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NETWORK ROUTING IN A DYNAMIC ENVIRONMENT1,2

BY NOZER D. SINGPURWALLA

George Washington University

Recently, there has been an explosion of work on network routing in hos-
tile environments. Hostile environments tend to be dynamic, and the motiva-
tion for this work stems from the scenario of IED placements by insurgents
in a logistical network. For discussion, we consider here a sub-network ab-
stracted from a real network, and propose a framework for route selection.
What distinguishes our work from related work is its decision theoretic foun-
dation, and statistical considerations pertaining to probability assessments.
The latter entails the fusion of data from diverse sources, modeling the socio-
psychological behavior of adversaries, and likelihood functions that are in-
duced by simulation. This paper demonstrates the role of statistical inference
and data analysis on problems that have traditionally belonged in the domain
of computer science, communications, transportation science, and operations
research.

1. Introduction: Background and overview. Network routing problems in-
volve the selection of a pathway from a source to a sink in a network. Network
routing is encountered in logistics, communications, the internet, mission planning
for unmanned aerial vehicles, telecommunications, and transportation, wherein the
cost effective and safe movement of goods, personnel, or information is the driving
consideration. In transportation science and operations research, network routing
goes under the label vehicle routing problem (VRP); see Bertsimas and Simchi-
Levi (1996) for a survey. The flow of any commodity within a network is ham-
pered by the failure of one or more pathways that connect any two nodes. Pathway
failures could be due to natural and physical causes, or due to the capricious ac-
tions of an adversary. For example, a cyber-attack on the internet, or the placement
of an improvised explosive device (IED) on a pathway by an insurgent. Gener-
ally, the occurrence of all types of failures is taken to be probabilistic. See, for
example, Gilbert (1959), or Savla, Temple and Frazzoli (2008) who assume that
the placement of mines in a region can be described by a spatio-temporal Poisson
process.

The traditional approach in network routing assumes that the failure probabil-
ities are fixed for all time, and known; see, for example, Colburn (1987). Mod-
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ern approaches recognize that networks operate in dynamic environments which
cause the failure probabilities to be dynamic. Dynamic probabilities are the man-
ifestations of new information, updated knowledge, or new developments (cir-
cumstances); de Vries, Roefs and Theunissen (2007) articulate this matter for un-
manned aerial vehicles.

The work described here is motivated by the placement of IED’s on the path-
ways of a logistical network; see Figure 1. Our aim is to prescribe an optimal
course of action that a decision maker D is to take vis-à-vis choosing a route from
the source to the sink. By optimal action we mean selecting that route which is both
cost effective and safe. D’s efforts are hampered by the actions of an adversary A,
who unknown to D, may place IED’s in the pathways of the network. In military
logistics, A is an insurgent; in cyber security, A is a hacker. D’s uncertainty about
IED presence on a particular route is encapsulated by D’s personal probability,
and D’s actions determined by a judicious combination of probabilities and D’s
utilities. For an interesting discussion on a military planner’s attitude to risk, see
de Vries, Roefs and Theunissen (2007) who claim that individuals tend to be risk
prone when the information presented is in terms of losses, and risk averse when it
is in terms of gains. Methods for a meaningful assessment of D’s utilities are not
on the agenda of this paper; our focus is on an assessment of D’s probabilities, and
the unconventional statistical issues that such assessments spawn.

To cast this paper in the context of recent work in route selection under dy-
namic probabilities, we cite Ye et al. (2010) who consider minefield detection and
clearing. For these authors, dynamic probabilities are a consequence of improved
estimation as detection sensors get close to their targets. The focus of their work is
otherwise different from the decision theoretic focus of ours.

We suppose that D is a coherent Bayesian and thus an expected utility maxi-
mizer; see Lindley (1985). This point of view has been questioned by de Vries,
Roefs and Theunissen (2007) who claim that humans use heuristics to make de-
cisions. The procedures we endeavor to prescribe are on behalf of D. We do not
simultaneously model A’s actions, which is what would be done by game theorists.
Rather, our appreciation of A’s actions are encapsulated via likelihood functions,
and modeling socio-psychological behavior via subjectively specified likelihoods
is a novel feature of this paper. Fienberg and Thomas (2010) give a nice survey of
the diverse aspects of network routing dating from the 1950s, covering the spec-
trum of probabilistic, statistical, operations research, and computer science litera-
tures. In Thomas and Fienberg (2010) an approach more comprehensive than that
of this paper is proposed; their approach casts the problem in the framework of
social network analysis, generalized linear models, and expert testimonies.

