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ROBUST GRAPHICAL MODELING OF GENE NETWORKS USING
CLASSICAL AND ALTERNATIVE ¢-DISTRIBUTIONS!

BY MICHAEL FINEGOLD AND MATHIAS DRTON2
University of Chicago

Graphical Gaussian models have proven to be useful tools for exploring
network structures based on multivariate data. Applications to studies of gene
expression have generated substantial interest in these models, and resulting
recent progress includes the development of fitting methodology involving
penalization of the likelihood function. In this paper we advocate the use of
multivariate ¢-distributions for more robust inference of graphs. In particular,
we demonstrate that penalized likelihood inference combined with an appli-
cation of the EM algorithm provides a computationally efficient approach
to model selection in the ¢-distribution case. We consider two versions of
multivariate 7-distributions, one of which requires the use of approximation
techniques. For this distribution, we describe a Markov chain Monte Carlo
EM algorithm based on a Gibbs sampler as well as a simple variational ap-
proximation that makes the resulting method feasible in large problems.

1. Introduction. Graphical Gaussian models have attracted a lot of recent in-
terest. In these models an observed random vector ¥ = (Y1, ..., Y)) is assumed
to follow a multivariate normal distribution N, p(u, L), where p is the mean vec-
tor and ¥ the positive definite covariance matrix. Each model is associated with
an undirected graph G = (V, E) with vertex set V = {1, ..., p}, and defined by
requiring that for each nonedge (j, k) ¢ E, the variables Y; and Y} are condition-
ally independent given all the remaining variables Y\{; ). Here, \{, k} denotes the
complement V \ {j, k}. Such pairwise conditional independence holds if and only
if Ej_kl = 0; see Lauritzen (1996) for this fact and general background on graph-
ical models. Therefore, inferring the graph corresponds to inferring the nonzero
elements of £ 7!,

Classical solutions to the model selection problem include constraint-based ap-
proaches that test the model-defining conditional independence constraints, and
score-based searches that optimize a model score over a set of graphs. A review
of this work can be found in Drton and Perlman (2007). Recently, however, pe-
nalized likelihood approaches based on the one-norm of the concentration matrix
¥ ~! have become increasingly popular. Meinshausen and Biihimann (2006) pro-
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posed a method that uses lasso regressions of each variable Y; on the remaining
variables Y\; := Y\;}. In subsequent work, Yuan and Lin (2007) and Banerjee,
El Ghaoui and d’Aspremont (2008) discuss the computation of the exact solu-
tion to the convex optimization problem arising from the likelihood penalization.
Finally, Friedman, Hastie and Tibshirani (2008) developed the graphical lasso
(glasso), which is a computationally efficient algorithm that maximizes the pe-
nalized log-likelihood function through coordinate-descent. The theory that ac-
companies these algorithmic developments supplies high-dimensional consistency
properties under assumptions of graph sparsity; see, for example, Ravikumar et
al. (2009).

Inference of a graph can be significantly impacted, however, by deviations from
normality. In particular, contamination of a handful of variables in a few experi-
ments can lead to a drastically wrong graph. Applied work thus often proceeds by
identifying and removing such experiments before data analysis, but such outlier
screening can become difficult with large data sets. More importantly, removing
entire experiments as outliers may discard useful information from the uncontam-
inated variables they may contain.

The existing literature on robust inference in graphical models is fairly limited.
One line of work concerns constraint-based approaches and adopts robustified sta-
tistical tests [Kalisch and Biihlmann (2008)]. An approach for fitting the model as-
sociated with a given graph using a robustified likelihood function is described in
Miyamura and Kano (2006). In some cases simple transformations of the data may
be effective at minimizing the effect of outliers or contaminated data on a small
scale. A normal quantile transformation, in particular, appears to be effective in
many cases.

In this paper we extend the scope of robust inference by providing a tool for
robust model selection that can be applied with highly multivariate data. We build
upon the glasso of Friedman, Hastie and Tibshirani (2008), but model the data
using multivariate ¢-distributions. Using the EM algorithm, the tlasso methods we
propose are only slightly less computationally efficient than the glasso but cope
rather well with contaminated data.

The paper is organized as follows. In Section 2 we review maximization of the
penalized Gaussian log-likelihood function using the glasso. In Section 3 we in-
troduce the classical multivariate ¢-distribution and describe maximization of the
(unpenalized) log-likelihood using the EM algorithm. In Section 4 we combine the
two techniques into the #lasso to maximize the penalized log-likelihood in the mul-
tivariate ¢ case. In Section 5 we introduce an alternative multivariate 7-distribution
and describe how inference can be done using stochastic and variational EM. In
Section 6 we compare the glasso to our ¢-based methods on simulated data. Fi-
nally, in Section 7 we analyze two different gene expression data sets using the
competing methods. Our findings are summarized in Section 8.
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2. Graphical Gaussian models and the graphical lasso. Suppose we ob-
serve a sample of n independent random vectors Y7, ..., Y, € R? that are dis-
tributed according to the multivariate normal distribution N p(u, ). Likelihood
inference about the covariance matrix X is based on the log-likelihood function

o°x) = —%log@n) _ glogdet(E) — gtr(SZ_l),

where the empirical covariance matrix

1 - -
S:(sjk):;Z(Yi - Y)Y _Y)T
i=1

is defined based on deviations from the sample mean Y.Let ® = (9 k) = >
denote the (p x p)-concentration matrix. In penalized likelihood methods a one-
norm penalty is added to the log-likelihood function, which effectively performs
model selection because the resulting estimates of ® may have entries that are
exactly zero. Omitting irrelevant factors and constants, we are led to the problem
of maximizing the function

2.1 logdet(®) — tr(S®) — p||O];

over the cone of positive definite matrices, where ||®]|1 is the sum of the absolute
values of the entries of ®. The multiplier p is a positive tuning parameter. Larger
values of p lead to more entries of ® being estimated as zero. Cross-validation or
information criteria can be used to tune p.

