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The research questions that motivate transportation safety studies are
causal in nature. Safety researchers typically use observational data to answer
such questions, but often without appropriate causal inference methodology.
The field of causal inference presents several modeling frameworks for prob-
ing empirical data to assess causal relations. This paper focuses on exploring
the applicability of two such modeling frameworks—Causal Diagrams and
Potential Outcomes—for a specific transportation safety problem. The causal
effects of pavement marking retroreflectivity on safety of a road segment
were estimated. More specifically, the results based on three different im-
plementations of these frameworks on a real data set were compared: Inverse
Propensity Score Weighting with regression adjustment and Propensity Score
Matching with regression adjustment versus Causal Bayesian Network. The
effect of increased pavement marking retroreflectivity was generally found to
reduce the probability of target nighttime crashes. However, we found that
the magnitude of the causal effects estimated are sensitive to the method used
and to the assumptions being violated.

1. Introduction. An estimated 2.2 million people suffered some kind of
transportation-related injury in 2007. About 87 percent of these injuries resulted
from highway crashes [Bureau of Transportation Statistics (2007)]. Transporta-
tion safety management aims at identifying causes of such crashes, developing
countermeasures to mitigate crashes, and evaluating the effectiveness of a safety
countermeasure. It is well known that causal propositions of this kind, and their
effect sizes, are best estimated from randomized experiments.

The types of data available in transportation safety studies are primarily obser-
vational, which makes it difficult to consistently estimate causal effects of counter-
measures. In this paper we evaluate and compare the application of two commonly
used causal inference frameworks (one that is commonly applied in computer sci-
ence and another that is commonly applied in statistics) to transportation safety. In
particular, the aim of this paper is twofold:

• To introduce a unique transportation safety data set, created from multiple
sources, and to highlight the problems associated with the data used in safety
studies.
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• To explore the application of causal inference methods in transportation safety
studies and document the issues associated with the analyses. We do this by
estimating the causal effect of pavement marking retroreflectivity (PMR) on tar-
get nighttime crashes using the causal modeling frameworks of the Potential
Outcomes (PO) and Causal Diagrams (CD), and then compare the results.

Causal inference methods in transportation safety studies have received little
attention. Davis (2000) provides a review and notes that the assignment mecha-
nism must be included in statistical models to consistently estimate the effect of
any countermeasure on crashes. Davis (2004) uses Pearl’s causal Bayesian net-
works (CBN) for crash reconstruction and examines token causal claims to answer
single-event causation questions; see Eells (1991) for a review of token and type
causes.1 In contrast to single-event causation, our work examines the application of
causal inference methods to population level causal effects in transportation safety
studies. Population causal claims are more applicable to transportation safety man-
agement since they reflect the effect of countermeasures in a population as opposed
to singular causal claims which are geared more toward accident reconstruction
and liability issues. We examine the hypothesis that low PMR levels are causative
agents for an increase in the risk of nighttime crashes. Causal effects are estimated
using the PO framework and CD framework, and the results are compared.

It has been shown that the PO framework and the CD framework are mathe-
matically (theoretically) equivalent; see Pearl (2000), Chapter 7. However, there
are different statistical implementations of these frameworks that offer different
paths to estimate causal effects, and, in practice, the results may or may not be
similar. For instance, the PO framework is commonly implemented using propen-
sity score matching or inverse propensity score weighting, and the CD framework
is commonly implemented using CBNs. Several assumptions relating to estima-
tion of a causal effect from observational data are reviewed in Sections 4 and 5.
Apart from these, differences in the estimates of causal effect could arise due to
additional assumptions required by each framework, inherently tied to the afore-
mentioned statistical implementations. For instance, the CD framework requires
the use of a causal graph that represents the qualitative causal mechanism of the
data generating process. This graph can be obtained from prior knowledge and/or
data. The algorithms used to recover causal graphs from data require additional
assumptions such as faithfulness and some require the data to be either discrete or
Gaussian. The PO framework does not require these additional assumptions since
it does not require such causal graphs.2 Furthermore, while the CD framework

1Token causes are those associated with a single unit or event, for instance, “Since Jane was speed-
ing, she ended up in an accident.” On the other hand, type causal claims are associated with a popu-
lation, for instance, “Speeding causes crashes.”

2The PO framework requires the analyst to qualitatively model the treatment assignment mecha-
nism (see Section 4.1). The use of graphs to represent the treatment assignment mechanism could
make this easier to communicate; see the discussion section.
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enables one to work with the complete data set, the PO framework could lead to
elimination of a part of the data set if one uses matching. Sfer (2005) and Fienberg
and Sfer (2006) show in a simple simulated logistic regression example that there
is an implicit agreement between PO and CD frameworks. However, we are not
aware of a study that explores the differences, compares the results of both model-
ing frameworks on real-life observational data, and examines the advantages and
disadvantages associated with applying each method in a practical context.

A complete and rigorous comparison of both frameworks requires considera-
tions of all possible implementations, which is beyond the scope of this paper.
Here, we focus on two commonly used implementations in practice, both of which
use the complete data set in order to allow for a better comparison of the results.
We implement the PO framework using inverse propensity score weighting (IPW)
and regression adjustment, and the CD framework using discrete causal Bayesian
Networks (CBN); the implementation details are provided in Sections 4 and 5. We
also implemented the PO framework using propensity score matching3 since it is
a popular alternative to IPW. However, as previously noted, matching could lead
to elimination of part of the data and the comparison of estimates with those from
CBN may be biased due to differences in the data themselves. This issue is further
discussed in Sections 4 and 7 of the paper.

The remainder of the paper is organized as follows: Section 2 introduces the
problem statement; Section 3 introduces the data set and the design of the hy-
pothetical experiment to estimate the causal effects; Sections 4 and 5 present the
analyses and results of the PO framework and the CD framework; Section 6 com-
pares the results; and, Section 7 concludes with a discussion.

2. Problem description. The traffic accident fatality rate increases by almost
75 percent during the period of time between 9 p.m. and 6 a.m. [National Highway
Traffic Safety Administration (2007)]. This raises a question of what can be done
about the fact that there is a greater rate of crashes at night than during the day?
It is hypothesized that low pavement marking visibility may be one cause of the
increased rate of nighttime crashes. One of the objectives of the paper is to examine
this hypothesis.

Pavement markings delineate the limits of the traveled way and provide drivers
navigation and control guidance. During the daytime, drivers are likely to use a
combination of pavement markings, other traffic control devices (e.g., signs) and
visual cues along the roadside (e.g., utility poles, vegetation, etc.) to navigate a
roadway. Pavement markings have an important role at night. Apart from delin-
eating the road, pavement markings reflect the light shone from a car’s headlamps
back to the driver, thus enabling the driver to see the limits of the traveled way.