1.1. Overview of the paper. We start Section 2 by presenting a subnetwork,
which is part of a real logistical network in Iraq, and some IED data experienced by
this subnetwork. For security reasons, we are unable to present the entire network
and do not have access to all its IED experience. Section 3 pertains to the decision-
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FIG. 1. Subnetwork for transportation from A to I.

theoretic aspects of optimal route selection. We discuss both the nonsequential
and the sequential protocols. The latter raises probabilistic issues, pertaining to
the “Principle of Conditionalization,” that appear to have been overlooked by the
network analyses communities. The material of Section 3 constitutes the general
architecture upon which the material of Section 4 rests. Section 4 is about the infer-
ential and statistical matters that the architecture of Section 3 raises. It pertains to
the dynamic assessment of failure probabilities, and describes an approach for the
integration of data from multiple sources. Such data help encapsulate the actions of
A, and D’s efforts to defeat them. The approach of Section 4 is Bayesian; it entails
the use of logistic regression and an unusual way of constructing the necessary
likelihood functions. Section 5 summarizes the paper, and portrays the manner in
which the various pieces of Sections 3 and 4 fit together. Section 5 also closes the
paper by showing the workings of our approach on the network of Section 2.

2. A network for transportation logistics. Figure 1 is a subnetwork ab-
stracted from a real logistics network used in Iraq. The subnetwork has nine nodes,
labeled A (not to be confused with adversary A) to I, and ten links, labeled 1 to 10.
The source node is A and the sink node is I.

There are thirteen bridges dispersed over the ten links of Figure 1, with link 9
having one bridge, the “new bridge.” This bridge is a mile away from a park, the
old city, the bus station, and the mosque. The precise locations of the remaining
12 bridges in the subnetwork are classified. There have been four crossings on
the “new bridge,” and none of these have experienced an IED attack. To plan an
optimal route from source to sink, D needs to know the probability of experiencing
an IED attack on the next crossing on each of the ten links. However, we focus
discussion on link 9, because it is for this link that we have information on the
number of previous crossings.

To assess the required probabilities, we need to have all possible kinds of infor-
mation, including that given in Table 1, which gives the history of IED placements
on the remaining twelve bridges of the subnetwork. The data of Table 1, though
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TABLE 1
Historical data on IED placements on 12 bridges in Iraq

Bridge Attack Park Old city Bus station Mosque

Aimma 0 0 0 1 0.1
Adhimiya 0 0.25 0.75 1.5 1
Sarafiya 1 0 1 1 0.5
Sabataash 0 1 0 0.75 0.2
Shuhada 0 2 0 0.75 0.1
Ahrar 0 1 0 1 0.75
Sinak 0 0.5 0 1 0.3
Jumhuriya 0 0.1 0 0.75 0.3
Arbataash 1 0 3 3.5 2
Jadriya 1 0 5.5 5 2
SJadriya 0 0 6 5.5 3
Dora 1 2 5 4 4

public, were painstakingly generated via information from multiple sources—
such as Google Maps—by the so-called process of “connecting the dots.” Gen-
erally, such data are hard to come by via the public domain. The recently re-
leased WikiLeaks (2010) data has some covariate information on IED experi-
ences in Afghanistan. However, there are very few well-defined logistical routes
in Afghanistan, and those that may be there are not identified in the WikiLeaks
database. Furthermore, the covariate information that is available is not of the kind
relevant to route selection. Thus, for this paper, the WikiLeaks–Afghanistan data
are of marginal value.

In Table 1, the column labeled “Attack” is 1 whenever the bridge has expe-
rienced an attack; otherwise it is 0. The other columns give the distance of the
bridge, in miles, from population centers like a park, old city, bus station, and
mosque. An entry of zero denotes that the bridge is next to the landmark. Whereas
data on IED attacks tends to be public (because of press reports), data on the num-
ber of crossings by convoys, the number of IEDs cleared, the composition of the
convoys, etc., remains classified.

The three routes suggested by Figure 1 are as follows: (1,2,3,4,5,6,7,8),
(1,2,3,4,10), and (1,2,9). Since IEDs are placed by adversaries, D is generally
uncertain of their presence when planning begins. Additionally, there are pros and
cons with each route in terms of distance traversed, route conditions (such as the
number of curves and bends, terrain topology), proximity to hostile territory, recep-
tiveness of the local population to harbor insurgents, and so on. In actuality, D will
have access to historical data of the type shown in Table 1, and also information
about the nature of the cargo, the convoy speed, intelligence about the cunning-
ness and sophistication of the insurgents, the number of previous unencumbered
crossings on a link, etc.
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D’s problem is to select an optimal route between the three routes given above.
A variant is to specify the optimal route sequentially. That is, start by going from
A to C via links 1 and 2, and then, upon arrival at C, make a decision to proceed
along link 9 to the sink, or to take the circuitous routes via the links 3 to 8, and 10,
to get to the sink. Similarly, upon arrival at node E, D could proceed along link 10,
or via the links 5,6,7, and 8 to arrive at the sink. D’s decision as to which choice
to make will be based on D’s uncertainty of IED presence on the links 3 to 10,
assessed when D is at node C and at node E.

