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The steep rise in availability and usage of high-throughput technologies
in biology brought with it a clear need for methods to control the False Dis-
covery Rate (FDR) in multiple tests. Benjamini and Hochberg (BH) intro-
duced in 1995 a simple procedure and proved that it provided a bound on
the expected value, FDR ≤ q. Since then, many authors tried to improve the
BH bound, with one approach being designing adaptive procedures, which
aim at estimating the number of true null hypothesis in order to get a better
FDR bound. Our two main rigorous results are the following: (i) a theorem
that provides a bound on the FDR for adaptive procedures that use any es-
timator for the number of true hypotheses (m0), (ii) a theorem that proves a
monotonicity property of general BH-like procedures, both for the case where
the hypotheses are independent. We also propose two improved procedures
for which we prove FDR control for the independent case, and demonstrate
their advantages over several available bounds, on simulated data and on a
large number of gene expression data sets. Both applications are simple and
involve a similar amount of computation as the original BH procedure. We
compare the performance of our proposed procedures with BH and other pro-
cedures and find that in most cases we get more power for the same level of
statistical significance.

1. Introduction. The main goal of statistical comparisons (tests) is to calcu-
late the level of statistical significance at which a given null hypothesis is rejected
on the basis of available data. Researchers use this tool in order to present their
findings and support their conclusions. Uncontrolled application of single infer-
ence procedures in a multiple comparison setting can cause a high false positive
rate. Special multiple comparison procedures are used in order to control the prob-
ability of committing such a type I error in families of comparisons.

The need for improved control over the multiplicity effect in biological exper-
iments became acute in the nineties, when the amount of data that could be mea-
sured and stored increased thousands fold. Many new experimental techniques,
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TABLE 1
Numbers of true/false decisions taken when testing m null hypotheses

“Ground truth” Nonrejected Rejected Total
hypotheses hypotheses

Null hypothesis is true U V m0
Null hypothesis is false T S m1
Total m − R R m

which allowed taking a large number of measurements simultaneously, were de-
veloped, along with improved data acquisition and storage capabilities.

For example, in the case of gene expression microarray measurements, a typical
aim is to identify the genes whose expression levels differentiate between healthy
(type A) and diseased (type B) subjects. Genes are tested one by one for differen-
tial expression; the formal way to do this is by posing several thousand null hy-
potheses. A null hypothesis states that a particular variable (e.g., expression level
of gene i) is sampled from the same distribution for both types A,B; one is in-
terested in identifying variables (genes) for which the null hypothesis is rejected
(i.e., genes whose expression does differentiate between types A,B). Such a find-
ing is referred to as a discovery. Denote by m the total number of hypotheses (e.g.,
the number of genes whose expression levels were measured), and assume that
the null hypothesis is true for m0 out of the m (i.e., m0 genes’ expression levels
do not differentiate the two types). For m1 = m − m0 the null hypothesis is false
(the expression levels of types A and B are sampled from different distributions).
A statistical test is performed independently for each variable, producing a p-value
pi , i = 1,2, . . . ,m. On the basis of some thresholding operation on the pi’s, the
null hypothesis is rejected for R tests. The decision to reject (or not) can be correct
or false; When the null hypothesis is rejected for one of the m0 variables for which
it is actually true, we have a “false discovery” (type I error). Table 1 presents the
possible categories to which rejected and nonrejected hypotheses can belong, and
the number of hypotheses in each category.

Out of the R rejected hypotheses, the fraction V/R is falsely rejected. The ex-
pected value of this fraction was termed by Benjamini and Hochberg (1995) (re-
ferred to as BH95) as the False Discovery Rate (FDR),

FDR ≡ E

(
V

R

∣∣∣R > 0
)

Pr(R > 0) ≡ E

(
V

R+
)
,(1.1)

where here and later in the paper the term R+ ≡ max(R,1) is used for brevity. It is
required since V/R is undefined when R = 0 and, thus, this case should be treated
separately—we follow Benjamini and Hochberg (1995) and replace V/R by 0 in
this case. The original BH95 procedure to control the FDR is given as follows:
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1. Denote by q the desired level, 0 < q ≤ 1, of the FDR and define the following
set of constants:

αi = iq

m
, i = 1,2, . . . ,m.(1.2)

2. Sort the p-values pi and relabel the hypotheses accordingly, p(1) ≤ p(2) ≤ · · · ≤
p(m), such that (i) is the index of the hypothesis with the ith smallest p-value.

3. Identify R as

R = max
{
i :p(i) ≤ αi

}
.(1.3)

If no such R ≥ 1 exists, no hypothesis is rejected; otherwise reject all R hy-
potheses (i) = 1,2, . . . ,R.

This procedure has a simple graphical implementation, depicted in Figure 1.
It is referred to in BH95 as “step-up”; in general, there could be more than one
intersection point [of the p(i) and αi lines], in which case the step-up procedure
identifies the intersection with the largest p-value as R, whereas the more conser-
vative “step-down” procedure identifies the lowest one, replacing equation (1.3)
by

R = min
{
i :p(i) > αi

} − 1.(1.4)

FIG. 1. Typical examples for the use of the BH95 and our IBH procedures, for a desired FDR value
of q = 0.1. The sorted p-values (solid line), the αi of equation (1.2) (dashed line) and the γi from
equation (2.1) (dot–dashed line for IBHsum and solid light for IBHlog) are shown, for (a) leukemia
data from Andersson et al. (2007) and (b) breast cancer data from Pawitan et al. (2005). As indicated
in (a), the number of rejections is determined for each procedure by locating the (maximal) value
i = R at which the corresponding lines intersect p(i) (the vertical lines mark the intersection point
between the lines).
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The bound

FDR = E

(
V

R+
)

≤ m0

m
q(1.5)

was proved by BH95 for independent tests, and by Benjamini and Yekutieli (2001)
for a certain type of “positive dependency” called PRDS (Positive Regression De-
pendency on each one from a Subset). The value of m0 is unknown to the re-
searcher, but since m0 ≤ m, this procedure leads to the bound

FDR = E

(
V

R+
)

≤ m0

m
q ≤ q.(1.6)

Clearly, had we known m0, we could have defined a different set of constants
[compare to equation (1.2)]

α′
i = iq

m0
(1.7)

and defining

R′ = max
{
i :p(i) ≤ α′

i

}
(1.8)

would have obtained a larger number R′ ≥ R of rejected hypotheses (still with
FDR ≤ q) than the number R given by the original BH95 procedure, which used
m as an upper-bound on m0. This procedure, based on knowledge of m0, is called
“oracle” (ORC); see Gavrilov, Benjamini and Sarkar (2009). Subsequently, various
improved (also called “adaptive”) procedures were proposed, based on the idea of
estimating the unknown m0 in order to get a more accurate handle on the FDR.
These procedures can be divided into two major classes:

1. Procedures for local FDR estimation: This approach, previously suggested and
applied by Yekutieli and Benjamini (1999), Storey (2002) and Pounds and
Cheng (2006), can be used when one has an estimator m̂0 of m0 that satisfies

m0 ≤ E(m̂0) ≤ m.(1.9)

In procedures of this type one can write the local FDR (lFDR) estimate as [see
Pounds and Cheng (2006)]

t(i) = v̂(p(i))

F̂ (p(i))
,(1.10)

where p(i) is the ordered p-value, v̂(α) is the estimator for the type I errors (in
the rejection region), and F̂ (α) is the estimator for the probability Pr(p ≤ α)

[often estimated for p(i) by i/m]. Since for v̂(α) most methods use

v̂(α) = α
m̂0

m
,(1.11)



FDR CONTROL WITH ADAPTIVE PROCEDURES AND FDR MONOTONICITY 947

any estimator that satisfies equation (1.9) can provide an improved estimator
for the local-FDR by

α
m0

m
≤ E(v̂(α)) = α

E(m̂0)

m
≤ α.(1.12)

When using F̂ (p(i)) = i/m one gets an improved bound on the local-FDR es-
timator:

p(i)

i
m0 ≤ E

(
t(i)

) = p(i)

i
E(m̂0) ≤ p(i)

i
m.(1.13)

This approach is the preferred one in many biological contexts when the investi-
gator wishes to control R, the number of discoveries made (e.g., differentiating
genes to be used in further experiments).

2. Procedures for FDR control: In this approach, one wishes to control the FDR at
a preset level q . This is achieved by defining γi = iq/m̂0 to be used in the same
way as αi and α′

i [see equations (1.2) and (1.7)], leading typically to a larger
number R′ of rejected hypotheses (compared to BH95), with the FDR still be-
ing bound by the desired value q . The advantage of this procedure (presented
in Section 5) is that one retains control of q , the desired level of FDR.

We present in this paper two estimators, m̂0 and m̃0, that satisfy equation (1.9),
and hence can be used trivially for FDR estimation. As opposed to FDR estimation,
proving control of the FDR is far more involved, and constitutes a significant por-
tion of this paper. We provide two new proven procedures for control of the FDR.
We first prove control for these procedures when employed in a step-up manner.
Then, by using a new general monotonicity result for the FDR which we derive,
we show that the step-down versions of our procedures also control the FDR. De-
signing better procedures for FDR estimation and control has drawn a great deal of
attention in recent years, as is demonstrated by the abundance of proposed proce-
dures and many theoretical and experimental papers. However, as far as we know,
only for a few such procedures has control of the FDR been rigorously established:
the original BH95 procedure Benjamini and Hochberg (1995), the two-stage and
multiple-stage adaptive BH procedures Benjamini, Krieger and Yekutieli (2006)
(we refer to the latter as BKY), and Storey’s procedure Storey (2002) (referred to
as STS). All these procedures (except, of course, BH95) claim to give improved
power over BH95. All are derived from a better estimation of m0. Almost all proofs
for FDR control assume independence of the p-values [with the notable exception
of Benjamini and Yekutieli (2001)]. Thus, far less is known about the behavior of
FDR procedures under dependency, where most of our understanding comes from
simulation studies. In addition, the FDR, by its definition [equation (1.1)], is an
expected value. However, the fraction of the false discoveries V/R+ is a random
variable. While the mean value (FDR) was extensively studied, far less attention
has been devoted in the literature to the behavior of this random variable, its vari-
ance and entire distribution. We therefore perform simulations whose purposes are
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as follows: (a) To study the behavior of the various procedures under dependence,
where analytical results are harder to establish, and (b) study the distribution of the
fraction of false rejections (V/R+), which has implications on possible violation
of the bound for a particular realization. Our simulations provide a comparison of
our new procedures to the known ones mentioned above and we show that our new
procedures compare favorably in most cases of interest. We analyze simulated and
real data, and show that for both the new procedures almost always reject more
hypotheses than BH95, while maintaining control even under dependence, and we
therefore refer to these procedures as “Improved BH” (IBH). The real data which
we use is gene expression data obtained from various cancer studies, and we show
that our new procedures allow rejection of more hypotheses at a given confidence
level and thus increase discovery power.

A Matlab package implementing our proposed procedures, including exam-
ples and data sets analyzed in the paper, is provided in the supplementary infor-
mation Zeisel, Zuk and Domany (2010) and in the following URL: http://www.
broadinstitute.org/~orzuk/matlab/libs/stats/fdr/matlab_fdr_utils.html.

2. Preliminaries and theorem on control. In this section we present a the-
orem which provides a general way to build an improved bound for controlling
the FDR using an estimator for m0. Two examples of practical implementation of
the theorem lead to useful procedures described in the next section. The working
assumption we use here is that the p-values are independent. The theorem is not
proven for dependent variables, but our simulations indicate that in most cases we
do control the FDR even under dependence (see Section 5). Our first step is defin-
ing mathematically a family of estimators m̂0 for m0. We define a general modified
BH procedure, in which any one of these estimators is used by replacing m in the
original BH95 procedure [see equations (1.2) and (1.3)] by m̂0. Throughout this
section and the rest of the paper we denote for convenience pi..j ≡ pi, . . . , pj . We
also denote �p = (p1, . . . , pm) the vector of all p-values.

DEFINITION 2.1. An estimator for m0 is a family of functions m̂0 ≡
m̂

(m)
0 : [0,1]m → R, m̂0 ≡ m̂0( �p). We usually omit the index (m), as it is obvi-

ous from the context. We say that m̂0 is a monotonic estimator if it satisfies the
following:

1. m̂
(m)
0 (p1, . . . , pi, . . . , pm) ≥ m̂

(m)
0 (p1, . . . , p

′
i , . . . , pm), ∀pi ≥ p′

i , i = 1,2, . . . ,

m, m ≥ 1.
2. m̂

(m)
0 (p1, . . . , pi, . . . , pm) ≥ m̂

(m−1)
0 (p1, . . . , pi−1,pi+1, . . . , pm), ∀i = 1,2,

. . . ,m, m ≥ 2.

DEFINITION 2.2. Assume w.l.o.g that we have m hypotheses, the first m0 of
which are null. Let �p = (p1, . . . , pm) be the corresponding p-values. The modified
step-up BH procedure with estimator m̂0 is defined as follows:

1. Compute m̂0 ≡ m̂0( �p).

http://www.broadinstitute.org/~orzuk/matlab/libs/stats/fdr/matlab_fdr_utils.html
http://www.broadinstitute.org/~orzuk/matlab/libs/stats/fdr/matlab_fdr_utils.html
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2. For each i define

γi = iq

m̂0
.(2.1)

3. Order the p-values in an increasing order: p(1) ≤ · · · ≤ p(m).
4. Let R = max{i :p(i) ≤ γi}, and reject the hypotheses (1), (2), . . . , (R) (if no

such R exists, do not reject any hypothesis).

