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DETECTING SIMULTANEOUS VARIANT INTERVALS IN ALIGNED
SEQUENCES

BY DAVID SIEGMUND1, BENJAMIN YAKIR1 AND NANCY R. ZHANG2

Stanford University, Hebrew University of Jerusalem and Stanford University

Given a set of aligned sequences of independent noisy observations, we
are concerned with detecting intervals where the mean values of the obser-
vations change simultaneously in a subset of the sequences. The intervals of
changed means are typically short relative to the length of the sequences, the
subset where the change occurs, the “carriers,” can be relatively small, and the
sizes of the changes can vary from one sequence to another. This problem is
motivated by the scientific problem of detecting inherited copy number vari-
ants in aligned DNA samples. We suggest a statistic based on the assumption
that for any given interval of changed means there is a given fraction of sam-
ples that carry the change. We derive an analytic approximation for the false
positive error probability of a scan, which is shown by simulations to be rea-
sonably accurate. We show that the new method usually improves on methods
that analyze a single sample at a time and on our earlier multi-sample method,
which is most efficient when the carriers form a large fraction of the set of
sequences. The proposed procedure is also shown to be robust with respect to
the assumed fraction of carriers of the changes.

1. Introduction. This paper is motivated by the problem of detecting inher-
ited DNA copy number variants (CNV). CNV are gains and losses of segments
of chromosomes, and comprise an important class of genetic variation in human
populations. Various laboratory techniques have been developed to measure DNA
copy number [Pinkel et al. (1998); Pollack et al. (1999); Snijders et al. (2001);
Bignell et al. (2004); Peiffer et al. (2006)]. These measurements are taken at a
set of probes, each mapping to a specific location in the genome. The data thus
produced are a set of linear sequences of measurement intensities, one for each
biological sample in the study. If a sample contains a CNV at a particular genomic
region, then depending on whether the CNV is a gain or loss, the intensities in-
crease or decrease relative to their average values in that region.

Studies of DNA copy number arise in two distinct contexts, which yield data
with different characteristics. One of these is cancer genetics, where somatic
changes in DNA copy number occur in the genomes of tumor cells. [See Pinkel
and Albertson (2005) for a review.] These changes can be quite long, sometimes
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involving entire chromosomes or chromosomal arms. The second context, which
motivates the problem formulation in this paper, involves inherited regions of CNV.
These are population polymorphisms. As such, they hypothetically could be func-
tional variants contributing to phenotypic variability, and hence are of interest in
association studies. Alternatively, they can be neutral markers for tracing distant
relationships in populations, which could be used in population genetics. Since in-
herited regions of CNV are typically quite short, often covering only one or a few
probes, they are more difficult to detect in individual genomes than their tumor
counterparts, which has led some investigators to place a minimal length of 2–10
probes on a CNV [e.g., Redon et al. (2006), McCarroll et al. (2008), Walsh et al.
(2008)] even though this restriction artificially eliminates many candidates from
contention. An illustrative segment of CNV data from a group of normal samples
are shown in the form of a heatmap in Figure 1. Each row of the heatmap is a
sample, and each column is a probe. The probes map to ordered locations along
a chromosome. For illustration, the region depicted in Figure 1 contains a CNV
between probes 1800 and 1900 that is visibly apparent as stretches of high (red) or
low (blue) intensities in a few of the samples. Note that the breakpoints are shared
across samples, and that the shift in mean may be positive for some individuals
and negative in others.

FIG. 1. An example segment of DNA copy number data. Each row is a sample, and each column is
a probe. Gains and losses in copy number manifest as stretches of low or high intensities.
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Most current procedures process the samples one at a time in the detection of
CNV. For recent reviews, see Lai et al. (2005), Willenbrock and Fridlyand (2005),
and Zhang (2010). Lai et al. and Willenbrock and Fridlyand compare many of the
existing methods on a common data set. In this paper we take the view that since
these CNV are population level polymorphisms, there is the possibility to pool
data across individuals (samples) to boost the power of detection of simultaneous
changes occurring in a fraction of the sequences. See Zhang et al. (2010) for more
scientific background and additional references.

Following Olshen et al. (2004), we formulate this problem as one of detecting
intervals where the mean of a sequence of independent random variables shows a
change from its baseline, that is, overall mean, value. Zhang et al. (2010) extended
the approach of Olshen et al. to the case of multiple aligned sequences and the
problem of detecting intervals of change that occur at identical locations in some
of the sequences. They proposed a sum of chi-squares statistic, which is effectively
the likelihood ratio statistic assuming normal errors, and showed that a simultane-
ous scan of all sequences for a shared signal across multiple profiles can improve
power compared to a method that separately segments each individual sequence,
especially if a moderate to large fraction of the sequences “carry” the change. [The
methods of Olshen et al. (2004) and Zhang et al. (2010) are reviewed in more detail
in Section 2.2.]

Since the sum of chi-squares statistic was designed for the situation where a
moderate to large fraction of the sequences carry a change, it can have low power
to detect the many CNV that are rare variants, where the fraction of carriers is
less than ∼5%. The accurate detection of rare variants is becoming increasingly
important, due to the recent interest in association studies targeting rare variants
[cf. the review by McCarroll (2008)]. Although Zhang et al. (2010) also suggested
a class of “weighted” statistics to detect rare variants, the method they used to
approximate p-values for the sum of chi-squares statistic relies on the spherical
symmetry of the standard multivariate normal distribution, and does not adapt to
the more general scan statistics considered in this paper. Our main theoretical re-
sult is a more general method to approximate the false positive rate for a wide class
of multi-sample scan statistics, which includes the sum of chi-squares statistic as
a special case. We show by simulations that the approximations are quite accu-
rate. This allows us to assess the significance of genome-wide studies, which often
involve over a million probes and thousands of samples. Simulations and other
computer intensive methods are very difficult to implement for scans of such large
data sets.