Thus, optimal route selection is a problem of decision under uncertainty. Be-
cause of the dynamic environment in which convoys operate, D’s uncertainties
change over time. In Section 3 we prescribe a decision-theoretic architecture for
route selection. This requires that D assess his (her) uncertainties about IED place-
ments, as well as utilities for a successful or failed traversal. Since D’s uncertain-
ties are dynamic, the prescription of Section 3 is also dynamic; that is, the selected
route is optimal only for an upcoming trip. The main challenge therefore is an
assessment of the dynamic probabilities; see Section 4.

3. D’s decision-theoretic architecture. Under the nonsequential protocol, D
needs to choose, at decision time, from the following: D1 ≡ take route (1,2,9);
D2 ≡ take route (1,2,3,4,5,6,7,8); or D3 ≡ take route (1,2,3,4,10). Figure 2
shows D’s decision tree for these choices, with each Di leading to a random node
Ri , with each Ri leading to an outcome S (for success) and F (for failure), i =
1,2. Here S is the event that an IED is not encountered on any link of the route,
and F the event that an IED is encountered. If D is aware of any route clearing
activity, then this becomes a part of D’s covariates used to assess probabilities. The
presence of an IED does not necessarily imply an explosion. Unexploded IEDs
cause disruptions, and D’s aim is to choose that route which minimizes the risk of
damage and disruption.

In Figure 2, p1(S) and p1(F ) = 1 − p1(S) denote D’s probabilities for success
and failure, and U(D1, S) and U(D1,F ), D’s utilities under D1. The quantities
p2(S), p2(F ), U(D2, S), and U(D2,F ) pertain to D2; similarly, for D3.

Assessing utilities is a substantive task [cf. Singpurwalla (2010)] entailing re-
wards, penalties, and attitudes to risk. This task is not pursued here. However, one
often assumes binary loss functions, so that U(Di, S) = 1 and U(Di,F ) = 0.

FIG. 2. D’s decision tree for nonsequential actions.
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Per the principle of maximization of expected utility, D chooses that Di for
which the expected utility is a maximum. Thus, at each Ri , D computes, for i =
1,2,3,

E[U(Di)] = pi(S)U(Di, S) + pi(F )U(Di,F ),

and chooses that Di which maximizes E[U(Di)].

3.1. D’s assessment of pi(S). The building blocks of pi(S) are the p(j)’s,
D’s probabilities of an IED placement on link j , j = 1, . . . ,10. Under action D1,
the event S will occur at the terminus of the tree if there is no IED placement on
the links 1, 2, and 9. If E(j) denotes the event that an IED is placed on link j , then
p(j) is an abbreviation for P(E(j)). If D assumes that the E(j)’s, j = 1,2,9, are
independent, then

p1(S) = (
1 − p(1)

)(
1 − p(2)

)(
1 − p(9)

)
and p1(F ) = 1 − p1(S);

otherwise,

p1(F ) = p(1) + p(2) + p(9) − p(1,2) − p(1,9) − p(2,9) + p(1,2,9),

where p(j, k) is D’s joint probability that both E(j) and E(k) occur, j �= k; sim-
ilarly with p(j, k, l), j �= k �= l. If p(j |k) denotes D’s conditional probability of
E(j) given E(k), and if D judges E(j) independent of E(l), given E(k), then

p(j, k, l) = p(j |k)p(k|l)p(l).

Conditional independence in networks is often invoked when dependence between
E(j) and E(k) matters only when links j and k are neighbors. Since links 1 and 9
are not neighbors, D may judge E(1) and E(9) independent given E(2).

D’s main task is to assess the probabilities of the type p(j) and p(j |k). The
material of Section 4 pertains to this exercise.

3.2. Decision making under a sequential protocol. Here, D starts with a single
choice, namely, getting to node C via links 1 and 2, and then, upon arriving at C,
making one of two choices: get to the sink via link 9, or via the links 3 through
8, and 10. With three choices, the decision tree for the sequential protocol will be
analogous to that of Figure 2, save for the fact that the decision nodes will be at
nodes C and E, instead of being at node A. The rest of the analysis parallels that
described in the material following Figure 2 [cf. Singpurwalla (2009)], save for
one matter, namely, the caveat of conditionalization.

3.2.1. The caveat of conditionalization. The principle of conditionalization
(POC) pertains to probability assessments of two (or more) events, and the dis-
position of one of them becomes known [cf. Singpurwalla (2006), page 21, and
(2007)]. It arises because conditional probabilities are in the subjunctive mood.
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When the disposition of the conditioning event becomes known, and the POC is
upheld, the probability of the unconditioned event is its previously assessed con-
ditional probability. When the POC is not upheld, one assesses the probability of
the unconditioned event via a likelihood and Bayes’ Law, using the revealed value
of the conditioned event as data. When sequential routing is done for strategic rea-
sons, socio-psychological issues come into play, and then it is realistic to assess
the probability of the unconditioned event via a likelihood.

