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HIV dynamic studies have contributed significantly to the understanding
of HIV pathogenesis and antiviral treatment strategies for AIDS patients. Es-
tablishing the relationship of virologic responses with clinical factors and co-
variates during long-term antiretroviral (ARV) therapy is important to the de-
velopment of effective treatments. Medication adherence is an important pre-
dictor of the effectiveness of ARV treatment, but an appropriate determinant
of adherence rate based on medication event monitoring system (MEMS)
data is critical to predict virologic outcomes. The primary objective of this
paper is to investigate the effects of a number of summary determinants of
MEMS adherence rates on virologic response measured repeatedly over time
in HIV-infected patients. We developed a mechanism-based differential equa-
tion model with consideration of drug adherence, interacted by virus sus-
ceptibility to drug and baseline characteristics, to characterize the long-term
virologic responses after initiation of therapy. This model fully integrates vi-
ral load, MEMS adherence, drug resistance and baseline covariates into the
data analysis. In this study we employed the proposed model and associated
Bayesian nonlinear mixed-effects modeling approach to assess how to effi-
ciently use the MEMS adherence data for prediction of virologic response,
and to evaluate the predicting power of each summary metric of the MEMS
adherence rates. In particular, we intend to address the questions: (i) how
to summarize the MEMS adherence data for efficient prediction of virologic
response after accounting for potential confounding factors such as drug re-
sistance and covariates, and (ii) how to evaluate treatment effect of baseline
characteristics interacted with adherence and other clinical factors. The ap-
proach is applied to an AIDS clinical trial involving 31 patients who had
available data as required for the proposed model. Results demonstrate that
the appropriate determinants of MEMS adherence rates are important in or-
der to more efficiently predict virologic response, and investigations of ad-
herence to ARV treatment would benefit from measuring not only adherence
rate but also its summary metric assessment. Our study also shows that the
mechanism-based dynamic model is powerful and effective to establish a re-
lationship of virologic responses with medication adherence, virus resistance
to drug and baseline covariates.

Received May 2009; revised September 2009.
1Supported in part by NIAID/NIH Grant AI080338 and MSP/NSA Grant H98230-09-1-0053 to

Y. Huang, and NIH Grants AI50020, AI078498, AI078842 and AI087135 to H. Wu.
Key words and phrases. Bayesian mixed-effects models, confounding factors, HIV dynamics,

longitudinal data, MEMS adherence assessment, time-varying drug efficacy, virus resistance.

551

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/10-AOAS376
http://www.imstat.org


552 HUANG ET AL.

1. Introduction. The revolution in human immunodeficiency virus (HIV)
treatment has brought diagnostic tests that can accurately measure levels of HIV in
blood. Resulting data show (plasma) viral load (HIV-1 RNA copies or RNA copies)
to be an important predictor of the risk of progression to AIDS. The antiretroviral
(ARV) agents, which include potent protease inhibitors (PIs) are, however, not a
cure for HIV infection. While many patients benefit from ARV treatment, others
do not benefit or only experience a temporary benefit. There are several reasons
why treatment fails, of which poor patient adherence to ARV therapy is a lead-
ing factor [Ickovics and Meisler (1997); Paterson et al. (2000)]. Thus, assessment
of adherence within AIDS clinical trials is a critical component of the successful
evaluation of therapy outcomes. Maintaining adherence may be particularly diffi-
cult when the drug regimen is complex or side-effects are severe, as is often the
case for current HIV therapy [Ickovics and Meisler (1997)].

The measurement of adherence remains problematic; a standard definition of
adherence and completely reliable measures of adherence are lacking. Neverthe-
less, there has been substantial progress in both of these areas in the past few
years. First, it appears that higher levels of adherence are needed for HIV dis-
ease than other diseases to achieve the desired therapeutic benefit [Paterson et al.
(2000)]. Second, better appreciation of the value and limitations of different ad-
herence measurements has been addressed [Bova et al. (2005)]. In AIDS clinical
trials adherence to medication regimen is currently measured by two methods: by
use of questionnaires (patient self-reporting and/or face-to-face interview) and by
use of electronic compliance monitoring (Medication Event Monitoring System
[MEMS]) caps. The MEMS is often used as an objective adherence measure. It
consists of a computer chip in the cap of a medication bottle that records each
time the bottle is opened. The results can be downloaded, printed out and ana-
lyzed. It demonstrates that medication-taking patterns are highly variable among
patients [Kastrissios et al. (1998)] and that they often give a more precise measure
of adherence than self-report [Arnsten et al. (2001)]. However, MEMS data are
also subject to error and are not widely available in the clinical setting. Adher-
ence assessment by self-report is usually evaluated by a patient’s ability to recall
their medication dosing during a specific time interval. Finally, it is important to
note that the measurement of viral load levels is of special utility as an indirect
measure of adherence in HIV therapeutics. It has been argued that this is not an
adherence measure because other factors may influence viral load (drug resistance,
etc.). However, there is a tight correlation between viral load and adherence [Pa-
terson et al. (2000); Haubrich et al. (1999)].

Viral dynamic models can be formulated through ordinary differential equations
(ODE), but there has been only limited development of statistical methodologies
for assessing their agreement with observed data. Currently there also are sub-
stantial knowledge gaps between theoretical HIV dynamics and the role of many
clinical factors. In developing long-term dynamic modeling, this paper will ad-
dress these problems by utilizing time-specific information, such as drug adher-
ence and susceptibility factors, on the biological mechanism of HIV dynamics to
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achieve more realistic and accurate characterization of the relationship between
clinical/drug factors and virologic response. Several studies [Arnsten et al. (2001);
Levine et al. (2006)] investigated the association between virologic responses and
adherence assessed by both questionnaire and MEMS data. The results indicated
that the MEMS cap adherence data may not be correlated better to virologic re-
sponse compared to the questionnaire adherence data unless the MEMS cap data
are summarized in an appropriate way. Further, Huang et al. (2008), Labbé and
Verotta (2006), Liu et al. (2007) and Vrijens et al. (2005) modeled the relation-
ship between virologic response and adherence rate using questionnaire data and
MEMS data averaged by each interval between study visits or weekly basis, but
no significant differences were found in predicting virologic response. Along with
this line, this paper will investigate different determinants of the adherence rate
based on MEMS data from an AIDS clinical trial study [Hammer et al. (2002)]
and compare their performance for predicting a virological response. We employed
the proposed mechanism-based dynamic model to assess how to efficiently use the
adherence data based on MEMS to predict virological response. In particular, we
intend to address the questions (i) how to summarize the MEMS adherence data
for efficient prediction of virological response after accounting for potential con-
founding factors such as drug resistance and baseline covariates, and (ii) how to
evaluate treatment effect of baseline characteristics interacted with MEMS adher-
ence and other clinical factors.