The glasso is an iterative method for solving the convex optimization problem
with the objective function in (2.1). Its updates operate on the covariance matrix 3.
In each step one row (and column) of the symmetric matrix X is updated based on
a partial maximization of (2.1) in which all but the considered row (and column)
of ® are held fixed. This partial maximization is solved via coordinate-descent as
briefly reviewed next.

Partition off the last row and column of ¥ = (o) and S as

> — (E\P,\p 23\1!%19) S — (S\p,\p S\p,p>
- T ) — T .
Xipp  Orp S\pp Ser
Then, as shown in Banerjee, El Ghaoui and d’Aspremont (2008), partially max-

imizing X\, , with X\, \, held fixed yields X\, , = X\, \ 8%, where f* mini-
mizes

I(Z\ ) 2B = (Z\pap) 28\ pIIF + ollBIN

with respect to 8 € R?~!. The glasso finds * by coordinate descent in each of the
coordinates j =1, ..., p — 1, using the updates

T(Sjp — Xk<p.tj OkjBis P)
0jj

=
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where T (x,t) = sgn(x)(|x| — t)4. The algorithm then cycles through the rows
and columns of ¥ and § until convergence. The diagonal elements are simply
Opp = Spp + p. See Friedman, Hastie and Tibshirani (2008) for more details on the
method.

3. Graphical models based on the ¢-distribution.

3.1. Classical multivariate t-distribution. The classical multivariate ¢-distri-
bution 7, ,,(t, ¥) on R” has Lebesgue density

o L+ p)/2)1e| 2
(3.1) Hlyip, V)= (T0)P2T (0/2)[1 + by (1, W) 0]V P)2

with 8y (u, W) = (y —M)T\Il_l(y —w)and y € R?. The vector i € R? and the pos-
itive definite matrix W = (v ) determine the first two moments of the distribution.
IfY ~ 1, (u, ¥) with v > 2 degrees of freedom, then the expectationis E[Y] = u
and the covariance matrix is V[Y] =v/(v — 2) - ¥. From here on we will always
assume v > 2 for the covariance matrix to exist. For notational convenience and to
illustrate the parallels with the Gaussian model, we define © = (0;) = (7

If X ~ N, (0, W) is a multivariate normal random vector independent of the
Gamma-random variable T ~ I'(v/2,v/2), then Y = u + X//7 is distributed
according to 7, (i, ¥); see Kotz and Nadarajah (2004), Chapter 1. This scale-
mixture representation, illustrated in Figure 1, allows for easy sampling. It also
clarifies how the use of ¢-distributions leads to more robust inference because ex-
treme observations can arise from small values of 7. An additional useful fact
is that the conditional distribution of t given Y is again a Gamma-distribution,
namely,

v+p V+5Y(l/«,‘1’))
2’ 2 '
Let G = (V, E) be a graph with vertex set V = {1, ..., p}. We define the asso-

ciated graphical model for the 7-distribution by requiring that 6;; = 0 for indices
J # k corresponding to a nonedge (j, k) ¢ E. This mimics the Gaussian model in

L)y—)
Lo
-

FIG. 1. Graph representing the process generating a multivariate t-random vector Y from a latent
Gaussian random vector X and a single latent Gamma-divisor.

(3.2) (T|¥) ~ r(
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that zero constraints are imposed on the inverse of the covariance matrix. How-
ever, in a ¢-distribution this no longer corresponds to conditional independence,
and the density f,(y; u, ¥) does not factor according to the graph. The condi-
tional dependence manifests itself, in particular, in conditional variances in that
evenif 0, =0,
VIY; IV 12 VY 0]
For a simple illustration of this inequality, let ¥ be a diagonal matrix. Then
R VACAVERAVAY))

1
VY|V 1=E[X3/t|V\ 1= — E[t'|" ;1= — ,
jl \J j/ | \J ij | \J ij v+p—3

which can be shown by taking iterated conditional expectations, and using that

1
E[X3|Y\j. 11 =E[X7|X\;. 7] = V[X,|X\;]1= o
Ji
and that T given Y\; has a Gamma-distribution; recall (3.2). Clearly, V[Y;|Y\;]
depends on all Yy, k # j.
Despite the lack of conditional independence, the following property still holds
(proved in the Appendix).

PROPOSITION 1. Let X ~ N, (0, O~1), where Ok = 0 for pairs of indices
J # k that correspond to nonedges in the graph G. Let T be independent of X and
follow any distribution on the positive real numbers with E[1/t] < oo and define
Y =u+ X//z. If two nodes j and k are separated by a set of nodes C in G, then
Y; and Yy are conditionally uncorrelated given Y.

The edges in the graph indicate the allowed conditional independencies in the
latent Gaussian vector X. According to Proposition 1, however, we may also inter-
pret the graph in terms of the observed variables Y;. The zero conditional correla-
tions entail that mean-square error optimal prediction of variable Y; can be based
on the variables Y} that correspond to neighbors of the node j in the graph, which
is a very appealing property.