To illustrate the above, consider the scenario of D choosing a sequential pro-
tocol, and having arrived at node C needs to assess the quantities p2,9(S) and
p2,3(S), where p2,9(S) is the probability of successfully arriving at the sink via
links 2 and 9. If the POC is upheld, then p2,9(S) is obtained as P(Ec(9)|Ec(2));
Ec(2) is the probability of no IED presence on link 2. If the POC is not upheld,
then

p2,9(S) = P(Ec(9);Ec(2)) ∝ L(Ec(9);Ec(2))
(
1 − p(9)

)
,

where the middle term is D’s likelihood of an IED absence on link 9, under the
sure knowledge of an IED absence on link 2. Similarly with p2,3(S).

The likelihood is specified by D and is the price to be paid for rejecting the
POC. Such likelihoods may encapsulate the socio-psychological considerations
that D chooses to exercise. Since the likelihood is a weight that D assigns to a prior
probability, D may upgrade (downgrade) the prior via the likelihood depending on
whether the absence of an IED on link 2 would make the presence of an IED on
link 9 more (or less) likely. Here much depends on what D thinks of the abilities
and resources of insurgents.

4. Dynamic assessment of link probabilities. By link probabilities, we mean
unconditional probabilities of the type p(j), j = 1, . . . ,10. By a dynamic assess-
ment, we mean an updating of each p(j) due to additional information that can
come in the form of hard data, expert testimonies, socio-psychological consider-
ations, or new covariate information. The updating of a p(j) can come into play
at any time, most often at the commencement of each route scheduling session,
or in the case of sequential routing, at any time during the cycle at an interme-
diate node. In what follows, we focus on link j , and discuss the assessment of
p(j). A dynamic assessment of the conditional probabilities p(j |k) is discussed
in Section 4.4.

Factors that influence any p(j) would be covariates such as route topography
(the number of bends, curves, bridges, and surface conditions), convoy size and
composition (materials or humans), convoy speed, time of transport (day or night),
weather conditions, political climate, etc. A second factor would be historical data
on IED placements on link j , and on all the other links in the region. Finally, also
relevant would be D’s subjective view about p(j), encapsulated via a prior.
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4.1. Notation and terminology. Let (X = 1) denote the event that one or more
IEDs are placed on link j ; (X = 1) is a proxy for E(j), and P(X = 1) a proxy for
p(j). To avoid cumbersome notation, we will not endow X with the index j . Let
Z1, . . . ,Zk be k covariates that influence p(j), and denote these by the vector Z =
(Z1, . . . ,Zk); Z is assumed known to D. Suppose that there have been n crossings
on link j , with Xm = 1(0) if the mth crossing experienced (did not experience) an
IED, m = 1, . . . , n. Let X = (X1, . . . ,Xn) denote the historical IED experience on
link j . Assume that X1 = X2 = · · · = Xn = 0, or that X1 = X2 = · · · = Xn−1 = 0,
and that Xn = 1. That is, D has observed a series of n successes on link j , or has
just experienced a failure. Motivation for these extreme cases is given later.

The IED experience for the entire region is in matrix D, where

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 Z11 · · · Zk1
Y2 Z12 · · · Zk2
...

Yl Z1l · · · Zkl
...

Ys Z1s · · · Zks

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the lth row of D, Yl = 1(0) if an IED presence has been encountered (not en-
countered) under condition Z1l , . . . ,Zkl , for l = 1, . . . , s. Thus, at disposal to D
are the s IED related experiences in the region, and associated with each experi-
ence are the values of the k covariates that influence each experience. To avoid any
duplicate weighting of data, X will not be a part of D. The motivation for exclud-
ing X from D is to give link j a special emphasis by incorporating the effect of X,
which is specific to link j , in a vein that is different from D.

Let xi be the realization of Xi , and yl of Yl , i = 1, . . . , n and l = 1, . . . , s. Each
xi = 1 or 0; similarly, yl . D is assumed known to D; its elements may not be
controlled by D.

D’s task is to assess P(X = 1;x,Z,D∗), where x = (x1, . . . , xn), and D∗ is D
with the Yl’s replaced by yl , l = 1, . . . , s. The above expression is D’s probability
of an IED presence on link j , knowing x, Z, and D∗. Assessing this probability
is tantamount to fusing data from two sources: IED experience on link j , and
historical IED experience in the region wherein j resides. It is a form of weighting
wherein one borrows strength based on individual and population characteristics.

