xi,Vi) is the n′-dimensional volume of the parallelepiped

spanned by X1, . . . ,Xn′ , which is also equal to det( 1
n
An,n′A∗

n,n′)1/2, where An,n′
is the n′ × n matrix with rows X1, . . . ,Xn′ . Expressing this determinant as the
product of singular values, we arrive at the identity

1

n

∑
1≤i≤(1−δ)n

log dist
(

1√
n
Xi,Vi

)
= 1

n

n′∑
i=1

log
(

1√
n
σi(An,n′)

)
.

A similar result holds for Yi,Wi and Bn,n′ (the matrix generated by Y1, . . . , Yn′). It
thus suffices to show that, with probability 1 − O(ε), one has

1

n′
n′∑

i=1

log
(

1√
n
σi(An,n′)

)
− log

(
1√
n
σi(Bn,n′)

)
= O(ε)(6.1)

for all but finitely many n. We rewrite (6.1) as∫ ∞
0

log t dνn,n′(t) = O(ε),(6.2)

where dνn,n′ is the difference of two ESDs:

dνn,n′ = μ1/n′An,n′A∗
n,n′ − μ1/n′Bn,n′B∗

n,n′ .

We control (6.1) by dividing the range of t into several parts.

6.1. The region of very large t . We now control the region where t ≥ Rε for
some large Rε .

From Lemma A.2, we have that

1

n

n′∑
i=1

(
1√
n
σi(An,n′)

)2

,
1

n

n′∑
i=1

(
1√
n
σi(Bn,n′)

)2

is almost surely bounded and thus∫ ∞
0

t |dνn,n′(t)|
is also almost surely bounded. Thus, with probability 1 − O(ε), we have∫ ∞

0
t |dνn,n′(t)| ≤ Cε
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for all but finitely many n, and some Cε independent of n, which implies that∫ ∞
Rε

|log t ||dνn,n′(t)| ≤ ε(6.3)

for all but finitely many n and some Rε depending only on ε.

6.2. The region of intermediate t . We now control the region ε4 ≤ t ≤ Rε .

LEMMA 6.1. Let ψ be a smooth function which equals 1 on [ε4,Rε] and is
supported on [ε4/2,2Rε]. Then, with probability 1, we have∫ ∞

0
ψ(t) log t dνn,n′(t) = O(ε),(6.4)

if δ is sufficiently small, depending on ε and ψ .

PROOF. From the interlacing property (Lemma A.1), we see that∫ ∞
0

ψ(t) log t dνn,n′(t) =
∫ ∞

0
ψ(t) log t dνn,n(t) + O(ε),

if δ is sufficiently small, depending on ε and ψ .
We now apply the recent result in [3], Theorem 1.1. For the reader’s conve-

nience, we restate this result in the Appendix; see Theorem B.1. This result asserts,
under the above hypotheses, that the ESDs dμ1/nAnA∗

n
and dμ1/nBnB∗

n
converge al-

most surely to the same limit [in fact, this limit is given explicitly in terms of the
limiting distribution of μ1/nMnM∗

n
via the inverse Stieltjes transform of (B.1)]. In

particular, νn,n converges almost surely to zero and the claim follows. �

REMARK 6.2. Note that, for the convergence in probability case of Proposi-
tion 2.2, we need to apply Theorem B.1 to a subsequence of n, rather than to all n,
thanks to the subsequence extraction performed at the beginning of Section 4.

6.3. The region of moderately small t . We now control the region δ2 ≤ t ≤ ε4.
For this, we need some bounds on the low singular values of An,n′ and Bn,n′ .

LEMMA 6.3. With probability 1, we have

1

n

n′∑
i=1

(
1√
n
σi(An,n′)

)−2

= O(1)(6.5)

for all but finitely many n, and similarly with An,n′ replaced by Bn,n′ .