3.2. EM algorithm for estimation. The lack of density factorization proper-
ties complicates likelihood inference with z-distributions. However, the EM algo-
rithm provides a way to circumvent this issue. Equipped with the normal-Gamma
construction, we treat T as a hidden variable and use that the conditional distri-
bution of Y given t is N, p(u, ¥/7). We now outline the EM algorithm for the
t-distribution assuming the degrees of freedom v to be known. If desired, v could
also be estimated in a line search that is best based on the actual 7-likelihood [Liu
and Rubin 1995].

Consider an n-sample Y1, ..., Y, drawn from ¢, ,(u, ¥). Let 71, ..., 7, be an
associated sequence of hidden Gamma-random variables. Observation of the t;
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would lead to the following complete-data log-likelihood function for i and ® =
vl

n 1 "
lhia(w, OY, ) 3 log det(®) — 3 tr(@ ; 5 Y; Yf)
(3.3)

n 1 n
+MT®ZTZ'Y,' — EMTG)MZ'Q»
i=1 i=1

where, with some abuse, the symbol o indicates that irrelevant additive constants
are omitted. The complete-data sufficient statistics

n n n

T

Se=Y u, Sey =) Y, Sevy =Y _uYY,
i=1 i=1 i=1

are thus linear in t. We obtain the following EM algorithm for computing the
maximum likelihood estimates of © and W:

E-step: The E-step is simple because

v+
(3.4) E[t|Y]=—2P
v+ 3y (un, W)
Given current estimates u) and W®, we compute in the (r + 1)st iteration
LD v+p

T T vy (O, w0y
M-step: Calculate the updated estimates

n (t+1)
4D _ Zi=th i
(3-5) * - n t+1
i=1 Ti
12 | .
(3.6) @+ — ;Zti(w )[Yi _ /L(’H)][Yi _ M(t+1)] ‘

i=1

4. Penalized inference in ¢-distribution models. Model selection in graph-
ical f-models can be performed, in principle, by any of the classical constraint-
and score-based methods. In score-based searches through the set of all undirected
graphs on p nodes, however, each model would have to be refit using an iterative
method such as the algorithm from Section 3.2. The penalized likelihood approach
avoids this problem.

Like in the Gaussian case, we put a one-norm penalty on the elements of ® and
wish to maximize the penalized log-likelihood function

4.1) Cp.obs (14, O1Y) =Y "log f,(Vii 1, ©~1) = p[|O]]1,

i=l
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where f, is the ¢-density from (3.1). To achieve this, we will use a modified version
of the EM algorithm taking into account the one-norm penalty.

We treat T as missing data. In the E-step of our algorithm, we calculate the
conditional expectation of the penalized complete-data log-likelihood

n n
(4.2) Ep.nia(u, O, 7) o 5 log|®] — 5 W(OSeyy () — POl

with

1 n
Sery(w) =3 (Y =¥ ="

i=1
Since £, nid(w, ®1Y, T) is again linear in 7, the E-step takes the same form as in

Section 3.2. Let £ and ©® be the estimates after the ¢th iteration, and ri(’+l) the
conditional expectation of t; calculated in the (# 4+ 1)st E-step. Then in the M-step

of our algorithm we wish to maximize

n n
Elog |©f — Etr(("DST(erl)yy(M)) —pll®lh

with respect to u and ®. Differentiation with respect to u yields 1+ from (3.5)

for any value of ®. Therefore, ®*1 is found by maximizing

n n
(4.3) 2102101 = Z (S wrnyy (W) = plIOll.

The quantity in (4.3), however, is exactly the objective function maximized by the
glasso.

Iterating the E- and M-steps just described, we obtain what we call the tlasso
algorithm. Since the one-norm penalty forces some elements of ® exactly to zero,
the tlasso performs model selection and parameter estimation in a way that is sim-
ilar to structural EM algorithms [Friedman (1997)]. Convergence to a stationary
point is guaranteed in the penalized version of the EM algorithm [McLachlan and
Krishnan (1997), Chapter 1.6]; typically a local maximum is found. Note also that
the maximized log-likelihood function is not concave, and so one finds oneself in
the usual situation of not being able to give any guarantees about having obtained
a global maximum.

5. Alternative model.

5.1. Specification of the alternative t-model. The tlasso from Section 4 per-
forms particularly well when a small fraction of the observations are contaminated
(or otherwise extreme). In this case, these observations are downweighted in en-
tirety, and the gain from reducing the effect of contaminated nodes outweighs the
loss from throwing away good data from other nodes. In high-dimensional data
sets, however, the contamination, or other deviation form normality, may be in
small parts of many observations. Downweighting entire observations may then
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FIG. 2. Graph representing the process generating a t*-random vector Y from a latent Gaussian
random vector X and independent latent Gamma-divisors.

no longer achieve the desired results. We will demonstrate this later in simulations
(see the bottom panel of Figure 4).

To handle the above situation better, we consider an alternative extension of the
univariate #-distribution, illustrated in Figure 2. Instead of one divisor T per p-
variate observation, we draw p divisors ;. For j =1,..., p,lett; ~T'(v/2,v/2)
be independent of each other and of X ~ A/, (0, ¥). We then say that the random
vector Y with coordinates Y; = p; + X j/,/T; follows an alternative multivariate
t-distribution; in symbols ¥ ~ t;’v(u, ).

