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Several approaches have been developed for forecasting mortality using
the stochastic model. In particular, the Lee–Carter model has become widely
used and there have been various extensions and modifications proposed to
attain a broader interpretation and to capture the main features of the dynam-
ics of the mortality intensity. Hyndman–Ullah show a particular version of
the Lee–Carter methodology, the so-called Functional Demographic Model,
which is one of the most accurate approaches as regards some mortality data,
particularly for longer forecast horizons where the benefit of a damped trend
forecast is greater. The paper objective is properly to single out the most suit-
able model between the basic Lee–Carter and the Functional Demographic
Model to the Italian mortality data. A comparative assessment is made and
the empirical results are presented using a range of graphical analyses.

1. Introduction. In the 20th century, the human mortality has declined glob-
ally. Such trends in mortality reduction present risk for insurers which have
planned on the basis of historical mortality tables that do not take these trends
into account. In this regard, from the life insurance business risk profile point of
view, different risk sources have to be evaluated. In particular, life insurance com-
panies and private pension managers deal with the demographic risk, which can be
split in two components: the insurance risk and the longevity risk. The insurance
risk arises from accidental deviations of the number of the deaths from its expected
values, and it is a pooling risk, that is, it can be mitigated by increasing the number
of policies.

The longevity risk derives from improvements in the mortality trend, which de-
termine systematic deviations of the number of the deaths from its expected values.
These changes clearly affect pricing and reserve allocation for life annuities and
represent one of the major threats to a social security system that has been planned
on the basis of a more modest life expectancy. The risk is of using mortality tables
that do not take these trends into account, thus underestimating the survival prob-
ability and determining inappropriate premiums. To face this risk, it is necessary
to build projected tables including this trend. Thus, reasonable mortality forecast-
ing techniques have to be used to consistently predict the trends [Brouhns, Denuit
and Vermunt (2002)]. In that respect, over the years a number of approaches have
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been proposed for forecasting mortality using the stochastic model, however, the
Lee–Carter model [Lee and Carter (1992)] unquestionably represents a milestone
in the literature.

This methodology has become widely used and there have been various exten-
sions and modifications proposed to attain a broader interpretation and to capture
the main features of the dynamics of the mortality intensity [e.g., Booth, Maindon-
ald and Smith (2002); Haberman and Renshaw (2003, 2008); Hyndman and Ullah
(2007); Renshaw and Haberman (2003a, 2003b)].

The main statistical tool of LC is least-squares estimation via singular value
decomposition of the matrix of the log age-specific observed death rates. In fact,
the mortality data (death counts and exposures-to-risk) have to fill a rectangular
matrix. Henceforth, we will denote with mx,t the observed death rates at age x

during calendar year t , obtained by the ratio between the number of deaths, Dx,t ,
recorded at age x during year t , from an exposure-to-risk Ex,t , that is, the number
of person years from which Dx,t occurred. As regards the Italian population data
set on the basis of the death rates, classified by gender and individual year from 0
to 100, plots of fitted values for such models suggest that smoothing is appropriate
(see Figures 1 and 2). If we look at Figures 1 and 2, we can notice the random vari-
ations in the data, especially for ages between 0 and 10, where the reductions in
the death rates are stronger. Moreover, we can notice also for older ages the irreg-
ularities are pronounced. These irregularities in fact propagate to the life insurance
premiums as well as reserves that have to be held by insurance companies to make

FIG. 1. Italian male death rates, 1950–1965–1985–2000–2005.
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FIG. 2. Italian female death rates, 1950–1965–1985–2000–2005.

them able to pay the future contractual benefit. Consequently, the model fitting on
a population has to smooth the random variations in the data, because otherwise
the resulting death rates become less reliable.

The aim of the paper is properly to single out the most suitable model between
the basic Lee–Carter (from herein LC) and a variant of this model, the so-called
Functional Demographic Model (from herein FDM) by Hyndman–Ullah [Hynd-
man and Ullah (2007)], to the Italian population demographic trend. In particular,
considering the random variations in the data, we can get an extremely accurate fit
by using appropriate smoothing techniques. The paper is organized as follows: in
Section 2 we describe the LC model and the FDM model; Section 3 shows the tra-
ditional P-splines approach for smoothing; in Section 4 a comparative assessment
among the basic LC and FDM is performed to the Italian population, by gender
separately considered. Concluding remarks are provided in Section 5.