PROOF. Clearly, it suffices to establish the claim for An,n′ . Using Proposi-
tion 5.1 and the Borel–Cantelli lemma, we see that, with probability 1, we have

dist
(

1√
n
Xi, span(X1, . . . ,Xi−1,Xi+1, . . . ,Xn′)

)
≥ 1

2

√
δn
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for all but finitely many n and all 1 ≤ i ≤ n′. The claim then follows from Lem-
ma A.4. �

Since the σi(An,n′) are decreasing in i and n′ = 
(1 − δ)n�, we see that the
above lemma implies that, with probability 1, we have

1√
n
σ
(1−2δ)n�(An,n′) ≥ cδ

for all but finitely many n and some absolute constant c > 0. We can generalize
this lower bound to handle higher singular values as well, as follows.

LEMMA 6.4. There exists an absolute constant c > 0 such that, with proba-
bility 1, we have

1√
n
σi(An,n′) ≥ c

n′ − i

n
(6.6)

for all but finitely many n and all 1 ≤ i ≤ (1 − 2δ)n, and similarly with An,n′
replaced by Bn,n′ .

PROOF. Clearly, it suffices to establish the claim for An,n′ . Using Proposi-
tion 5.1 and the Borel–Cantelli lemma, we see that, with probability 1, we have

dist
(

1√
n
Xi, span(X1, . . . ,Xi−1,Xi+1, . . . ,Xn′′)

)
≥ 1

2

√
n − n′′

for all but finitely many n, all 1 ≤ i ≤ n′′ and all n/2 ≤ n′′ ≤ n′. Applying Lem-
ma A.4, we conclude that we almost surely have

1

n

n′′∑
i=1

(
1√
n
σi(An,n′′)

)−2

= O

(
n

n − n′′
)

for all but finitely many n and all n/2 ≤ n′′ ≤ n′. Using the crude bound

n′′∑
i=1

(
1√
n
σi(An,n′′)

)−2

≥ (n − n′′)
(

1√
n
σ2n′′−n(An,n′′)

)−2

,

we conclude that we almost surely have

1√
n
σ2n′′−n(An,n′′) ≥ c′ n − n′′

n

for all but finitely many n, all n/2 ≤ n′′ ≤ n′ and some absolute constant c′ > 0.
The claim now follows from the Cauchy interlacing property (Lemma A.1). �

REMARK 6.5. If one assumes stronger moment assumptions (e.g., sub-
Gaussian) on x, then more precise bounds are known, especially in the Mn = 0
case; see [17, 18].
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From this lemma, we can now bound the relevant contribution to (6.1), as fol-
lows.

LEMMA 6.6. With probability 1 and if δ is sufficiently small, depending on ε,
we have ∫ ε4

δ2
|log t ||dνn,n′(t)| = O(ε)(6.7)

for all but finitely many n.

PROOF. By the triangle inequality and symmetry, it suffices to show that, with
probability 1, we have

∫ ε4

δ2
|log t |dμ1/n′An,n′A∗

n,n′ (t) = O(ε)

for all but finitely many n. We rewrite the left-hand side as

1

n

n′∑
i=1

f

(
1√
n
σi(An,n′)

)
,

where f (t) := |log t |I(δ2 ≤ t2 ≤ ε4). Since f cannot exceed |log δ|, we see that
the contribution of the case i ≥ (1 − 2δ)n is acceptable if δ is small enough, so it
suffices to show that we almost surely have

1

n

∑
1≤i≤(1−2δ)n

f

(
1√
n
σi(An,n′)

)
= O(ε)

for all but finitely many n.
By Lemma 6.4, we may assume that n is such that (6.6) holds. As a conse-

quence, we see that the only terms in the above sum which are nonvanishing are
those for which i = (1 − O(ε2))n. However, if we then apply (6.6) and crudely
estimate f (t) ≤ − log t , we obtain the claim. �

6.4. The contribution of very small t . Finally, we need to control the contri-
bution when t ≤ δ.

LEMMA 6.7. With probability 1 and if δ is sufficiently small, depending on ε,
we have ∫ δ2

0
|log t ||dνn,n′(t)| = O(ε)(6.8)

for all but finitely many n.
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PROOF. By arguing as in the proof of Lemma 6.6, it suffices to show that we
almost surely have

1

n

n′∑
i=1

g

(
1√
n
σi(An,n′)

)
= O(ε)

for all but finitely many n, where g(t) := |log t |I(t2 ≤ δ2).
By Lemmas 6.3, we may assume n is such that (6.5) holds. On the other hand,

if δ is small enough, we have the bound g(t) ≤ εt−2. The claim now follows from
(6.5). �

Putting together (6.3), (6.4), (6.7), (6.8), we see that, with probability 1 −O(ε),
we have (6.2) for all but finitely many n and so the claim follows.