This procedure is similar to the original BH95 procedure, with the additional initial
step of estimating m0, and the different set of constants used to determine R. The
modified step-down BH procedure is defined in the same way, except that in step
4 we take R = min{i :p(i) > αi} − 1.

The next theorem gives the bound on the FDR for the above procedure under
the above assumptions [a very similar result was given by Benjamini, Krieger and
Yekutieli (2006)].

THEOREM 2.3. Let m̂0 ≡ m̂0( �p) be a monotonic estimator for m0. Consider
the modified step-up BH procedure defined above. Let m̂

( 	1)
0 ( �p) ≡ m̂0(p2, . . . , pm)

be the same estimator, but disregarding the first (null) p-value p1. Assume that the
null p-values are i.i.d. U [0,1]. Then the procedure satisfies

FDR = E

[
V

R+
]

≤ m0qE

[
1

m̂
( 	1)
0

]
.(2.2)

Here p1 is a representative of one of the true null p-values. The modified estima-
tor m̂

( 	1)
0 which excludes p1 cannot be implemented in practice, as the researcher

does not know which of the p-values are null, but for any estimator m̂0 we can
still consider this hypothetical estimator (in similar vain to the “oracle” procedure
sometimes considered in the literature) and study its statistical properties—it only
serves for a hypothetical auxiliary procedure which is used in the proof of the theo-
rem, and the theorem applies to the practical original procedure with the estimator
m̂0 which does use p1 (as well as all other p-values). The proof of Theorem 2.3 is
given in Zeisel, Zuk and Domany (2010), Supplement A for completeness. In gen-
eral, a direct computation, or bounding of the FDR for a given procedure, is a de-
manding task, which depends heavily on the procedure’s details, and suffers from
complicated dependence on the rejection of different hypotheses, reflected in the
computation of E[V/R+] (this is true even if the p-values themselves are indepen-
dent) and, therefore, there is no general way to prove FDR controlling properties
of various procedures. The advantage of Theorem 2.3 is that it provides a direct
method for proving control for a wide class of procedures, by simply bounding the
reciprocal mean of the estimator for m0. In the next section we use this theorem
to prove control of the FDR for two procedures, based on different estimators m̂0
and m̃0 which we propose. We are not aware of a direct way for proving control of
the FDR for these procedures, thus demonstrating the power and generality of the
theorem.
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3. The proposed procedures. In this section we propose two FDR control-
ling procedures. We show that they achieve direct control of q , the desired value
of the FDR, while producing a list of R′ discoveries satisfying almost always
R′ ≥ R, the corresponding BH95 value. The procedures are particular cases of De-
finition 2.2. According to Theorem 2.3, any estimator that satisfies our monotonic-
ity assumption bounds the FDR by FDR ≤ m0qE[1/m̂

( 	1)
0 ]. Therefore, in order to

show that the FDR is controlled, it suffices to bound E[1/m̂
( 	1)
0 ]. In particular, if

we want to achieve a certain FDR control level q , we need to verify that

E

[
1

m̂
( 	1)
0

]
≤ 1

m0
.(3.1)

Our first estimator is based on

m̂′
0 = 2

m∑
j=1

pj .(3.2)

m̂′
0 was used by Pounds and Cheng (2006) for estimation, but without proving

control of the FDR. The second estimator is based on

m̃′
0 = −

m∑
i=1

log(1 − pi).(3.3)

For both estimators we first show that equation (1.9) is satisfied and, hence, both
can be used for FDR estimation. Next we describe the procedure to be used for
control of the FDR, which is proved by showing, for slightly modified versions of
both estimators (see below), m̂0 and m̃0, that the bound equation (3.1) is satisfied.
Both m̂′

0, m̃
′
0 are monotonic estimators according to Definition 2.1. Our claims are

as follows:

1. Both estimators are conservative, that is, their expectation is at least m0. More-
over, as the statistical power of each individual test increases, and the pi of the
alternative hypothesis approach zero, our estimators converge (in expectation)
to the true value of m0.

2. Both procedures control the FDR—for the list of R′ discoveries we have
FDR ≤ q .

3. In nearly all cases of interest the number of discoveries obtained by our pro-
cedures exceeds the number obtained (for the same value of q) by the BH95
procedure, that is, R′ ≥ R. This holds since nearly always m̂0 ≤ m (exceptions
occur when there are almost no false hypotheses, that is, m and m0 are very
close).

A reasonable requirement from an estimator for m0 should be that it is conser-
vative (i.e., larger than m0 in expectation). We would also like our estimator to be
(approximately) unbiased, at least when all hypotheses are null, since otherwise we
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will get a systematic overestimation of m0 and a corresponding underestimation of
the FDR. Finally, a desirable property is being asymptotically unbiased—that is,
even when there are nonnull hypotheses, when the sample size of the individual
tests grows to infinity, we would want the estimator to converge, on expectation, to
the true value m0. These properties were dealt with in Pounds and Cheng (2006),
where it was shown that m̂′

0 indeed satisfy them. Here we show them for both our
procedures:

CLAIM 3.1. (a) Both estimators are conservative:

E[m̂′
0] ≥ m, E[m̃′

0] ≥ m0.(3.4)

(b) Assume that the sample size of all tests goes to infinity, and, thus, E[pi] → 0
for i = m0 + 1, . . . ,m. Then both estimators converge in expectation to m0:

E[m̂′
0] → m0, E[m̃′

0] → m0.(3.5)

PROOF. (a)

E[m̂′
0] = 2

m∑
j=1

E[pj ] = 2

(
m0∑
j=1

E[pj ] +
m∑

j=m0+1

E[pj ]
)

(3.6)

= m0 + 2
m∑

j=m0+1

E[pj ] ≥ m0,

E[m̃′
0] =

m∑
j=1

E[log(1 − pj )] =
m0∑
j=1

E[log(1 − pj )] +
m∑

j=m0+1

E[log(1 − pj )]
(3.7)

= m0 +
m∑

j=m0+1

E[log(1 − pj )] ≥ m0.