4.1.1. The proposed model. Start by assuming x unknown, so that P(X =
1;x,Z,D∗) is P(X = 1|X;Z,D∗), and invoke the law of total probability to write

P(X = 1|X;Z,D∗) =
∫ 1

0
P(X = 1|p,X;Z,D∗)π(p|X;Z,D∗) dp,

where p is a propensity [see Singpurwalla (2006), page 50], and π(p|X;Z,D∗) is
D’s uncertainty about p, given X, with Z and D∗ known. The propensity of event
E is the proportion of times E occurs in an infinite number of trials.
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If we assume that, given p, the event (X = 1) is independent of X,Z, and D∗,
then

P(X = 1|X;Z,D∗) =
∫ 1

0
p · π(p|X;Z,D∗) dp,(4.1)

and by Bayes’ Law,

π(p|X;Z,D∗) ∝ π(X|p;Z,D∗) · π(p;Z,D∗)
= π(X|p) · π(p;Z,D∗),

if given p, X is independent of Z and D∗. Here π(p;Z,D∗) is D’s uncertainty
about p in light of Z and D∗, and π(X|p) is D’s probability model for X. Equation
(4.1) now becomes

P(X = 1|X;Z,D∗) ∝
∫ 1

0
p · π(X|p) · π(p;Z,D∗) dp.(4.2)

However, X is observed as x, and, thus, a probability model for X does not make
sense. We therefore write P(X = 1|X;Z,D∗) as P(X = 1;x,Z,D∗), and π(X|p)

as L(p;x), the likelihood of p under x. Now equation (4.2) becomes

P(X = 1;x,Z,D∗) ∝
∫ 1

0
p · L(p;x) · π(p;Z,D∗) dp.(4.3)

Equation (4.3) is our proposed model for assessing p(j). To proceed, D needs to
specify the likelihood L(p;x) and π(p;Z,D∗), the posterior of p.

4.2. Psychological considerations in specifying likelihoods. The IED scenario
entails special considerations for specifying L(p;x). These arise because D needs
to incorporate an insurgent’s socio-psychological behavior in the IED placement
process, and also D’s strategy for outfoxing the insurgent.

Recall that with x = (0, . . . ,0) or x = (0, . . . ,0,1), the conventional likelihood
of p would be L(p;x) = p

∑
xi (1 − p)n−∑

xi , which for the aforementioned x
would be (1−p)n or (1−p)n−1 ·p. The motivation for the conventional specifica-
tion is that a preponderance of failures (i.e., non-IED placements) should decrease
the propensity of an IED placement, and vice versa. However, the conventional
approach, though appropriate for scenarios which are nonadversarial, is inappro-
priate for IED placement which embodies an adversary with a socio-psychological
agenda. It seems that here a preponderance of failures should eventually increase
the propensity of success. Insurgents are opportunistic adversaries who may allow
a series of successful link crossings only to impart to D a sense of false security,
while all the time preparing to do damage on the next crossing. Similarly, an as-
tute D would view the occurrence of a success that is preceded by a sequence of
failures (i.e., non-IED placements) with much pessimism, as a dramatic change
in the operating environment. Essentially, D would downgrade the impact of the



1416 N. D. SINGPURWALLA

observed sequence of (n−1) failures and strongly weigh the impact of the last suc-
cess. With the above behavioristic considerations, our proposed likelihood for p,
for x = (x1, . . . , xn) fixed, is of the form

L(p;x) = (1 − p)
n
√

n−∑
xi · p

∑
xi .

When x = (0, . . . ,0), the above likelihood becomes

L(p;x) = (1 − p)
n
√

n,(4.4)

and when x = (0, . . . ,0,1), it is

L(p;x) = (1 − p)
n
√

n−1 · p.(4.5)

As n → ∞, equation (4.4) tends to (1 − p), the conventional likelihood for a
single Bernoulli trial that results in a failure. With n → ∞, equation (4.5) tends to
(1−p) ·p, the conventional likelihood for the case of two Bernoulli trials resulting
in one failure and one success. In an adversarial context, this is tantamount to D
regarding a long series of failures as only a single failure (i.e., D does not become
complacent), and a long series of failures followed by a success as only one failure
and one success. In this latter case, D gives equal weight to the (n − 1) failures
and the one success; that is, D becomes deeply concerned when the first success is
observed. Figure 3 illustrates the likelihood.

The proposed likelihood of p is in the envelope bounded by (1 − p) and

(1 − p)
3√3. Thus, after three successive failures D gives more and more weight

to larger values of p, suggesting an absence of D’s complacence with a long se-
ries of failures. The specification of the likelihoods as embodied in equations (4.4)
and (4.5) is a novel feature of this paper; it is a possible approach to adversarial
modeling.

4.3. D’s assessment of the posterior π(p;Z,D∗). An assessment of the poste-
rior of p in the light of known covariates Z and the historical data D∗ is developed
in two stages. The challenge here is with the specification of the likelihood.