7. Extensions.

7.1. Proof of Theorem 1.13. The theorem in the case of almost sure conver-
gence follows immediately from Theorem 1.5 by conditioning on Mn, so it remains
to verify the theorem in the case of convergence in probability.

Let us fix a test function f [as in (1.1)] and a positive ε. By the boundedness
in probability of 1

n2 ‖M‖2
2, we can find a C = Cε such that P(Mn ∈ �n) ≥ 1 − ε,

where

�n :=
{
M ∈ Mn(C) :

1

n2 ‖M‖2
2 ≤ C

}
.

Let M
f
n be the matrix in �n which maximizes6 the quantity

P
(∣∣∣∣

∫
C

f (z) dμ
1/

√
n(M

f
n +Xn)

(z) −
∫

C

f (z) dμ
1/

√
n(M

f
n +Yn)

(z)

∣∣∣∣ ≥ ε

)
.

Applying Theorem 1.5 to the sequences M
f
n + Xn and M

f
n + Yn, we see that this

quantity is o(1).
Theorem 1.13 follows by integrating over all possible values of Mn using the

definition of M
f
n , as well as the fact that P(�n) ≥ 1 − ε, and then letting ε → 0.

7.2. Proof of Theorem 1.14. We first verify the claim for convergence in prob-
ability.

Condition (i) of Theorem 2.1 is satisfied thanks to the boundedness in probabil-
ity of (1.5). In order to complete the proof, one needs to check (ii). Notice that

det
(

1√
n
An − zI

)
= det

(
1√
n
(K−1

n MnL
−1
n + Xn) − zK−1

n L−1
n

)
detLnKn.

6If the maximum is not attained, one can instead choose M
f
n to be a matrix which maximizes this

quantity to within a factor of two (say).
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The term detLnKn also appears in det( 1√
n
Bn − zI) and becomes additive (and

thus cancels) after taking the logarithm. Therefore, one only needs to show that

1

n
log

∣∣∣∣det
(

1√
n
(K−1

n MnL
−1
n + Xn) − zK−1

n L−1
n

)∣∣∣∣
− 1

n
log

∣∣∣∣det
(

1√
n
(K−1

n MnL
−1
n + Yn) − zK−1

n L−1
n

)∣∣∣∣
converges in probability to zero.

One can obtain this by repeating the proof of Proposition 2.2. The slight change
here is that zI is replaced by zK−1

n L−1
n , but this has no significant impact, except

that we need to show that

Fn := 1√
n
(K−1

n MnL
−1
n − zK−1

n L−1
n )

satisfies
1

n2 traceFnF
∗
n = 1

n2 ‖Fn‖2
2 = O(1)

almost surely [in order to guarantee (1.3)]. However, this is a consequence of the
boundedness in probability of (1.5).

The proof of the almost sure convergence is established similarly, with the ob-
vious changes (e.g., replacing boundedness in probability with almost sure bound-
edness). We omit the details.

8. Proof of Theorem 1.15. We first prove that (ii) implies (i) for almost sure
convergence. Let An and μ be as in Theorem 1.15. Construct a diagonal matrix B ′

n

whose diagonal entries are independent samples from μ and let Bn := √
nB ′

n. We
wish to invoke Theorem 2.1. We first need to verify the almost sure boundedness
of (2.1). The bound for An follows from Lemma 1.7 and the bound for Bn follows
from the second moment hypothesis on μ and the (strong) law of large numbers.
By Theorem 2.1, the problem now reduces to showing that for almost all complex
numbers z,

1

n
log

∣∣∣∣det
(

1√
n
An − zI

)∣∣∣∣ − 1

n
log

∣∣∣∣det
(

1√
n
Bn − zI

)∣∣∣∣
converges almost surely to zero. The right-hand side is easy to compute:

1

n
log

∣∣∣∣det
(

1√
n
Bn − zI

)∣∣∣∣ = 1

n
log|det(B ′

n − zI)| =
∑n

i=1 log |λi − z|
n

,

where λi are i.i.d. samples from μ. On the other hand, from Fubini’s theorem, we
see that

∫
C

log|w − z|dμ(w) is locally integrable in z and thus∫
C

log|w − z|dμ(w) < ∞(8.1)
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for almost every z. If z is such that (8.1) holds, then, by the strong law of large

numbers, we see that
∑n

i=1 log|λi−z|
n

converges almost surely to
∫
C

log|w−z|dμ(w).
This shows that (ii) implies (i) for almost sure convergence. The proof for conver-
gence in probability is identical and is left as an exercise to the reader.