(b) From the two equations above it is clear that as all the alternative E[pj ]
approach zero, the expectation of both estimators converges to m0. �

In order to show control of the FDR using Theorem 2.3, we have to apply
small corrections to both estimators, turning them into conservative estimators
(i.e., overestimating m0). This is due to two reasons: the first is that the bound
on the FDR given in Theorem 2.3 uses m̂

( 	1)
0 (rather than m̂0) and, thus, we “lose”

one of the p-values and need to correct for that. The second reason is that m̂
( 	1)
0

appears in the denominator, and its fluctuations have asymmetric influence on
the FDR bound. This can be illustrated by using Jensen’s inequality which gives
E[1/m̂

( 	1)
0 ] ≥ 1/E[m̂( 	1)

0 ], thus showing that an unbiased estimator for m0 will typi-
cally show a bias when its reciprocal is used. Nevertheless, we show that these two
effects can be overcome by applying a small correction, which becomes negligible
as the number of hypotheses goes to infinity.
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3.1. The IBHsum procedure. Our first estimator is based on m̂′
0 [see equa-

tion (3.2)] that was also used by Pounds and Cheng (2006), but only for esti-
mation and not for control. Since for the m0 variables for which the null hy-
pothesis holds we have ptrue

i ∼ U [0,1] ⇒ E[ptrue
i ] = 1

2 , it is trivial to see that
E[m̂′

0] ≥ m0. To show that E[m̂′
0] ≤ m, we have to make a further assump-

tion regarding the alternative p-values pfalse
i : We denote the distribution of pfalse

i

by f false
i , that is, pfalse

i ∼ f false
i . If all the fi ’s are stochastically smaller [Aven

and Jensen (1999)] than the uniform distribution (f false
i ≤st U [0,1]), we have

E[pfalse
i ] ≤ 1

2 which immediately implies E[m̂′
0] ≤ m [a probability density func-

tion f is said to be stochastically smaller than a probability density function g,
f ≤st g, if F(x) = ∫ x

−∞ f (t) dt ≥ G(x) = ∫ x
−∞ g(t) dt ∀x ∈ (−∞,∞); Aven and

Jensen (1999)].
We introduce the following modified estimator:

m̂0 = C(m) · min[m,max(s(m), m̂′
0)],(3.8)

where C(m), s(m) are universal correction factors that ensure that the condi-
tion (3.1) is satisfied [for details see Zeisel, Zuk and Domany (2010), Supple-
ment B]. The correction factors were computed numerically and are presented in
Figure 2. When m → ∞, C → 1 and s/m → 0, and, therefore, the corrections
become negligible and the estimator m̂0 reduces to m̂′

0.

FIG. 2. The correction functions C(m) and s(m)/m [see equation (3.8)]. As m → ∞ the multi-
plicative correction C(m) approaches one, while the (normalized) threshold s(m)/m [used when
m̂′

0 ≤ s(m)] goes to zero, thus, m̂0 reduces to the uncorrected m̂′
0.
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3.2. The IBHlog estimator. In this section we propose another estimator for
m0, based on m̃′

0 [see equation (3.3)]. Again, since for i = 1,2, . . . ,m0 we
have ptrue

i ∼ U [0,1] ⇒ E[− log(1 − pi)] = 1 and, therefore, E[m̃′
0] ≥ m0. Fur-

thermore, if all the alternative p-values pfalse
i have a distribution which is sto-

chastically smaller than the uniform distribution (f false
pi

(p) ≤st U [0,1]), then

E[− log(1 − pfalse
i )] ≤ 1, and, therefore, E[m̃′

0] ≤ m.
The advantage of using the second estimator m̃′

0 over m̂′
0 is that when

f false
pi

(p) ≤st U [0,1], the alternative hypothesis generates p-values skewed to the

left. Since − log(1 − p) < 2p, ∀p < 1
2 [see equations (3.2) and (3.3)], this typi-

cally implies m̃′
0 ≤ m̂′

0 and, thus, m̃′
0 is typically closer to the true m0. A possible

drawback is that the variance of m̃′
0 is typically larger than that of m̂′

0, which might
result in an instability in the estimation of m0.

Proving control of the FDR for m̂0 is difficult since we need to bound 1/m̂0
which has a complicated distribution. Here we show that the distribution of m̃′

0 is
much simpler, and this enables us to prove control of the FDR by introducing only
a slight additive correction.

CLAIM 3.2. Define the (corrected) estimator:

m̃0 ≡ 2 + m̃′
0 = 2 −

m∑
i=1

log(1 − pi).(3.9)

Assume that the null p-values are i.i.d. U [0,1]. Then the modified BH procedure
with estimator m̃0 and parameter q controls the FDR at level ≤ q .

The proof is achieved by bounding E[1/m̃
( 	1)
0 ] and then using Theorem 2.3. See

Zeisel, Zuk and Domany (2010), Supplement C for full details.

4. Is the FDR monotonic? In this section we take a slight detour from the
study of our proposed procedures to investigate the following question: is it gener-
ally true that by modifying an FDR procedure to be more stringent, one is guaran-
teed to obtain a more conservative control on the FDR? The motivation for dealing
with this question in the context of the current paper (which deals with the control
property of a modified BH procedure) comes from the fact that Theorem 2.3 was
proved only for step-up procedures, which leads us to ask whether it holds also
for the more conservative step-down case. Monotonicity is a natural property that
one might expect when performing statistical tests, as it allows the researcher to
choose a trade-off between maximizing the statistical power and minimizing the
risk of making false discoveries. The analogous question for a single hypothesis
is whether taking a more conservative (lower) p-value cutoff guarantees to reduce
the risk of making a type-I error, and is trivially answered in the affirmative. Our
formulation of the question in the multiple-hypothesis settings using FDR is as
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follows: Given two procedures, B(1),B(2) (possibly parameterized by q or other
parameters), and assuming that for any realization of the p-values, B(2) passes
more hypotheses than B(1), is it true that FDR(1) ≤ FDR(2)? While this statement
seems a natural and plausible property of FDR procedures, we are not aware of
any previous treatment of it in the literature. Here we show that under certain
monotonicity conditions on the alternative hypothesis p-values distribution, one
can prove this monotonicity property of the FDR.

THEOREM 4.1. Let �p = (p1,...,m) be a set of independent p-values. Assume
that f , the marginal probability density function of the alternatives, is monotoni-
cally nonincreasing and differentiable. Let B(i) be two threshold FDR procedures
rejecting R(i)( �p) hypotheses and each having FDR(i), i = 1,2. Assume that for
any q , R(1)( �p) ≤ R(2)( �p),∀ �p. Then it also holds that FDR(1) ≤ FDR(2).

The proof is given in Zeisel, Zuk and Domany (2010), Supplement D. A partic-
ular application of the above theorem is showing that step-down procedures give
better FDR then step-up procedures. Thus, we immediately get the following:

COROLLARY 4.2. The statement of Theorem 2.3 holds also for the step-down
procedure, provided that the alternative f is monotonically decreasing.