3We report the estimates of causal effects from matching in the paper, and provide the implemen-
tation details in the supplementary material.
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This is known as retroreflectivity and is measured in millicandelas per square me-
ter per lux (mcd/m2/lux). Retroreflectivity in pavement markings is provided by
glass spheres that are dropped-on or premixed with a wet pavement marking ma-
terial. PMR degrades over time because of fatigue to the material and its bond
strength with glass spheres or the pavement surface. State transportation agencies
typically re-stripe pavement markings after the end of their useful service life, de-
fined as the time when retroreflectivity falls below a minimum threshold level.

A considerable amount of research has been carried out regarding the safety
benefits of PMR. To answer the question if improving PMR has any effect in reduc-
ing the number of traffic crashes, most of the published literature used regression
models with observational data, ignoring the treatment assignment mechanisms;
for a literature review, refer to Bahar et al. (2006) and Donnell, Karwa and Sathya-
narayanan (2009). Also Donnell, Karwa and Sathyanarayanan (2009) point out that
none of the studies explicitly relate the in-situ PMR levels to the crash event. This
is due to the fact that PMR levels and crash data are obtained from separate sources
and merging them is difficult. The problems associated with merging these data-
bases have been described in Karwa (2009). Donnell, Karwa and Sathyanarayanan
(2009) was the first study that explicitly combined the PMR data (which is rep-
resentative of real life degradation patterns of PMR) with crash data to develop a
comprehensive database. This work did show that there were statistical associa-
tions between PMR and nighttime crashes. We use this database to examine, for
the first time, the nature of the effect of PMR on traffic safety (defined in Section 3)
using the PO and the CD frameworks. The results are compared with a discussion
of the application of the two methods, in an attempt to determine their possible
broader application in transportation safety studies.

3. Description of the data and design of the study. The fundamental unit
of operation in this paper is a homogeneous road segment; homogeneous refers to
having uniform geometric characteristics such as number of lanes, lane width and
shoulder width along a roadway segment. A segment within a fixed time period is
considered to be different from the same segment at any other time period. A fixed
time period of one month was selected to ensure homogeneity of PMR levels and
other characteristics of a segment. For instance, the PMR level and monthly traffic
volumes can be assumed to be reasonably uniform within this period.

Crash and PMR data were collected from three districts in North Carolina for a
period of 2.5 years. As noted in Section 2, the data were obtained from two differ-
ent sources. The PMR data were measured by a private contractor using a mobile
retroreflectometer with a 30-meter geometry. These data were collected on two-
lane and multi-lane highways in North Carolina, approximately every 6 months.
All pavement markings were of thermoplastic material. Since retroreflectivity es-
timates were not measured at the exact time and place of occurrence of the crash,
a neural network model was used to interpolate the values of retroreflectivity on
the segments where crashes were observed; see Karwa and Donnell (2011).
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TABLE 1
Roadways with pavement marking and crash data available for safety analysis

Total Nighttime
Begin End Number of length target

County Route District MP MP lanes (miles) crashes

Bertie US13 1 0.00 11.07 4 11.07 8
Gates US13 1 0.00 14.78 2 14.78 14
Northampton US158 1 12.35 24.04 2 11.69 4
Washington US64 1 10.54 19.67 2 9.13 2
Durham I-85 5 7.88 14.19 4 6.31 5
Durham US15 5 3.66 6.56 4 2.90 9
Durham NC98 5 0.00 11.06 2 9.44a 15
Durham NC157 5 0.70 3.98 2 3.28 2

Granville I-85 5 0.00 23.73 4 1.80b 5
Person US158 5 0.00 22.36 2 16.22 5
Vance I-85 5 0.00 14.47 4 12.47c 46

Vance US158 5 0.00 8.96 2 5.94d 1
Wake I-40 5 6.47 20.19 4/6/8 13.72 67
Wake NC98 5 0.00 4.55 2 4.55 1
Warren I-85 5 0.00 9.88 4 9.88 39
Warren US158 5 12.38 22.93 2 10.55 0
Catawba I-40 12 13.13 19.67 4 6.54 10
Iredell I-40 12 0.00 22.76 4 22.76 63
Iredell I-77 12 14.75 23.75 4 9.00 17

Total 182.03 313

aRoadway inventory and crash data were not available between mileposts 0.17 & 1.79.
bRoadway inventory and crash data were not available between mileposts 0.76 & 22.69 and 22.73.
cRoadway inventory and crash data were not available between mileposts 3.96 and 5.96.
dRoadway inventory and crash data were not available between mileposts 3.77 and 6.79.

The roadway inventory and crash event data were obtained from the Highway
Safety Information System (HSIS) data files, maintained by the Federal Highway
Administration (FHWA). These data were collected for 19 roadway sections in
North Carolina. There were 192 total segments (segments are a subset of sections)
that corresponded to the 19 sections of roadway where PMR estimates were com-
puted based on the degradation model. Table 1 shows the sections where roadway
inventory, crash and PMR data could be linked. There are a total of 5,916 obser-
vations, based on 192 segments, 12 months of data per year for each segment and
approximately 2.5 years of crash data per segment.4

4The assumption of independent segments over time is a common assumption in the safety predic-
tion literature that also shows that weak temporal (or spatial) correlations result in a loss of estimation
efficiency but not bias.
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Crashes that satisfied the following criteria, referred to as target crashes, were
used in the analysis: occurred during dusk, dawn or at night; dry roadway surface
conditions; ran-off-the-road crashes; fixed object crashes (off-road); and opposite-
or same-direction sideswipe crashes. Crashes that satisfied the following criteria
were excluded from the analysis: work zone area; no alcohol-involvement; weather
contributing circumstances; roadway contributing circumstances. It must also be
noted that the data are sparse due to rarity of crashes. Only 6 percent of the total
number of segments had more than one target crash during the study period.

Safety of a road segment is defined as a Bernoulli random variable, taking the
value 1 if there was at least one target crash in the segment during the treatment
(or control) application period, and 0 if there was no target crash in the segment.
The safety of a segment is stochastic and each segment has a fixed probability p of
at least one target crash occurring, which is assumed to be an inherent property of
the road segment. This definition was chosen to ensure the absence of confounders
between safety and PMR, based on the past PMR related safety literature. For in-
stance, if it was clear according to the police crash report that a particular crash
occurred due to driving under the influence of drugs or alcohol, such a crash would
have been deemed to occur because of human error, and thus excluded from the
current analyses. Similarly, crashes in which weather was a contributing factor
(such as heavy snow or icy road conditions) were also excluded from the analy-
ses. Weather conditions, human errors, etc. are stochastic factors that may cause
crashes but not an inherent property of the segment; hence, any crash occurring
due to such conditions would fall into the error term of the observed safety of a
road segment.

Treatment variable on a segment is defined as the application of PMR with levels
{Low,Med,High}; the exact range of PMR levels for each class is specified in
Table 2. Control is defined as application of pavement markings at one of the
two remaining levels of retroreflectivity. Out of the total sample size (N = 5,916),
about 36 percent of the segments had Low levels of PMR, about 46.5 percent had
Med levels and the remaining segments had High levels of PMR. The assignment
of PMR levels is clearly not random.