2. The Lee–Carter model and the Functional Demographic Model. The
LC methodology is a milestone in the mortality projections actuarial literature.
The model describes the logarithm of the observed mortality rate for age x and
year t , mx,t , as the sum of an age-specific component αx , that is independent of
time and another component that is the product of a time-varying parameter κt ,
reflecting the general level of mortality and an age-specific component βx , that
represents how mortality at each age varies when the general level of mortality
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changes:

lnmx,t = αx + βxκt + εx,t .(1)

The εx,t component denotes the error term, which is assumed to be homoschedastic
and normally distributed. In other words, αx describes the general age shape of the
age specific death rates mx,t , while κt is an index that describes the variation in
the level of mortality to t . The βx coefficients describe the tendency of mortality
at age x to change when the general level of mortality κt changes.

The LC model cannot be fitted by ordinary regression methods, because there
are no given regressors on the right-hand side of the equation; thus, in order to find
a least squares solution to the equation (1), we use the Singular Value Decompo-
sition (SVD) method, as suggested in Lee and Carter (1992), assuming that the
errors are homoschedastic. The parameter uniqueness is specified by a different
set of conditions from (1), namely, the sum of the βx coefficients is equal to one
and the sum of the κt parameters is equal to zero. To forecast mortality by using
the LC model, we proceed by following two steps. In the first step, we estimate
the parameters αx , βx and κt using historical mortality data. In the second step, the
estimated time-dependent parameter κt is modeled as a stochastic process by an
autoregressive integrated moving average (ARIMA p, d, q) model, determined by
the standard Box and Jenkins methodology (identification–estimation–diagnosis)
[Box and Jenkins (1976); Hamilton (1994)]. Finally, we extrapolate κt through
the fitted ARIMA model to obtain a forecast of future death rates and generate
associated life table values.

The LC model has become widely used and there have been various exten-
sions and modifications proposed to attain a broader interpretation and to capture
the main features of the dynamics of the mortality intensity. Hyndman and Ul-
lah (2007) show a particular version of the LC methodology, the so-called Func-
tional Demographic Model; they propose a methodology to forecast age-specific
mortality rates, based on the combination of functional data analysis, nonparamet-
ric smoothing and robust statistics. In particular, the approach under consideration
allows for smooth functions of age, is robust to outliers and provides a modeling
framework easy to fit to constraints and other information.

The modeling framework they propose is a generalization of the LC method. Let
yt (x) denote the log of the observed mortality rate for age x and year t , ft (x) the
underlying smooth function, {xi, yt (xi)}, t = 1, . . . , n, i = 1, . . . , p, the functional
time series, where

yt (xi) = ft (xi) + σt (xi)εt,i ,(2)

with εt,i an i.i.d. standard normal random variable and σt (xi) allowing for the
amount of noise to vary with x. The steps for forecasting yt (x) are summarized as
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follows:

1. The data set is smoothed for each t by applying penalized regression splines.
Using a nonparametric smoothing with constraint, we estimate for each t the
functions ft (x) for x ∈ [x1, xp] from {xi, yt (xi)} for i = 1, . . . , p. We assume
that ft (x) is monotonically increasing for x ≥ c for some c , that is reasonable
for mortality data. This constraint allows to reduce the noise in the estimated
curves at older ages.

2. The fitted curves are decomposed by using a basis function expansion:

ft (x) = μ(x) +
K∑

κ=1

βt,kφk(x) + et (x),(3)

where μ(x)is a measure of location of ft (x), φk(x) is a set of orthonormal basis
functions, {βt,k} are the coefficients and et (x) ∼ N(0, v(x)).

3. To each coefficients {βt,k}, k = 1, . . . ,K , univariate time series models are fit-
ted.

4. On the basis of the fitted time series models the coefficients {βt,k}, k =
1, . . . ,K , are forecasted for t = n + 1, . . . , n + h.