The purpose of this paper is to describe a reparameterized ODE dynamic model
(with identifiable parameters) which fully integrates viral load, medication ad-
herence, drug resistance and baseline covariates data from an AIDS clinical trial
study into the analysis. Thus, our dynamic model will be able to characterize sus-
tained suppression or resurgence of the virus as arising from intrinsic viral dy-
namics, and/or influenced by factors such as drug susceptibility and adherence
during the treatment period of the clinical trial. The Bayesian nonlinear mixed-
effects (BNLME) modeling approach [Davidian and Giltinan (1995)] is employed
to estimate dynamic parameters and identify significant clinical factors and/or co-
variates on virologic response to ARV treatment. The rest of this article is or-
ganized as follows. Section 2 introduces reparameterized viral dynamic models
with time-varying drug efficacy which incorporates the effects of drug adherence,
drug resistance and baseline covariates, and briefly describes the BNLME model-
ing approach, implemented via Markov chain Monte Carlo (MCMC) procedures,
followed by defining the deviance information criterion (DIC) for comparison of
models. In Section 3 we summarize the motivating data set from an AIDS clini-
cal trial study including the data of plasma viral load, medication adherence from
MEMS cap, drug resistance and baseline covariates; the proposed methodology is
applied to these data and the results are presented. The method is evaluated via a
simulation study in Section 4. Finally, we conclude the article with some discus-
sions in Section 5.
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2. HIV dynamic mechanism-based ODE models and statistical approaches.
This section aims to introduce long-term viral dynamic models based on a system
of ODE with time-varying coefficients but without closed-form solutions, and to
investigate associated methodologies to demonstrate the application of these mod-
els to an AIDS clinical trial study. Long-term viral dynamic models can be used to
describe the interaction between cells susceptible to target cells (T ), infected cells
(T ∗) and free virus (V ) by considering time-varying drug efficacy [Huang and Wu
(2006); Huang et al. (2006)]. These three compartments (variables) are described
as follows.

HIV virions (V ) will infect target cells (T ) and turn them into infected cells (T ∗)
at an infection rate k. Due to the intervention of antiviral drugs, we assume that
drugs reduce the infection rate in the infected cells (T ∗) by 1−γ (t) [0 ≤ γ (t) ≤ 1].
The infected cells will die at rate δ after producing an average of N virions per cell
during their lifetimes, and free virions are removed from the system at rate c. In
addition to the dynamics describing virus infection, we have to specify the dynam-
ics of the uninfected cell population. The simplest assumption is that uninfected
cells are produced at a constant rate λ at which new T cells are generated from
sources within the body, such as the thymus and die at a rate dT . Thus, the HIV
dynamic model, after initiation of antiviral therapy, can be written as

d

dt
T (t) = λ − dT T (t) − [1 − γ (t)]kT (t)V (t),

d

dt
T ∗(t) = [1 − γ (t)]kT (t)V (t) − δT ∗(t),(1)

d

dt
V (t) = NδT ∗(t) − cV (t),

where the time-varying parameter γ (t) (as defined below) quantifies the time-
varying drug efficacy. If the regimen is not 100% effective [i.e., 0 ≤ γ (t) < 1],
the system of ODE cannot be solved analytically. The solutions to (1) then have to
be evaluated numerically. When γ (t) = γ0 (an unknown constant), the model (1)
becomes the model developed by Perelson and Nelson (1999). In particular, when
γ (t) = 0 (the drug has no effect), the model (1) reduces to the model in the publi-
cations [Bonhoeffer et al. (1997); Nowak et al. (1995, 1997, 2000); Stafford et al.
(2000)]; while γ (t) = 1 (the drug is 100% effective), the model (1) reverts to the
model discussed by Nowak and May (2000) and Perelson and Nelson (1999).

However, it is challenging to estimate all the parameters in the model (1) and
to conduct inference because the model (1) is not a priori identifiable (i.e., mul-
tiple sets of parameters obtain identical fits to the data), given only viral load
measurements [Cobelli et al. (1979)]. To obtain a model with a priori identifiable
parameters [Labbé and Verttoa (2006)], this paper investigates mechanism-based
reparameterized ODE models to quantify the long-term viral dynamics with ARV
treatment and the associated statistical methods for model fitting.
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2.1. Reparameterized model with time-varying drug efficacy. Following the
studies [Perelson and Nelson (1999); Nowak and May (2000); Labbé and Vert-
toa (2006)], we reparameterize the model (1) using the rescaled variables T̃ (t) =
(dT /λ)T (t), T̃ ∗(t) = (δ/λ)T ∗(t), Ṽ (t) = (k/dT )V (t). These yield the rescaled
version as follows:

d

dt
T̃ (t) = dT

λ

d

dt
T = dT {1 − T̃ (t) − [1 − γ (t)]T̃ (t)Ṽ (t)},

d

dt
T̃ ∗(t) = δ

λ

d

dt
T ∗(t) = δ{[1 − γ (t)]T̃ (t)Ṽ (t) − T̃ ∗(t)},(2)

d

dt
Ṽ (t) = k

dT

d

dt
V (t) = c{RT̃ ∗(t) − Ṽ (t)},

where R = kNλ/(cdT ) represents the basic reproductive ratio for the virus, de-
fined as the number of newly infected cells that arise from any one infected cell
when almost all cells are uninfected [Nowak and May (2000)]. Note that the
rescaled model (2) has fewer parameters than the ‘original’ model (1). The iden-
tifiability of the model (2) is guaranteed [Cobelli et al. (1979); Labbé and Verttoa
(2006)] and parameters of the model can be uniquely identified. If R < 1, then the
virus will not spread, since every infected cell will on average produce less than
one infected cell. If, on the other hand, R > 1, then every infected cell will on
average produce more than one newly infected cell and the virus will proliferate.
For the HIV virus to persist in the host, infected cells must produce at least one
secondary infection, and R must be greater than unity [Nowak and May (2000)].

Assuming steady state before the beginning of drug therapy, initial conditions
for the model can now be expressed as simple functions of the initial conditions
for viral load (Ṽ0): T̃0 = 1/(1 + Ṽ0), T̃

∗
0 = Ṽ0/(1 + Ṽ0), Ṽ0 = Ṽ (0) [Cobelli et

al. (1979); Labbé and Verttoa (2006)]. The assumption of initial steady state is
necessary to guarantee identifiable (none of the models reported or referenced here
is identifiable if the initial states are unknown), and is often justified by the clinical
trial protocol. For example, in ACTG 398, individual patients were taken off the
drug before the initiation of the new therapy (washout period to eliminate the effect
of previously administered drugs and to guarantee that all individuals started from
steady-state conditions). Finally, viral load [V (t)] in model (1) is related to an
equation output of viral load amount [Ṽ (t)] in model (2) as follows: V (t) = ρṼ (t),
where ρ, which is equivalent to a volume of distribution of pharmacokinetics, is a
viral load scaling (proportionality) factor (10,000 copies/ml) to be estimated from
the data [Nowak and May (2000)]. The set of ODE (2) will be used to construct
the BNLME model.