Apart from the data on PMR and the crash counts per month, data on 12 other
covariates were collected. See Table 2 for definitions and summary statistics of
random variables representing information on the attributes of a segment such as
the shoulder width, number of lanes, presence of a median, traffic flow character-
istics such as monthly traffic volumes (hereafter referred to as ADT), percentage
of trucks, location related variables such as the geographic district in which the
segment is located, the urban or rural setting of the segment location, and the ter-
rain type. The data are very sparse, which is typical of safety data. For instance,
in the five way cross-classification of the entire sample with respect to the discrete
variables District,Terrain,PMR,Multilane and Safety, 58 percent of the cells have
sampling zeros.
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TABLE 2
Definition of variables and their descriptive statistics. Mean (st. dev), [Min, Max] values are given

for the continuous variables and number of observations (percentage) for each level of
categorical variables. Total sample size, N = 5,916

Variable Definition Descriptive statistics

Right Outer shoulder width in feet on right 9.39 (4.03)
Shoulder side of roadway [0, 14]

0 if shoulder width ≤ 7 feet 1,238 (9.97%)
1 otherwise 4,678 (90.03%)

ADT Annual average daily traffic adjusted 30,383 (27,580)
for a month, vehicles per day [1,615, 114,400]
0 if ADT ≤ 30,000 vehicles per day 2,957 (49.9)
1 otherwise 2,959 (50.1)

Truck Percentage of ADT that consists 14.8 (8.5)
of heavy vehicles [0, 83]
0 if Percentage of Trucks ≤ 18 2,065 (35)
1 otherwise 3,851 (65)

PMR Mean PMR of all markings on a segment 227 (65)
(mcd/m2/lux) [139, 447]
Low if 139 < retroreflectivity ≤ 200 2,134 (36)
Medium if 200 < retoreflectivity ≤ 280 2,748 (46.5)
High if 280 < retroreflectivity ≤ 447 1,034 (17.5)

Age Time (in months) elapsed since the application 15.5 (8.63)
of markings on a segment [1, 30]
0 if Age ≤ 1 1,761 (30)
1 if 10 ≤ Age ≤ 20 1,980 (33.5)
2 otherwise 2,175 (36.5)

Multilane 1 if there is more than 1 lane in each direction 3,868 (65.4)
0 if there is 1 lane in each direction 2,048 (34.6)

Median 1 if the segment contains a median 4,018 (68)
0 if the segment has no median 1,898 (32)

Safety 1 if at least 1 target crash occurred 376 (6.36)
in the segment, during the month
0 otherwise 5,540 (93.65)

Urban 1 if the segment is located in an urban area 2,680 (45.3)
0 if the segment is located in a rural area 3,236 (54.7)

Terrain 1 if the segment is on flat terrain 1,320 (22.3)
0 if the segment is on a rolling terrain 4,596 (77.7)

District 0 if the segment is located in District 1 1,290 (21.8)
1 if the segment is located in District 5 3,286 (55.5)
2 if the segment is located in District 12 1,340 (22.7)
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As per Rubin (2008) and Maldonado and Greenland (2002), we conceptualize
our problem as a hypothetical experiment to make the problem statement clear.
Consider a population of homogeneous road segments. We wish to examine the
effect of increased PMR on the safety of a road segment. Ideally, we would like
to apply treatment (e.g., PMR = Low) and control (e.g., PMR = High) to the same
population and observe the expected safety outcome to measure the causal effect.5

The causal effect is defined as the risk ratio of expected safety outcome under the
treatment and controls, for the same population. Since this is not possible in prac-
tice, we use analytical simulations of this process. Sections 4 and 5 describe the
conceptualization of this hypothetical experiment under two different frameworks.

4. Potential outcomes framework. In this section we present the PO frame-
work as applicable to the current study as well as the results of the analysis.
Section 4.1 defines the causal estimands [the “science,” see Rubin (2005)] and
explains the treatment assignment mechanism and the assumptions required to es-
timate causal effects from observational data. Section 4.2 provides details about the
implementation of the PO framework, that is, the use of inverse propensity score
weighting to achieve balance in the data and the use of regression adjustment to
estimate the average causal effect (ACE), after balancing. Section 4.3 presents the
results of the analysis.

4.1. Treatment assignment, potential outcomes and assumptions. Let the ho-
mogeneous segments be indexed by the letter i. We focus on one hypothetical
experiment at a time, introduced in Section 3, and estimate the effect of a bi-
nary PMR treatment on safety from a sample of segments. Extension to the case
of three levels of treatment of PMR is performed using the method proposed by
Rubin (1998) which involves creating a separate propensity score model for each
two-level treatment comparison, equivalent to conducting three hypothetical ex-
periments. Thus, in the present case, three separate propensity score models are
estimated. This method is followed since it is difficult to simultaneously balance
all three treatment groups on all covariates.

The PO framework uses potential outcomes as the fundamental element to es-
timate the causal effects. We denote the treatment variable by Ti, where Ti = 0
denotes no treatment or the baseline condition for unit i, and Ti = 1 denotes the
treatment condition. For instance, if we wish to estimate the effect of changing the
PMR levels from Med to Low, the treatment would be application of PMR = Low
and the control would be application of PMR = Med. Associated with each seg-
ment are two potential outcomes: Safety(S) of the segment at the end of a month
after the treatment has been applied, Si(T = 1), and Safety of the same segment

5In practice, “treatment” would be application of Higher PMR, but here, we define it as application
of Low PMR to obtain causal risk ratios greater than 1.
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at the end of the month if there was no treatment, that is, the baseline condition
was applied, Si(T = 0). Covariates that represent the attributes of a segment are
denoted by the vector Xi = (xi1, xi2, . . . , xip) for unit i. The average causal effect
(ACE) of the treatment relative to the baseline for segment i is then defined as a
causal risk ratio

ACE0 to 1 = E[Si(1)]
E[Si(0)] ,(4.1)

where E[·] denotes expectation and E[Si(·)] = E[E[Si(·)|P(Si(·) = 1)]]. We as-
sume that E[Si(0)] > 0, and drop the T in the notation for simplicity.

For any particular segment, only one of the two values of S(0) and S(1) can
be observed. This has been termed the “fundamental problem of causal inference”
[Rubin (1978); Holland (1986)], because of which unit level causal inferences are
not possible.6 However, given certain assumptions which are outlined below, the
ACE of the treatment on a population can be estimated consistently.

Stable unit treatment value assumption (SUTVA) [Rubin (1990)]. This assump-
tion states that the treatment applied to one unit does not affect the outcome of any
other unit and that there are no hidden versions of the treatment (i.e., no matter
what mechanism was used to apply the treatment to the unit, the outcome would
be the same). The last part is sometimes referred to as the consistency assumption
[Cole and Frangakis (2009)]. We make this assumption in the current study even
though the treatment has been applied in groups (several segments along a partic-
ular route may have the same value of PMR). The following example illustrates a
scenario where this assumption could be violated. Consider two consecutive seg-
ments on the same route. A vehicle traveling on this road could end up in a crash in
segment 2 because of low visibility on segment 1. Such scenarios are not uncom-
mon, but when crashes are reported, the reporting officer estimates the approxi-
mate segment location where the crash was initiated (after careful analysis of the
evidence available at the crash site, such as skid marks, etc.) and the crash is at-
tributed to that segment. Hong and Raudenbush (2005) extend SUTVA to account
for possible interference among segments, but we do not consider this extension
here.