In Section 2 we formulate the basic model and suggest a class of statistics based
on the assumption of a mixture of mean levels at each variant interval. Next we
generalize the method introduced by Siegmund, Yakir and Zhang (2010) to pro-
vide analytic approximations to the false positive rates of these statistics, and we
use Monte Carlo experiments to show that the approximations are very accurate.
In Section 4 we compare different statistics and illustrate the benefits of pooling
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information across samples, even in the case where the proportion of carriers is
very low. Section 5 contains a test case involving actual CNV data. Section 6 con-
tains a discussion, and in Appendix A we sketch a proof of our false positive rate
approximations.

The independence and normality assumptions made in this paper also underlie
most previous approaches to this problem. Raw data from popular genotyping mi-
croarray platforms often deviate from these assumptions, but most of this deviation
can be eliminated by appropriate normalization procedures. A description of data
preprocessing is given in Section 5.

We consider here the primary problem to be detection of the intervals of change.
In many cases, the carriers, that is, the subset of samples where the changes have
occurred, are relatively obvious from inspection of the data after the intervals have
been reported. In other cases, determining the carriers poses a difficult auxiliary
problem, because of the very large dimension of the parameter space. Zhang et al.
(2010) suggested a simple ad hoc thresholding algorithm. We expect to discuss in
the future more systematic criteria that involve modeling of probe-specific effects,
clustering across samples, and a generalization to multiple sequences of the BIC
method of Zhang and Siegmund (2007).

For data from some platforms (e.g., the SNP genotyping arrays from Affymetrix
and Illumina), other information, such as A and B allele frequencies, is available
to improve the accuracy of CNV detection. Some methods [Wang et al. (2007);
Colella et al. (2007)] use a Hidden Markov model to detect CNV based on both
the total intensity and the allele specific data. While Colella et al. (2007) men-
tioned that their hidden Markov model can be extended to process multiple sam-
ples simultaneously, no convincing evidence was presented that the allele specific
analysis, when combined across samples, improves accuracy. The reason, at least
for the Affymetrix platform, is that allele specific frequencies are also prone to ar-
tifacts and can be much noisier than total intensity data. While effective measures
for artifact removal for total intensity data have been developed (see Section 5)
and allow successful cross-sample integration, appropriate measures appear to be
lacking for normalization of allele specific frequencies. Although methods based
on allele specific data undoubtedly have a role to play in CNV detection, in this
paper we focus on the integration of total intensity data across samples, which ad-
mits an appealingly simple and general model that appears to be more generally
useful.

REMARK. Although the formulation and results in this paper have been mo-
tivated by problems associated with detection of CNV, the multisample change-
point model that we study may be useful in quite different contexts. One of current
interest is sequential detection of a change-point by a distributed array of sensors
[e.g., Tartakovsky and Polunchenko (2007)], where our p-value approximation
can be used as the starting point to develop an approximation to the average run
length when there is no change-point. Another example is briefly described in the
Appendix.
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2. Change-point models and scan statistics.

2.1. Problem formulation. The observed data is a two-dimensional array
{yit : 1 ≤ i ≤ N,1 ≤ t ≤ T }, where yit is the data point for the ith profile at lo-
cation t , N is the total number of profiles, and T is the total number of locations.
In genome-wide profiling studies, N is usually in the tens to the thousands, and
T is usually in the hundreds of thousands. We assume that for each i, the random
variables yi = {yit : 1 ≤ t ≤ T } are mutually independent and Gaussian with mean
values μit and variances σ 2

i . Under the null hypothesis, the means for each profile
are identical across locations. Under the alternative hypothesis of a single changed
interval, there exist values 1 ≤ τ1 < τ2 ≤ T and a set of profiles J ⊂ {1, . . . ,N},
such that for i ∈ J ,

μit = μi + δiI{τ1<t≤τ2},(2.1)

where the δi are nonzero constants and μi is the baseline mean level for profile i,
which may not necessarily be known in advance. Under the alternative hypothe-
sis we refer to (τ1, τ2] as a variant interval and J as the set of carriers, that is,
the subset of samples that have a changed mean in that interval. If the alternative
hypothesis is true, we are interested primarily in detecting this situation and in es-
timating the endpoints of the variant interval, and secondarily in determining the
carriers.

In DNA copy number data, the magnitude of change in signal intensity varies
across samples for any given CNV, even when the underlying change in copy num-
ber is the same. This is due to differences in sample handling, and motivates the
assignment of a new δi parameter to each carrier; see Zhang et al. (2010) for ex-
amples.

In many applications, including CNV detection, there are usually multiple vari-
ant intervals defined by different τ1, τ2 and J . We describe the model and statistics
assuming the simple case where there is at most one variant interval. If the number
of intervals is small and the intervals are widely spaced, a single application will
detect multiple intervals. More generally, these statistics can be combined with the
recursive segmentation algorithm in Zhang et al. (2010) to treat the case where
there are multiple variant intervals.

2.2. Review of scan statistics. First we review the case of a single sequence
of observations. Initially we suppress the dependence of our notation on the pro-
file indicator i. For {y1, . . . , yT }, let St = y1 + · · · + yt , ȳt = St/t , and σ̂ 2 =
T −1 ∑T

1 (yt − ȳT )2 be the maximum likelihood estimate of variance. Olshen et
al. (2004) used likelihood ratio based statistics for analysis of DNA copy number
data for a single sequence. The statistic they suggested was

max
s,t

U2(s, t),(2.2)
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where

U(s, t) = σ̂−1{St − Ss − (t − s)ȳT }/[(t − s){1 − (t − s)/T }]1/2,(2.3)

and the max is taken over 1 ≤ s < t ≤ T , t − s ≤ T1. Here T1 < T is an assumed
upper bound on the length of the variant interval, which for some applications may
be much smaller than T .

If the error standard deviation σ were known and used in place of σ̂ in (2.3),
(2.2) would be the likelihood ratio statistic. The denominator in (2.2) standardizes
the variance of the numerator, and under the null hypothesis of no change, U2(s, t)

is asymptotically distributed as χ2
1 . In practice, σ must be estimated. Since T is

usually very large in typical applications, we shall for theoretical developments
treat σ as known. Then, we can without loss of generality set σ = 1.