2.2. Time-varying drug efficacy model. Within the population of HIV virions
in a human host, there is likely to be genetic diversity and corresponding diver-
sity in susceptibility to the various ARV agents. In clinical practice, genotypic or
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phenotypic tests can be performed to determine the sensitivity of HIV-1 RNA to
ARV agents before a treatment regimen is selected. Here we use the phenotypic
marker, IC50 [Molla et al. (1996)], to quantify agent-specific drug susceptibility.
Because experimental data tracking development of resistance suggest that the re-
sistant fraction of the viral population grows exponentially, we propose a model
of log-linear function to approximate the within-host changes over time in IC50 as
follows:

IC50(t) =
⎧⎪⎨
⎪⎩

log
(
S0 + Sf − S0

tf
t

)
for 0 < t < tf ,

log(Sf ) for t ≥ tf ,

where S0 and Sf are respective values of IC50(t) at baseline and time point tf at
which the resistant mutations dominate. In our study, tf is the time of virologic
failure which is observed from clinical studies. If Sf = S0, no new drug resistant
mutation is developed during treatment. Although more complicated models for
median inhibitory concentration have been proposed based on the frequencies of
resistant mutations and cross-resistance patterns [Wainberg et al. (1996); Bonhoef-
fer, Lipsitch and Levin (1997)], in clinical studies or clinical practice it is common
to collect IC50 values only at baseline and failure time as designed in ACTG 5055
[Acosta et al. (2004)] and ACTG 398 [Hammer et al. (2002); Pfister et al. (2003)].
Thus, given that IC50 is only measured at baseline and at the time of treatment fail-
ure, this function may serve as a good approximation in terms of data availability.

Poor adherence to a treatment regimen is one of the major causes of treatment
failure [Ickovics and Meisler (1997)]. The following model is used to represent
adherence for a time interval Tk < t ≤ Tk+1:

A(t) =
{

1, if all doses are taken in (Tk,Tk+1],
rk, if 100rk% doses are taken in (Tk,Tk+1],

where 0 ≤ rk < 1, with rk indicating the adherence rate computed for each assess-
ment interval (Tk, Tk+1] between study visits based on the questionnaire or MEMS
data; Tk denotes the kth adherence assessment time.

In most viral dynamic studies, investigators assumed that either drug efficacy
was constant over treatment time [Perelson and Nelson (1999); Wu and Ding
(1999)] or antiviral regimens had perfect effect in blocking viral replication [Ho
et al. (1995); Perelson et al. (1996)]. However, the drug efficacy may change as
concentrations of ARV drugs and other factors (e.g., drug resistance) vary dur-
ing treatment. A simple pharmacodynamic sigmoidal Emax model for dose–effect
relationship is [Gabrielsson and Weiner (2000)]

E = EmaxC

EC50 + C
,(3)

where Emax is the maximal effect that can be achieved, C is the drug concentra-
tion, and EC50 is the drug concentration that induced an effect equivalent to 50%
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of the maximal effect. Many different variations of the Emax model have been
developed by pharmacologists to model pharmacodynamic effects. Emax models
include the sigmoid Emax model, the ordinary Emax model and composite Emax
models [Gabrielsson and Weiner (2000); Davidian and Giltinan (1995)]. The or-
dinary Emax model describes agonistic and antagonistic (inhibitory) effects of a
drug, the sigmoid Emax model is more flexible for the steepness or curvature of the
response–concentration curve compared to the ordinary Emax model, and compos-
ite Emax models are used for multiple drug effects. More detailed discussions on
Emax models can be found in the book by Gabrielsson and Weiner (2000) and the
paper by Huang et al. (2003). Here we employ the following modified Emax model
to represent the time-varying drug efficacy for two ARV agents within a class,

γ (t) = A1(t)/IC1
50(t) + A2(t)/IC2

50(t)

φ + A1(t)/IC1
50(t) + A2(t)/IC2

50(t)
,(4)

where Ak(t) and ICk
50(t) (k = 1,2) are the adherence profile of the drug as mea-

sured by MEMS data and the time-course of median inhibitory concentrations for
the two drugs, respectively; φ = exp(β0 + β1w1 + β2w2); w1 and w2 are ob-
served baseline viral load and CD4 cell count, respectively; β = (β0, β1, β2)

T

are unknown covariate effect parameters to be estimated from clinical data. If
β1 = β2 = 0 (without considering effect of covariates), φ = exp(β0) can be used
to quantify the conversion between in vitro and in vivo IC50 which is the case dis-
cussed by Huang et al. (2003). If γ (t) = 1, the drug is 100% effective, whereas if
γ (t) = 0, the drug has no effect. Note that, if Ak(t), ICk

50(t), w1 and w2 are mea-
sured or obtained from a clinical study and β can be estimated from clinical data,
then the time-varying drug efficacy γ (t) can be estimated for the whole period of
ARV treatment.

2.3. Bayesian modeling approaches. A number of studies investigated various
statistical methods, including Bayesian approaches, to fit viral dynamic models
and to predict virological responses [Han et al. (2002); Huang et al. (2006); Perel-
son et al. (1996); Wu et al. (1998); Wu and Ding (1999)]. The Bayesian approach
to viral dynamic modeling is particularly appealing from a biological perspective,
as it allows informative prior distributions to be incorporated. From a statistical
estimation point of view, a Bayesian approach is preferable because of the difficul-
ties which are often encountered from a classical approach when models involve
the large numbers of parameters, and complex nonlinearity of the subject-specific
models. A Bayesian nonlinear mixed-effects (BNLME) model allows us to in-
corporate prior information at the population level into the estimates of dynamic
parameters for individual subjects. We briefly summarize the main concepts in the
Bayesian approach to inference and the presentation is, of course, far from ex-
haustive [Davidian and Giltinan (1995); Gelfand and Smith (1990); Huang et al.
(2006); Wakefield et al. (1994); Wakefield (1996)].
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In reference to the model (2), we denote the number of subjects by n and the
number of measurements on the ith subject by mi . Let μ = (log c, log δ, logdT ,

logρ, logR,β0, β1, β2)
T , � = {θ i , i = 1, . . . , n}, θ i = (log ci, log δi, logdT i,

logρi, logRi, logφi)
T and Y = {yij , i = 1, . . . , n; j = 1, . . . ,mi}. Let fij (θ i ,

tj ) = log10(V (θ i , tj )), where V (θ i , tj ) is proportional to the numerical solution
of Ṽ (t) in the differential equations (2) for the ith subject at time tj. Let yij (t) and
ei(tj ) denote the repeated measurements of viral load in log10 scale and a measure-
ment error with mean zero, respectively. Note that log-transformation of dynamic
parameters and viral load is used to make sure that estimates of dynamic parame-
ters are positive and to stabilize the variance and convergence, respectively. The
BNLME model can be written in the following three levels [Gelfand and Smith
(1990); Davidian and Giltinan (1995); Huang and Wu (2006); Wakefield (1996)].

Level 1. Within-subject variation:

yi = fi(θ i ) + ei , ei |σ 2, θ i ∼ N (0, σ 2Imi),(5)

where yi = (yi1(t1), . . . , yimi
(tmi

))T , fi (θ i) = (fi1(θ i , t1), . . . , fimi
(θ i , tmi

))T ,
ei = (ei(t1), . . . , ei(tmi

))T .
Level 2. Between-subject variation:

θ i = Wiμ + bi , [bi |�] ∼ N (0,�),(6)

where bi are random effects with mean zero. It is noteworthy that, for β =
(β0, β1, β2)

T , no log-transformation is required as they are not necessarily pos-
itive. Wi = (I6,J1i ,J2i ), where I6 is an identity matrix and Jsi = (0,0,0,0,0,

wsi)
T (s = 1,2; i = 1,2, . . . , n) are 6 × 1 vector, with w1i and w2i being (stan-

dardized) individual baseline viral load (in log10 scale) and CD4 cell count, re-
spectively. For β = (β0, β1, β2)

T , we are only interested in estimating them at
population level. Thus, the individual parameter φi is related to them as fol-
lows, logφi = β0 + β1w1i + β2w2i + bi6, where bi6 is the last element of bi

(i = 1,2, . . . , n).
Level 3. Hyperprior distributions:

σ−2 ∼ Ga(a, b), μ ∼ N (η,�), �−1 ∼ Wi(�, ν),(7)

where the mutually independent Gamma (Ga), Normal (N ) and Wishart (Wi) prior
distributions are chosen to facilitate computations [Davidian and Giltinan (1995)].
The hyper-parameters a, b,η,�,� and ν can be determined from previous studies
and literature.