Positivity. The positivity assumption states that there is a nonzero probability of
receiving every level of treatment for every combination of values of exposure and
covariates that occur among individuals in the population [Rubin (1978); Hernan
and Robins (2006)]. We make the positivity assumption since, in principle, each
segment can be assigned any level of PMR treatment.

Unconfoundness. The treatment mechanism is said to be unconfounded given a
set of covariates xi , if the treatment is conditionally independent of the potential

6Except in cases where the functional mechanism of causation is known, this is called token cau-
sation; see Pearl (2000), Chapter 7.
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outcomes given the covariates

ti ⊥⊥ S(0), S(1) | xi.(4.2)

In a randomized experimental setting, ti would be unconditionally independent of
the potential outcomes by design. In the current setting this is not the case, but the
treatment assignment can be made conditionally independent of the potential out-
comes by balancing on observed covariates. This requires modeling the treatment
assignment mechanism as explained below.

4.1.1. Treatment assignment mechanism. Let P(Ti = 1 | Xi) be the propen-
sity score. The propensity scores are used in assignment of the treatment to the
segments in order to achieve balance. Following Rosenbaum and Rubin (1983),
treatment assignment is strongly ignorable given a vector of covariates X if un-
confoundedness and common overlap hold:

S(0), S(1) ⊥⊥ T | X,(4.3)

0 < P(T = 1 | X) < 1.(4.4)

In the current setting, the treatment assignment mechanism can be assumed to
consist of two parts. In the first part, pavement markings are applied by trans-
portation agencies at different segments with a similar level of retroreflectivity
(usually falling into the category High). In the second part, the markings are left
to deteriorate over a period of 2.5 years. The PMR levels decrease due to stress
on the pavement marking material from vehicle passes and natural factors such as
weather. Thus, it can be assumed that nature assigns a level of PMR based on the
time elapsed since the initial application period (AGE) of the pavement marking,
number of vehicle passes and weather conditions. The assignment of PMR levels
for each segment depends on the AGE of the marking within the segment and the
number of vehicle passages over the segment within that period. Apart from this,
PMR levels may also depend on the location of the segment (due to differences
in weather conditions), the percentage of trucks that compose the traffic volumes
(stress on the marking material is generally greater due to heavier vehicles) and
the number of lanes in a segment (the PMR levels used are the average of the
different pavement markings present in a segment, and multi-lane segments gen-
erally have at least one extra marking when compared to two lane segments). All
of these variables are included to form a rich propensity score model that specifies
the assignment mechanism.

4.2. Inverse propensity score weighting and regression adjustment. Below is
a description of a particular implementation of the PO framework that estimates
ACE and ensures that the assumptions outlined in the previous sections are sat-
isfied. This implementation is a form of doubly robust estimation; see Bang and
Robins (2005). The same two steps are repeated to estimate the ACE for each of
the three comparisons:
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Step 1 Estimate the propensity score model π = P(T = 1 | X) and achieve bal-
ance, via inverse propensity score weighting (IPW); see Hirano and Imbens
(2001).

Step 2 Estimate ACE, via regression adjustment method.

Inverse propensity score weighting: The Generalized Boosting Model [GBM,
McCaffrey, Ridgeway and Morral (2004)], a multivariate nonparametric tech-
nique, was used to estimate the propensity scores. Although logistic regression
is the most common way to estimate the propensity scores, studies have shown
that other methods can offer considerable improvement [e.g., see Lee, Lessler
and Stuart (2009)]. The analysis was carried out using the “twang” package in
R [Ridgeway, McCaffrey and Morral (2006)]. Weights were computed from the
estimated propensity scores and balance in the data is tested using the estimated
weights. Balance is tested by comparing the distributions of key covariates in the
treatment and control groups of the weighted data using the Kolmogorov–Smirnov
(KS) test statistic. A weight of 1

π
is assigned to the treatment group and a weight

of 1
1−π

to the control group, where π is the estimated propensity score.7 Hirano,
Imbens and Ridder (2003) show that the use of a nonparametric estimate of propen-
sity score to estimate weights, rather than the true propensity score, can lead to an
efficient estimate of ACE. If balance is not achieved, the propensity score model is
re-specified and the process is repeated. The model is re-specified by changing the
tuning parameters of the boosting model. The tuning parameters are the number
of trees used to fit the model, the shrinkage parameter and the interaction depth;
see McCaffrey, Ridgeway and Morral (2004) for details. In the selected propensity
score models, we used an interaction depth of 2 (i.e., the model fits all two-way
interactions), the shrinkage parameter was set at 0.01 and the number of trees were
set at 15,000.

Regression adjustment: Once the samples (segments) are divided into control
and treatment groups and balance is achieved, several methods exist to estimate the
ACE of the treatment [Schafer and Kang (2008)]. We applied the inverse propen-
sity weighted regression adjustment. In this method, a model for the safety out-
comes (henceforth referred to as the outcome model) under both treatment and
control application is estimated8 using weighted regression; the weights come
from the estimated propensity scores. We again make use of GBM to estimate
a single regression model by using an indicator for the treatment. All covariates
listed in Figure 1 are included in the model, and we choose the interactions im-
plicitly. Overfitting is avoided by using 10-fold cross-validation and out-of-bag

7These correspond to the population weights (ATE weights in the twang package).
8One could also specify two separate outcome models, one for the outcome under treatment and

one for the outcome under control. We follow this approach in the matching implementation, which
is described in the supplementary material [Karwa, Slavković and Donnell (2011)].
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estimation [Ridgeway (2007)]. The GBM model of the outcomes is used to predict
the probability distributions of Si(1) and Si(0).

Once the model for the outcomes is specified, we used two approaches to es-
timate the ACE that is the causal risk ratio of equation (4.1). The standard errors
for these estimates were obtained by bootstrapping. In the combined prediction
approach, the complete data are used to predict the outcome under treatment appli-
cation using the outcome model, and the complete data are used to predict the out-
come under control application. In the individual prediction approach, only treated
data are used to predict the outcome under treatment application, and only control
data are used to predict the outcome under the control application. In other words,
in the combined method, the complete data are used to estimate the potential out-
comes under treatment and control application, irrespective of the actual assign-
ment,9 whereas in the individual method the potential outcomes under treatment
and control are estimated by using that part of the data which actually received
the treatment and control assignment, respectively. In both methods, the final ACE
is estimated as the ratio of expected outcome under treatment and expected out-
come under control [cf. equation (4.1)]. The results of the two methods and their
comparisons are presented in the next section.

4.3. Results. This section presents the results for each of the three compar-
isons in terms of achieved balance and estimates of ACE.