Unlike for the classical multivariate ¢-distribution, the covariance matrix V[Y]
is no longer a constant multiple of W = (1) when ¥ ~ t;:,v('“’ ). Clearly, the
coordinate variances are still the same, namely,

v
VIYil=——= v/,
Y=V
but the covariance between Y; and Y with j # k is now

vI'((v —1)/2)? v
LTS
v/2) v—2
The same matrix W thus implies smaller correlations (by the same constant multi-
ple) in the #*-distribution. This reduced dependence is not surprising in light of the
fact that now different and independent divisors appear in the different coordinates.
Despite the decrease in marginal correlations, the result of Proposition 1 does not
hold for conditional correlations in the alternative model. That is, llﬁ_kl = 0 does
not imply Y; and Y are conditionally uncorrelated given Y\, ;. Interpretation of
the graph in the alternative model is thus limited to considering edges to represent
the allowed conditional dependencies in the latent multivariate normal distribution.
The following simulation confirms the result and illustrates the effect. We con-
sider a 1§ 5(0, ©~") distribution with

1 0 -0.5
O=( 0 1 -0.5
-05 —-05 1
and draw independent samples until we have 500,000 observations with x < Y3 <
x 4 0.01 for 120 values of x in the range (—6, 6). The sample correlations of Y
and Y, given the varying values of Y3 are shown in Figure 3.

“Vjk.
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FI1G. 3. Sample correlation of Y| and Y for observations with Y3 in a window of size 0.01.

5.2. Alternative tlasso. Inference in the alternative model presents some dif-
ficulties because the likelihood function is not available explicitly. The complete-
data log-likelihood function Ez’hid(,u, ®lY, t), however, is simply the product of
the evaluations of p Gamma-densities (t being a vector now) and a multivariate
normal density. We can thus implement an EM-type procedure if we are able to
compute the conditional expectation of Zj‘;,hid(u, ®|Y,7) given Y = (Y1,..., Yy).
This time we treat the p random variables (z;1, ..., Tip) as hidden for each obser-
vationi = 1, ..., n. Unfortunately, the conditional expectation is intractable. It can
be estimated, however, using Markov Chain Monte Carlo.

The complete-data log-likelihood function is equal to

n n
(3.1 € hia(1, ©, 1Y, 7) o EIOg 1©] - Etr(®S;‘yy(M)) —,lO],

where

1 n
Sty =3 D(VE)(¥; =¥ — ' D(V7)
i=1
and D(,/7;) is the diagonal matrix with ,/7; = /71, ..., ./Tip along the diagonal.
The trace in (5.1) is linear in the entries of the matrix ,/7; \/T; T A Gibbs sampler
for estimating the conditional expectation of this matrix given Y cycles through
the coordinates indexed by j =1, ..., p and draws, in its mth iteration, a number
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T,'(jm) from the conditional distribution of 7;; given (7;\;, Y). This full conditional
has density

(5.2) f@jltng, Yi) =Ca, B,y) - 7y~ exp{—ijB — /Tijv )
with
(5.3) a=U+1, ,3=v+(Yij_Mj)29jj,
2 2

and normalizing constant C(«, B, v). This constant can always be expressed using
hypergeometric functions, but, as we detail below, much simpler formulas can be
obtained for the small integer degrees of freedom v that are of interest in practice.
The simpler formulas are obtained by partial integration.

From B and y in (5.3), form the ratio y’ = y/(24/B). In order to sample from
the distribution in (5.2), we may draw from

(54) fay () =Cla,y)) - 1* exp|—1 — V12

and divide the result by 8. For our default of v = 3, that is, « = 2, we thus need to
sample from

(5.5) fr () =C(y) - texp{—t — Vi2y}.

Writing @ for the cumulative distribution function of the standard normal distrib-
ution, the normalizing constant becomes

(5.6)  1/C()=1+y>—y@y* +3)Vmexply?}(1 — @(yv2)).

For y =0, the density f, () is a I'(2, 1) density. For moderate y, we are thus led
to the following rejection sampling procedure to draw from f, .

Let gs be the density of a I'(2, §) distribution. Rejection sampling using the
family of densities gs as instrumental densities proceeds by drawing a proposal
T ~T'(2,6) and a uniform random variable U ~ U(0, 1) and either accept if U <
f(T)/(Msgs(T)) or repeat the process until acceptance. Here, M; is a suitable
multiplier such that f(r) < M;sgs(¢) forall r > 0.

An important ingredient to the rejection sampler is the parameter §, which we
choose as follows. In the case y < 0, the density gs has a heavier tail than f
provided that § < 1. Focusing on the case o = 2, we have that for a given § < 1
the smallest M such that f(r) < Mgs(¢) forall r > 0 is

y=ij—n)Op; X,

My=C .2 { v’ }
= - — X .
g 32 P11 Zg)

Varying &, the multiplier M; is minimized at
y? =yt +8y?
1+ 1 .
If y > 0, then setting § = 1 yields a heavy enough tail and Ms = C.

d=
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The rejection sampling performs draws from the exact conditional distribution
f(zijltivj, Y). We find it works very well for data with not too extreme conta-
mination such as, for instance, in the original as well as bootstrap data from the
application discussed in Section 7.2. When applied to data with very extreme ob-
servations Y;;, however, one is faced with larger positive values of y. In this case
the instrumental densities gs provide a poor approximation to the target density f,,
and the acceptance probabilities in the rejection sampling step become impracti-
cally low.

For y > 1, we thus use an alternative rejection procedure. Make the transforma-
tion s = /. We then wish to sample from

hy(s) =2C(y) - s® exp{—s* — s2y).

Any I' (e, §) distribution has a heavier tail than the target distribution 4, (s). While
it is not possible to find an analytical solution for the optimal « and §, letting
a=1and § = (y + 1)/2 yields acceptance probabilities between 40% and 50%
for most plausible values of y. Since this alternative procedure will only be needed
occasionally, these acceptance problems are adequate. Using this hybrid approach
yields overall acceptance probabilities greater than 98% for the data with extreme
contamination described in Section 7.1.