The Bayesian approach is developed in the presence of observations whose
value is initially uncertain and described through a probability distribution, which
depends on some parameters. In the applications we assume that the researcher
has some knowledge about at least some of the parameters which often represent
characteristics of interest describing the process. The Bayesian approach incor-
porates this information through prior distribution into observed data to obtain
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its posterior distribution. While computation of the posterior distribution involves
solving multidimensional integrals, the introduction of Markov chain Monte Carlo
(MCMC) methods such as the Gibbs sampler and Metropolis–Hastings algorithm
opened the way to analysis of complex models through decomposition and sam-
pling from full conditional distributions; see Gamerman (1997) and Gilks et al.
(1995) for general theory and implementation details. Some more specific dis-
cussion of the Bayesian dynamic modeling approach, including the choice of the
hyper-parameters, the iterative MCMC algorithm and the implementation of the
MCMC procedures can be found in publications by Huang and Wu (2006) and
Wakefield (1996). The Bayesian approach was developed and tailored as required
by the unique features of the proposed HIV dynamic models. The basic principles
of these proposed methodologies were well established in the statistical literature
[Gamerman (1997); Gilks et al. (1995); Wakefield (1996)], but the applications
of these methods in this paper are nonetheless innovative within the context of a
system of nonlinear ODE of time-varying coefficient, but without a closed-form
solution.

The progress in Bayesian posterior computation due to MCMC procedures
has made it possible to fit increasingly complex statistical models [Huang and
Wu (2006); Wakefield (1996)] and entailed the wish to determine the best fitting
model in a class of candidates. Thus, it has become more and more important
to develop efficient model selection criteria. A recent publication by Spiegelhal-
ter et al. (2002) suggested a generalization of the Akaike information criterion
(AIC) [Akaike (1973)] and related also to the Bayesian information criterion (BIC)
[Schwarz (1978)] that is deviance information criterion (DIC). In this paper we
demonstrate its usefulness to compare BNLME models for longitudinal HIV dy-
namics discussed previously. For completeness, a brief summary of DIC follows.
More detailed discussion of DIC and its properties can be found in publications by
Spiegelhalter et al. (2002) and Zhu and Carlin (2000).

Assume that the distribution of the data, Y, depends on the parameter vector 	 .
Most recently, Spiegelhalter et al. (2002) suggested examining the posterior distri-
bution of the deviance statistics defined by

D(	) = −2 logp(Y|	) + 2 logg(Y)

for Bayesian model comparison, where p(Y|	) is the likelihood function, that is,
the conditional joint probability density function of the observed data Y given the
parameter vector 	 , and g(Y) denotes a fully specified standardizing term that is
a function of the data alone (which thus has no impact on model selection). Based
on the posterior distribution of D(	), DIC consists of two components as follows:

DIC = D̄ + pD = 2D̄ − D(	̄),(8)

where D̄ = E	|Y[D(	)] = E	|Y[−2 logp(Y|	)] and pD = D̄ − D(	̄) is the
effective number of parameters, defined as the difference between the posterior
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mean of the deviance and the deviance evaluated at the posterior mean 	̄ of the
parameters. As with other model selection criteria, we caution that DIC is not
intended for identification of the ‘correct’ model, but rather merely as a method
of comparing a collection of alternative formulations. In our model with different
baseline characteristics and/or the MEMS adherence summary metrics, DIC can
be used to identify the most significant covariate and MEMS adherence summary
metrics in contribution to virologic response. Under the model (5), in the absence
of any standardizing function g(Y), the deviance is

D(σ−2,�) = −2 logp(Y|σ−2,�)
(9)

=
n∑

i=1

σ−2(
yi − fi (θ i )

)T (
yi − fi (θ i )

) − logσ−2
n∑

i=1

mi.

As discussed above, our MCMC approach to estimating DIC first draws {(σ−2,

�)(g)}Gg=1 values from the posterior distribution, and then calculates correspond-

ing {D(g)}Gg=1 values from (9), where G is the number of samples of posterior dis-

tribution. Finally, we estimate DIC as 2D̄−D(σ̄−2, �̄), where D̄ = 1
G

∑G
g=1 D(g),

σ̄−2 = 1
G

∑G
g=1(σ

−2)(g), θ̄i = 1
G

∑G
g=1 θ

(g)
i and �̄ = {θ̄i , i = 1, . . . , n}.

3. Analysis of AIDS clinical data.

3.1. Motivating application and observed data. The subject sample in our
analysis was drawn from the AIDS Clinical Trials Group (ACTG) 398 study,
a randomized, double-blind, placebo-controlled, 4-Arm trial study of amprenavir
(APV) as part of several dual protease inhibitor (PI) regimens in subjects with
HIV infection in whom initial PI therapy had failed. Subjects in all arms re-
ceived APV (PI), three reverse transcriptase inhibitors (RTI): efavirenz (EFV),
abacavir (ABC) and adefovir dipivoxil (ADV) plus a second PI or placebo: Arm A
(saquinavir = SQV), Arm B (indinavir = IDV), Arm C (nelfinavir = NFV) and
Arm D (placebo matched for one of these three PIs). Subjects are HIV-infected
individuals with prior exposure to approved PIs and who have exhibited loss
of virologic suppression as reflected by a plasma HIV-1 RNA concentration of
≥1000 copies/ml. Subjects were scheduled for follow-up visits at study (day 0), at
weeks 2, 4, 8, 12, 16 and every 8 weeks thereafter until week 72, and at the time of
confirmed virologic failure. More detailed descriptions of this study and data are
given by Hammer et al. (2002) and Pfister et al. (2003).

As indicated previously, the primary objective of this paper is to investigate the
effect of adherence interaction with drug resistance and baseline covariates to pre-
scribed ARV therapy on virologic response measured repeatedly over time in HIV-
infected patients. We construct a novel HIV dynamic model (which is parameter
identifiable) with consideration of drug adherence assessed by use of MEMS data,



DYNAMIC BAYESIAN NONLINEAR MIXED-EFFECTS MODEL 561

drug susceptibility (IC50) and baseline covariates to link plasma drug concentra-
tion to the long-term changes in HIV-1 RNA observation after initiation of therapy.
In the model we incorporate the two clinical factors (drug adherence measured by
MEMS data and drug susceptibility) and baseline viral load and CD4 cell count
into a function of treatment efficacy (see Section 2.2).