Balance of key covariates. Figure 1 summarizes the effect of weighing on
achieving the balance; more detailed statistics are provided in the supplementary
materials [Karwa, Slavković and Donnell (2011)]. The graph shows the p-value
for the Kolmogorov–Smirnov test statistic before and after the weighting of key
covariates for each of the three comparisons. Figure 1(a) shows that there was a
considerable improvement in the balance after IPW for the Medium to Low com-
parison. However, the variables Truck, Terrain, ADT and Right shoulder width
remain unbalanced even after weighting. Terrain was also unbalanced in the High
to Medium comparison; see Figure 1(b). Figure 1(c) shows that all covariates seem
reasonably well balanced for the High to Low comparison.

Estimation of ACE. The estimates of ACE for each of the comparisons are
shown in Table 3 for both individual and combined predictions. For the High to
Low comparison, the results from both prediction methods suggest that applica-
tion of High PMR significantly reduces the risk of a target crash in comparison
to application of Low PMR. Based on the results from both groups, the risk of a
target crash on segments with Low PMR is 3.09 times that of High PMR. Further-
more, we can be 95 percent confident that the expected risk of a crash on segments
with low PMR is between 2.22 and 4.52 times that on segments with application

9It must be noted that the combined prediction is similar in spirit to the “do” operator, which will
be introduced in the Causal Diagrams section; see also the discussion section. Also, the individual
prediction can be considered to be an “analytical simulation” of a randomized experiment.
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FIG. 1. Balance of covariates before and after weighting for (a) Treatment = Medium and
Control = Low, (b) Treatment = Medium and Control = High, and (c) Treatment = Low and
Control = High. The vertical dashed line indicates the cutoff p-value at 0.05 level.

of High PMR. Similarly, based on the results from the prediction from individual
groups, the risk of a target crash on segments with Low PMR is 2.53 times that of
High PMR with the 95 percent confidence interval [2.31, 3.60]. The ACE point es-
timates from the two methods are quite different, but there is considerable overlap
in the confidence intervals, with the interval from the combined prediction being
slightly wider than from the individual prediction. This is due to model-based ex-
trapolation in the combined method.

The results for High to Med comparison, from both methods, also suggest that
application of High PMR significantly reduces the risk of a target crash in com-
parison to application of Med PMR, but the expected risk is smaller in magnitude
than for High to Low PMR comparisons. The point estimates of the ACE from
two methods are close to each other with considerable overlap in the confidence
intervals: combined ACE of 1.88 (95% CI: 1.5, 2.02) and individual ACE of 1.82
(95% CI: 1.67, 1.97).

TABLE 3
Estimate of ACE based on PO framework

Individual prediction Combined prediction
Change in
visibility level Point estimate 95% limits Point estimate 95% limits

High to Low 2.53 [2.31,3.60] 3.09 [2.22,4.52]
Medium to Low 1.21 [0.9,1.4] 1.35 [0.8,1.81]
High to Medium 1.82 [1.67,1.97] 1.88 [1.5,2.02]
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For the Med to Low comparison, the results indicate that there may be no sig-
nificant effect of changing the PMR level from Low to Med. The point estimates
of the ACE and the confidence intervals from the two methods are close to each
other. From the combined prediction, the risk of a target crash on segments with
Low PMR is 1.35 (95% CI [0.8, 1.81]) times that of Med PMR. From the individ-
ual prediction, the risk of a target crash on segments with Low PMR is 1.21 (95%
CI [0.9, 1.4]) times that of Med PMR. However, it must be noted that this was the
most difficult data subsample to attain the balance on the covariates, and the risk
ratios may be biased, due to lack of balance over important key covariates.

5. Causal diagrams. In this section we present the Causal Diagrams (CD)
framework to estimate ACEs. We use discrete Causal Bayesian networks (CBN)
to implement the CD framework as described in Section 5.1. Section 5.2 briefly
discusses the algorithms used to recover a CBN from observational data, the re-
quired assumptions and estimation procedures for the ACE. Section 5.3 presents
the results of the analysis.

5.1. Causal diagrams and components of a causal model. In the CD setting,
a causal model is used as the fundamental element to estimate causal effects, in
contrast with the PO model, where potential outcomes are the fundamental quanti-
ties. Let V denote the set of variables representing the attributes of a road segment
which includes both the treatment assigned to a segment and its safety outcome.
A Causal Model describes the causal relations (in the form of conditional indepen-
dence) among the variables in V . The qualitative part of the model is represented
by a graph using a set of nodes and edges, and the quantitative part by a set of
conditional probability distributions associated with each node in the graph.

In our analysis, we represent the Causal Model by using a discrete Causal
Bayesian Network (CBN) for implementing the CD framework.10 A CBN consists
of a directed acyclic graph (DAG) and a set of probability distributions associated
with each node, represented by a conditional probability table (CPT). Figure 2
shows an example of such a graph, where, for instance, Safety (S) is a child (ch)
of ADT and PMR, and, thus, these are its parents (pa). For more details on graphs
and graphical models, see Lauritzen (1999). The discrete versions of the variables
as defined in Table 2 were used.

The problem of causal inference involves learning the causal structure, repre-
sented by a DAG and a CPT, from data. The ACE of a treatment under intervention
is estimated using intervention theory, as explained in the next section.

10CBNs with continuous variables are possible, but algorithms for handling arbitrary continuous
distributions are not well developed. Also, many algorithms cannot handle mixed BNs (mixed here
refers to the combination of continuous and discrete variables) that have continuous parents of dis-
crete children.
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5.1.1. Causal diagrams as models of intervention. According to Pearl (2000),
CBNs can be regarded as models of interventions if it is assumed that a DAG
models the causal mechanism which generated the data. (See Section 5.2 for a
review of this assumption.)

Under the above assumption, the edges in a DAG are used to specify the changes
in the joint distribution of variables V due to external intervention. For instance,
in Figure 2, forcing the node PMR to take a particular value, say, Low, amounts to
lifting the existing mechanism on PMR and putting it under the influence of a new
mechanism whose action is to force PMR to the value Low, keeping everything
else constant. This action is mathematically represented by do(PMR = Low). The
effect of “setting” a node to a fixed value corresponds to applying the low PMR
treatment to all the segments in the sample. Such interventions are modeled in
a DAG G by creating a new mutilated DAG GPMR from G. In GPMR, the links
between PMR and its parents are removed, keeping the rest of the graph the same.
The distribution imposed by the new graph GPMR under the condition PMR = Low
represents the effect of intervention and is called the post-intervention distribution;
for example, see Figure 2.

5.1.2. Causal effect and ACE. Given the safety outcome S and the treatment
variable PMR, the causal effect of PMR on S, denoted by P [S|do(PMR = i)],
where i ∈ {Low,Med,High}, is a function from PMR to the space of probability
distribution on S. For each realization of PMR, P [S|do(PMR = i)] gives the prob-
ability of S = s induced from the mutilated graph GPMR and substituting the value
of PMR as i in this graph.