5. The coefficients obtained in the previous step are implemented to get the ft (x)

as in equation (2). From (2) the yt (x) are projected. In other words, the yt (xi)

can be expressed as the following formula obtained by combining (2) and (3):

yt (xi) = μ(xi) +
K∑

κ=1

βt,kφk(xi) + et (xi) + σt (xi)εt,i .(4)

In particular, the h-steps ahead forecasts of yn+h(x) are given by the for-
mula (5):

ŷn+h(x) = E[yn+h(x)|I,�] = μ̂(x) +
K∑

κ=1

β̃n,k,hφ̂k(x),(5)

where I = {yt (xi); t = 1, . . . , n; i = 1, . . . , p, is the observed data, � the set
of basis functions, β̃n,k,h corresponds to the h-step ahead forecast of βn+h,k

having been estimated time series β̂1,k,, . . . , β̂n,k,.
6. Finally, in order to determine confidence intervals for mortality projections, the

variance of error terms in (2) and (3) is calculated. In particular, the forecast
variance is written from (4):

ζn,h(x) = Var[yn+h(x)|I,�] = σ̂ 2
μ(x) +

K∑

κ=1

un+h,kφ̂
2
k (x) + v(x) + σ 2

t (x),(6)

where σ̂ 2
μ(x) the variance of the smooth estimate μ̂(x) depends on the smooth-

ing technique, un+h,k = Var(βn+h,k|β1,k, . . . , βn,k) are obtained by the time
series model, being σ 2

t (x) the variance of the yt (x) and the v(x) is the model
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error variance estimated by averaging ê2
t (x) for each x. The prediction interval

for yt (x) is represented by the following:

ŷn,h(x) ± zα

√
ζn,h(x)

assuming normally distributed the sources of error, where zα is the 1 − α
2 stan-

dard normal quantile.
In order to measure the uncertainty in the mortality projections, predic-

tion intervals can be derived applying bootstrap techniques [Efron and Tibshi-
rani (1993)]. They are particularly useful where theoretical calculation with the
fitted model is too complex, as in the case where the computation of interval
forecast is not straightforward [Koissi, Shapiro and Hognas (2006)].

3. P-splines approach for smoothing. Mortality data are often characterized
by the presence of some outlier data. In particular, in the case of older ages, the
high variability can be due to the small number of survivors in the population. This
represents a common problem when estimating mortality rates for groups aged 90
and more. Techniques of smoothing have been implemented to avoid this shortage
of data, because the heavy variance at older ages influences the fitting of mortality
models [Delwarde, Denuit and Eilers (2007)].

As suggested by Eilers and Marx (1996), the Penalized splines or P-splines is
now well-established as a method of smoothing in Generalized Linear Models. The
main characteristics of the methodology under consideration are the following:

1. using B-splines as the basis for the regression;
2. modifying the log-likelihood by a difference penalty on the regression coeffi-

cients.

In Currie, Durban and Eilers (2004a, 2004b) the mortality intensity is decomposed
as

lnμx(t) = ∑
i,j


i,jBi,j (x, t)

for some given 2-dimensional B-splines Bi,j in age x and calendar time t , with
regularly-spaced knots and 
i,j ’s, the parameters to be estimated on the basis of
the data set. In order to limit the influence of the knots on the fitted value, Eilers
and Marx (1996) suggest to introduce a penality based on finite differences of
the coefficients of the adjacent B-spline; this tecnique is called P-spline. For both
age and calendar year dimensions, the penalties have to be calculated as sums of
(
i,j − 2
i−1,j + 
i−2,j )

2. For each of these penalties a weight coefficient has
to be selected on the basis of the historical data set. Some authors explain that
the P-splines are not so transparent to the actuaries, especially because the choice
of penalty corresponds to a view of the future pattern of mortality. Currie (2008)
shows the limits of using a penalized spline to smooth the mortality data: since
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the penalty depends on the parameterization, the smoothed value is not invariant
with respect to its choice. The solution proposed by Currie is to consider a direct
smoothing and replace the penalized differences in the adjacent coefficient with
the penalized differences in the adjacent fitted values. Hyndman and Ullah (2007)
prefer smoothing the data first, rather than smoothing the fitted values, as it allows
to place monotonic constraint on the smoothing more easily.

4. Empirical analysis. We have run the application by considering the An-
nual Italian male and female mortality rates from 1950 to 2006 for single year of
age. The data for the Italian population are downloaded from the Human Mortality
Database and are described in the Supplementary Material at the end of the pa-
per. We consider death rates for single year of age, for ages from 0 to 100. For
each gender and for each calendar year, the death rates, given by the ratio between
the “Number of deaths” and the “Exposure to risk,” are arranged in a matrix for
age and time. By analyzing the changes in mortality as a function of both age x

and time t , we have seen that mortality has shown a gradual decline over time. To
have an idea of this evolution, Figure 1 shows the general drop in the Italian male
mortality rates during the period 1950–2005. Improvements in mortality are not
uniform across the ages and the years: first of all, reductions in mortality rate are
stronger for ages between 0 and 10. As it is clear, there is an increasing variance
for higher age, especially around X = 100.