FIG. 3. The likelihood of p as a function of n.
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Stage I: Logistic regression for extracting the information in D∗. Information
provided by D∗ lies in an assessment of the posterior of β = (β1, . . . , βl, . . . , βk),
where β appears in a logistic regression model

P(Yl = 1;β,Zl) = 1

1 + exp(−∑k
u=1 Zluβu)

for l = 1, . . . , s, with Zl = (Z1l , . . . ,Zkl). Recall, Yl and Zl are the lth row of D∗.
Using standard but computationally intensive simulation procedures, we can

obtain the posterior of β in light of D∗. Denote this posterior as π(β;D∗).
Stage II: The likelihood of p under Z and D∗. To assess the posterior

π(p;Z,D∗), invoke Bayes’ Law to write

π(p;Z,D∗) ∝ L(p;Z,D∗)π(p),(4.6)

where L(p;Z,D∗) is the likelihood of p in light of the known Z and D∗, and π(p)

is D’s prior for p. Note that p and Z are specific to link i, whereas D∗ is common
to all the links of the network. The prior on p could be any suitable distribution,
such as a beta distribution over (0,1). The main theme of Stage II, however, is a
development of the likelihood L(p;Z,D∗).

Whereas likelihoods may be subjectively specified, the conventional method is
to invert a probability model by juxtaposing the parameter(s) and the random vari-
ables. This is the strategy we use, but to do so we need a probability model for
p with Z and D∗ as background information. Since p depends on Z, we denote
this dependence by replacing p with p(Z). Thus, we seek a probability model for
p(Z) with D∗ as a background, namely, P [p(Z);D∗]. But knowing D∗ is equiv-
alent to knowing β with its posterior probability, π(β;D∗), developed in Stage I.
Thus, for β = β∗, [p(Z);β∗] has probability π(β∗;D∗). However, per the logistic
regression model,

[p(Z);β∗] = 1

1 + exp(−∑k
u Zuβ∗

u)
,

where β∗
u appears as the uth element of β∗ = (β∗

1 , . . . , β∗
k ).

To summarize, the event [p(Z);β∗] = 1/[1 + exp(−∑
Zuβ

∗
u)] has probability

π(β∗;D∗), and this provides us with a probability model for [p(Z);D∗]. Conse-
quently, a plot of (p(Z);β∗) versus π(β∗;D∗) provides the required likelihood
function.

To implement this idea, we sample a β∗ from π(β;D∗) to obtain

[p(Z);β∗] = 1

1 + exp(−∑k
u Zuβ∗

u)
,

and also π(β∗;D). A plot of (p(Z);β∗) versus π(β∗;D∗) is then the likelihood
function of p in light of Z and D∗; see Figure 4.
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FIG. 4. The likelihood of p with Z and D∗ known.

With π(p(Z)) the prior on p specified, and the likelihood L(p;Z,D∗) induced
via a logistic regression model governing p(Z) and D∗, the desired posterior

π(p;Z,D∗) ∝ L(p;Z,D∗) · π(p(Z))

can be numerically assessed.
Once the above is done, all the necessary ingredients for obtaining equation

(4.3), which can now be written as

P(X = 1;x,Z,D∗) ∝
∫

p · L(p;x) · L(p;Z,D∗) · π(p)dp,(4.7)

are at hand. The above expression can be numerically evaluated.

4.4. Dynamic assessment of conditional probabilities. For both the nonse-
quential and sequential protocols wherein the POC is upheld, we need to assess
conditional probabilities of the type P(n|m), where links m and n are adjacent to
each other, and traversing on m precedes that on n. There are two possible strate-
gies. The first one is for D to subjectively change the assessed p(n) by either
increasing it because an insurgent might find it easy to populate neighboring links
with IEDs, or to decrease it if D thinks that an insurgent has limited resources for
placing IEDs.

The second approach is less subjective because it incorporates data on IED
placements or nonplacements on neighboring links. The idea here is to treat the
conditioning event E(m) as a covariate, so that the vectors Z and β of Sec-
tions 4.1 and 4.3 get expanded by an additional term, as Z = (Z1, . . . ,Zk,1) and
β = (β1, . . . , βk, βk+1). Correspondingly, the matrix D of Section 4.1 also gets
expanded to include an additional column whose lth term Z(k+1)l is 1 whenever
there has been an IED experience in a preceding link; otherwise Z(k+1)l is 0. With
the above in place, a repeat of the exercise described in Section 4.3 would enable
a formal assessment of the conditional probabilities. The only other matter that
remains to be addressed pertains to the likelihood of p as discussed in Section 4.2.
Since the likelihood is a weight assigned to the posterior of p, D may either in-
crease the L(p;x) of equations (4.4) and (4.5), or decrease it depending on what
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D thinks of an insurgent’s abilities and resources. D would increase L(p;x) if D
feels that the insurgent’s resources are plentiful; otherwise D downgrades L(p;x).