The above conditions for monotonicity might appear a bit restrictive, and one
could hope to relax them—for example, require only f ≤st U [0,1] instead of
monotonicity. We have found that, perhaps surprisingly, monotonicity of the FDR
does not hold under such relaxed conditions, by giving an example in which FDR
monotonicity is violated, even for a simple case of independent test statistics (both
null and nonnull), when f ≤st U [0,1], and when the FDR procedures themselves
are monotonic. It is thus not obvious at all that in practice we will always observe
a monotonic behavior of the FDR, and, thus, it is possible to get a higher FDR for
a more conservative procedure.

EXAMPLE 4.3. Let m = 3 and m0 = 1. Let the two alternative hypotheses p-
values be taken from a mixture distribution, pi ∼ εU [0, ε] + (1 − ε)δ(pi − ε) for
some 0 < ε < 1. Thus, p2,p3 are “truncated” uniform r.v.s., having 1 − ε of their
mass concentrated at ε, and the rest (ε) uniformly distributed on [0, ε]; their dis-
tributions are stochastically smaller than U [0,1]. For simplicity of computations,
we assume that ε � 1 and thus look only at the first order in ε, although the exam-
ple’s conclusion holds for any ε > 0. Let P (1) be the procedure always rejecting
the lowest p-value and P (2) be the procedure rejecting the two lowest p-values
(we assume that ties are handled in the same way by both procedures, for example,
by taking p-values in lexicographic order—the precise tie-breaking rule does not
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change the example’s results). We next compute the FDR for both procedures:

FDR(1) = Pr(p1 < p2,p3) = ε[ε2/3 + 2ε(1 − ε)/2 + (1 − ε)2]
(4.1)

= ε + O(ε2),

FDR(2) = (
1 − Pr(p1 > p2,p3)

)
/2 = [1 − (1 − ε) − ε3/3]/2

(4.2)
= ε/2 + O(ε3).

Thus, for ε small enough FDR(1) > FDR(2) and the more conservative procedure
leads, in fact, to a higher FDR.

5. Synthetic data obtained by simulations. We applied our method, as well
as several others (see below), to synthetic data obtained by simulations performed
along the lines of Gavrilov, Benjamini and Sarkar (2009), with full details pre-
sented in Zeisel, Zuk and Domany (2010), Supplement E. The advantage of work-
ing with synthetic data is that several parameters of interest are under full con-
trol, and one can investigate their effect on the quality of different procedures
and bounds. Furthermore, by performing repeated simulations, one can determine
not only the (expected value) FDR but also the entire distribution of V/R+. One
should bear in mind that results based on specific simulations might have limited
applicability and are hard to generalize, since the simulations use specific configu-
rations (e.g., data distribution, test to determine p-values, hypothesis dependency
structure, etc.). A comprehensive simulation capturing all possible behaviors of
the hypothesis is infeasible, but we have tried to explore various different plausi-
ble scenarios which might be encountered in practice, by changing the number of
(total and null) hypotheses and their dependency structure, with both positive and
negative correlations. The simulations produce two kinds of Gaussian random vari-
ables: Z1, . . . ,Zm0 , sampled from the standard normal distribution P0 ≡ N(0,1),
and Zm0+1, . . . ,Zm, sampled from P1 ≡ N(μ1,1), centered on μ1 > 0. All vari-
ables (both null and nonnull) are sampled with covariance ρ (0 ≤ ρ ≤ 1): at the
extreme cases, setting ρ = 0 corresponds to independent variables, whereas ρ = 1
to full (deterministic) dependency. For each Zi the corresponding two-tailed p-
value is obtained, pi = 2�(−|Zi |), where � is the standard Gaussian cumulative
distribution function. The obtained pi ’s have a uniform U [0,1] distribution for
i = 1, . . . ,m0 (corresponding to the null hypothesis) and a distribution stochasti-
cally smaller than uniform for i = m0 + 1, . . . ,m (the alternative hypothesis).

A set of m such variables constitutes a single instance or realization of the data
to be analyzed. To get accurate estimates of the FDR and the V/R+ distribution,
we generated for each simulation 50,000 such realizations, which generally gave
highly accurate and reproducible estimates. Under the null hypotheses all variables
are sampled from the first distribution, m p-values are calculated accordingly and
used as input to one of the procedures with a desired FDR bound q , producing a list
of R rejections. As opposed to real data, here one can go back and identify those
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V among the R that were falsely rejected (i.e., were, in fact, selected from P0).
This way one can keep track of the true values of V/R+, their mean (calculated
over a large number of instances), variance, etc. One important goal of the simu-
lation is comparing our procedures to existing ones. Specifically, we compare our
procedure to the following: (1) the BH95 procedure as described in the Introduc-
tion, (2) the BKY procedure which defines a local (i-dependent) estimator for m0,
given by m̂BKY

0 = m + 1 − i(1 − q), and uses it in the step-down manner of the
BH95 procedure with q∗ = qm/m̂BKY

0 , (3) the STS procedure which introduces
m̂STS

0 = (m + 1 − r(λ))/(1 − λ) as the estimator for m0 where r(λ) = #{pi ≤ λ},
and then uses the step-up BH95 procedure, with q∗ = qm/m̂STS

0 , with the require-
ment that all the rejected pi ≤ λ (throughout this paper we used the STS procedure
with λ = 0.5). We present here two kinds of results derived from such simulations.
First we compare the values of FDR = E(V/R+) obtained by the procedures dis-
cussed above: BH95, BKY, STS, IBHsum and IBHlog when the hypotheses are
dependent. In particular, we demonstrate that for positive correlations ρ > 0 our
IBH as well as the BKY procedures yield, for a given desired value of q , an FDR
that is either less than q or exceeds it slightly. On the other hand, the STS method
produces, for ρ > 0, values of FDR that exceed q by a large margin. The second
aim is to assess the extent to which the value of V/R+, obtained for a particular
realization, will violate the bound, especially for the IBH methods.

As an overview we start by presenting in Figure 3 the performance of our pro-
posed IBHsum procedure for fixed m = 500 and q = 0.05,0.2, and for a wide
range of the parameters m0/m (fraction of alternative hypotheses) and μ1 (signal
strength), by estimating the expected value FDR = E(V/R+) from our simula-
tions. Figure 3a and c are for the independent case and show both step-down and
step-up results. As we can see, the two become identical when the signal (μ1) is
strong or when m0/m is small. Figure 3b and d are for the positively dependent
case (ρ = 0.8) for which the procedure is not proved to control the FDR. Indeed,
we can observe in Figure 3b violation of the FDR level q for large signals (μ1);
this violation of the bound for the dependent case will be discussed later.