The first step of the application consists in fitting the basic LC model and the
FDM version to the data under consideration; Figures 3–6 show the estimated
parameters.

The percentage of variation explained by the LC for the male population is
91.6%, while the female is 95.7%. This difference is due to the features of the two
data sets: as it is clear from Figures 1 and 2, male death rates show a greater disper-
sion at older ages than female ones; consequently, the LC model fitted the female
data better than the male data. Shifting from the LC to the FDM, the percentage
explained by the model increases for both male and female. In particular, if we
consider the FDM model, the basis functions explain respectively 91.8%, 3.9%,
1.6%, 0.4% of the variation for male data and 96.0%, 1.6%, 0.4%, 0.3% of the
variation for female data. As explained in Hyndman and Ullah (2007), the basis
functions model different movements in mortality rates across the ages. In partic-
ular, the Basis function 1 mainly models mortality changes for children. Let us
have a look at the Figures 3–6, to highlight some differences between female and
male death rates. The function fitted on female data has a stronger slope between
age 0 and 10 than the function fitted on male data, so the reduction in mortality at
younger ages is larger for female than for male. Moreover, the fitted coefficient 1
gives us information about the improvements in mortality at younger age. If we
look at the graphs, the mortality rates for children have dropped over the whole
period and this phenomenon is captured by the decreasing trend of the first coeffi-
cients for both male and female, even if the improvements are stronger for female.
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FIG. 3. The parameter estimates of basic Lee–Carter model on Italian male mortality data.

Following in the examination of the movements in mortality rates modeled by the
basis functions, the Basis function 2 gives us information about the differences
between 30 and 60 years old, more stressed for female than for male. The other
functions are more complex and model differences between all the cohorts; these
differences are less significant for female than for male so that the functions 2 and 3
show a lower variability between 40 and 100. We have implemented the t-tests on
the standardized residuals for testing the hypothesis of zero mean. The tests run
for both male and female and for FDM and LC in all cases have showed p-value
equal to 1. On the contrary, the hypothesis of normality of standardized residuals
tested with the Shapiro test is always decidedly rejected; this is a well-known limit
of this mortality model [Dowd et al. (2010)]. However, either for male or female,
there is an improvement in the goodness of the fitting shifting from the LC to the
FDM. A good fit is achieved when the residuals are independent and identically
distributed. We have verified these conditions using contour maps (see Figures 7
and 8); moreover, we have calculated the error measures shown in Tables 1 and 2
as in Cairns et al. (2009). By comparing the traditional LC model to the FDM one,
the percentage of variation explained by the model is higher in the FDM than in
LC; in addition, error measures are lower for both the male and female data set.
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FIG. 4. Basis Functions of FDM and associated coefficients for Italian male population.

We keep running the application, in order to verify if the best fitting of FDM
depends on the smoothing on the data involved in the model or is due to other
causes.

For this reason, we smooth the data using a monotonic P-spline and then we
apply the LC method to the smoothed data; we call this procedure LCS. From
a first analysis, we can see that the percentage variation explained by applying
the LCS model is 93.4% for male and 97.5% for female. In particular, we can
notice that the percentage of variance explained increases when we shift from LC
to LCS; this is not due to a greater capacity of the model to describe the data, but
to a transformation of the same data into data less variable. Nevertheless, the MSE
of the LCS is greater than the MSE of the FDM in both data sets.
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FIG. 5. The parameter estimates of basic Lee–Carter model on Italian female mortality data.

However, it is quite possible for a model to provide a good in-sample fit to
historical data but still produce poor forecasts, that is, forecasts that differ signifi-
cantly from subsequently realized outcomes. A good model should provide accu-
rate fits to the historical data as well as produce plausible forecasts. Backtesting
procedures consider what results would have been produced if the model had been
used in the past. We use this approach to test the original LC model, the LCS and
the FDM, setting out a backtesting framework that can be used to evaluate the ex-
post forecasting performance of the mortality models. The recent literature follows
this approach to evaluate the performance of different mortality models. Lee and
Miller (2001) evaluated the performance of the Lee–Carter model by examining
the behavior of forecast errors comparing some error measures and producing plots
of error distributions, although they did not report any formal test. More recently,
CMI (2006) included backtesting evaluations of the P-spline model.