For data involving N sequences, to test the null hypothesis H0 that δi = 0 for all
1 ≤ i ≤ N versus the alternative HA that for some values of τ1 < τ2 at least some
δi are not zero, Zhang et al. (2010) proposed a direct generalization of (2.2):

max
s<t

Z(s, t) where Z(s, t) =
N∑

i=1

U2
i (s, t)(2.4)

and Ui(s, t) is the sequence specific statistic defined in (2.3) for the ith sequence.
Again, if the variances are known, (2.4) is the generalized log likelihood ratio sta-
tistic for testing H0 versus HA. For each fixed s < t , the null distribution of Z(s, t)

is approximately χ2 with N degrees of freedom. Even if the samples are related
(say, replicates or members of the same family), this relatedness only matters un-
der the alternative hypothesis that there is a CNV. Thus, even for related samples,
as long as they are independent under the null hypothesis, the null distribution of
Z(s, t) would be χ2

N . Large values of Z(s, t) are evidence against the null hypoth-
esis. If the null hypothesis is rejected, the maximum likelihood estimate of the
location of the variant interval is (s∗, t∗) = argmaxs,t Z(s, t).

2.3. Mixture model. Whereas conducting a separate analysis for each individ-
ual sequence requires that each sample show strong evidence for the detection of
a variant interval, the sum of χ2 statistic goes to the other extreme of favoring sit-
uations where many samples have relatively weak evidence. For cases where N is
moderately large, say, in the 100s or even 1000s, it seems reasonable to consider
intermediate statistics that require each sample to show moderate evidence before
they are allowed to make a substantial contribution to the overall statistic.

Consider again the problem as originally formulated, where J denotes the set of
samples containing the same variant interval, and let Qi(s, t) denote the indicator
that i ∈ J and that the aligned change-points are s, t . If Qi(s, t) were observed, the
generalized log-likelihood ratio statistic, maximizing over the individual jumpsizes
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{δi : i = 1, . . . ,N}, would be

max
s,t

N∑
i=1

log
[{1 − Qi(s, t)} + Qi(s, t)e

U2
i (s,t)/2]

(2.5)

= max
s,t

N∑
i=1

Qi(s, t)U
2
i (s, t)/2.

Since Qi(s, t) is not observed, we have considered two surrogate statistics. If we
assume that p0 ∈ [0,1) is a prior probability that Qi(s, t) = 1, we could consider
the left-hand side of (2.5) with p0 substituted for Qi(s, t), that is,

max
s,t

N∑
i=1

log
[
1 − p0 + p0e

U2
i (s,t)/2]

.(2.6)

This is the mixture likelihood ratio statistic. We could also consider the posterior
distribution of Qi(s, t), given the data, which depends on the unknown parameters
of the problem. But if we maximize with respect to these unknown parameters, we
get

max
s,t

N∑
i=1

wp0[U2
i (s, t)]U2

i (s, t)/2,(2.7)

where

wp0(x) = exp(x/2)/{rp0 + exp(x/2)},(2.8)

and rp0 = (1 −p0)/p0 denotes the prior odds against the indicated hypothesis. We
call this the weighted sum of chi-squares statistic.

Both the mixture likelihood ratio statistic and the weighted sum of the chi-
squares statistic are of the form of a maximum over s < t of random fields of
the form

∑N
i=1 g[Ui(s, t)], where g is a suitable function. In Section 3 we give an

approximation for the false positive rate of such a maximum for general smooth
functions g. The statistics we consider are all two-sided, and can be consid-
ered to be transformations of the χ2 statistic U2

i (s, t). The transformation U2 →
log[(1 − p0) + p0 exp(U2/2)] for the mixture likelihood and U2 → wp0(U

2)U2

for the weighted χ2 both effectively soft-threshold the χ2 statistics, decreasing
small values toward zero. Figure 2 shows these transformations compared to the
identity transformation for the sum of chi-squares statistic. The new statistics de-
pend on the choice of p0, with small values of p0 requiring a more substantial
apparent signal from a given sequence of observations before that sequence is al-
lowed to make an important contribution to the overall statistic. For p0 = 1, both
recover the sum of the chi-squares statistic. See Figure 2.
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FIG. 2. Illustration of the transformations U2 → log(1 − p0 + p0eU2/2) (solid line) and
U2 → wp0 (U

2)U2/2 (dashed line), with p0 = 0.1.

REMARKS. (i) As we shall see in the power analyses of Section 4, these sta-
tistics are relatively robust with respect to the choice of p0. Consequently, we have
not considered an adaptive or data driven method for estimating p0. (ii) Our orig-
inal preference was for the weighted sum of the chi-squares statistic, since the
heuristic argument behind this statistic suggests that it will adapt better to the data
than the mixture likelihood ratio. Our numerical experiments indicate, however,
that the two statistics behave similarly, with the mixture likelihood ratio being
more stable and often slightly more powerful. Hence, we report numerical results
only for the mixture likelihood ratio statistic.

3. Approximations for the significance level. For scan statistics of the form
described above, we now give an analytic approximation for the significance level
that accounts for the simultaneous testing of multiple dependent hypotheses. The
approximation gives a fast and computationally simple way of controlling the false
positive rate.