We now show that (iii) implies (ii) for almost sure convergence. Let z be
such that (8.1) and (iii) hold. To show (ii), it suffices from (2.3) to show
that 1

n

∑n
i=1 logσi converges almost surely to

∫
C

log |w − z|dμ(w), where σi =
σi(

1√
n
An − zI) are the singular values of 1√

n
An − zI . On the other hand,

from (iii), we already know that 1
n

∑n
i=1 log

√
σ 2

i + εn converges almost surely to∫
C

log|w − z|dμ(w). It thus suffices to show that

1

n

n∑
i=1

log
√

σ 2
i + εn − logσi(8.2)

converges almost surely to zero.
From Lemma 1.7, we know that 1

n2 ‖An‖2
2 is almost surely bounded and so, for

each z,

1

n

n∑
i=1

σ 2
i = 1

n

∥∥∥∥ 1√
n
An − zI

∥∥∥∥
2

2

is also almost surely bounded. From this, we easily see that

1

n

∑
1≤i≤n : σi≥δn

log
√

σ 2
i + εn − logσi

converges almost surely to zero for some sequence δn (depending on εn) converg-
ing sufficiently slowly to zero. To conclude the almost sure convergence of (8.2)
to zero, it thus suffices to show that

1

n

∑
1≤i≤n : σi≤δn

log
1

σi

converges almost surely to zero. Using Lemma 4.1, we almost surely have
supi log 1

σi
≤ O(logn) for all but finitely many n, so it suffices to show that

1

n

∑
1≤i≤n−n0.99 : σi<δn

log
1

σi

converges almost surely to zero. To do this, it suffices, by the union bound and the
Borel–Cantelli lemma, to show that

P
(
σn−i ≤ c

i

n

)
= O(exp(−n0.01))(8.3)

for all 1 ≤ i ≤ n − n0.99 and some c > 0 independent of n.
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For this, we argue as in the proof of Lemma 6.4. Fix i. Let A′
n be the matrix

formed by the first n− k rows of An − z
√

nI with k := i/2 and σ ′
j , 1 ≤ j ≤ n− k,

be the singular values of A′
n (in decreasing order, as usual). By the interlacing law

(Lemma A.1) and renormalizing, we have

σn−i ≥ 1√
n
σ ′

n−i .(8.4)

By Lemma A.4, we have that

σ ′−2
1 + · · · + σ ′−2

n−k = dist−2
1 +· · · + dist−2

n−k,

where distj is the distance from the j th row of A′
n to the subspace spanned by the

remaining rows.
As shown in the proof of Lemma 4.2, with probability 1 − exp(−n−0.01), distj

is bounded from below by �(
√

k) = �(
√

i) for all j . Thus, with this probability,
the right-hand side in the above identity is O(n/i). On the other hand, as the σ ′

j

are ordered decreasingly, the left-hand side is at least

(i − k)σ ′−2
n−i = i

2
σ ′−2

n−i .

It follows that, with probability 1 − exp(−n−0.01),

σ ′
n−i = �

(
i√
n

)
.

This and (8.4) complete the proof of (8.3) and so (8.2) converges almost surely
to zero.

As previously observed, the convergence of (8.2) to zero shows that (ii) implies
(iii) for almost sure convergence. An inspection of the argument shows the conver-
gence of (8.2) to zero also lets us deduce (iii) from (ii). The claim for convergence
in probability follows similarly. To conclude the proof of Theorem 1.15, it thus
suffices to show that (i) implies (ii).