Returning to the iterations of the overall sampler, we calculate ,/7;,/7; T at the
end of each cycle through the p nodes, and then take the average over M iterations.
This solves the problem of carrying out one E-step, and we obtain the following
stochastic penalized EM algorithm, which we call the Monte Carlo t*-lasso (or
tyic-lasso for short):

E-step: Given current estimates ") and W® | compute T /T T)(Hl) by aver-
aging the matrices obtained in some large number M of Gibbs sampler itera-
tions, as described above.

M-step: Calculate the updated estimates

n +Dy
i+ 2i=1Tj  Yij
i T n _@+Dh

i=1Tj

Use these and (ﬁﬁT)(z+l) to compute the matrix S;k(t+l)YY(l’L(t+l)) to be
plugged into the trace term in (5.1). Maximize the resulting penalized log-
likelihood function using the glasso.

5.3. Variational approximation. The above Monte Carlo procedure loses
much of the computational efficiency of the classical tlasso from Section 4, how-
ever, and can be prohibitively expensive for large p. For large problems, we turn
instead to variational approximations of the conditional density f(z;|Y;) of the
vector t; given the observed vector Y;.
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The variational approach proceeds by approximating the conditional density
f(zij|Y;) by a factoring distribution. In our context, however, it is easier to ap-
proximate the joint density f(t;, Y;) = f(t;) f(Yi|t;) instead. The first term is
already in product form because we are assuming the individual divisor 7;; to be
independent in the model formulation, and the second term is the density of the
multivariate normal distribution

Ny, D(1/7)0 7" D(1/ 7)),
We approximate this normal distribution by a member of the set of multivariate
normal distributions with diagonal covariance matrix. Application of this naive
mean field procedure, that is, choosing a distribution by minimizing Kullback—
Leibler divergence, leads to the approximating distribution

(5.7) Ny (1, D(1//7)07'D(1//7)),

where © is the diagonal matrix with the same diagonal elements as ® [Wainwright
and Jordan (2008), Chapter 5]. Writing ¢*(Y|t) for the density of the distribu-
tion in (5.7), our approximation thus has the fully factoring form q;fi Y, (t;, ;) =
f(Ti)q*(Yi|t;). The resulting conditional distribution also factors as

p
q*(T|Y) = H g(ijlYij),
j=1
where g(7;;|Y;;) is the density of the Gamma-distribution I'(«;;, B;;), with its pa-
rameters corresponding to the quantities & and 8 in (5.3).
In conclusion, the variational E-step consists of calculating, for each observation
Y;, the expectations

o T(aj; +1/2)
Eqlzij|Yij] = ﬁ—j Ee[V/ijlYij] = W

and E[\/?j\/ﬁm] = Eg[ﬁlYij]Eg[ﬁ|Yik]. These values are then substituted
into (5.1). The M-step is the same as in the ty~-lasso.

The effect of the variational approximation is that the weight for node j in
observation i is based solely on the squared deviation from the mean, (¥;; — j)2
and the conditional variance 1/6;;. For a given deviation from the mean, the larger
the conditional variance of the node, the smaller the weight given to that node in
that observation. But unlike in the #;~-lasso, no consideration is given to deviation
from the conditional mean of the node in question given the rest. Some relevant
information is therefore not being used, but in our simulations the effect was not
noticeable.

The resulting variational t*-lasso (t;,.-lasso) is only slightly more expensive
than the tlasso and, despite the relatively crude approximation in the variational
E-step, performs well compared with the #--lasso. Because of this, we will use
exclusively the ¢, -lasso when considering the alternative model in the simulations
in the next section.
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6. Simulation results.

6.1. Procedure. We used simulated data to compare the three procedures
glasso, tlasso and t, -lasso as follows. We generated a random 100 x 100 sparse
inverse covariance (or dispersion) matrix ® according to the following procedure:

(a) Choose each lower-triangular element of ® independently to be —1, 0 or 1
with probability 1%, 98% and 1%, respectively.

(b) For j >k set 6; = 0.

(c) Define 0y, = 1 4+ h where h is the number of nonzero elements in the kth row
of ®.

The final step ensures a strictly diagonally dominant, and thus positive-definite
matrix. To strengthen the partial correlations, we reduced the diagonal elements
by a common factor. We made this factor as large as possible while maintaining
positive-definiteness and stability for inversion. For these particular matrices, fix-
ing a minimum eigenvalue of 0.6 worked well.

We then generated n = 50 observations from the A0 (0, ©~1) distribution and
ran each of the three procedures with a range of values for the one-norm tuning pa-
rameter p. To compare how well the competing methods recovered the true edges,
we drew ROC curves. We ran this whole process 250 times and then repeated
the entire computation, drawing data from #1993 (0, ©~1) and then tikoo,s(o’ e
distributions.

Simulating from ¢-distributions produces extreme observations, but a more re-
alistic setting might be one in which normal data is contaminated in some fash-
ion. For instance, consider broken probes or misread observations in a large
gene expression microarray. Suppose the contaminated data are not so extreme
as to be manually screened or otherwise identified as obvious outliers. To sim-
ulate this phenomenon, we generate normal data as above, but randomly con-
taminated 2% of the values with data generated from independent univariate
N (*,0.2) random variables, where u* is equal to 2.5 times the largest diag-
onal element of ®~!. These contaminated values will be similar in magnitude to
the 2% tail of the original Noo(0, @‘1) distribution and therefore difficult to iden-
tify.