As described in Section 2, we assume that the data is a matrix of independent,
identically distributed random variables yi,t with mean zero, variance one and suf-
ficiently small tails. Each row represents a process and there are N such processes.
Given a starting point s and an interval length τ , let J τ

s = {t : s < t ≤ s + τ }
be a window of integers. Over this window construct, for each process, the sum
Wi(J

τ
s ) = ∑

t∈J τ
s

yi,t and consider the standardized statistic

Zi(J
τ
s ) = τ−1/2Wi(J

τ
s ),
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which again has mean zero and variance one. Let g be a smooth, positive (non-
linear) function and consider the statistic G(J τ

s ) = ∑N
i=1 g[Zi(J

τ
s )]. For example,

g(x) = log[(1 − p0) + p0 exp(x2/2)] for the mixture likelihood ratio statistic. We
are interested in the approximation of

P
(
max
s≤T

max
T0≤τ≤T1

G(J τ
s ) ≥ x

)
(3.1)

for N , T0, T1 and x diverging to +∞ at the same rate.
In applying the above formulation to (2.6) and (2.7), we have already assumed

T is so large that the standard deviations can be estimated without error. To sim-
plify the derivation, we also assume the baseline mean values can be estimated
without error. At least for normally distributed variables and T1 
 T (the case of
interest here), this assumption does not change the final approximation, and the re-
quired changes are straightforward otherwise. Hence, μ̂i and σ̂i are treated below
as known constants and Zi(J

τ
s ) is equivalent to Ui(s, s + τ). When dealing with

smaller (but still large) samples, variation in the estimates of baseline parameters
can be handled by modifications of the same method.

To state our approximation, which involves an exponential change of measure,
we define the log moment generating function

ψτ (θ) = log E exp{θg(Zτ )},
where Zτ is a convenient notation for a random variable having the distribution of
the Zi(J

τ
s ). Now choose θτ to satisfy ψ̇τ (θτ ) = x/N , and let

μ(θ) = 1

2
θ2

∫
[ġ(z)]2eθg(z)−ψτ (θ)ϕ(z) dz,(3.2)

where ϕ is the standard Gaussian density.
Then, provided that T is subexponential in N , the probability in (3.1) is asymp-

totically equivalent to
T1∑

τ=T0

(T − τ)e−N{θτ ψ̇τ (θτ )−ψτ (θτ )}{2πNψ̈τ (θτ )}−1/2

(3.3)
× θ−1

τ μ2(θτ )(N/τ)2ν2([2μ(θτ )(N/τ)]1/2)
,

where to a very good approximation

ν(x) ≈ [(2/x){�(x/2) − 1/2}]/{(x/2)�(x/2) + ϕ(x/2)}
[cf. Siegmund and Yakir (2007)]. For the case of central interest in this paper, the
yi,j are standard normal, so ψτ does not depend on τ. Hence, several factors in
(3.3) can be moved in front of the sum; and the sum of the remaining terms can be
approximated by an integral, to obtain

N2e−N{θψ̇(θ)−ψ(θ)}{2πNψ̈(θ)}−1/2

(3.4)

× θ−1μ2(θ)

∫ T1/T

T0/T
ν2([2Nμ(θ)/(T t)]1/2)

(1 − t) dt/t2.



654 D. SIEGMUND, B. YAKIR AND N. R. ZHANG

TABLE 1
Accuracy of approximate thresholds: The statistic is the mixture chi-square with parameters

N = 100, T0 = 1, T1 = 50, T = 500. The number of repetitions of the Monte Carlo experiment is
1000. Results in parentheses are thresholds in units of standard deviations above the mean

p0 Significance level Th (approx.) Th (MC)

0.03 0.10 16.2 15.3
0.03 0.05 17.1 (8.7) 16.8
0.03 0.01 19.1 19.2
0.1 0.10 27.4 26.3
0.1 0.05 28.5 (6.64) 28.6
0.1 0.01 30.9 31.3
1.0 0.10 84.1 83.9
1.0 0.05 85.9 (5.08) 85.8
1.0 0.01 89.8 99.8

REMARK. (i) For the sum of the chi-squares statistic, g(x) = x2, and (3.4) is
essentially the same as the approximation in Zhang et al. (2010) except that N − 1
has been replaced by N in two places. (ii) Although the derivation of (3.4) requires
that T0 → ∞, by an auxiliary argument one can show in the normal case that the
approximation remains valid for arbitrarily small T0, in particular, for T0 = 1.

3.1. Accuracy of the approximation in the normal case. In this section we re-
port a Monte Carlo experiment to verify the accuracy of the suggested approxima-
tions for normally distributed data. In Table 1 we consider the mixture likelihood
ratio and give significance thresholds based on simulation and on the approxi-
mation (3.4). It seems difficult to develop intuition about the magnitude of these
thresholds, so in a few cases we have also included in parentheses the thresh-
olds measured in units of standard deviations above the mean. However, it does
not seem substantially easier to develop intuition in this scale. The corresponding
threshold for a single normally distributed sequence would be 4.3, so we see that
in this scale the tail of the distribution gets heavier with decreasing p0, as one
would expect. While the results in Table 1 indicate that the approximation is quite
accurate, the parameters N , T1 and T are all relatively small, since the simulations
become very time consuming for larger values. A second example is given in the
Appendix.

4. Power comparisons. For the statistic maxs,τ G(J τ
s ), when the variant in-

terval is (τ1, τ1 + τ2], we consider as an approximation to the power of the proba-
bility

P{G(J τ2
τ1

) > b},
where b is the threshold computed to achieve a pre-chosen significance level, say,
0.05. This probability is a lower bound on the true power, which also involves
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the much smaller probability that G(J τ
s ) < b for s = τ1, τ = τ2, but exceeds b

for nearby s, τ . This simple approximation can be evaluated using a normal ap-
proximation or a small and fast Monte Carlo experiment involving only τ2 × N

observations.
We conducted a power analysis for detecting CNV using the Affymetrix 6.0

microarray platform, which contains ∼1.8 million probes. We assumed that a sep-
arate scan is conducted for each chromosome. The average number of probes per
chromosome is around 80,000, and, thus, as a rough approximation, we set the
total length of a scan to be T = 80,000. We restricted our attention to the detec-
tion of short CNV, and, thus, we enforced a maximum window size of T0 = 1000.
We considered the detection of single copy insertions and deletions, and assumed
the signal to noise ratios (SNR) are between 1 and 3. These are comparable to the
signal to noise ratios of actual data sets. For example, for the Hapmap data set
obtained from Affymetrix, we computed the signal to noise ratios of those CNV
detected in Zhang et al. (2010) that are confirmed by fosmid sequencing data. We
found that the signal to noise ratios for one copy gains are around 1.5–3.5 and
that for one copy losses are around 2–3.5. These SNR are higher than true sig-
nal to noise ratios, since only those regions with stronger signals were detected.
The false positive rate is controlled at 0.05/23 = 0.0022, which corrects for the
multiple testing across chromosomes by the Bonferroni inequality.