We again start with the almost sure convergence case. Assume that (i) holds and
let z be such that (8.1) holds. By shifting A by

√
nzI if necessary, we may take z

to be zero. Let λ1, . . . , λn denote the eigenvalues of 1√
n
An. By (2.3), it suffices to

show that 1
n

∑n
j=1 log|λj | converges almost surely to

∫
C

log|w|dμ(w). From (3.2),

we know that 1
n

∑n
j=1 |λj |2 is almost surely bounded. From this and (i), we con-

clude that 1
n

∑n
j=1 log(|λj | + ε) converges almost surely to

∫
C
(log |w| + ε) dμ(w)

for any fixed ε > 0. Combining this with (8.1) and dominated convergence, we see
that 1

n

∑n
j=1 log(|λj | + εn) converges almost surely to

∫
C

log|w|dμ(w) for some
sequence εn > 0 converging sufficiently slowly to zero. It thus suffices to show
that

1

n

n∑
j=1

log(|λj | + εn) − log|λj |
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converges almost surely to zero.
By repeating the arguments used to establish the almost sure convergence of

(8.2) to zero, it suffices to show that

1

n

∑
1≤i≤n : |λi |≤δn

log
1

|λi |
converges almost surely to zero.

Let us order the eigenvalues λi so that |λ1| ≥ · · · ≥ |λn|. From Lemma 4.1 and
(8.3) (and the Borel–Cantelli lemma), we know that we almost surely have

1

n

∑
(1−κ)n<i≤n

log
1

σi

≤ O

(
κ log

1

κ

)

for all but finitely many n, for any fixed 0 < κ < 1/2, and hence, by Weyl’s com-
parison inequality (Lemma A.3), we also almost surely have

1

n

∑
(1−κ)n<i≤n

log
1

|λi | ≤ O

(
κ log

1

κ

)

for all but finitely many n. Since the left-hand side is bounded from below by
κ log 1

|λ
(1−κ)n�| , we almost surely conclude a lower bound of the form

∣∣λ
(1−κ)n�
∣∣ ≥ κO(1)

for all but finitely many n. In particular (by setting δ to be a suitable power of κ),
this implies that almost surely

1

n

∑
1≤i≤n : |λi |≤δ

log
1

|λi | ≤ O(δc)

for all but finitely many n, for any fixed 0 < δ � 1 and some absolute constant
c > 0, and the claim follows. The analogous implication for convergence in prob-
ability is similar. The proof of Theorem 1.15 is now complete.

APPENDIX A: LINEAR ALGEBRA INEQUALITIES

In this appendix, we record some elementary identities and inequalities regard-
ing the eigenvalues and singular values of matrices.

LEMMA A.1 (Cauchy’s interlacing law). Let A be an n × n matrix with com-
plex entries and A′ be the submatrix formed by the first m := n − k rows thereof.
Let σ1(A) ≥ · · · ≥ σn(A) ≥ 0 denote the singular values of A, and similarly for A′.
We then have

σi(A) ≥ σi(A
′) ≥ σi+k(A)

for every 1 ≤ i ≤ n − k.
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PROOF. The claim follows easily from the minimax characterization

σi(A) = sup
Vi⊂Cn

inf
v∈Vi : ‖v‖=1

‖Avi‖

and

σi(A
′) = sup

Vi⊂Cn−k

inf
v∈Vi : ‖v‖=1

‖Avi‖

of the singular values, where Vi range over i-dimensional complex subspaces. �

LEMMA A.2 (Weyl comparison inequality for second moment). Let A =
(aij )1≤i,j≤n ∈ Mn(C) have generalized eigenvalues λ1, . . . , λn ∈ C and singular
values σ1(A) ≥ · · · ≥ σn(A) ≥ 0. Then,

n∑
j=1

|λj |2 ≤
n∑

j=1

σj (A)2 = ‖A‖2
2 =

n∑
i=1

n∑
j=1

|aij |2.

PROOF. The two equalities here are clear, so it suffices to prove the inequality.
By the Jordan normal form, we can write A = BUB−1 for some upper triangular
U and invertible B . By the QR factorization, we can write B = QR for some
orthogonal Q and upper triangular R. We conclude that A = QV Q−1 for some
upper triangular V . Conjugating by Q, we thus reduce to the case when A is an
upper triangular matrix, in which case the eigenvalues are simply the diagonal
entries a11, . . . , ann, and the claim clearly follows. �

We also have the following (stronger) variant of the above inequality.