Finally, we would like to compare our developed ¢-procedures with simpler
approaches to robust inference. There are many ways to obtain robust estimates of
the covariance matrix, but these usually require n > p. Instead we obtain a robust
estimate for the marginal covariances and variances using the procedure of Kalisch
and Biihlmann (2008). Since this is not guaranteed to result in a positive definite
matrix, we add a constant, c, to the diagonal elements of the matrix, where c is the
minimum constant necessary to ensure the resulting matrix is nonnegative definite.
We then use this robust estimate of the covariance matrix as input into the glasso
and refer to this procedure as the robust glasso.
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6.2. Results. Our tlasso and t, -lasso are computationally more expensive,
since they call the glasso at each M-step. But in our simulations, the algorithms
converge quickly. If we run through multiple increasing values of the tuning para-
meter o for the one-norm penalty, it may take about 15-30 EM iterations for the
initial small value of p, but only 2 or 3 iterations for later values, as we can “warm
start” at the previous output. But even in the initial run, two iterations typically
lead to a drastic improvement (in the ¢ likelihood) over the glasso.

The only caveat is that the function being maximized by the tlasso methods
is not guaranteed to be unimodal. We thus started in several places, and let the
algorithm run for longer than probably necessary in practice. We did not observe
drastically different results from different starting places. Nonetheless, since we
are not guaranteed to find a global maximum, the statistical performances of the
tlasso and t, -lasso may, in principle, be understated here (and, of course, the
computational efficiency overstated).

In the worst case scenario for our procedures relative to the glasso—when the
data is normal and we assume ¢-distributions with 3 degrees of freedom—almost
no statistical efficiency is lost. In the numerous simulations we have run using
normal data, the flasso and glasso do an essentially equally good job of recovering
the true graph (see Figure 4). The ¢, -lasso performs surprisingly well at small
to moderate false discovery rates. The robust glasso is based on a less efficient
estimator and does not perform as well as the other procedures.

For data generated from a classical ¢-distribution with 3 degrees of freedom, the
tlasso provides drastic improvement over the glasso at the low false positive rates
that are of practical interest. The assumed normality and the occasional extreme
observation lead to numerous false positives when using the glasso. Therefore,
there is very little computational—and little or no statistical—downside to assum-
ing t-distributions, but significant statistical upside. Interestingly, the ¢, -lasso
performs about as well as the tlasso. The robust glasso outperforms the purely
Gaussian procedure at low false positive rates, since it is less susceptible to the
most extreme observations.

In the third case, with data generated from the alternative ¢-distribution with
3 degrees of freedom, only the ¢, -lasso is able to recover useful information with-
out substantial noise. The occasional large values are too extreme for the normal
model to explain and downweighting entire observations, as is done by the tlasso,
discards too much information when there are extreme values scattered throughout
the data. The robust glasso offers only a small improvement over the glasso.

With the contaminated data, the ¢, -lasso does not perform as well in this case
as it does with ¢* data. The extreme values are not downweighted as much and,
thus, the signals are noisier. It still performs far better, however, than either of the
other methods, and is able to recover valuable information in a case where manual



ROBUST GRAPHICAL MODELING USING ¢-DISTRIBUTIONS 1071

Normal Classical t with DF=3
o | e
Lse] 0
S ] S
2 )
© ©
X o X o
o © 7 o °7]
= =2
) ®
o o
oo oo«
o © o ©
2 2 .
= =
o
4 ’ — glasso A A — glasso
’ --- robust glasso it --- robust glasso
<<<< tlasso N <o+ tlasso
= ---- t*lasso 2 ---- t"lasso
T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
False Positive Rate False Positive Rate
Alternative t with DF=3 Contaminated Normal
o | < |
«© | <« |
o o
2 2
© ©
x <o | r < |
o ° o °
= =
E= E=
o o]
oo o<
o © o ©
= . =]
= K =
.’ g
34 — glasso 34 — glasso
--- robust glasso Y --- robust glasso
4444 tlasso ; ----+ tlasso
o | --- t*lasso o | ---- t*lasso
o o
T T T T T T T T T T T T
0.0 0.1 0.2 0.3 04 0.5 0.0 0.1 0.2 0.3 0.4 0.5
False Positive Rate False Positive Rate

FI1G. 4. ROC curves depicting the performances of the four methods under four different types of
data. Each curve is an average over 250 simulations.

screening of outliers would be very difficult. The robust glasso does not perform
as well as the ¢, -lasso, but offers a clear improvement over the glasso and might
be a useful alternative.

6.3. Notes on simulation. The simulations show that the tlasso performs very
similarly to the glasso even with normal data. While one would expect a model
based on the z-distribution to fare better with normal data than a normal model
would with ¢ data, the fact that there is almost no statistical loss from the
model misspecification is at first a bit surprising. The similarity of the results can
be explained, however, by comparing the two procedures. In effect, the only differ-
ence is that the flasso inputs a weighted sample covariance matrix into the glasso
procedure; one can then think of the glasso as the tlasso with all weights set to one.
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As noted in Section 3.2, these weights are the conditional expectations of t,
which are, from equation (3.4),
D+ p
D + Sy, (u®, W)’

6.1) D = B[y v =

where VD is our estimate or assumption of the unknown degrees of freedom. If
Y ~1p0(u, V) and v > 4, then 8y (u, ¥)/p is distributed according to the F
distribution [Kotz and Nadarajah (2004), Chapter 3]. Thus, starting with the true
values of u and y, the variance of the inverse weights is

V[ﬁ+8y(u,\1’)}_ 2pvi(p+v—2)
b+ p T W= -9+ p)?’