Because phenotype sensitivity testing was performed only on a subset of ran-
domly selected subjects, the number of subjects available for our analysis was
greatly reduced. We chose to consider only the subjects within Arm C for our
analysis because this arm afforded the greatest number of subjects (n = 31) with
available phenotypic drug susceptibility data on the two PIs (APV and NFV) and
had available MEMS adherence data, as required for our model. A summary of
measurements of data to be used in our analysis is briefly described below.

Plasma viral load: Plasma viral load was measured in copies/ml at designed
study time by the ultrasensitive reverse transcriptase–polymerase chain reaction
HIV-1 RNA assay (Roche Molecular Systems). Only measurements taken while
on protocol-defined treatment were used in the analysis. The exact day of viral
load measurement (not predefined study week) was used to compute study day in
our analysis. A log10 transformation was used in the analysis of viral load data. The
graph in Figure 1 (up-left panel) shows the viral load trajectories of those subjects.
Note that some viral load measurements at designed study time were not observed
due to laboratory and other problems (for example, viral load measurement was
not observed at week 12 for the subject displayed in Figure 1).

FIG. 1. The profiles of viral load measurements (in log10 scale) from the 31 patients (up-left
panel) and one trajectory of viral load (solid curve) and associated adherence rates (stairsteps)
over time from the thirteen summary measures of MEMS data with the APV drug for one subject
from ACTG398.
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Medication adherence: Medication adherence was measured by two methods:
by the use of questionnaires and by the use of MEMS [Pfister et al. (2003)]. Sub-
jects completed an adherence questionnaire at study weeks. The questionnaire was
completed by the study participant and/or by a face-to-face interview with study
personnel. For MEMS, an MEMS cap was used to monitor APV and EFV compli-
ance only. The subjects were asked to bring their medication bottles and caps to the
clinic at each study visit, where cap data were downloaded to computer files and
stored for later analysis. The MEMS adherence rate for APV was determined as
the sum of positive dosing events divided by the sum of prescribed dosing events
during the specified time interval. In our analysis, we assumed that NFV had the
same MEMS adherence rate as APV since both APV and NFV were prescribed
with the same dosing schedule (twice daily), a prescribed AM and PM dosing pe-
riod was defined for each subject and, hence, the bottles were opened twice per
day [Pfister et al. (2003)]. As discussed previously, this study focuses mainly on
investigating optimal strategy to summarize adherence rates determined by MEMS
data for efficient production of virologic responses. For the MEMS data analysis, it
was not possible to model daily adherence rates and instead the adherence rate was
computed with the following scenarios to consider effects of both interval length
and time frame (delay of timing) for MEMS assessment.

To determine the best summary metric of the MEMS adherence rate, we eval-
uated different assessment interval lengths (averaging adherence dosing events
over 1, 2 or 3 week intervals) and different assessment time frames (fixing the
assessment interval times to end either immediately or 1, 2 or 3 weeks prior to the
next measured viral load). Table 1 summarizes the MEMS assessment interval no-
tation and definitions for the 13 scenarios. As an example, M2.2 in Table 1 denotes
an MEMS adherence interval length of 2 weeks fixed to end 2 weeks prior to the
next viral load measurement; for instance, the MEMS adherence rate for a subject
at study week 8 (day 56) was calculated as the number of nominal dosing events
divided by the number of prescribed dosing events over study days 29–42 and this
value was used to represent adherence from the previous study visit to the study
visit at the day 56 for modeling. The case M serves as a reference and averages all
the available MEMS data between viral load measurements. As an example, the
viral load (in log10 scale) and adherence rates over time from the thirteen cases
of MEMS data with APV drug for the one representative subject are presented in
Figure 1.

Phenotypic virus susceptibility to drug: The phenotypic virus resistance to drug
were retrospectively determined from baseline samples. Patients were selected to
have samples assayed based on receiving study treatment for at least 8 weeks and
having available sample. Some patients had virologic failure and phenotypic sus-
ceptibility testing done on samples at the time of failure. Testing was done via the
recombinant virus assay (PhenoSense, ViroLogic Inc., South San Francisco, CA).
For analysis, we used the phenotype marker, IC50 [Molla et al. (1996)], to quan-
tify agent-specific drug resistance. We refer to this marker as the median inhibitory
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TABLE 1
Summary of the MEMS interval definitions and other information

Adherence interval definition

Case MEMS adherence Time frame length Interval Example for week 8
interval name (weeks prior to viral load length (day 56), adherence

measurement) computed over days

1 M 0 week visit time 28–55
2 M0.1 0 week 1 week 49–55
3 M0.2 0 week 2 weeks 42–55
4 M0.3 0 week 3 weeks 35–55
5 M1.1 1 week 1 week 43–49
6 M1.2 1 week 2 weeks 36–49
7 M1.3 1 week 3 weeks 29–49
8 M2.1 2 weeks 1 week 36–42
9 M2.2 2 weeks 2 weeks 29–42

10 M2.3 2 weeks 3 weeks 22–42
11 M3.1 3 weeks 1 week 29–35
12 M3.2 3 weeks 2 weeks 22–35
13 M3.3 3 weeks 3 weeks 15–35

concentration. The baseline (◦) and failure time (×) IC50’s of 31 subject-specific
individuals for the APV and NFV drugs are displayed in Figure 2 (upper panel) and
are used to construct IC50(t). Note that some subjects have only baseline IC50 due
to the fact that they maintained viral suppression or dropped out from the study. If
no IC50 measurement is observed at failure time for a subject, IC50(t) becomes a
constant in this case.

Baseline characteristics: The baseline viral load in log10 scale (VL) and the
baseline CD4 cell count were chosen as covariates in the model for data analysis.
The log-transformation of viral load is used to stabilize the variance of measure-
ment error and estimation algorithm. The baseline characteristics of 31 subject-
specific individuals with mean, standard deviation (SD) and coefficient of variation
(CV) are displayed in Figure 2 (lower panel). To avoid very small (large) esti-
mates which may be unstable, we standardized these covariate values. For baseline
log10(RNA), for instance, each log10(RNA) value is subtracted by mean (4.71) and
divided by standard deviation (0.70).

3.2. Model fitting and parameter estimation results. In this section we apply
the BNLME modeling approach to fit the data described in Section 3.1. Based on
the discussion in Section 2, the prior distribution for μ was assumed to be N (η,�)

with � being a diagonal matrix. Following the idea of Huang and Wu (2006) for
prior construction, as an example we discuss the prior construction for log δ. The
prior constructions for other parameters are similar and so are omitted here.
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FIG. 2. The baseline (◦) and failure time (×) IC50 for APV/NFV drugs (upper panel) with baseline
IC50 mean, standard deviation (SD) and coefficient of variation (CV), respectively, and the baseline
viral load in log10 scale and baseline CD4 cell count (lower panel) with mean, SD and CV, respec-
tively, for the 31 subject-specific individuals from the ACTG398 study. Note that for a subject, if a
single measurement of IC50 is observed at baseline only, there is no × sign appearing in the upper
panel of the plot.