Figure 3 shows the power of detection of a CNV of length L that is present in a
fraction p ∈ {0.01,0.02,0.05,0.1} of the cohort, using the scan statistic (2.6) with
a range of values for p0. The size of the cohort N is set to be 100 or 1000. The
signal to noise ratio is 2 in the left column, and 1 in the right column. For each
setting, Bonferroni corrected single-sample scans are compared to multi-sample
scans.

A few observations are worth noting from Figure 3. First, when N = 100 and
p = 0.01, that is, when only one out of 100 samples carries a change, a single sam-
ple scan has slightly greater power than a multi-sample scan using a small value of
p0. In this case, using the sum of the chi-squares statistic (p0 = 1) can have very
low power, which is expected. When the signal is present in only one sample, pool-
ing across samples should not result in a gain of power. When the true fraction p

is increased to 0.02, that is, only 2 out of 100 samples carry a change, then a multi-
sample scan gives a substantial boost in power for p0 ≤ 0.1. Furthermore, when
the true fraction is p = 0.1, a multi-sample scan with any value of p0 ∈ (0.01,0.2)

does better than a single sample scan. These results also indicate that for p not too
small, the results for different assumed values of p0 are comparable.

Regarding the range of the horizontal axes in Figure 3, note that for N = 100
and signal to noise ratio of 2, the range of interval lengths where we can expect a
noticeable boost in power is typically less than about 10–12. For longer CNV, the
power is already close to 1, so multi-sample scans do not give added benefit. Note
also that if the signal to noise ratio is divided by f and the length of the interval
is multiplied by f 2, the marginal power is unchanged. For example, if the signal
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FIG. 3. Each plot shows the detection power versus length of CNV for a given setting of sample
size N , signal to noise ratio (SNR) and fraction of carriers p. Going down each column, p increases
while N and SNR are fixed. N = 100, SNR = 2 for the left column, and N = 1000, SNR = 1 for the
right column. The different curves represent the mixture scan statistic (2.6) for different values of p0,
with the solid triangles representing the single sequence scan (see legend at bottom right).
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to noise ratio is changed to 1, that is, 1/2 as large, the noticeable boost in power
occurs for intervals up to four times as long, or about 40–50.

A surprising observation is that, for the range of signal-to-noise ratios and inter-
val lengths that seem relevant to the current microarray platforms, scan statistics
using a small value of p0 seem to be the winner under a wide range of condi-
tions. Even when the true fraction of carriers is a moderate sized p = 0.1, using
p0 = 0.01 gives almost the same power as p0 = 0.1 for most CNV lengths. The
benefit in using a large value of p0 is more noticeable when the signal to noise
ratio is small while N and the percentage of carriers is large, as expected. (Results
under a wider set of conditions are available in supplementary materials.)

5. Validation on a biological data set. In Zhang et al. (2010) we illustrated
our results on data obtained with a set of 62 Illumina 550K Beadchips from ex-
periments performed on DNA samples extracted from lymphoblastoid cell lines
derived from healthy individuals. These data were used recently as part of the
quality assessment panel at the Stanford Human Genome Center (i.e., they were
collected prior to studies of scientific interest to diagnose possible problems in the
experimental protocol). The 62 samples are useful for method assessment because
they represent 10 sets of (child, parent, parent) trios and 16 technical replicates of
16 independent DNA samples. We withhold the relation between samples during
the detection process, so that the scanning algorithm is blind to this information,
and use it afterward for validation. In Zhang et al. (2010) we used these data to
demonstrate the improvement of multi-sample scans based on the sum of the chi-
squares statistic over single sample scans. Here we make a similar comparison of
the sum of the chi-squares statistic with the mixture likelihood ratio statistic.

Data from most microarray based experiments exhibit various artifacts, includ-
ing strong local trends, first documented in Olshen et al. (2004) and studied in
detail in Diskin et al. (2008). Diskin et al. (2008) showed an association of these
trends with local GC content, and proposed a regression-based method that re-
duced the magnitude of the local trends. Another problem for microarray-based
experiments is that the noise variance varies significantly across probes, causing
the bulk distribution of the intensities for each sample to deviate from normal.
Such inhomogeneity of variances prompted Purdom and Holmes (2005) to use a
Laplace distribution, which can be derived from a mixture of normals with differ-
ent variances, to model gene expression data.

Before applying the cross sample scan, we preprocessed the data so that the as-
sumptions of independence and normality can be valid. We adopted the following
approach (let x = {xit : i = 1, . . . ,N; t = 1, . . . , T } be the raw data):

1. Each sample is standardized to its median, that is,

x′
it = xit − median(xit : t = 1, . . . , T ).

Let x′ be the matrix of x′
it values obtained in this way.
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2. Let L be the rank-1 singular value decomposition (SVD) of x′, and let

x′′ = x′ − L.

3. Standardize each SNP to have the same 84% and 16% quantiles as the standard
normal distribution, that is,

yit = x′′
it /dt ,

where dt = (qt,84 − qt,16)/2, where qt,z is the zth quantile of {x′′
it : i =

1, . . . ,N}.
Empirically, we found that the rank-1 SVD of x′ in step 2 effectively captures ex-
perimental artifacts such as local trends. This is because experimental artifacts can
be viewed as a low-rank perturbation of the data. For example, Diskin et al. (2008)
showed that local trends can be explained by a linear model using one predominant
factor, the local GC content. In our data, we found that the rank-1 SVD can elim-
inate local trends more completely than the genomic waves software of Diskin et
al., possibly because the local GC content is not accurately computed or because
local GC content does not completely control for the artifacts. If the magnitude
of the signal (i.e., the CNV regions) is large compared to the magnitude of arti-
facts, then parts of the signal would also be captured by the SVD and dampened in
step 2. However, in normal DNA samples, the CNV regions are short and well sep-
arated. Thus, compared to the sparse signal, artifacts overwhelmingly contribute to
the total data variation and almost completely determine the rank-1 SVD. Finally,
standardizing the quantiles of each SNP in step 3 makes the assumption of normal
errors with homogeneous variance not too far from the truth.