5.1. Comparison of several methods under dependency. Here we fixed the sig-
nal parameter μ1 = 3.5, and varied m0/m between 0.2 and 1 (for m = 500). We
present, in Figure 4a, c and e, results obtained for ρ = 0 (complete independence)
and in Figure 4b, d and f for ρ = 0.8 (strong dependence). For each instance we ap-
plied the five procedures with q = 0.05. For STS we chose λ = 0.5, and our IBH-
sum and IBHlog were employed in a step-down manner. Figure 4a and b present
for each method the mean value of V/R+, as a function of m0/m. These means
provide excellent estimates of E(V/R+), and they reveal that, as expected, for
ρ = 0 all methods satisfy the bound E(V/R+) ≤ q . The STS and IBH come clos-
est to saturating the bound, with BKY slightly lower and BH95 significantly lower.
The figures show also the result obtained by an “oracle,” namely, the procedure that
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FIG. 3. Isolines of E(V/R+), measured for the IBHsum procedure by simulations, presented in
the (μ1,m0/m) plane. The solid lines in (a) and (c) are for the step-up procedure and the dashed
lines for the step-down procedure. (a) and (c) are for the independent case (ρ = 0). (b) and (d) are
for the positive dependency case (ρ = 0.8). The FDR levels are q = 0.05 in (a), (b) and q = 0.2 in
(c), (d). In (b) we find E(V/R+) > 0.05 for large μ1, in violation of the bound q = 0.05. The step-up
and step-down procedures tend to coincide for independent p-values and low m0/m; the differences
between them are more significant when the signal is weak (small μ1) and m0/m is high.

uses the known value of m0 in order to determine R′ according to equations (1.7)
and (1.8).

For ρ > 0 no proved upper bound exists for either of the BKY, STS or IBH pro-
cedures. Furthermore, the proof of Benjamini and Yekutieli (2001) for the BH95
procedure does not hold for two-tailed tests: indeed, as can be seen on Figure 4b,
the FDR obtained by the oracle procedure (slightly) violates the bound q = 0.05
for m0/m ≤ 0.3, in agreement with the violation reported in Reiner (2007). There-
fore, it is important to assess the extent to which E(V/R+) obtained by each of
these methods violates the bound q in the presence of positive correlations between
the hypotheses. As seen in Figure 4b, for ρ = 0.8 the STS method produces a mea-
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FIG. 4. Results obtained for synthetic data with m = 500 hypotheses; m0 was varied, the FDR was
set at q = 0.05, the mean of the distributions P1 was μ1 = 3.5 and the data were drawn either with
covariance ρ = 0 [(a), (c) and (e)] or ρ = 0.8 [(b), (d) and (f)]. Six methods were compared: oracle
(ORC), BH95, BKY, STS and our two IBH procedures (in a step-down manner), showing E(V/R+)

in (a) and (b), the power E(S)/m1 in (c) and (d), and the standard deviation (st.d.) of V/R+ in (e)
and (f), for the independent case and positively dependent cases, respectively.

sured FDR that overshoots the value q = 0.05 of the bound by more than twice, for
most of the range of m0 values studied. In comparison, the other methods (BH95,
BKY, IBHsum) provide FDR which remains below the bound or exceeds it slightly
for a narrow range of m0. The IBHlog procedure also violates the bound for nearly
the entire range of m0/m, but by much less than STS.

We conclude these comparisons between the different procedures by presenting,
in Figure 4c and d, their power, measured as the fraction of correctly rejected hy-
potheses, or “True Discovery Rate.” For each realization we calculated S = R −V

and plotted the ratio S/m1 = (R −V )/(m−m0), averaged over all instances. This
measure of power is one minus the type two error rate, known as the False Non-
Discovery Rate T/m1 [Genovese and Wasserman (2002)]. For the independent
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case ρ = 0 the power values of the ORC, BKY, STS and both IBH procedures are
very close and much better than that of BH95. For ρ = 0.8 STS has the highest
power, followed closely by the oracle, both IBH and BKY, with a large gap to
BH95. Again, one should bear in mind that STS has the largest number of discov-
eries R, at the cost of violating strongly the bound of 0.05 on the FDR. Interest-
ingly, there is no simple monotonicity relationship between the values of the FDR,
E(V/R+), and the True Discovery Rate E(S/m1).

Figure 4e shows the standard deviation (st.d.) of V/R+ for the independent
case, and Figure 4f for the positively dependent case. As can be seen when the
p-values are independent, the st.d. is very similar for all the procedures, but in-
creases steeply as m0/m → 1. In the case of dependent p-values, the situation
becomes worse; for nearly the entire range of m0/m the coefficient of variance
cv = st.d.(V/R+)/E(V/R+) is greater than 1. Also, as will be mentioned be-
low, for real data the st.d. of the STS procedure is significantly higher than that
of the IBH. These high values of st.d. result from the FDR definition, since the
expectation of V/R+ takes into account many realizations with R = 0 that give,
by definition, V/R+ = 0, making the distribution of V/R+ very nonsymmetric.
A comparison similar to the one presented in Figure 4 for q = 0.05 is presented in
Zeisel, Zuk and Domany (2010), Supplement E, Figure S4 for q = 0.2, and pro-
vides similar observations. We thus conclude that for ρ = 0 our IBH procedures
provide an expected improvement over the BH95 in terms of power and satura-
tion of the bound and their performance is comparable to that of the other adap-
tive methods tested. For dependent variables STS violates the bound on E(V/R+)

much more than the IBHlog and the IBHsum which violate it only slightly.

5.2. Applicability for a particular realization. Controlling the FDR at a level
q means that the average fraction of false rejections is no larger than q . It could
still be the case that on average the fraction of false rejections is controlled, yet
for a large percentage of the realizations one gets many false rejections and a high
proportion of false discoveries. In contrast to the average behavior captured by the
FDR definition, questions involving the distribution of false rejections, affecting
the behavior of a particular realization, were not studied much in the literature
[a notable exception is Owen (2005) who studied the variance of R]. We therefore
set out to address the issue of validity of the bound for a particular realization, by
calculating for the synthetic data the probability Pr( V

R+ ≤ q). This was done for
q = 0.05 for the six procedures (ORC, BH95, BKY, STS, IBHsum and IBHlog,
the latter two in step-down mode). The probability Pr( V

R+ ≤ q) was estimated by
computing, for each procedure, the fraction of realizations in which we indeed got
V
R+ ≤ q . In such a comparison one should bear in mind that a conservative pro-
cedure, such as BH95, restricts the discoveries much more than a procedure that
produces tight bounds (such as the oracle). For example, looking at Figure 4a, we
see that the mean value E(V/R+) of BH95 is much lower than q = 0.05, and,
hence, the weight of the tail of the distribution of V/R+ values that “leaks” to
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V/R+ > 0.05 is very small, whereas for the oracle, which has E(V/R+) ≈ 0.05,
the probability of exceeding 0.05 is close to 0.5, and if we want to guarantee
that Pr(V/R+ < B) ≈ 1, we must set B at a value which is significantly larger
than the FDR bound q . As seen in Figure 5a, the results of IBH are slightly more
conservative than the oracle in the case of independence, while all improved pro-
cedures have fairly similar results. In the case of strong dependency, Figure 5b,
the differences between the procedures are more pronounced; the STS is the most
permissive procedure.