Ho et al. (1995) reported viral dynamic data on 20 patients; the logarithm of the
average death rate of infected cells (log δ) is −1.125. Wei et al. (1995) used two
different models with a group of 22 subjects to estimate death rate of infected cells
and obtained log δ with −0.84 and −1.33, respectively. Following these two stud-
ies, Nowak et al. (1995) estimated log δ = −0.934 based on 11 subjects with one
possible outlying subject excluded. It can be seen that four estimates of log δ from
these studies are −1.125, −0.84, −1.33 and −0.934, respectively. The individual
estimates of log δ from these studies approximately follow a symmetric normal
distribution. Thus, we chose a normal distribution N (−1.0, 100.0) as the prior for
log δ (the large variance indicated that we used a noninformative prior for log δ).
Similarly, the values of the hyper-parameters at population level are chosen as fol-
lows [Ho et al. (1995); Nowak et al. (1995); Nowak and May (2000); Perelson et
al. (1996, 1997); Perelson and Nelson (1999); Verotta (2005); Wei et al. (1995)]:

a = 4.5, b = 9.0, ν = 10.0,

� = diag(100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0),

η = (1.1,−1.0,−2.5,1.2,1.0,1.0,0.5,0.5)T ,

� = diag(2.5,2.5,2.5,2.5,2.5,2.5).
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We decide that one long chain is run for MCMC implication with considera-
tions of the following two issues: (i) a number of initial “burn-in” simulations are
discarded, since from an arbitrary starting point it would be unlikely that the initial
simulations came from the stationary distribution targeted by the Markov chain;
(ii) one may only save every kth (k being an integer) simulation sample to reduce
the dependence among samples used for parameter estimation. Because the antivi-
ral response modeling involves numerically solving nonlinear differential equa-
tions, thus computational burdens would be more pronounced with the Bayesian
approaches via MCMC procedure. Utilizing efficient computer algorithms are crit-
ical in this regard. Therefore, we are going to adopt these strategies in our MCMC
implementation using FORTRAN code that calls a differential equation subroutine
solver (DIVPRK) in the IMSL library (1994), which uses the Runge–Kutta–Verner
fifth-order method. The computer codes are available from the corresponding au-
thor upon request. An informal check of convergence is conducted based on graph-
ical techniques according to the suggestion of Gelfand and Smith (1990). Based
on the results, we propose that, after an initial number of 20,000 burn-in iterations,
every 4th MCMC sample was retained from the next 80,000 samples. Thus, we
obtained 20,000 samples of targeted posterior distributions of the unknown para-
meters.

We fitted the model to the data from 31 subjects discussed in Section 3.1 using
the proposed BNLME modeling approach. We incorporate the two clinical factors,
drug adherence assessed by MEMS cap data and drug susceptibility (phenotype
IC50 values), as well as baseline covariates into a function of drug efficacy. For
model fitting, adherence rates were determined from MEMS data with 13 different
scenarios. For model fitting and the purpose of comparisons, we set up a control
model as the one without using any drug adherence, resistance and covariate in-
formation which corresponds to setting γ (t) = 2/(exp(β0) + 2) with IC50(t) = 1,
A(t) = 1 and w1 = w2 = 0; for this case, our model reverts to that discussed by
Nowak and May (2000) and Perelson and Nelson (1999). The other 13 models are
specified based on the combination of drug resistance (IC50), baseline covariate
data and 13 different adherence summary metrics listed in Table 1.

In order to assess how adherence rates, determined from 13 different scenar-
ios, interacted with drug susceptibility and covariates to contribute to virologic
response, we fitted the models to all 13 scenarios as well as the control model
and compared the fitting results. We found based on the DIC criterion (see Fig-
ure 3) that, overall, the model with adherence rate determined from MEMS dosing
events, taken time frame length of 2 weeks prior to a viral load measurement with
over either a 2 week assessment interval (M2.2) or a 3 week assessment interval
(M2.3), provided the best fits to the observed data, compared to the other 12 mod-
els for most subjects. The reference model with adherence rate averaged by all
the available MEMS data between viral load measurements gave a moderate fit
to the observed data. We clearly see that all models fit the early viral load data
well, but the control model, lacking factors for subject-specific drug adherence



566 HUANG ET AL.

FIG. 3. Comparison of the DIC values for the models from 13 different determinants of MEMS
adherence, interacted by drug resistance and covariates, with the control model. The two horizontal
lines represent the DIC values for the control model and the reference model with adherence rate
determined by case M, respectively.

and susceptibility as well as baseline covariates, failed to fit viral load rebounds
and fluctuations, and provided the worst fitting results for the majority of subjects.
For the purpose of illustration, the model fitting curves from the control model
(solid curves), the best fit model (M2.2: dotted curves) and the reference model
(M: dashed curves) are displayed in Figure 4 for the three representative subjects.

For the purpose of comparison, Figure 5 presented the population posterior
means and the corresponding 95% equal-tail credible intervals (CI) of the eight

FIG. 4. The estimate of viral load trajectory from the model fitting with the 3 different determinants
of adherence: (i) Control model (solid curves), (ii) M2.2 model (dotted curves) and (iii) reference (M)
model (dashed curves) for the three representative subjects. The observed values are indicated by
circles.
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FIG. 5. A summary of the estimated posterior means (◦) of population parameters and the cor-
responding 95% equal-tail credible intervals (CI) for the models from 3 different determinants of
adherence.

parameters for the control model, the best fit model (M2.2) and the reference
model (M). For the six dynamic parameters (c, δ, dT , ρ,R,β0), it is shown that
the population estimates for the control model have higher clearance rate of free
virions (c), lower death rate of infected cells (δ), higher death rate of target T

cells (dT ), smaller viral load scaling factor (ρ), higher basic reproductive ratio for
the virus (R) and larger φ than those for the best fit model (M2.2) and reference
model (M), while the population estimates for the best fit model and reference
model are generally similar. These differences may result from the effects of drug
adherence interacted with drug resistance and covariates in the models. For the
other two covariate effect parameters (β1, β2) which are relevant to treatment ef-
fect, we will discuss them separately in Section 3.4. In terms of the individual
parameter estimates, a large between-subject variation in the estimates of all in-
dividual dynamic parameters was observed (data not shown here). Overall, the
coefficient of variation ranges from 15.4% to 88.9% for all parameters.

3.3. Effects of adherence rates determined by different MEMS summary met-
rics. Figure 3 in Section 3.2 displayed a comparison of the DIC values for the
models from 13 different determinants of MEMS adherence, interacted by drug
resistance and covariates, with the control model. The observed patterns shown in
Figure 3 provided information to answer the following questions: (i) what MEMS
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assessment interval length is best and (ii) what MEMS assessment time frame (de-
lay effect of timing) is best?

We can see that when the time frame for MEMS assessment is fixed, models
with a 2 week MEMS assessment interval length generally outperform models
with an assessment interval length of 1 or 3 weeks except for the time frame
length with 3 weeks prior to viral load measurement where the model with a
3 week MEMS assessment interval length performs best.

Regardless of the assessment interval length, models which assess compliance
2 weeks prior to viral load measurement generally outperform models which as-
sess compliance immediately before viral load measurement, 1 week before or
3 weeks before viral load measurement. Overall, the model with a MEMS assess-
ment interval length of 2 weeks measured from 4 to 2 weeks prior to viral load
measurement (M2.2) was significantly a better predicator of viral load over time
than any other models, with the exception of the M2.3 model which shows no
significant difference from the M2.2 model in terms of DIC values.