Given a causal diagram in which all the parents of manipulated variables are
observed, the causal effect can be estimated from passive or noninterventional data.
However, when some parents of a child node ch are not observed, P(ch|pai) may
not be estimable in all cases. A graphical test has been provided by Pearl (2000),
Chapter 3, to find out when P [S|do(PMR)] is estimable from the observed data.
In the present case, we make the assumption that all potential confounders are
included in the analysis. This is a strong assumption and must come from subject
matter experts. These assumptions are reviewed in Section 5.2.

FIG. 2. An example of the interventional distribution. The graph G represents the original DAG.
The mutilated graph Gx under the intervention of forcing PMR to take a particular value is obtained
by deleting the arcs between PMR and its parents (e.g., ADT).
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When PMR has two possible states (Low and Med), the ACE is given by the
following equation:

ACEMed to Low = P(S = 1|do(PMR = Low))

P (S = 1|do(PMR = Med))
,(5.1)

where P [S = 1|do(PMR = Low)] is the marginal probability in GPMR
11 of S = 1

under the intervention PMR = Low; similar expressions are used for the other two
comparisons, High to Low and High to Med. Also, notice the similarity to equation
(4.1) from the PO framework. In the next section we describe the algorithms that
were used to learn the components of the CBN.

5.2. Learning CBNs from data and estimation of ACE. Structure learning al-
gorithms are used to recover a DAG G and parameter learning algorithms are used
to estimate the CPTs, which then lead to estimation of ACE.

5.2.1. Structure learning. Learning the structure of causal networks from ob-
servational data has received a thorough treatment in the literature; see Pearl and
Verma (1991), Heckerman (2008), Spirtes and Glymour (1991). The most common
strategies fall into two different classes called constraint based learning and score
based learning. We adopt a simple combination of both approaches to learn the
structure of the CBN. Our approach is similar in principle to Tsamardinos, Brown
and Aliferis (2006). The PC algorithm [Spirtes, Glymour and Scheines (2001)] is
used as a constraint based strategy to recover a DAG from the data. This DAG is
supplied as an initial input to the score based learning strategy, which then attempts
to find an optimum DAG. The simulated annealing strategy of Hartemink (2005)
and the scoring function proposed by Heckerman, Geiger and Chickering (1995)
are used to search for optimum scored CBN. The scoring search is implemented
in Java using the BANJO library [Hartemink (2005)] and the constraint search is
performed using the BNT toolbox in Matlab [Murphy (2001)]. Since the scoring
method need not produce the globally optimum structure of the CBN, we used
the 10 best networks recovered by the algorithm and performed Bayesian model
averaging to estimate the ACE. For details on the averaging, refer to Madigan and
Raftery (1994), Hoeting, Adrian and Volinsky (1998) and Heckerman, Geiger and
Chickering (1995).

Irrespective of the strategy used, a DAG can be recovered from observational
data, up to d-separation equivalence [Pearl (2000), Chapter 1], only if the three
assumptions outlined below are satisfied. Causal interpretation of CBN is possible
because of these assumptions, which are in general untestable from observational
data and must come from subject matter experts.

11Conditioning on so-called colliders can actually introduce bias in the ACE; see Pearl (2003). In
simple terms, a variable is a collider if it has two arrows into it. In the present case, there are no such
colliders on the path between Safety and PMR.
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Causal Markov Assumption: The Causal Markov Assumption (CMA) states that
given the values of a variable’s immediate causes (i.e., its parents), the variable
is independent of its nondescendants [Pearl (2000), Chapter 1]. This assumption
implies that we must include in the model every variable that is a cause of two or
more other variables. It also implies Reichenbach’s [Reichenbach (1956)] common
cause assumption, which states that, if any two variables are dependent, then one
is a cause of the other or there is a third variable causing both.

The natural question that arises is what are the immediate factors that affect
the safety of a segment? For instance, is driving at a high speed considered an
immediate cause of reduced safety? To understand the CMA in light of safety, we
need to consider factors that can cause a crash. These factors can be divided into
three broad categories: road user (driver), the vehicle, and roadway characteristics
(environmental conditions, roadway volume, etc.). Generally, information on the
factors related to drivers and the vehicle is available only for vehicles involved in
a crash, and not for noncrash vehicles. Thus, in a driver level analysis, most of the
data would be missing. Also, the immediate causes of crashes (75 percent of which
are due to human error [Stanton and Salmon (2009)]) become very specific to a
particular crash and are governed by complex human behavior which is difficult
to model and predict. To avoid these issues, analysis is done at the segment level.
Only stable attributes of a roadway segment are included in the analysis; specific
human factors are included in the error terms considered to be stochastic in nature.
Thus, CMA is treated as a guiding principle rather than an assumption, where it
defines the granularity of the model being considered, ensuring that all relevant
causes, as defined by subject matter experts and past experiments, are included in
the analysis.

Faithfulness: The faithfulness assumption ensures that the population that gen-
erated the DAG has exactly those independence relations specified by the DAG
structure and no additional independencies. If there are any independence rela-
tions in the population that are not a consequence of the Causal Markov condition,
then the population is unfaithful. By assuming Faithfulness, we eliminate all such
cases from consideration.12

Latent variables: This assumption states that there are no hidden variables in the
model that violate the causal Markov condition. That is, all of the variables that
effect more than two variables in the model are observed and included in the data-
base. Again, this is a strong assumption, whose validity could be ensured by veri-
fication from subject matter experts. For instance, the definition of safety ensures
that the causes due to driver and weather factors do not influence the outcome, or
else these would have to be entered into the model as latent variables.

12This assumption is controversial; see the discussion section.
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5.2.2. Parameter learning. The parameters of the CPT are modeled using
Dirichlet distributions and the usual assumptions of parameter independence are
made. For details on parameter learning, see Heckerman, Geiger and Chickering
(1995). The Bayesian Dirichlet Equivalent Uniform Priors (BDEU) were used to
compute the parameters of the CBN.

The Dirichlet hyper parameters αxi,πi
are specified by the following equation:

αxi,πi
= α × p(xi,πi),(5.2)

where αxi,πi
pertains to variable Xi in a state xi given that its parents are in joint

state πi, for i = 1, . . . , n, where α is the number of pseudo-counts, and p is a (mar-
ginal) prior distribution of pseudo-counts; this ensures the likelihood-equivalence
of Markov equivalent structures [Heckerman, Geiger and Chickering (1995)]. The
value of α is taken to be 1. The distribution p is chosen to be uniform between
0 and 1 for all variables (representing noninformative prior), that is, for any CPT,
each parent-child combination is given an equal probability.

5.2.3. Estimation of ACE. There are several methods in the literature [Cowell
(1998)] to efficiently perform inference in a CBN. We computed the marginal
probability of S by using the junction tree algorithm that performs exact infer-
ence. Recall that the ACE of PMR on S is estimated as the ratio of the expected
value of safety under the intervention level corresponding to the treatment and the
expected value of safety under the intervention level corresponding to control [cf.
equation (5.1)]. A full Bayes model was specified and the confidence in the value
of the ACE was estimated by computing a 95 percent Bayesian credible interval.