In the light of this contribution, we implement a backtesting procedure, based
on the following considerations. First of all, it is necessary to select the metric
of interest, namely, the forecasted variable that is the focus of the backtest. Pos-
sible metrics include the mortality rate, life expectancy, future survival rates, and
the prices of annuities and other life-contingent financial instruments. Different
metrics are relevant for different purposes, for example, in evaluating the effec-
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FIG. 6. Basis Functions of FDM and associated coefficients for Italian female population.

tiveness of a hedge of longevity or mortality risk an important metrics could be the
insurance reserves. In this paper we focus on the mortality rate itself: our aim is
to investigate the feasibility of different mortality models rather than quantify the
impact of longevity risk on insurance product.

Another important point is the selection of the historical “lookback” window
and the forecast horizon over which forecasts are made. Wang and Liu (2010)
highlight that as the fitted period changes, models that better perform change. In
the present paper, we focus on long-horizon forecasts, because it is with the accu-
racy of these forecasts that pension plans and life insurance companies are princi-
pally concerned. In particular, we fit the LC, LCS and FDM from 1950 to 1975,
thereby using a 25 year in-sample period, then we project the mortality rates with
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TABLE 1
Lee–Carter model

ME MSE MPE MAPE

Average across ages
Male 0.00786 0.01947 −0.01290 0.03697
Female 0.00190 0.01462 0.00038 0.01694

Average across years
Male 0.78248 1.88518 −1.14400 3.48655
Female 0.18968 1.40760 0.02626 1.59764

95% confidence interval from 1976 to 2005 according to the fitted models and
compare projections with the observed rates. It is necessary to highlight that pro-
jections are based only on the evolution of kt : errors in ax and bx are not taken
into account. In this regard, Lee and Carter (1992) found the standard errors of ax

and bx to become less significant over forecast time in comparison to the standard
error of kt . Moreover, they found that by 10 years into the forecast of US mortality,
98 per cent of the standard error of life expectancy at birth was accounted for by
uncertainty in kt . Figures 9–11 show the forecast error in the LC, LCS and FDM
for both male and female. In order to compare the forecast accuracy between LC,
LCS and FDM, we calculate the forecasting errors; these are averaged over fore-
cast years to produce mean errors indexed by age. Moreover, we consider mean
forecast errors in life expectancy at birth averaging over forecast years.

Figure 12 shows the mean forecast error by age. Shifting from LC or LCS to
FDM, a large improvement in the male forecasts accuracy in terms of mean fore-
cast error is obtained for ages between 75 and 98; improvements also appear for
the female data set, where the mean forecast error produced by FDM is smaller
than those produced by LC or LCS almost everywhere.

Figure 13 shows the standard deviation of forecast error by age: the variability
in the forecasts is smaller in FDM than in LC or LCS for both male and female

TABLE 2
Functional Demographic Model

ME MSE MPE MAPE

Average across ages
Male 0.00001 0.00367 −0.01037 0.02764
Female 0.00001 0.00403 0.00070 0.01145

Average across years
Male 0.00101 0.30953 −0.85270 2.48752
Female 0.00115 0.34586 0.05956 1.02922
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FIG. 7. Residuals for male data set.

almost everywhere. Tables 3 and 4 summarize the mean and variance of forecast
error in life expectancy. The negative mean error in life expectancy forecast means
that the original LC model underestimates the life expectancy and this results in
underestimating the capital required for cushioning against longevity risk. How-
ever, this underestimation appears smaller for FDM for both male and female data
sets; moreover, shifting from LC or LCS to FDM, the variance of forecast errors
decreases. Finally, we derive prediction intervals as in Lee and Carter (1992) and
Hyndman and Ullah (2005). The confidence interval is calculated at a level of

FIG. 8. Residuals for female data set.
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FIG. 9. LC Forecast errors for male and female.

95%. As shown in Figures 14 and 15, the interval forecasts for the life expectancy
at birth from the LC are significantly wider than those from FDM.