Figure 4 shows the normal qq-plot and the autocorrelation plot for one of the
62 samples after this normalization procedure. The qq-plot shows that the bulk

FIG. 4. Normal qq-plot [(a) and (b)] and autocorrelation plot (c) for sample 1 of the Stanford
Quality Control Panel data, after preprocessing. The qq-plot in (a) compares the distribution over
all of the SNPs (on all chromosomes) for this sample against the standard normal distribution. The
qq-plot in (b) zooms in on SNPs 2000–3000 on chromosome 4, which does not contain any visually
identifiable CNVs.
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of the data now looks convincingly normal (the tails are heavier than normal due
to CNV regions), with the adherence to normality more evident when we zoom
in to a region that is visually confirmed to contain no CNVs [Figure 4(b)]. From
Figure 4(c) we see that there is no detectable autocorrelation in the normalized
data.

To assess detection accuracy, we compare CNV identified for the two technical
replicates of the same individual, and also compare those identified for the child
with those identified for the parents. We define “inconsistency” of detections of
CNV in individual samples as follows: (1) If a detected CNV in one of the repli-
cate pairs is not detected in the second sample of the pair, the CNV is considered
inconsistent. (2) If a detected CNV in the child is not detected in at least one of
the parents, it is considered inconsistent. Detection accuracy is thus assessed by
plotting the number of total versus inconsistent detections, and different methods
can be compared in such a plot. See Zhang et al. (2010) for a more complete dis-
cussion.

This method of accuracy assessment requires the identification of the carriers
of each CNV, and the method of identification affects the level of consistency. For
example, if all of the samples are classified as “changed” at all CNV locations,
then there would be many detections but no inconsistencies. In Zhang et al. (2010)
we developed an empirically based thresholding method, which we use again here.

Figure 5 shows the results for different settings of the parameters p0 and the
sample detection thresholds. The horizontal axis is the number of total detections
and the vertical axis is the number of inconsistent detections. Each line in the graph

FIG. 5. Comparison of results on the Stanford Quality Control Panel data using the mixture likeli-
hood ratio statistic (2.6). Each curve is for a different value of p0. The points on the curve refer to
different absolute median thresholds (0.2,0.3,0.4) for identifying carriers.
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represents a different setting for p0, and dots on the line refer to performance at
varying values of a threshold parameter suggested in Zhang et al. (2010): δ

μ
MIN,

the absolute difference in medians between the readings inside and outside the
interval for a sequence to be called a carrier of a CNV. Within the range of 0.2–
0.4, as δ

μ
MIN decreases, the size of the set declared to be carriers, as well as the

number of inconsistencies, increases.
Zhang et al. (2010) showed that using a multi-sample scanning algorithm with

the sum of the chi-squares statistic gives higher consistency on these data than sin-
gle sample analysis, and Figure 5 shows that a mixture model, with small values of
p0, gives an additional improvement. Using p0 = 0.1 performs noticeably better,
and p0 = 0.01 gives a slight additional improvement.

Visual inspection of the data indicates that most CNV regions are carried by
fewer than 10 samples. Thus, the fact that the mixture model with p0 = 0.01 per-
forms the best is consistent with the power computations in Section 4. We also
found that the detected CNV region is often quite short. In many cases, consistent
calls contained fewer than 5 SNPs.

6. Discussion. Although the scan statistic relies on the unknown mixture frac-
tion p0, the power analyses show that it is quite insensitive to miss-specification
of this parameter within reasonable ranges. Quite generally, the power is sensitive
to the value of p0 only when p or p0 is very small. In practice, for N = 1000 it
seems reasonable to do a separate scan using a few different values of p0, such as
p0 ∈ {0.001,0.01,0.1,1}, and then apply a Bonferroni correction. One can also
use a simple Monte Carlo approximation for the marginal power as in Section 4 to
find a good range of p0 to use under various conditions.

From the power analysis in Section 4, where we assume the probe coverage and
signal to noise ratios typical of the Affymetrix 6.0 microarray platform (between
two and three standard deviations), we showed that the proposed method is ex-
pected to boost power significantly for detection of short CNV regions (<15 SNP
coverage). When the signal to noise ratio is weaker (around 1 standard deviation),
we can expect an improvement in power for CNV with less than 60 SNP coverage.
This is the range of CNV lengths where the current single sample detection meth-
ods fail. In our experience such short CNV are the most abundant in the genome,
and would be the most useful in a variety of studies. Many current genome-wide
studies simply ignore CNV with less than, say, 10 SNP coverage, since they are
not reliably detected with standard methods. However, when we pool data across
samples, the power increases dramatically for the detection of such short CNV,
even when only a few samples within the cohort are carriers.

By assessing concordance across replicates and adherence to Mendelian inher-
itance in parent–child trios, we showed in Section 5 that the mixture likelihood
ratio improves the accuracy of CNV detection, especially when the variant is rare.
The accurate detection of rare variants makes these variants available for genetic
association studies and other studies of population genetics.
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The analytical approximation to the false positive rate given in Section 3 is ac-
curate across all ranges of N and p0 that we have tested. It allows instantaneous
assessment of the false positive rate for genome-wide scans, where Monte Carlo
methods are computationally infeasible. The theoretical framework for the approx-
imation is not limited to Gaussian errors, and can be applied to other error models.

APPENDIX A: INFORMAL DERIVATION OF (3.3)

The approximation (3.3) is obtained using a general method for computing first
passage probabilities first introduced in Yakir and Pollack (1998) and further de-
veloped in Siegmund and Yakir (2000) and Siegmund, Yakir and Zhang (2010).
The method relies on measure transformations that shift the distribution for each
sequence over the scan window. We use the notation of Section 3. We omit some
of the technical details needed to make the derivation rigorous. These details have
been described and proved in Siegmund, Yakir and Zhang (2010).