5. Summary and conclusions. Equation (4.7) shows how D can assess p(j),
the probability of one or more IED placements on link j in a unified manner by
a systematic application of the Bayesian approach. It entails a fusion of infor-
mation on past IED experience on link j (encapsulated by X), historical data on
IED experience in the region (encapsulated by the matrix D∗), and D’s subjec-
tive views about p(j), encapsulated via the likelihood L(p;x) and the prior π(p).
The essence of equation (4.7) is that its right-hand side is the expected value of
a weighted prior distribution of p. The weighting of the prior is by the product
of two likelihoods, one reflecting historical IED experience specific to link i, and
the other reflecting historical IED experience in the region as well as the relevant
covariates specific to the forthcoming trip contemplated by D. The entire develop-
ment being grounded in the calculus of probability is therefore coherent.

Though cumbersome to plough through, there are novel features to the two
likelihoods. The first likelihood—equations (4.4) and (4.5)—is an unconventional
likelihood for use with Bernoulli trials. It is motivated by socio-psychological con-
siderations attributed to both the insurgents who place the IED’s, as well as to D,
who does not become complacent upon a sequence of successful crossings and
who upon the occurrence of the first failure adopts the posture of extreme cau-
tion. The second likelihood—that of Figure 4—is induced in an unusual manner
by leaning on the posterior distribution of the parameter vector of a logistic regres-
sion.

The approach of Section 4 displays the manner in which information from dif-
ferent sources can be fused by decomposing the likelihood of p. Equation (4.7)
shows this. The material of Section 4 feeds into that of Section 3 which pertains to
sequential and nonsequential decision making under uncertainty.

The computational and simulation work spawned by Section 4 entails logis-
tic regression, generating k-dimensional samples from the posterior distribution
of β , numerically assessing π(p;Z,D∗)—equation (4.6)—and numerical integra-
tion to obtain P(X = 1;x,Z,D∗)—equation (4.7). None of these pose any obsta-
cles. Section 4.4 pertains to conditional probabilities. It expands on Sections 4.1
through 4.3, by treating the conditioning events as covariates.

5.1. Data and information requirements. The one major obstacle pertains to
the paucity of the data for validating the approach. The required data, namely, x, Z,
and D∗, are available to the military logisticians, but are almost always classified.
The WikiLeaks data tend to focus on IED explosions and not on success stories
wherein IED’s get cleared, similarly with other publicly available data. Informa-
tion that is relevant to constructing the likelihood based on socio-psychological
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considerations is highly individualized, and perhaps not even recorded. It is desir-
able to collect this kind of information via experiments pertaining to the psychol-
ogy of logisticians and route planners, and also insurgents via what is known as
“red teaming.”

The text of this paper can be seen as a template for addressing network routing
in a dynamic environment. The network architecture of Figure 1 brings out the
necessary caveats that problems of this type pose, one such caveat being the caveat
of conditionalization, discussed in Section 3.2.1. Real logistical networks are more
elaborate. In actual practice the matrix D∗ could have a very large dimension and
thus be unmanageable. However, given the role that D∗ plays, one may simply
sample from a high dimensional D∗ to work with a more manageable matrix. Be-
sides a prior for p, π(p), all that is required of D are the utilities mentioned in
Section 3. However, these utilities are proxies for costs, and no form of optimiza-
tion can be achieved without cost considerations. Finally, this paper shows how
statistical methodologies can be constructively brought to bear in network routing
problems which generically belong in the domain of computer science, network
analysis, and operations research.

We close this paper by illustrating in Section 5.1 the workings of Sections 3
and 4 by using the data of Table 1 to assess the probability of encountering an IED
on the next crossing on the “new bridge.”

5.2. The logistics network revisited. With respect to the network of Figure 1,
the data of Table 1 maps to the matrix D∗ of Section 4.1, with its column 2 corre-
sponding to Yl, l = 1, . . . ,12, column 3 corresponding to Z1,1, . . . ,Z1,12, and so
on, with column 6 corresponding to Z4,1, . . . ,Z4,12.

A logistic regression model

P(Yl = 1;β,Zl) = 1

1 + exp(−∑4
u=0 Zulβu)

for l = 1, . . . ,12, with Z0l = 1, was fitted to the data of Table 1 using independent
Gaussian priors with means 0 and standard deviations 10. This choice of priors is
arbitrary. The joint posterior distribution of (β0, . . . , β4) was obtained via Gibbs
sampling with 10,000 simulations after a burn-in of 1,000 simulations.

The marginal posterior distributions of β0, β2, and β4 were symmetric looking,
but those of β1 and β3 were skewed to the left; plots of these distributions are
not shown. Table 2 compares posterior means against their maximum likelihood
estimates, showing a good agreement between the two, save for β0.