3.4. Treatment effects of baseline characteristics interacted with clinical fac-
tors. Figure 5 summarized the population posterior means and the corresponding
95% equal-tail CI of the covariate effect parameters β1 and β2 for the best fit model
(M2.2) and the reference model (M). It can be seen that estimates of β1 (coefficient
of baseline viral load) are negative, while estimates of β2 (coefficient of baseline
CD4 cell count) are positive. In fact, other models also provided the same scenarios
for the estimates of these two parameters (not shown here). As an example, we re-
port results based on the best fit model (M2.2). We can observe from Figure 5 that
the estimates of β1 and β2 are β̂1 = −0.67 with 95% CI (−1.056, −0.193) and
β̂2 = 0.719 with 95% CI (0.371, 1.058). It indicates that, according to antiviral
drug efficacy model (4), the baseline viral load (β̂1 = −0.67) has a significant pos-
itive effect on drug efficacy γ (t), while the baseline CD4 cell count (β̂2 = 0.719)
has a significant negative effect on γ (t) since the corresponding 95% credible in-
tervals do not contain zero for both parameters. These findings could suggest us
with the following different ways. The lowest value of γ (t) [highest φ as displayed
in Figure 6(b)] occurs in the subjects with the best prognosis (higher baseline CD4
cell count and lower baseline viral load). Alternatively, the highest value of γ (t)

(lowest φ) occurs in those with the worst prognosis (lower baseline CD4 cell count
and higher baseline viral load). A possible explanation is that there is a floor effect
of viral load (or ceiling/floor effect of CD4 cell count) that is not captured in the
model. Further, given that baseline CD4 cell count and viral load are jointly used
to make treatment decisions and are known to be negatively correlated as shown
in Figure 6(a), the result based on the combination of baseline viral load and CD4
count in γ (t) indicates that the baseline CD4 cell count and viral load have the
opposite effect on drug efficacy which might be intuitively understandable.
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FIG. 6. (a) Correlation between (standardized) baseline log10(RNA) and CD4 cell count. The cor-
relation coefficient (r) and p-value are obtained from the Spearman rank correlation test. The line
is a robust (MM-estimator) linear regression fit. (b) Estimated φ values for the 31 subject-specific
individuals.

4. A simulation study. In this paper we investigated the association between
virologic outcomes and medication adherence with confounding factors based on
the data from 31 subjects. As both one referee and the associate editor suggested
that a simulation study may be useful to evaluate how our method performs, in this
section we conduct a limited simulation study here due to intensive computations
involved. The scenario we consider is as follows.

We simulate a clinical trial with 31 patients receiving antiviral treatment. For
each patient, we assume that the designs of this experiment, in particular, the sam-
pling times for viral load, were the same as those in the ACTG 398 study. The
data for the phenotype marker (baseline and failure IC50’s), medication adherence
and the baseline viral load/CD4 cell count were taken from the ACTG 398 study,
where medication adherence was calculated by the M2.2 summary measure. The
“true” values of unknown parameters were the same as those estimated from the
data set of 31 subjects which were reported in Section 3. With generated individual
true parameters based on the equation (6), known data [IC50(t),A(t),w1 and w2],
we generated random samples for response (viral load) based on model (2). The
values of hyper-parameters are chosen to be the same as those in Section 3. For
each simulated data set, we fit the model using the Bayesian approach. The MCMC
techniques consisting of a series of Gibbs sampling and M–H algorithms were the
same as those in the real data analysis. We performed 50 replications and obtained
the mean estimates (ME) of population parameters together with the correspond-
ing relative bias (RB), which is the difference between the mean estimate and the
true value of the parameter divided by absolute value of the true parameter, and
the standard error (SE), defined as the square root of mean-squared error divided
by the absolute value of the true parameter.
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TABLE 2
The true values (TV) of parameters and mean estimates (ME) of population parameters with 50
replications as well as the corresponding relative bias (RB), defined as 100 × (ME − TV)/|TV|,

and standard error (SE), defined as 100 × √
MSE/|TV|

Parameter TV ME RB (%) SE (%)

log c 0.767 0.771 0.522 9.127
log δ −0.977 −1.013 −3.685 7.971
logdT −4.086 −4.101 −0.367 5.871
logρ 0.433 0.388 −10.39 18.03
logR 1.040 1.100 5.769 3.089
β0 −2.615 −2.604 0.421 4.902
β1 −0.670 −0.665 0.746 10.13
β2 0.719 0.698 −2.921 13.09

In Table 2 we summarize the true values (TV) of parameters and the ME of pop-
ulation parameters with 50 replications as well as the corresponding RB and SE.
The percentage is based on the absolute value of the true parameter. It can be seen
from Table 2 that the RB (%) for population parameter estimates are very small,
ranging from 0.522 to 10.39, and the SE (%) ranges from 3.089 to 18.03. The sim-
ulation results indicate that our method with considering the M2.2 model performs
reasonably well in terms of estimates of parameters except for the viral load pro-
portionality factor logρ which has larger RB and SE. That is, our method produces
a substantially biased estimate and may severely underestimate logρ. This may be
explained by the fact that it is probably caused from inaccurate numerical solutions
to the system of ODE (2) which was used to construct the BNLME model.

5. Concluding discussion. In developing long-term dynamic modeling, this
paper introduced a dynamic mechanism specified by a system of time-varying
ODE to (i) establish a link between success of ARV therapy in virologic response
and MEMS adherence confounded by drug resistance and baseline covariates,
(ii) fully integrate viral load, MEMS adherence, drug resistance and baseline co-
variates data into the statistical inference and analysis, and (iii) provide a powerful
tool to evaluate the effects of MEMS adherence determined by a different sum-
mary metric on virologic response using the BNLME modeling approach. This
approach cannot only combine prior information with current clinical data for es-
timating dynamic parameters, but also deal with complex dynamic systems. Thus,
the results of estimated dynamic parameters based on this model should be more
reliable and reasonable to interpret long-term HIV dynamics. Our models are sim-
plified with the main goals of retaining crucial features of HIV dynamics and, at
the same time, guaranteeing their applicability to typical clinical data, in partic-
ular, long-term viral load measurements. The proposed model fitted the clinical
data reasonably well for most patients in our study, although the fitting for a few
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patients was not completely satisfactory because of unusual viral load fluctuation
patterns for these subjects.

We have explored the practical performance of DIC for the comparison of de-
veloped models. DIC, a Bayesian version of the classical deviance for model as-
sessment, is particularly suited to compare Bayesian models whose posterior dis-
tribution has been obtained using MCMC procedures and can be used in complex
hierarchical models where the number of unknowns often exceeds the number of
observations and the number of free parameters is not well defined. This is in con-
trast to AIC and BIC, where the number of free parameters needs to be specified
[Zhu and Carlin (2000)]. Overall, combined with more traditional residual analysis
and posterior predictive model checks as discussed in this paper, DIC appears to
offer a comprehensive framework for comparison and evaluation within a complex
model class.