Recall the definition ψτ (θ) = log E exp{θg(Zτ )}, where Zτ is a generic stan-
dardized sum over all observations within a given window of size τ in one sample,
and the parameter θ = θτ is selected by solving the equation Nψ̇τ (θ) = x. Since
Zτ is a standardized sum of τ independent random variables, ψτ converges to a
limit as τ → ∞, and θτ converges to a limiting value. We denote this limiting
value by θ . The transformed distribution for all sequences at a fixed start position
s and window size τ is denoted by Pτ

s and is defined via

dPτ
s = exp[θτG(J τ

s ) − Nψτ (θτ )]dP.

Let �N(J τ
s ) = log(dPτ

s /dP). Let D = {(s, τ ) : 0 < s < T,T0 ≤ τ ≤ T1} be the set
of all possible windows in the scan. Let A = {max(s,τ )∈D G(J τ

s ) ≥ x} be the event
of interest. Then,

P(A) = ∑
(s,τ )∈D

E
[
exp[�N(J τ

s )]
( ∑

(s′,τ ′)∈D

exp[�N(J τ ′
s′ )]

)−1

;A
]

= ∑
(s,τ )∈D

Eτ
s

[( ∑
(s′,τ ′)∈D

exp[�N(J τ ′
s′ )]

)−1

;A
]

= ∑
(s,τ )∈D

e�̃N (J τ
s )−�N (J τ

s )

(A.1)

× Eτ
s

[
maxu,v e�N(J v

u )−�N(J τ
s )∑

u,v e�N(J v
u )−�N(J τ

s )
e−�̃N (J τ

s )−log[maxu,v �N (J v
u )−�N (J τ

s )];A
]

= e−N{θτ ψ̇τ (θτ )−ψτ (θτ )}

× ∑
(s,τ )∈D

Eτ
s

[
MN(J τ

s )

SN(J τ
s )

exp−�̃N (J τ
s )−logMN(J τ

s );A
]
,
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where

�̃N (J τ
s ) =

N∑
i=1

θτ [g(Zi(J
τ
s )) − ψ̇τ (θτ )],

SN(J τ
s ) = ∑

t,u

exp

{
N∑

i=1

θτ [g(Zi(J
u
t )) − g(Zi(J

τ
s ))]

}
,

MN(J τ
s ) = max

t,u
exp

{
N∑

i=1

θm[g(Zi(J
u
t )) − g(Zi(J

τ
s ))]

}
.

Since s and τ are fixed in much of what follows, we sometimes suppress the
dependence of the above notation on J τ

s and simply write �̃N , SN,MN for
�̃N (J τ

s ), SN(J τ
s ), and MN(J τ

s ), respectively. As explained in Siegmund, Yakir and
Zhang (2010), under certain verifiable assumptions, a “localization lemma” allows
simplifying the quantities of the form

Eτ
s [(MN/SN)e−�̃N−logMN ; �̃N + logMN ≥ 0](A.2)

into much simpler expressions of the form

σ−1
N,τ (2π)−1/2E[M/S],(A.3)

where σN,τ is the Pτ
s standard deviation of �̃N and E[M/S] is the limit of

E[MN/SN ] as N → ∞. This reduction relies on the fact that, for large N and T ,
the “local” processes MN and SN are approximately independent of the “global”
process �̃N . This allows the expectation in (A.2) to be decomposed into the expec-
tation of MN/SN times the expectation involving �̃N + logMN , treating logMN

essentially as a constant.
We next analyze each of the terms in (A.3) separately. First consider the

processes MN and SN . The difference between standardized sums can be written
in the form

Zi(J
u
t ) − Zi(J

τ
s ) = Zi(J

u
t ) − u−1/2Wi(J

τ
s ) + u−1/2Wi(J

τ
s ) − Zi(J

τ
s )

= u−1/2(
Wi(J

u
t ) − Wi(J

τ
s )

) + Zi(J
τ
s )[(τ/u)1/2 − 1].

By taking a Taylor expansion of order two and keeping only the mean zero sto-
chastic terms of order O(N−1/2) and deterministic terms of order O(N−1), we
obtain

g(Zi(J
u
t )) − g(Zi(J

τ
s )) ≈ ġ(Zi(J

τ
s ))

u1/2

( ∑
j∈Ju

t \J τ
s

yi,j − ∑
j∈J τ

s \Ju
t

yi,j

)

+ Zi(J
τ
s )ġ(Zi(J

τ
s ))

τ − u

2u

+ g̈(Zi(J
τ
s ))

2u

( ∑
j∈Ju

t \J τ
s

y2
i,j + ∑

j∈J τ
s \Ju

t

y2
i,j

)
.
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It follows that
N∑

i=1

θτ [g(Zi(J
u
t )) − g(Zi(J

τ
s ))] ≈ ∑

j∈Ju
t \J τ

s

Ĥ+
j + ∑

j∈J τ
s \Ju

t

Ĥ−
j(A.4)

for

Ĥ+
j = θτN

1/2

u1/2

(
N−1/2

N∑
i=1

ġ(Zi(J
τ
s ))yi,j

)

+ θτN

2u

(
N−1

N∑
i=1

[g̈(Zi(J
τ
s ))y2

i,j − Zi(J
τ
s )ġ(Zi(J

τ
s ))]

)
,

Ĥ−
j = −θτN

1/2

u1/2

(
N−1/2

N∑
i=1

ġ(Zi(J
τ
s ))yi,j

)

+ θτN

2u

(
N−1

N∑
i=1

[g̈(Zi(J
τ
s ))y2

i,j + Zi(J
τ
s )ġ(Zi(J

τ
s ))]

)
.

Observe that one may substitute τ for u and θ = limτ→∞ θτ for θτ in the definition
of the increments and still maintain the required level of accuracy.

