The Annals of Applied Statistics

2011, Vol. 5, No. 1, 150-175

DOI: 10.1214/10-A0AS369

© Institute of Mathematical Statistics, 2011

A SPATIAL ANALYSIS OF MULTIVARIATE OUTPUT FROM
REGIONAL CLIMATE MODELS

BY STEPHAN R. SAIN!, REINHARD FURRER? AND NOEL CRESSIE>

National Center for Atmospheric Research, University of Zurich and
Ohio State University

Climate models have become an important tool in the study of cli-
mate and climate change, and ensemble experiments consisting of multiple
climate-model runs are used in studying and quantifying the uncertainty in
climate-model output. However, there are often only a limited number of
model runs available for a particular experiment, and one of the statistical
challenges is to characterize the distribution of the model output. To that end,
we have developed a multivariate hierarchical approach, at the heart of which
is a new representation of a multivariate Markov random field. This approach
allows for flexible modeling of the multivariate spatial dependencies, includ-
ing the cross-dependencies between variables. We demonstrate this statistical
model on an ensemble arising from a regional-climate-model experiment over
the western United States, and we focus on the projected change in seasonal
temperature and precipitation over the next 50 years.

1. Introduction. Many processes in the Earth system cannot be directly ob-
served, and computer modeling has become a primary mode for studying these
processes. These computer models often encapsulate entire fields of knowledge,
providing a virtual laboratory for understanding physical relationships and serving
as a basis for making predictions. The Earth’s climate, for example, is determined
by the flows of energy, water, gases, etc., within and between the different compo-
nents of the climate system, including atmosphere, oceans, terrestrial and marine
biospheres, sea ice, etc. Climate models attempt to represent this system, as well as
to incorporate anthropogenic forcings to assess the impact of human intervention.

While climate models are deterministic, the output generated by these mod-
els is complex and subject to a number of sources of uncertainty. Initial climate
states, assumptions about future forcings, and, of course, our understanding (or
lack thereof) of the physical processes and their representation in computer mod-
els, are all issues that may lead to uncertainty in the model output. To gain a better
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understanding of this model uncertainty, there is an increasing use of ensembles
consisting of multiple model runs. These experiments may involve varying ini-
tial conditions (simple ensembles), model physics (perturbed-physics ensembles),
specific models (multi-model ensembles), or some combination of all three, in an
attempt to capture the range of variation in the model output.

Climate is often considered the long-term average (or, more generally, the long-
term distribution) of weather, and climate models typically simulate decades of
weather to capture this long-term behavior. These simulations can take weeks or
even months of computing time on high-performance supercomputers. Further-
more, as interest continues to grow in climate models with higher spatial reso-
lution, in particular, to study regional and local impacts of climate and climate
change, the computational demands of climate modeling continue to grow. Even
with the increased use of ensembles, the number of ensemble members is typi-
cally limited due to constraints on the models available, computation, funding, etc.
Hence, statistical methods are necessary to quantify the distribution and breadth
of variation of the model output in the ensemble. To this end, we introduce a hi-
erarchical statistical model to capture the multivariate spatial distribution of the
output fields (e.g., the joint spatial distribution of temperature and precipitation)
from a regional-climate-model ensemble. With this statistical representation of the
model output, we can present probabilistic projections of regional climate change
based on the ensemble. Furthermore, by considering multiple output fields simul-
taneously, we can incorporate correlations between these fields, improving joint
projections necessary for many climate-impacts studies (e.g., agriculture, water
management, public health, etc.).