It is very interesting to see that in the case of positive dependent statistics the
probability to violate the bound is smaller, although E[V/R+] is larger. This is
again due to the fact that in these cases we get R = 0 for many realizations, which
means that V/R+ = 0, that is, the variance of V/R+ is increased for positive
correlations, whereas for the independent case V/R+ is very likely to be close
to its expectation. Further study on the distribution of V/R+ is required in order
to shed light on the behavior of different procedures for particular realizations.
Figure 5c and d present the cumulative distribution function (CDF) of V/R+ for
a specific set of parameters, m = 1000,m0/m = 0.7,μ1 = 3.5, q = 0.05, and the
different procedures to be compared, for the independent case (Figure 5c) and for
the positive dependence case (Figure 5d). We would like to emphasize two points:
(1) The CDFs of our improved procedures have very similar behavior to the other
improved procedures. (2) While in the independent case the distribution is close to
symmetric, under dependency the distribution is very nonsymmetric, and, hence,
controlling the mean (of V/R+) is almost irrelevant.

6. Application to gene expression data. As an ultimate test for their utility,
we wanted to asses the performance of our new procedures on real life data, which
typically provide complex and unexpected dependency structures which are hard
to capture in simulations. We therefore applied our procedures that were described
in Section 3 to publicly available expression data. First, we present in full de-
tail how our procedures were applied to two data sets. Next, our procedures were
applied to 33 data sets and results were compared with those obtained by several
other procedures: the original BH95 and the improved bounds of BKY [Benjamini,
Krieger and Yekutieli (2006)] and STS [Storey, Taylor and Siegmund (2004)] with
λ = 0.5.

6.1. Detailed application of our procedures. The first data set used is that of
Andersson et al. (2007) who studied several types of childhood leukemia. We
focus here on the search for genes whose expression separated 6 patients with
normal bone marrow from 11 T-Cell Acute Lymphoblastic Leukemia patients,
which yielded a large number of discoveries (differentiating genes). The num-
ber of hypotheses (e.g., potentially differentiating probe sets) was m = 21,288;
the corresponding reported p-values were ordered and plotted on Figure 1a. Our
estimators for m0, obtained using equations (3.8) and (3.9) for this data, were
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FIG. 5. (a) and (b) shows the probability that a single instance satisfies the desired FDR level q

as a function of m0/m. Results are shown for simulated data with m = 1000 hypotheses, the mean
of the distribution P1 was μ1 = 3.5, and the FDR bound was set to q = 0.05. Five methods are
compared: ORC, BKY, STS and our two IBH procedures (in the step-down manner). (a) ρ = 0 and
(b) ρ = 0.8. The oscillatory behavior of some bounds is caused by finite size effects. (c) and (d) shows
the cumulative distribution function of V/R+ for m0/m = 0.7, (c) ρ = 0 and (d) ρ = 0.8 (obtained
from 106 realizations).

m̂0 = 7093, m̃0 = 6380, and the estimated numbers of discoveries were m − m̂0 ≈
14,000,m − m̃0 ≈ 15,000.

The second study, of Pawitan et al. (2005) on breast cancer, had a relatively
small number of discoveries. The aim was to find genes that differentiated early
discovery breast cancer cases of poor and good outcomes, that is, were differ-
entially expressed between tumors obtained from 38 subjects that died of the
disease and from 121 patients who were alive. The number of hypotheses was
m = 44,611, and our p-values based estimators for m0 (plotted in Figure 1b) were
m̂0 = 38,587, m̃0 = 37,580.

For both studies we have set the desired FDR value at q = 0.1. We plot in
Figure 1 the sorted p-values p(i) versus i/m for these two data sets. In each of the
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two figures we show three FDR lines; the αi of BH95 [see equation (1.3)] and the
values of γi corresponding to our two procedures [see equation (2.1)].

For the first data set the BH95 procedure yields at q = 0.1 a large number
of R = 0.6065 × 21,288 = 12,912 discoveries (see Figure 1a). When we apply
our procedure we get, at the same FDR, R′ = 0.746 · 21,288 = 15,884 (for the
IBHsum) discoveries, that is, 23% more.

The BH95 procedure yields for the second data set (at q = 0.1) R = 499 dis-
coveries. When we apply our procedure we get, at the same FDR, R′ = 621 (for
the IBHsum) discoveries, that is, 24% more.

6.2. Applying our procedures to many data sets. We downloaded from the
ONCOMINE website [Rhodes et al. (2007)] p-value vectors that were obtained
from 33 comparisons, performed on expression data from 19 studies of various
types of cancer: Andersson et al. (2007); Basso et al. (2005); Bittner (2005);
Bullinger et al. (2004); Choi et al. (2007); Chowdary et al. (2006); Graudens et al.
(2006); Koinuma et al. (2006); Laiho et al. (2007); Miller et al. (2005); Pawitan
et al. (2005); Ross et al. (2003); Valk et al. (2004); van de Vijver et al. (2002);
Wang et al. (2005); Watanabe et al. (2006); Yeoh et al. (2002); Zhao et al. (2004);
Zou et al. (2002). Depending on the biological question at hand, either one or
two-tailed tests are appropriate. Therefore, we applied our procedures to both test
types. We focused on two opposing scenarios: those with a small number (less than
2% of m, for the BH95 procedure with q = 0.05) of discoveries, and those with a
large number (more than 10% of m). The 33 sorted sets of pi values are plotted,
versus i/m, in Figure 6, separately for the four types of comparisons that were
made (one/two-tailed test, low/high number of discoveries).

As can be seen in Figure 6, for each type of comparison the sorted p-value curve
has a typical shape. In the case of a large number of discoveries, Figure 6a and c,
the curve is more convex (and flatter near zero) than in the case of a small number
of discoveries, Figure 6b and d. Another clear difference is between the two-tailed
(Figure 6a and b) and the one-tailed (Figure 6c and d) sorted p-value curves. In
the case of two-tailed tests, the entire curve is convex, while for one-tailed tests the
right side of the curve is concave; the reason is that in the latter case there are very
often some hypotheses that are shifted, with respect to the null hypothesis, in the
direction opposite to the one tested for by the one-sided test (for example, if one
looks for up-regulated genes, there are typically also many down-regulated genes,
which produce very high p-values). For detailed treatment of FDR estimation in
the case of one tailed tests see Pounds and Cheng (2006).