Several studies investigated the association between virologic responses and
adherence assessed by MEMS data only without considering other confounding
factors such as drug resistance using standard modeling methods including Pois-
son regression [Knafl et al. (2004)], logistic regression [Vrijens et al. (2005)] and
the linear mixed-effects model [Liu et al. (2007)]. In this article we employed
the proposed dynamic model and associated BNLME modeling approach to as-
sessment of effects of adherence determinants based on MEMS dosing events in
predicting virologic response. In particular, we investigated (i) how to summarize
the MEMS adherence data for efficient prediction of virological response after
accounting for potential confounding factors such as drug resistance and base-
line covariates, and (ii) how to evaluate treatment effect of baseline characteristics
interacted with MEMS adherence and other clinical factors. Note that a further
study in comparing the performance of these different methods may be important
and warranted, although some challenges are observed in terms of different model
structures and data characteristics.

The results indicate that the best summary metric for prediction of virologic
response based on DIC criterion is the adherence rate determined by MEMS dos-
ing events averaged over an assessment interval of 2 or 3 weeks, and 2 weeks
prior to the next measured viral load observation (denoted by M2.2 or M2.3). We
found that the best MEMS adherence predictor (M2.2) of the effectiveness of ARV
medications on virologic response is consistent with that reported in Huang et al.
(2008) in which, however, the next best MEMS adherence predictor (M1.2) is dif-
ferent from what is obtained in this paper. This difference may be due to the various
reasons as follows. In the study by Huang et al. (2008), (i) it directly applied the
model (1) to fit data and, thus, some assumptions were made due to parameter
unidentifiable issues; (ii) the analysis used the mean of the sum of squared devia-
tions as a criterion to evaluate model fitting results; (iii) it assumed IC50 data were
extrapolated linearly to the whole treatment period instead of a log-linear extrapo-
lation offered in this paper which is considered more reasonable biologically; and
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(iv) it did not incorporate baseline covariates in the model. In addition, the superi-
ority of the M2.2 model, associated with the MEMS adherence rate based on time
frame length of 2 weeks prior to a viral load measurement with over a 2 week as-
sessment interval, may be explained by the fact that it probably reflects how long it
takes for resistance mutations to first arise and then come to dominate the plasma
population of a virus. As pointed out by an anonymous referee, this finding may
also be interpreted as follows. Low adherence two weeks prior to the viral load
measurement may not have had sufficient time for viral rebound to occur.

In this paper we set up a connection between subject-specific baseline charac-
teristics with interaction of clinical factors and drug efficacy. We also found that,
according to antiviral drug efficacy model (4), the baseline viral load had a posi-
tive effect on drug efficacy, while the baseline CD4 cell count had a negative effect
on it. Our results may be explained by the fact that for those patients with higher
baseline viral load, the drug efficacy needs to be higher than that for those with
lower baseline viral load. Therefore, a strong treatment is recommended for those
patients with higher baseline viral load. On the other hand, patients with higher
CD4 cell count may need lower drug efficacy so that a more potent ARV drug
regimen is not necessary for these patients to avoid side-effects of drug use. The
results may suggest the benefit of initiating ARV therapy with a lower baseline
viral load and/or a higher baseline CD4 count. These results coincide with those
investigated by Notermans et al. (1998) and Wu et al. (2005) whose results were
obtained using correlation analysis. Note that given the estimated parameters, the
subject with both a high baseline CD4 cell count and a relatively high baseline
viral load [upper right quadrant of Figure 6(a)] has a very different φ than that
with a similar baseline CD4 cell count, but a low baseline viral load [upper left
quadrant of Figure 6(a)]. It is possible that the subject in the upper right quadrant
was more recently infected (hence the higher baseline CD4 cell count) or perhaps
with a drug resistant virus and would not be a candidate for a regimen with a “less
potent drug efficacy.”

Our findings need to be interpreted in light of the study limitations. First, in the
ACTG 398 study, because phenotype sensitivity testing was performed only on a
subset of randomly selected subjects, we chose 31 patients who have available data
for analysis in this paper. Second, due to reasons such as lost caps and malfunction
of caps, there were inaccurate MEMS data across the treatment period which may
not reflect actual adherence profile for individual patients and, thus, the data qual-
ity could have some impact on the results. Third, because of technical limitations,
the undetectable values of viral load were replaced with 25 copies/ml for analyses,
which could introduce some bias due to a cluster of ties of data points. Finally, this
paper combined new technologies in mathematical modeling and statistical infer-
ence with advances in HIV/AIDS dynamics and ARV therapy to quantify complex
HIV disease mechanisms. The complex nature of HIV/AIDS ARV therapy will
naturally pose some challenges including missing data and measurement error in
clinical factors and covariates. These complicated problems, which are beyond the
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scope of this article, may be addressed, for example, using the joint model method
[Wu (2002)] and other techniques [Carroll et al. (1995)], and are warranted for
further investigation. Nevertheless, these limitations would not offset the major
findings from this study.

As the Associate Editor pointed out, we assumed that the distributions of the
random error and random effects are normal, which is a common assumption in the
literature for statistical inference. However, due to the nature of AIDS clinical data,
it is possible that the data may contain outliers and/or depart from normality and,
thus, statistical inference and analysis with normal assumption may lead to mis-
leading results [Verbeke and Lesaffre (1996); Ghosh et al. (2007)]. Specially non-
normal characteristics such as skewness with heavy right or left tail may appear
often in virologic responses. Thus, a normality assumption may be too restrictive to
provide an accurate representation of the structure that is often present in repeated
measures and clustered data. Thus, it is of practical interest to investigate nonlinear
models with a skew-normal distribution or t distribution for (within-subject) ran-
dom error and random effects which are more robust to outliers and skewness than
those with a normal distribution. In our recent study [Huang and Dagne (2010)] we
addressed a Bayesian approach to nonlinear mixed-effects models in conjunction
with the HIV dynamic model and relaxed the normality assumption by consid-
ering both random error and random-effects to have a multivariate skew-normal
distribution. The proposed model provides flexibility in capturing a broad range of
non-normal behavior and includes normality as a special case. The results suggest
that it is very important to assume models with a skew-normal distribution in order
to achieve robust and reliable results, in particular, when the data exhibit skewness.
We are actively applying this methodology into the data investigated in this paper
and will report the results in a future study.

In summary, the mechanism-based dynamic model is powerful and efficient to
characterize relations between antiviral response and medication adherence, drug
susceptibility as well as baseline characteristics, although some biological assump-
tions are required. It is important to find a way to incorporate subject-specific in-
formation with regard to drug susceptibility, medication adherence and baseline
characteristics in predicting long-term virologic response. Since each of these fac-
tors may only contribute a very small portion to virologic response and they may
be confounded through complicated interactions, the appropriate modeling of the
combination effects of these factors is critical to efficiently utilize the information
in virologic response predictions. The viral dynamic model and associated statisti-
cal approaches discussed here provide a good avenue to fulfill this goal. In partic-
ular, MEMS adherence rate summarized by an optimal way in terms of assessing
both interval lengths and time frame lengths prior to viral load measurement is an
important factor that significantly determines the effectiveness of ARV treatment
and needs to be taken into account in analysis of virologic responses. Our results
demonstrate that MEMS adherence data may not predict virologic response well
unless the MEMS cap data are summarized in an appropriate way as reported in
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Section 3.3. Additionally, although this paper concentrated on HIV dynamics, the
basic concept of longitudinal dynamic systems and the proposed methodologies
in this paper are generally applicable to dynamic systems in other fields such as
biology, medicine, engineering or PK/PD studies as long as they meet the relevant
technical specification—a system of ODE.
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