5.3. Results. The DAG with the highest score is shown in Figure 3. Notice
that there is no Low speed variable in this DAG. This could be because given
the combination of variables like ADT , Median and Multilane, the value of Low
speed is completely determined, and the discretization of ADT into two levels
makes it highly collinear with Low speed. It was surprising to see the safety of a
segment directly unaffected by ADT in this particular DAG, since it is commonly
observed that the higher the ADT , the higher the probability of a target crash on
a segment. However, two of the top 10 graphs show that ADT does indeed affect
safety. A possible reason could again be the discretized ADT variable, which is
also highly correlated with the Multilane variable; segments with more than two
lanes generally have high ADT . Similar problems were encountered in the PO
framework. This could be the reason why the Multilane indicator affects safety in
8 out of the 10 highest scoring models.

Figure 4 shows the mutilated DAG used to model the effect of intervention on
the PMR levels. As noted earlier, the mutilated DAG is formed by deleting all the
edges from the original DAG that direct into the PMR variable, and fixing the value
of PMR at a particular level. The marginal probability distribution of safety in such
a DAG represents the effect of manipulating the PMR variable on S. We computed
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FIG. 3. The best scoring DAG recovered by the search algorithm.

the full Bayesian posterior of ACE using Monte Carlo simulation, averaging over
the 10 best selected networks.

Table 4 shows the final results of the effect of PMR on safety, computed via the
Causal Diagrams approach. The results suggest that higher PMR levels correspond
to significantly lower risk of a target crash on all comparisons. In particular, the
risk of a target crash on a segment with Low PMR is 3.12 times that of High PMR
with a 95% CI of [2.32, 4.11] and 1.79 times that of Med PMR with a 95% CI of
[1.31, 2.28]. Similarly, the risk of a target crash on a segment with Med PMR is
1.86 times that of High PMR with a 95% CI of [1.60, 2.17].

FIG. 4. The mutilated graph under the manipulation of PMR = Low.
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TABLE 4
Estimate of ACE based on CD framework

Change in visibility level Point estimate 95% limits

High to Low 3.12 [2.32,4.11]
Medium to Low 1.79 [1.31,2.28]
High to Medium 1.86 [1.60,2.17]

6. Comparison of results and discussion. This section compares and dis-
cusses the analyses and results from the PO and CD frameworks. In addition, it
also includes the results from the popular PO alternative to IPW, the propensity
score matching, whose implementation details are available in the supplementary
document [Karwa, Slavković and Donnell (2011)].

6.1. Comparison of results and implications. Figure 5 shows the point esti-
mates and confidence intervals of ACEs from both frameworks. Specifically, it
shows the overlap among the estimates of ACEs from the following methods:
Combined and Individual approaches, using Inverse Propensity Score weighting
(IPW) and using Propensity Score Matching (M) with regression adjustment from
the PO framework, and Causal Bayesian Networks (CBN) from the CD frame-
work. There are a couple of important points to be noted.

FIG. 5. Overlap between the confidence intervals of ACE from both frameworks.
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In terms of a general trend, the results of all methods are consistent with each
other; they show that increased PMR levels generally lead to a reduced or un-
changed risk of a target crash which agrees with engineering expectations. In terms
of magnitude of the effect, however, there is a noticeable and in some cases sta-
tistically significant difference across different implementations. The CBN point
estimates are consistently higher than both the IPW and M point estimates.

In general, the 95% confidence regions from the three methods show signifi-
cant overlap across the three comparisons, and thus lead to the same conclusions
in terms of the expected strength of the causal effect. The most consistent result,
statistically and with respect to transportation engineering logic, is for the High to
Low comparison where all three methods indicate that there is a significant reduc-
tion in risk with application of High PMR in comparison to Low PMR even though
the matching results are significantly lower in magnitude, in particular, for the PO-
combined M estimate. The IPW and CBN results display strong correspondence
with the exception of Med to Low comparison. The inference based on IPW results
implies that the risk of a target crash is not significantly lower on segments with
the application of Med PMR levels when compared to Low PMR levels, whereas
both CBN and M based confidence intervals imply statistically significant risk re-
duction and are more in line with engineering intuition.

The most curious result with respect to engineering expectation occurs for the
High to Med comparison. Here, it was expected that there would be a small or no
statistically significant effect. Only the matching results support this assertion, and,
in particular, only the PO-individual M result claims no effect. The PO-combined
M estimates are closer to IPW and CBN results, with the latter two having a very
strong correspondence that implies a significant reduction in safety risk with the
application of High PMR compared to Med PMR. It should be noted, however,
that the PO-individual M estimate has the highest variability, with a significant CI
overlap with other estimated effects, thus, it may be difficult to render a solid prac-
tical decision based solely on statistical significance or lack thereof. Alternatively,
one can argue that PO-combined, IPW and the CBN estimates are based on ex-
trapolation when compared to the PO-individual M estimates due to differences in
data subsamples being used. Further examination of the results is needed, which is
discussed below.

6.2. Discussion of results. There could be several reasons for the differences
in the results from the PO framework and the CD framework. One is distributional
support. The variables used in the CBN setting were discretized to ensure the use
of efficient algorithms. On the other hand, there was little discretization performed
in the PO model. Specifically, the variable “age” was used as a continuous variable
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in the IPW estimation, and “age,” “Rt. Shoulder width,” “Percentage Trucks” and
“ADT” were used as continuous variables in the Matching estimation.13

As noted, the CBN and combined-IPW results are close to each other. This is
due to the similarity in empirical estimation of ACE. In both frameworks, causal
effect is defined as a contrast between the outcomes of the same unit with and with-
out treatment. However, to avoid the problem of missing potential outcomes, the
individual IPW estimator compares similar units, whereas the combined estimator
compares the same units. In the latter case, the problem of unobservable potential
outcomes is avoided by using the outcome model for prediction. This is similar to
applying the “do” operator to all units and contrasting the outcomes under different
manipulations.

The differences between results of matching and results of CBN and IPW are
due to differences in the data set, more specifically, due to loss of data in match-
ing. To ensure overlap and balance, matching discards data. Dehejia and Wahba
(1999) and Heckman, Ichimura and Todd (1998) point out that without overlap the
results would be sensitive to the specification of either the propensity score or out-
come model. While our matching procedure attained both balance and sufficient
overlap for all comparisons, there was a significant loss of observations; see the
supplementary document for details. For instance, for High to Med case, matching
discards 83% of the data. Thus, the PO-individual M estimate of no significant
change for High to Med may not be representative of the whole population. On the
other hand, matching has the smallest loss of information for Med to Low case.
The results from the CBN and matching show that there could be some signifi-
cant effect in changing the PMR level from Med to Low, whereas the IPW results
indicate that there may not be a significant effect. However, the IPW results may
be biased because of poor balance achieved in the data for this comparison (cf.
Figure 1).