LEMMA A.3 (Weyl comparison inequality for products). Let

A = (aij )1≤i,j≤n ∈ Mn(C)

have generalized eigenvalues λ1, . . . , λn ∈ C, ordered so that |λ1| ≤ · · · ≤ |λn|,
and singular values σ1(A) ≥ · · · ≥ σn(A) ≥ 0. We then have

J∏
j=1

|λj | ≤
J∏

j=1

σj (A)

and
n∏

j=J

σj (A) ≤
n∏

j=J

|λj |

for all 0 ≤ J ≤ n.
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PROOF. It suffices to prove the former claim, as the latter then follows
from (2.3). By arguing as in Lemma A.2, we may assume that A is upper tri-
angular so that the diagonal entries are some permutation of λ1, . . . , λn. Consider
the symmetric minor A′ of A formed by the rows and columns corresponding to
the entries λ1, . . . , λJ . The determinant of this matrix is then λ1 · · ·λJ and thus, by
(2.3), we have

J∏
j=1

σj (A
′) =

J∏
j=1

|λj |.

The claim then follows from the Cauchy interlacing inequality (Lemma A.1). �

We now record a useful identity for the negative second moment of a rectangular
matrix.

LEMMA A.4 (Negative second moment). Let 1 ≤ n′ ≤ n and let A be a full
rank n′ × n matrix with singular values σ1(A) ≥ · · · ≥ σn′(A) > 0 and rows
X1, . . . ,Xn′ ∈ C

n. For each 1 ≤ i ≤ n′, let Wi be the hyperplane generated by
the n′ − 1 rows X1, . . . ,Xi−1,Xi+1, . . . ,Xn′ . Then,

n′∑
j=1

σj (A)−2 =
n′∑

j=1

dist(Xj ,Wj)
−2.

PROOF. Observe that the n′ × n′ matrix (AA∗)−1 has eigenvalues

σ1(A)−2, . . . , σn′(A)−2.

Taking traces, we conclude that

n′∑
j=1

σj (A)−2 =
n′∑

j=1

(AA∗)−1ej · ej ,

where e1, . . . , en′ is the standard basis of C
n′

. However, if vj := (AA∗)−1ej =
(vj,1, . . . , vj,n′), then A∗vj = vj,1X1 + · · · + vj,n′Xn′ is orthogonal to A∗ei = Xi

for i �= j (and thus orthogonal to Wj ) and has an inner product of 1 with A∗ej =
Xj . Taking inner products of A∗vj with the orthogonal projection of Xj to Wj ,
we conclude that

vj,j dist(Xj ,Wj )
2 = 1.

Since vj,j = vj · ej = (AA∗)−1ej · ej , the claim follows. �
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APPENDIX B: A RESULT OF DOZIER AND SILVERSTEIN

Here, we reproduce Theorem 1.1 of [3], which we used in the end of Section 6.

THEOREM B.1 ([3], Theorem 1.1). Let c be a positive constant and x be a
random variable with variance one. Let Xn be an n × r random matrix whose
entries are i.i.d. copies of x, where r = (c + o(1))n. Let Mn be a random n × r

matrix independent from Xn such that the ESD of MnM
∗
n converges to a limiting

distribution H . Define Cn := c
n
(Mn + Xn)(Mn + Xn)

∗. The ESD of Cn then con-
verges almost surely (and hence also in probability) to a limiting distribution F ,
whose Stieljes transform m(z) := ∫ 1

λ−z
dF (λ) satisfies the integral equation

m =
∫

dH(t)

t/(1 + cm) − (1 + cm)z + (1 − c)
(B.1)

for any z ∈ C.

REMARK B.2. The theorem still holds if we restrict the size n of the matrices
to an infinite subsequence n1 < n2 < · · · of positive integers. One can show this
by, for example, artificially filling in the missing indices or repeating the proof of
Theorem B.1 under this restriction.