About 60 samples from the joint posterior distribution of (β0, . . . , β4) were gen-
erated, and for each sample, the quantity [1+ exp(−∑4

u=0 βu)]−1 computed. Here
Z = (1,1,1,1), suggesting that the next crossing is to be on the new bridge which
is one mile away from all the four city centers of interest. Associated with each
generated sample is also the probability of the sample; this is provided by the joint
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TABLE 2
Comparison of Bayes’ versus maximum likelihood estimates

Approach β0 β1 β2 β3 β4

Bayes 0.635 1.583 3.584 4.382 1.579
Maximum likelihood 1.811 1.817 3.299 4.402 1.311

probability density. Figure 5 shows a plot of the computed quantity mentioned
above [our (p(Z),β∗) of Section 4.3] versus the joint probability. A smoothed
plot, smoothed by a moving average of five consecutive points, is the Monte Carlo
induced likelihood.

Since the new bridge has experienced 4 previous crossings and none of these
crossings have experienced an IED attack, x = (0,0,0,0); thus, L(p;x) = (1 −
p)

√
2, see equation (4.4). With the above in place, all the ingredients needed to

compute P(X = 1;x;Z,D∗)—equation (4.7)—are at hand, save for π(p) the
prior. Supposing π(p) uniform on (0,1), we have

P(X = 1;x;Z,D∗) ∝
∫ 1

0
p(1 − p)

√
2L(p;Z,D∗) dp,

with L(p;Z,D∗) given by the likes of Figure 5. This can be numerically evaluated
for a range of p, say, p = 0.05,0.1, . . . ,0.95,1, to obtain P(X = 1;x,Z,D∗) ∝
0.129. Similarly, we obtain P(X = 0;x,Z,D∗) ∝ 0.293. The normalizing constant
is 0.422, giving P(X = 1;x,Z,D∗) = 0.306 and P(X = 0;x,Z,D∗) = 0.694.

FIG. 5. Monte Carlo induced likelihood function.
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Thus, the probability of encountering an IED on the next crossing on the “new
bridge” is 0.306.

5.2.1. Optimal route selection for logistical network. In order to prescribe an
optimal route for the network of Figure 1, we need to calculate the probability of
encountering an IED on each of the remaining 9 links of the network in a manner
akin to that given above for link 9, the “new bridge.” This requires that we have the
vectors x and Z for each of these links, where x is the historic IED experience for a
link, and Z is the vector of covariates associated with the links. This we do not have
and are unable to obtain for reasons of security. Consequently, and purely with the
intent of illustrating how our decision theoretic framework can be put to work,
we shall make some meaningful specifications about the p(j)’s, j = 1, . . . ,8,10.
These will be based on the relative lengths of each link, relative to the length of
link 9 for which p(9) has been assessed as 0.306; that is, calibrate the required
p(j)’s in terms of p(9).

To do the above, we start by remarking that links 1 and 2 are of almost equal
length, and are about two-thirds the length of link 9. Links 3 to 8 are of equal length
and are about one-fifth the length of link 9, whereas link 10 is about half the length
of link 9. Note that Figure 1 is not drawn to scale. Thus, we set p(1) = p(2) =
(0.66)(0.306) = 0.20, p(10) = (0.50)(0.306) = 0.15 and p(3) = p(4) = p(5) =
p(6) = p(7) = p(8) = (0.20)(0.306) = 0.06. These choices are purely illustrative;
we could have used other methods of scaling such as the logarithmic or the square
root.

In addition to specifying the p(j)’s, we also need to specify utilities. For this
we propose a utility function of the form 1 − n/x for a successful route traversal.
Here n is the number of links in the route, and x is a constant which ensures that
a successful traversal does not result in a negative utility. Specifically, the idea
here is that a successful traversal yields a utility of one, but each link in the route
contributes to a disutility to which is assigned a weight 1/x. Choice D1 entails the
route (1,2,9) and with x chosen to be 100, the utility of a successful traversal on
this route will be 1 − 3/100. Similarly, the failure to achieve a successful traversal
yields a utility of 0 − n/x, yielding a negative utility of −n/x, which in the case
of route (1,2,9) with x = 100 is −3/100.

The above choices for utility do not take into consideration things such as com-
position of the convoys, traversal time, vicinity to hostile territory, costs of disrup-
tion, etc. With the above in place, and assuming independence of the IED place-
ment events, it can be easily seen that the expected utilities of choices D1, D2,
and D3 are 0.414, 0.361, and 0.430, respectively. Thus, for the given choices of
probabilities and utilities, D’s optimal route will be D3, which is (1,2,3,4,10).
Observe that neither the shortest nor the longest routes are optimal. Sensitivity of

D’s final choice to values of x other than 100 can be explored. For example, were
x taken to be 10, then D1 will turn out to be D’s optimal choice. This is because it
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turns out the probability of a successful traversal via choices D1, D2, and D3 turns
out to be rather close to each other, namely, 0.444, 0.441, and 0.480, respectively.

This completes our discussion on illustrating the workings of the proposed ap-
proach vis-à-vis the network of Figure 1, and closes the paper.
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