For normal data (i.e., v = 00), the variance is 2p/(D + p)? and goes to 0 very
quickly as p gets large, no matter the assumed value of D. If our current estimate
of ® is reasonably close to the true ®, then the observations will likely have very
similar weights and the weighted covariance matrix will be very close to the sam-
ple covariance matrix. For ¢ data, the above variance tends to 2v2/(v — 2)% (v — 4)
for large p; so no matter how many variables we have, the distribution of the in-
verse weights will have positive variance and the tlasso and glasso estimates are
less likely to agree.

7. Gene expression data.

7.1. Galactose utilization. We consider data from microarray experiments
with yeast strands [Gasch et al. (2000)]. As in Drton and Richardson (2008), we
limit this illustration to 8 genes involved in galactose utilization. An assumption of
normality is brought into question, in particular, by the fact that in 11 out of 136
experiments with data for all 8 genes, the measurements for 4 of the genes were
abnormally large negative values. In order to assess the impact of this handful of
outliers, we run each algorithm, adjusting the penalty term p such that a graph with
a given number of edges is inferred. Somewhat arbitrarily we focus on the top 9
edges. We do this once with all 136 experiments and then again excluding the 11
potential outliers.

As seen in Figure 5, the glasso infers very different graphs, with only 3 edges in
common. When the “outliers” are included, the glasso estimate in Figure 5(a) has
the 4 nodes in question fully connected; when they are excluded, no edges among
the 4 nodes are inferred. The #lasso does not exhibit this extreme behavior. As seen
in Figure 5(b), it recovers almost the same graph in each case (7 out of 9 edges
shared). When run with all the data, the t estimate is very small (~0.04) for each
of the 11 questionable observations compared with the average t estimate of 1.2.
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F1G. 5. Top 9 recovered edges: (a) glasso, (b) tlasso, (c) tﬂ‘dc-lasso. Dashed edges were recovered
only when including the outliers; dotted only when excluding them; solid in both cases.

The graph in Figure 5(c) shows the results from the #3;--lasso which performs just
as well as the tlasso. The t, -lasso also recovered 7 edges in both graphs (not
shown) and infers relationships similar to those found by the #y~-lasso.

Figure 6 illustrates the flexibility of the weighting schemes of the various pro-
cedures. Both ¢* procedures downweight the 11 potential outliers observations for
the 4 nodes in question, but not for the other nodes. Thus, the alternative version is
able to extract information from the “uncontaminated” part of the 11 observations
while downweighting the rest. In this particular case, with 125 other observations,
downweighting the outliers is of primary importance, and, thus, the increased flex-
ibility of the #j--lasso over the tlasso does not make much of a difference in the
inferred graphs. This might not be the case with a higher contamination level.

7.2. Isoprenoid pathway. We next consider gene expression data for the iso-
prenoid pathways of Arabidopsis thaliana discussed in Wille et al. (2004). Gene
expressions were measured in 118 Affymetrix microarrays for 39 genes. While
the data set described in the above section had clear deviations from normality,
the data described in this section has no obvious deviations that stand out in ex-
ploratory plots.

Two approaches were considered in Wille et al. (2004). The first (GGM1) fit
a Gaussian graphical model using BIC and backward selection to obtain a network
with 178 edges. This number was deemed too large for interpretation, and the au-
thors considered instead only the 31 edges found in at least 80% of bootstrapped
samples. The second approach (GGM?2) tests the conditional independence of each
pair of genes given a third gene. An edge is drawn only if a test of conditional inde-
pendence is rejected for each other gene in the network. This approach is advocated
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tlasso Gene expression data t’MC—Iasso t*va,—lasso

FI1G. 6. From left to right, inverse weights from tlasso, followed by normalized gene expression
data, and inverse weights from tf\k/IC -lasso and t},,-lasso. Rows correspond to genes and columns to
observations. Lighter shades indicate larger values. The tlasso uses only one weight per observation
and so must weight each gene the same. All plots show the same subset of data including 11 potential
outliers.

in the paper and appears to find a network with better biological interpretation. The
graph is shown in Figure 7, where shaded nodes indicate the so-called MEP path-
way.

Our approach is modeled after GGM1. We used the ¢, -lasso and increasing
values or p to find a path of models to test. For each chosen model, we ran the
ty-lasso again, but this time without penalty on the allowed edges. Since the ¢*
likelihood is unavailable, we use leave-one-out cross-validation to find the model
with the lowest mean squared prediction error. Since the exact conditionals from
the alternative distribution are not available in explicit form, we perform the cross-
validation as follows:

(a) Estimate ® using all but one observation.
(b) In the remaining observation, estimate the values of the latent normal variables
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FI1G. 7. A reproduction of the graph produced by Wille et al. Solid undirected edges are those found
by the model selection procedure; dotted arrows show the metabolic pathway.
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for all but one of the coordinates in the same manner as the variational E-step
of Section 5.3.

(c) Predict the remaining normal value.

(d) Scale the normal value by the expectation of 1/,/7.

We remark that we also experimented with leaving out a larger fraction of the
observations as suggested in the work of Shao (1993), but this led to similar con-
clusions in the present example.

The cross-validation procedure gave a network with 122 edges. To reduce to the
graph size found by GGM2, we took 500 bootstrapped samples of the data, fixing
the parameter p found in cross-validation, and only included those edges found in
more than 98.5% of the samples. For comparison, we also ran the above procedure
using the glasso, but keeping 98% of the samples to obtain the same-sized graph.