We compare here the performance of five procedures: the BH95, BKY, STS,
IBHsum and IBHlog (both IBH in the step-down mode). For each of the improved
procedures we determined the ratio between the number of rejected hypotheses it
yielded and the number of hypotheses rejected by BH95. We present in Table 2
the mean value of this figure of merit and its standard deviation, calculated for the
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FIG. 6. Sorted p-value vectors from 33 expression data sets of various cancer-related comparisons:
(a) two-tailed tests with large numbers of discoveries, (b) two-tailed tests with small numbers of
discoveries, (c) one-tailed tests with large numbers of discoveries, (d) one-tailed tests with small
numbers of discoveries.

data sets of each of the types of comparisons mentioned above, at q = 0.05 and
q = 0.1.

Inspection of Table 2 reveals that for types (a), (b)—of two-tailed tests, irre-
spective of the number of discoveries and FDR level, STS and both IBH proce-
dures give significantly higher improvement over BH95 than the BKY procedure,
with STS performing slightly better than IBHlog, followed by IBHsum. For the
one-tailed test with large numbers of discoveries [type (c)] the mean improvement
of BKY is the highest, while STS and IBHsum are quite similar. IBHlog fails dra-
matically in this case due to the abundance of p-values close to one, giving an
over-estimation of m0. For type (d), one-tailed tests with a small number of dis-
coveries, IBHsum is slightly better than STS and both yield a significantly higher
improvement than BKY. In all four types and for all values of FDR, the standard
deviations of V/R+ of the STS method are significantly higher than those of BKY
and the IBHsum procedures. Furthermore, as shown in Section 5.1 (see Figure 4b),
in the case of positively dependent test statistics the STS procedure loses control
of the FDR in a much more drastic manner than our IBH procedures. Since we
expect that correlations between the expression profiles of different genes will be
present in most data, the STS method may produce unreliable values of the figure
of merit presented here.

In summary, our IBH procedures constitute in all cases a significant improve-
ment over the original BH95; in all but one of the comparison types the improve-
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TABLE 2
Comparison of the improvement in power (ratio between numbers of rejected hypotheses with
respect to the BH95 procedure: R/RBH95) of several methods: BKY [Benjamini, Krieger and

Yekutieli (2006)], STS [Storey, Taylor and Siegmund (2004)], IBHsum and IBHlog in the
step-down version. Mean values and standard deviations (in parentheses) are given

for each of the four types of comparisons

q BKY STS IBHsum IBHlog

(a) Two-tailed, large number of discoveries (10 studies)
0.05 1.110 1.239 1.200 1.222

(0.043) (0.138) (0.110) (0.130)
0.1 1.155 1.258 1.213 1.237

(0.057) (0.117) (0.087) (0.102)

(b) Two-tailed, small number of discoveries (10 studies)
0.05 1.003 1.316 1.231 1.291

(0.003) (0.197) (0.140) (0.179)
0.1 1.017 1.308 1.230 1.275

(0.027) (0.161) (0.117) (0.137)

(c) One-tailed, large number of discoveries (8 studies)
0.05 1.049 1.011 1.014 0.108

(0.019) (0.033) (0.026) (0.306)
0.1 1.062 1.012 1.014 0.108

(0.026) (0.0340 (0.024) (0.305)

(d) One-tailed, small number of discoveries (5 studies)
0.05 0.998 1.027 1.025 0.882

(0.020) (0.052) (0.017) (0.123)
0.1 1.004 1.028 1.031 0.888

(0.031) (0.079) (0.022) (0.120)

ment is significantly better than that of the BKY method. Comparison with STS
yields mixed results, but the edge of STS over IBH in two of the four comparison
types is overshadowed by the fact that STS does not provide a reliable bound for
data sets with positive correlations between probe sets, while IBH remains reliable.

7. Discussion. We addressed the problem of controlling the False Discovery
Rate in the case of a large number of comparisons, or hypotheses to be tested si-
multaneously. Providing a reliable and possibly tight bound on the FDR is an issue
of major importance for analysis of high-throughput biological data, such as ob-
tained using gene expression microarrays. We presented here two estimators of m0,
the number of true null hypotheses. We proved that both estimators can be used
for FDR estimation and, more importantly, for FDR control. Thus, we added two
procedures to the rather limited repertoire of improved FDR procedures for which
control of the FDR is known to hold. Our proof of control relies on a general
theorem, which provides a bound on the FDR for improved procedure using any
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estimator m̂0(p1, . . . , pm) provided a condition of monotonicity is satisfied, and
one is able to bound the reciprocal mean of the estimator. In addition, we proved a
novel result, that FDR procedures satisfy a monotonicity property under some very
plausible assumptions. As a corollary of this theorem, we show that any bound on
the FDR that was proved for the step-up procedure, holds also for the more conser-
vative step-down procedure as well. Our proofs of control hold only for the inde-
pendent case. For the dependent case, results for control are even more scarce, and
limited to certain specific types of dependency. We therefore studied the behavior
of our procedures, compared to others known from the literature, under depen-
dency, using simulations. In addition to studying behavior under dependency, our
simulations also enabled us to understand the distribution of the fraction of false
hypotheses, and, in particular, the probability of violating the bound for a partic-
ular given realization. Further research on this aspect of comparing procedures
is needed and we expect it to provide interesting new insights and measures for
comparisons of different procedures. We finally applied our procedures, as well as
several others, to a large number of cancer-related expression data sets. For both
real and simulated data, our new procedures provided more rejections (separat-
ing genes) than the similar list of Benjamini and Hochberg and the very recently
introduced improved bound of BKY [Benjamini, Krieger and Yekutieli (2006)],
for a fixed desired value of the FDR. In some cases the improved bound of STS
[Storey, Taylor and Siegmund (2004)] gives more rejection than our method, but as
we have shown on synthetic data, when there are positive correlations, STS loses
control of the FDR in a much more pronounced way than our procedure. To sum-
marize: a researcher may either obtain a desired number of differentially expressed
genes at a lower FDR, or get a longer list of such genes at the desired FDR level,
at no added computational cost. We recommend using our IBHlog procedure for
two-tailed tests, and IBHsum procedure for a one-tailed test, to increase discovery
power while controlling FDR levels.
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SUPPLEMENTARY MATERIAL

Supplementary material for: FDR control with adaptive procedures and
FDR monotonicity (DOI: 10.1214/10-AOAS399SUPP; .pdf). In this supplemen-
tary file we provide proofs of the claims and theorem presented in the paper, to-
gether with technical details regarding the proposed estimator and of the simula-
tions performed. The document includes the following sections: Supplement A:
Proof of Theorem 2.3. Supplement B: Designing the IBHsum estimator. Supple-
ment C: Proof of Claim 3.1. Supplement D: Proof of the monotonicity theorem.
Supplement E: Details of the simulations.
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