5. Concluding remarks. In Life Insurance, primary is the relevance of the
demographic uncertainty on the portfolio liability valuations both in its system-
atic and unsystematic face. The unsystematic component of the demographic risk
seems to be a risk source particularly interesting in small portfolios, like the one at
issue, for which a weak diversification can be supposed. Unlike the risks deriving
from systematic variability, the risk due to the accidental deviations of the number
of deaths from the expected values (Mortality risk) is a pooling risk, for which the

FIG. 10. LCS Forecast errors for male and female.
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FIG. 11. FDM Forecast errors for male and female.

measure becomes negligible only when the number of contracts in the portfolio
tends to infinity. The systematic component originates from the deviations of the
number of deaths from the expected values due to the improvement in the survival
trend, taking place in the industrialized countries particularly in the last decades.
The correct capital constraint, avoiding to reserve more than necessary, derives
from the choice of the right mortality table, that is, from the best mortality esti-
mate. This risk source comes true in the survival description choice and it is called
Longevity risk. When living benefits are concerned, the calculation of expected
present values (needed in pricing and reserving) requires an appropriate mortality

FIG. 12. Mean Forecast Error for male and female.
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FIG. 13. Standard deviation of Forecast Error for male and female.

projection in order to avoid underestimation of future costs. In order to protect the
company from mortality improvements, actuaries have to resort to life tables in-
cluding a forecast of the future trends of mortality (the so-called projected tables).
Different approaches for building these technical bases have been developed by
actuaries and demographers.

This paper focuses on a comparative assessment among the original LC model
and a variant of the basic methodology, the so-called FDM, for providing accu-
rate mortality forecasting, as regards the Italian survival phenomenon. While it is
essential to safeguard against depicting general conclusions on the basis of individ-
ual cases, the analysis furnishes a useful insight into the comparative performance
of the different approaches under consideration. In order to perform the numerical
analysis, we have used the demography R created by Hyndman, Booth Tickle and
Maindonald (http://robjhyndman.com/software/demography/).

The empirical results suggest the FDM framework is readily suitable to deal
with more complex forecasting problems, including forecasting of the mortality
dynamics related to extreme ages. In particular, the FDM methodology utilizes
penalized regression to smooth data using a local algorithm which allows for con-
temporarily the best fitting and a fast computational form. Although the LC is

TABLE 3
Forecast error in life expectancy at birth for male data set

LC LCS FDM

Mean −3.210096 −3.215095 −2.507768
Variance 1.693628 1.691588 1.612351

http://robjhyndman.com/software/demography/
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TABLE 4
Forecast error in life expectancy at birth for female data set

LC LCS FDM

Mean −1.632653 −1.637128 −1.010379
Variance 0.6561454 0.654672 0.49403

still used as a point of reference [e.g., Renshaw and Haberman (2003b)], it is
noted the best performance of the FDM model. According to our analysis ap-
plied to male and female Italian data, we have verified that FDM data sets pro-
duce a better fitting and more accurate forecasts than LC. We have highlighted
that this improvement is not only due to smoothing, introducing a smoothing
version of the Lee–Carter (LCS). In fact, we have obtained a better fitting and
more accurate forecast also shifting from LCS to FDM and this because FDM ex-
plains better movements in the mortality through the basis functions in both data
sets.

The study suggests that the FDM forecast accuracy is arguably connected to
the model structure, combining functional data analysis, nonparametric smooth-
ing and robust statistics. In particular, the decomposition of the fitted curve via
basis functions represents the advantage, since they capture the variability of the
mortality trend, by separating out the effects of several orthogonal components.

FIG. 14. Confidence intervals for male life expectancy.
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FIG. 15. Confidence intervals for female life expectancy.

The empirical findings suggest the FDM framework is readily adapted to deal with
more complex forecasting problems, including forecasting of the mortality dynam-
ics related to extreme ages.

From the viewpoint of insurance companies, this model feature is more desir-
able, because of their exposure to the variability of mortality trend at old ages, in
particular regards to post retirement annuity-type products.

SUPPLEMENTARY MATERIAL

Supplement A: Italy, Exposure to risk (DOI: 10.1214/10-AOAS394SUPPA;
.txt). Italian population exposed to risk of death. The data are downloaded from
the Human Mortality database and are indexed by calendar year during the period
1950–2005. They are divided by sex and by single year of age for ages from 0
to 100.

Supplement B: Italy, Death rates (DOI: 10.1214/10-AOAS394SUPPB; .txt).
Italian population death rates. The data are downloaded from the Human Mortality
database and are indexed by calendar year during the period 1950–2005. They
are divided by sex and by single year of age for ages from 0 to 100. For each
gender and for each calendar year, the death rates are given by the ratio between
the “Number of deaths” and the “Exposure to risk.”

http://dx.doi.org/10.1214/10-AOAS394SUPPA
http://dx.doi.org/10.1214/10-AOAS394SUPPB
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