REMARK B.3. In (B.1), H appears, but the actual definition of Mn is irrele-
vant. Thus, one can conclude that if Mn and M ′

n are such that the ESDs of MnM
∗
n

and M ′
nM

′∗
n tend to the same limit, then the ESDs of c

n
(Mn + Xn)(Mn + Xn)

∗ and
c
n
(M ′

n + Xn)(M
′
n + Xn)

∗ also tend to the same limit.

REMARK B.4. It was mentioned by Speicher [20] and also Krishnapur (pri-
vate communication) that Theorem B.1 can be proven using free probability, which
is different from the approach in [3].

APPENDIX C: USING A HERMITIAN INVARIANCE PRINCIPLE
(BY MANJUNATH KRISHNAPUR)

The authors have shown invariance principles for ESDs of several non-
Hermitian matrix models. As in earlier papers, the proof goes through Hermitian
matrices, but does not need rates of convergence of the Hermitian ESDs, thanks
to new ideas such as Lemma 4.2. However, because of the use of Theorem B.1,
it may appear that a limiting result for the associated Hermitian matrices is nec-
essary to carry the program through. In this appendix, we point out how one may
obtain a weak invariance principle for ESDs of non-Hermitian matrices by us-
ing an invariance principle for Hermitian matrices due to Chatterjee [4], in cases
where a convergence result such as Theorem B.1 is not available. As mentioned
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earlier, other parts of the proof do not require the entries to be i.i.d. Thus, as a con-
sequence, we can obtain a weak invariance principle for a random matrix model
with independent, but not identically distributed, entries.

We need the following definition from [25], Section 2.

DEFINITION C.1 (Controlled second moment). Let κ ≥ 1. A complex ran-
dom variable x is said to have a κ-controlled second moment if one has the upper
bound

E|x|2 ≤ κ

(in particular, |Ex| ≤ κ1/2) and the lower bound

E Re(zx − w)2I(|x| ≤ κ) ≥ 1

κ
Re(z)2(C.1)

for all complex numbers z,w.

EXAMPLE. The Bernoulli random variable [P(x = +1) = P(x = −1) = 1/2]
has 1-controlled second moment. The condition (C.1) asserts, in particular, that x

has variance of at least 1
κ

, but also asserts that a significant portion of this vari-
ance occurs inside the event |x| ≤ κ , and also contains some more technical phase
information about the covariance matrix of Re(x) and Im(x).

THEOREM C.2. Let Mn = (μ
(n)
i,j )i,j≤n and Cn = (σ

(n)
i,j )i,j≤n be constant (i.e.,

deterministic) matrices satisfying:

1. supn n−2‖Mn‖2
2 < ∞;

2. a ≤ σ
(n)
i,j ≤ b for all n, i, j , for some 0 < a < b < ∞.

Given a matrix X = (xi,j )i,j≤n, set

An(X) = 1√
n
(Mn + Cn · X) = 1√

n

(
μ

(n)
i,j + σ

(n)
i,j xi,j

)
i,j≤n

(here, “·” denotes Hadamard product).
Now, suppose that x

(n)
i,j are independent complex-valued random variables with

E[x(n)
i,j ] = 0 and E[|x(n)

i,j |2] = 1, and that y
(n)
i,j are independent random variables,

also having zero mean and unit variance.
Assume, furthermore, that both x

(n)
ij and y

(n)
ij have κ-controlled second moment

for some constant κ > 0.
Also, assume Pastur’s condition,

1

n2

n∑
i,j=1

E
[∣∣x(n)

i,j

∣∣2I
∣∣x(n)

i,j

∣∣ ≥ ε
√

n
] −→ 0 for all ε > 0,(C.2)
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and the same for Y in place of X. Then,

μAn(X) − μAn(Y) → 0

in the sense of probability.

Some remarks follow.

1. If we assume that x
(n)
i,j are i.i.d. and y

(n)
i,j are i.i.d., then Pastur’s condition is

obviously satisfied. Further, the condition of κ-controlled second moment is
also not necessary (see the first step in the proof sketch).

2. Although the weak invariance principle in the paper uses only subsequential
limits (see Remark 6.2), it does use Theorem B.1 to say that subsequential
limits are the same for X as for Y. Hence, we need some changes in the proof
in order to establish Theorem C.2, which we achieve in this appendix.