Some of the differences between IPW and CBN could also be due to the use
of Bayesian estimation in CBN. For instance, in CBN, Bayesian model averaging
was used to account for the possibility of recovering a local minima. Moreover, all
of the variables in CBN were discrete, which lead to large and sparse CPTs. The
estimates from the PO framework were also affected by sparseness, although in
part mitigated by the presence of continuous variables.

6.3. Which method to use? The choice of method is greatly influenced by
the assumptions made. No method can be completely assumption free, in fact,
all causal inferences (from observational data) must be based on causal assump-
tions. The major causal assumptions in each framework were the Causal Markov

13These choices were based on two (conflicting) policies, the first was to ensure similarity to the
variables used in the CBN setting, and the second to ensure balance, the second one being given more
priority.
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Assumption (CMA) in CD and the unconfoundedness assumption in the PO frame-
work. We conjecture that CMA is a stronger assumption than unconfoundedness,
as it pertains to all the variables in the problem at hand, whereas the latter relates
to the treatment variable and the potential outcomes. Furthermore, recent work has
shown that unconfoundedness alone may not be sufficient to identify appropriate
covariates for inclusion in the propensity score model; see Pearl (2000, 2009).

The PO framework requires overlap and balance assumptions, whereas the CD
framework does not. In the broadest sense, the balance assumption ensures that
there are no-pretreatment differences between the groups being compared, and
the overlap assumption ensures that the estimates do not rely too much on the
functional specification of the model. However, in the case of CD, the (qualitative)
causal model is assumed to be known completely.14 Moreover, the framework does
not require any explicit functional specification of relation between the variables,
given the CMA [and some additional assumptions; see Pearl (2000), Chapter 3, for
technical details and mathematical proofs]. Based on this discussion, we suggest
the following guidelines for deciding which method to use.

If little is known about the data generating process or the causal mechanism,
the analyst should go as “nonparametric” as possible. For example, one could
use matching (preferably by specifying the propensity score model using a non-
parametric estimator such as GBM), ensure sufficient overlap, and compute av-
erage causal effect from the observed data by using individual prediction. How-
ever, this may depend on the specification of the propensity score model, and,
more importantly, in the case of significant loss of data (as in our case), it is not
clear as to which subpopulation the ACE estimates apply. It must also be noted
that this strategy may not guard against the inclusion of inappropriate covari-
ates in the propensity score model (such as colliders and bias amplifying covari-
ates).

One could attempt to recover the data generating process from observational
data under further assumptions of faithfulness, combined with partial expert
knowledge. However, Robins and Wasserman (1999) show that when the prob-
ability that variables in the causal model have no common unobserved causes is
small relative to the sample size, analysis carried out using faithfulness can lead to
inappropriate conclusions.

On the other hand, if the data generating mechanism is known (even qualita-
tively), the mechanism can be summarized in the form of a causal diagram. The
causal diagram may incorporate the mechanism related to treatment assignment
and/or the response to the treatment. Such a causal model can be used as a guide
to estimate the propensity score model as well as the outcome model (which can
then be used with other adjustment methods such as weighting, matching, etc).
The dependence on the functional form between variables can be reduced by using

14This may not be always the case, especially in the social sciences.
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categorical variables15 and/or by using nonparametric estimators such as GBM, as
in our case.

In a real data setting, it is always better to compare the results from different
methods. In the present study, it is clear that for different comparisons of PMR
levels, different methods show consistency based on which assumptions are be-
ing violated. For instance, in the High to Low PMR case, all methods show good
agreement. In the Med to Low case, Matching and CBN show good agreement
(IPW results may be biased due to lack of balance). In the Med to High case, IPW
and CBN show good agreement (Matching may be biased due to significant loss
of data).

The CBN results could also be biased if the causal model recovered by the data
is not close to the truth. However, there is evidence that the CBN may be less
biased when compared to other methods. In the comparisons where the data are
well balanced (High to Low and High to Med) and there is considerable overlap
(High to Medium), the CBN results are in close agreement with the IPW, which
indicates that the model may be close to the truth. Since the true ACE is unknown,
the only test for validity of the results is by implicit agreement of results from
different methods. If different methods provide the same answer, the answer must
be close to the truth, or, in the worst case, all methods fail to capture the same
aspect of the true model.

6.4. Future work. To obtain a better comparison of the methods, future studies
should aim at using data from simulation. The true causal effect of the population
would be known a priori, and the quality and size of data can be controlled. Other
advances on this exploratory work can be made by using more complex causal
modeling methods. For instance, discretization of the PMR treatment variable can
be avoided by using a dose-response model [Hirano and Imbens (2004)]. In the
current study, temporal/spatial correlations may exist, though evidence was not
found in these data. The PMR treatment can be modeled as a time varying treat-
ment [Lok et al. (2004)] to take into account such correlations. Specification of
the assignment mechanism for the PMR treatment variable is convenient when
compared to other possible countermeasures, such as roadway lighting. The as-
signment mechanism for lighting is generally influenced by factors such as local
design policies, complaints from residents and may also be related to past crash
history. Such assignment mechanisms may prove difficult to model and may re-
quire the use of latent variables. Also in the current study, we did not explicitly
consider uncertainty in the imputed (using ANN) PMR levels and uncertainty in
the measurement process; rather a mean estimate was used. Both of these are im-
portant issues that should be carefully considered as part of future work. Sampling
zeros were encountered in both the PO model as well as the CBN setting. In the PO

15This may come with a set of its own problems, for example, sparseness.
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framework, such sampling zeros created problems in achieving balance over inter-
actions of covariates (specifically in the matching estimator). In the CBN setting,
the use of Bayesian Inference in part addressed this problem. A similar approach
in the PO framework would be to use a full Bayes model of both the propensity
scores as well as safety outcomes [Rubin et al. (2008)]. These explorations are left
to the scope of future work.

7. Conclusion. The examination of causal inference methods to transporta-
tion safety data reveals that there is considerable scope of their application to esti-
mate safety effects of a countermeasure. A comparison was made between the PO
framework and the CD framework. More specifically, the results based on three
different implementations of these frameworks on a real data set were compared:
Inverse Propensity Score Weighting with regression adjustment and Propensity
Score Matching with regression adjustment versus Causal Bayesian Network.

Although the general trend of results seem to be consistent, we found that the
magnitude of ACEs are sensitive to the method used and to the assumptions being
violated. In real data sets, it is very likely that some assumptions will be violated.
Depending upon which assumptions are appropriate, different methods should be
used. Assumptions should be considered a priori. If possible, the analyst should run
multiple implementations to compare the results for consistency. In conclusion,
we suggest the use of the PO framework supplemented by a qualitative causal
diagram as a rich framework to estimate the safety effects of countermeasures in
transportation studies.
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SUPPLEMENTARY MATERIAL

Supplement to “Causal inference in transportation safety studies: Com-
parison of potential outcomes and causal diagrams” (DOI: 10.1214/10-
AOAS440SUPP; .pdf). This document contains additional details about the Match-
ing and Inverse Propensity score estimators and the top ten graphs recovered by
the graph learning algorithm.
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