We believe our procedure infers a graph that compares favorably (in terms of
biological interpretation) with that found by GGM2. Like GGM2, we find a con-
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nection between AACT2 and the group MK, MPDC1 and FPPS2; GGM1 found
AACT?2 to be disconnected from the rest of the graph despite its high correlation
with these three genes. In the MEP pathway, our approach and GGM?2 find similar
structure; compare Figures 7 and 8.

While our approach finds the key relationships identified in Wille et al., it
achieves this with fewer “cross-talk” edges between the two pathways. The au-
thors discuss plausible interpretations for such interactions between the pathways,
but a graph with less cross-talk might be closer to the scientists’ original expecta-
tion (Figures 7 and 8). It is worth noting that the glasso procedure performs better
than GGM 1, with edge inclusion being far less sensitive to the particular boot-
strapped sample. The glasso also finds the key relationships of GGM2. We also
ran the flasso, which gave results similar to the glasso and with the tf\“,lc-lasso,
which behaved similar to the ¢, -lasso. We do not show these results here.

8. Discussion. Our proposed tlasso and ¢, -lasso algorithms are simple and
effective methods for robust inference in graphical models. Only slightly more
computationally expensive than the glasso, they can offer great gains in statistical
efficiency. The alternative t distribution is more flexible than the classical ¢ and is
generally preferred. We find that the simple variational E-step is an efficient way
to estimate the graph in the alternative case, but also explored more sophisticated
Monte Carlo approximations.

We assumed v = 3 degrees of freedom in our various tlasso and t*-lasso runs.
As suggested in prior work on ¢-distribution models, estimation of the degrees
of freedom can be done efficiently by a line search based on the observed log-
likelihood function in the classical model.

In the alternative model, the choice of v puts an explicit upper bound on the
maximum correlation between two variables, the upper bound increasing quickly
with v (see Figure 9). This makes inference of the degrees of freedom potentially
more relevant than with the classical model, as an alternative model with small
v might not be a good fit for highly correlated variables. In order to select v, a
line search based on the hidden log-likelihood function can be employed. For fur-
ther flexibility, we may also allow the degrees of freedom to vary with each node.
That is, we could let the divisors 7; ~ I'(v;/2,v;/2) be independent I'-divisors
with possible different degrees of freedom v;. This leads to similar conditionals
in the Gibbs sampler and the resulting procedure is thus no more complicated.
Nevertheless, for the purposes of graph estimation, our experience and related lit-
erature suggest that not much is lost by considering only a few small values for the
degrees of freedom. For instance, running the ¢, -lasso procedure in Section 7.2
using v = 5 produces a very similar result with one additional cross-talk edge.

In the last section we used cross-validation to choose the one-norm tuning pa-
rameter p. The likelihood is not available explicitly for the ¢*-distribution and so
we cannot easily use information criteria for the ¢*-lasso. Cross-validation often
tends to pick more edges than is desirable, however, when the goal is inference of
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[DXPS]| [DXPS3| AACT]

FI1G. 8. Graphs recovered by bootstrapping procedure with target graph size of 43 using (a) the
glasso and (b) t35,;-lasso. The graph shows the key relationships identified previously, but with fewer
“cross-talk” edges.
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Pairwise Correlations in the Alternative t Model
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065 0.70 075 0.80 0.85 090 0.95
1

T T T T
5 10 15 20 25 30

Degrees of Freedom

F1G. 9. The alternative t model places an upper bound on the correlation between two variables.
This bound increases with v, but is fairly restrictive for the small degrees of freedom we consider.

the graph and not optimal prediction. An interesting but potentially difficult prob-
lem for future research would be to develop rules for choosing p that control an
edge inclusion error rate; compare Banerjee, El Ghaoui and d’ Aspremont (2008);
Meinshausen and Biihlmann (2006).

Throughout the paper, we have penalized all the elements of ®. One alternative
is to remove the penalty from the diagonal elements of ®, since we expect all these
to be nonzero. This leads to smaller estimated partial correlations, and we found it
to result in less stable behavior of the tlasso in the sense of the number of edges
decreasing rather suddenly as p increases.

Finally, we remark that other normal scale-mixture models could be treated in
a similar fashion as the #-distribution models we considered in this paper. How-
ever, the use of ¢-distributions is particularly convenient in that it is rather robust
to various types of misspecification, involves only the choice of the degrees of
freedom parameters for the distribution of Gamma-divisors, and maintains good
efficiency when data are Gaussian.

APPENDIX

PROOF OF PROPOSITION 1. According to standard graphical model theory
[Lauritzen (1996)], it suffices to show that Y; and Y are conditionally uncorrelated
given Yy\(; k). Partition V into a = {j, k} and b = V' \ {j, k}. For a given value of 7,

(YalYp, ) ~ Na(pa — ©7 400 (Yp — pp), ©7 4 /7)
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and
(Yj1Ykup, T) ~ N (i — 9‘,-_1»1@j,kub(qub — MkUb)s 9.,-_jl/f)-

Since 0, =0,
ELY;|Yiup, Tl =pj —0;;'0, 5(Yp — ) =ELY; Y, ]
for any value of 7. Therefore,
E[Y;|Yrup]l = E[E[Y|Ykup, Tl Ykus] = E[E[Y;|Yp, T]|Yp] = E[Y;|Y],

which implies that Y; and Y are conditionally uncorrelated given Y. U]
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