3. This highlights the important new ideas of the paper, such as Lemma 4.2, which
eliminate the need for rates of convergence of ESDs of the Hermitian matrices
(An − zI)∗(An − zI). This is unlike all earlier papers in the subject that fol-
lowed Bai’s approach and required such rates (e.g., [1, 9, 14, 25]). The need for
rates made it impossible to use the invariance principle for Hermitian matrices
as we shall do now.

4. Take Cn = J (all-ones matrix) and Mn = 0. Pastur’s condition (C.2) then im-
plies almost sure convergence of the ESD of An(X)∗An(X) (see [2], Theo-
rem 3.9). For general Cn, since we use Chatterjee’s invariance principle, which
assumes Pastur’s condition but only gives weak invariance, we are also able to
assert only weak invariance for the non-Hermitian ESDs. Thus, there is some
room for improvement here, namely, to strengthen the conclusion of Theo-
rem C.2 to almost sure convergence.

5. Does the ESD of An(X) converge? Perhaps so, provided the singular values of
Cn − zI have a limiting measure for every z. In [11], we have discussed some
easy-to-check sufficient conditions on Cn which imply convergence.

The following lemma is a “Wishart” analogue of the computations in Section 2
of [4], which considers Wigner matrices. As in that paper, the idea is to consider
the Stieltjes transform of the ESD of An(X)∗An(X) as a function of X. However,
a slight twist is needed, as compared to Wigner matrices, because the entries of
An(X)∗An(X) are quadratic in X, whereas the invariance principle we invoke re-
quires bounds on the sup-norm of derivatives of the Stieltjes transform.

LEMMA C.3. Let X and Y be as in Theorem C.2. Let νX
n and νY

n be the ESDs

of An(X)∗An(X) and An(Y)∗An(Y), respectively. Then, νX
n − νY

n → 0 weakly as
n → ∞.
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PROOF. Let

Hn(X) =
[

0 An(X)

An(X)∗ 0

]

have ESD θX
n . The eigenvalues of Hn(X) are exactly the positive and neg-

ative square roots of the eigenvalues of An(X)∗An(X). Thus, we must show
that θX

n − θY
n → 0 weakly, in probability. Fix any α in the upper half-plane

and let f (X) := 1
2n

Tr(Hn(X) − αI)−1. The proof is complete if we show that
E[f (X)] − E[f (Y)] → 0 for any α with Im{α} > 0. This can be done by follow-
ing the same calculations as in [4]. It works because the entries of Hn(X) are linear
in X and hence the first partial derivative of Hn with respect to any xi,j is a con-
stant matrix. One must also use the upper bound on σi,j to bound the derivatives
of f . �

REMARK. Obviously, the same conclusion holds for An − zI by simply ab-
sorbing zI into Mn.

PROOF OF THEOREM C.2. The conditions on Mn and Cn show that the first
condition of Theorem 2.1 is satisfied [where the two matrices An and Bn are now
An(X) and An(Y), resp.].

Thus, we only need to show an analog of Proposition 2.2 (only the weak part).
We sketch the modifications needed.

1. Lemma 4.1 can be proven under independence and κ-controlled second mo-
ment without the i.i.d. assumption (see [25], Theorem 2.5). If we make the
i.i.d. assumption, then Lemma 4.1 is itself applicable, which explains the first
remark after the statement of the theorem.

The upper bounds on singular values in (4.4) are very general and hold in
our setting for the same reasons. Hence, we reduce to Lemmas 4.2 and 4.3, as
in the paper.

2. The high-dimensional contribution (analog of Lemma 4.2) is proved in almost
the same way. In the proof of the lower tail bound (Proposition 5.1), we use the
bounds on σ

(n)
i,j appropriately. In particular, we get a lower bound of a2(n − d)

for the second moment of dist(X,W) in Lemma 5.3 and, in applying Theo-
rem 5.2, we get a Lipschitz constant of b for F(X) = dist(X,W).

3. In the low-dimensional contribution (Lemma 4.3), the calculations in Sec-
tions 6.1, 6.3 and 6.4 are exactly as before (in Section 6.3, we use the con-
centration result already outlined in the previous step).

4. That leaves Section 6.2, which is the only step that is differently handled. Here,
we apply Lemma C.3 instead of quoting Theorem B.1. �
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