Consider the random variable Ĥ+
j . Its first component has mean zero under the

distribution determined by Pτ
s , since the random variables yi,j , 1 ≤ i ≤ N , are not

in the interval J τ
s . By the central limit theorem, Ĥ+

j converges to a normal random
variable with variance that is approximately equal to

varτs [Ĥ+
j ] ≈ θ2 N

τ
varτs (ġ(Z1(J

τ
s ))y1,j ) ≈ θ2 N

τ
Eθ [ġ(Z)2],

with the Pθ distribution of the random variable Z given by a density proportional
to ϕ(z)eθg(z), for θ the limit of θτ . The second component converges by the law of
large numbers to

Eτ
s [Ĥ+

j ] ≈ θN

2τ
Eθ [g̈(Z) − ġ(Z)Z] = −1

2
θ2 N

τ
Eθ [(ġ(Z))2],

where the last equation follows from integration of the identity

d

dz

[
ϕ(z)ġ(z)eθg(z)] = [−zġ(z) + g̈(z) + θ(ġ(z))2]ϕ(z)eθg(z) dz.

Regarding the random variable Ĥ−
j , note that due to the sufficiency of the sta-

tistic Zi(J
τ
s ) and the exchangeability of the observations that form it under the null

distribution, we get that the conditional expectation of yi,j , given Zi(J
τ
s ), equals

Zi(J
τ
s )/

√
τ . Straightforward computations, that essentially repeat those carried

out for Ĥ+
j , show that

Eτ
s [Ĥ−

j ] ≈ −1

2
θ2 N

τ
Eθ [(ġ(Z))2].
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For the variance of this term, since one can ignore o(1) quantities, we should ap-
proximate the expectation

Eτ
s {[ġ(Z1(J

τ
s ))]2y2

1,j }.
But, if we denote by Z̃ = Z1(J

τ
s \ {j}) the standardized sum of all the observations

in the first row excluding y1,j , and denote by Ẽτ
s the expectation with respect to

the measure where g(Z̃) is used for the exponential change of measure, we get a
negligible difference between the original expectation and

Ẽτ
s {[ġ(Z̃)]2y2

1,j } = Ẽτ
s {[ġ(Z̃)]2}

≈ Eθ [(ġ(Z))2].
The difference is negligible due to the facts that the function h(z, θ) = [ġ(z)]eθg(z)

is continuous with respect to both z and θ and that ψτ converges, as τ → ∞ to a
continuous limit. The conclusion is that both types of increments converge to the
same limiting normal distribution, with a mean value equal to minus one half the
variance.

One may use the same technique in order to show that the covariance between
any two increments is of the order of O(1/N).

The process �̃N has mean 0 and variance

σ 2
N,τ = varτs (�̃N )

= Nθ2
τ ψ̈τ (θτ )(A.5)

= Nθ2
τ varτs (g(Z1(J

τ
s ))

and its covariance with an increment of the local process is of order N−1/2, so
asymptotically the two are independent.

It follows from these calculations that the two local processes in (A.4) which
arise from perturbations at the endpoints of the interval (s, s + τ ] are asymptoti-
cally independent two-sided random walks. The increments are independent, iden-
tically distributed normal random variables. Moreover, integrating by parts the an-
alytic expression for Eτ

s [g̈(Zi,s)], one sees that the absolute value of the mean of
the local process equals half the variance. The random variables MN and SN are
respectively the maximum and sum of these local processes. Consequently, fol-
lowing Siegmund and Yakir (2000), we get that

E[M/S] = [
(N/τ)μ(θ)ν

([2(N/τ)μ(θ)]1/2)]2
,(A.6)

where

μ(θ) = θ2

2
Eθ [{ġ(Z)}2]

= θ2

2

∫
[ġ(z)]2eθg(z)−ψ(θ)ϕ(z) dz.
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Combining (A.6) with (A.5) in (A.3), and then substituting the result for the ex-
pectations in (A.1) yields (3.3).

APPENDIX B: ANOTHER NUMERICAL EXAMPLE

The numerical example discussed in Section 3.1 was limited to relatively small
values of T by the extremely time consuming nature of the simulations. Here we
give a somewhat different example where it is computationally feasible to consider
larger T , since the scan statistic involves only a one-dimensional maximization.

The statistic is

max
0<j<�

N∑
i=1

log
[
1 − p0 + p0 exp

(
U2

i (j)/2
)]

,(B.1)

where the processes Ui(t) are independent stationary Ornstein–Uhlenbeck proc-
esses with covariance function cov[Ui(s),Ui(t)] = exp(−β|t − s|). This statistic
would be reasonable as an approximation in a linkage study of the expression lev-
els of N genes, regarded as quantitative traits (eQTL), when one is particularly
interested in “master regulators,” that is, genomic regions that control the expres-
sion levels of a collection of genes. See Siegmund and Yakir (2007) for a general
discussion of linkage analysis and Morley et al. (2004), Göring et al. (2007) and
Shi, Siegmund and Levinson (2007) for recent studies of linkage for eQTL and
discussions of the existence of master regulators. In this case � is the length of the
genome in centimorgans (taken here to be 1600, the approximate length of a mouse
genome),  is the (average) genetic distance between markers, and β = 0.02 for a
backcross or for the statistic associated with the additive effect of an intercross. Ta-
ble 2 gives numerical results for an approximation to the tail probability of (B.1),
which was suggested by Siegmund, Yakir and Zhang (2010) and is analogous to
(3.3), but is much simpler to derive. This approximation is also quite accurate.

TABLE 2
Accuracy of approximate thresholds: The statistic is the mixture likelihood
ratio for linkage, with parameters N = 1000, � = 1600, = 1, β = 0.02.

The number of repetitions of the Monte Carlo experiment is 1000

p0 Significance level Th (approx.) Th (MC)

0.02 0.10 47.0 47.5
0.02 0.05 48.5 48.9
0.02 0.01 51.3 51.8
0.01 0.10 30.1 29.2
0.01 0.05 31.3 31.5
0.01 0.01 33.6 33.8
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