1.1. Regional climate models. The climate of a region is determined by
processes that exist at planetary, regional, and local spatial scales and across a wide
range of temporal scales (multi-decadal to sub-daily). This creates serious difficul-
ties when attempting to construct computer models that can simulate regional cli-
mate. Atmosphere—ocean general circulation models (AOGCMs or, more simply,
GCMs) couple an atmospheric model with an ocean model and seek to simulate the
Earth’s global climate system. Due to model complexity, the need to simulate cli-
mate over decadal and even centennial time scales, and computational limitations,
these models typically have grid boxes on the spatial scale of 200 to 500 km. While
these models are extremely useful for investigating the large-scale circulation and
forcings that affect the Earth’s global climate, there are limitations to their use
for regional and local projections that might be of interest to the climate-impacts
community.

Recognizing the need to include large-scale processes, even when studying re-
gional climate, as well as the ability of GCMs to capture such phenomena, there
is considerable attention on developing downscaling methodologies. Downscaling
refers simply to generating information on the basis of a GCM, but at spatial scales
below that of the GCM. There are two main types of downscaling, dynamical and
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statistical. Statistical downscaling is a computationally efficient approach that uses
empirical relationships to connect the coarse-resolution GCM output to regional
and local variables. This approach needs fine-scale and long-time-duration obser-
vational data, and there is some uncertainty about the stability of these empirical
relationships over long periods of time, especially with varying forcings (e.g., in-
creasing CO; concentrations).

Dynamical downscaling involves using high-resolution climate models. Of
course, there are limitations due to computational demands and a price to be paid
for the higher resolution. One approach uses only the atmospheric component of
a GCM with, for example, observed ocean temperatures. These so-called time-
slice experiments are globally consistent, but they generally use many of the same
formulations as the coarse-scale GCMs.

Regional climate models (RCMs) are the focus of this research and are another
dynamical approach based on high-resolution climate models. These models typ-
ically focus on a limited spatial domain, have grid boxes on the scale of 20 to
100 km, and there are often simplifications of ocean processes in these models.
They also use initial conditions and time-dependent lateral boundary conditions
from the GCM (e.g., winds, temperature, and moisture). Hence, global circula-
tion and large-scale forcings are consistent with the GCM, but, with the higher-
resolution forcings included (e.g., topography, land cover, etc.), these models have
the potential to actually enhance the simulation of climate on regional and local
scales. Of course, RCMs can be influenced by potential biases in the GCM, and
there is a lack of two-way interactions between the driving GCM and the RCM.

For those interested in understanding more about climate and climate change
and global and regional climate modeling, we refer them to the Intergovernmental
Panel on Climate Change (IPCC, http://www.ipcc.ch) assessment reports, and, in
particular, to the contributions of Working Group I to the Third Assessment Re-
port [Houghton et al. (2001)] and the Fourth Assessment Report [Solomon et al.
(2007)]. These documents not only include excellent overviews of the issues but
also numerous scientific references for more in-depth coverage.

1.2. A statistical representation of climate-model output. 'We propose a statis-
tical model for combining the output from simple ensembles of RCMs in order
to characterize the distribution of the model output. This statistical model will
be formulated through what has now become the standard three-level hierarchical
formulation, namely, data model, process model, and parameter model (prior dis-
tribution). The data model links the RCM output to an unobserved spatial process,
where this process model is formulated to capture the spatial variation in the RCM
output. Both the data model and the process model depend on unknown parameters
to which a prior distribution is assigned.

This basic hierarchical approach has been used in other settings for combining
climate-model output. For example, Tebaldi et al. (2005) focuses on univariate
summaries of temperature change from an ensemble of GCMs. Smith et al. (2009)
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also explore univariate summaries of temperature change from an ensemble of
GCMs and link these summaries over different regions around the globe. Tebaldi
and Sansé (2009) extend these approaches to bivariate models of temperatures
and precipitation. Furrer et al. (2007a, 2007b) study univariate spatial summaries
and Berliner and Kim (2008) study bivariate time series, again constructed from an
ensemble of GCMs. More recently, Cooley and Sain (2010) and Kang, Cressie and
Sain (2010) have applied hierarchical models to ensembles of RCMs. However, to
our knowledge, this paper is the first approach of this kind for a spatial analysis of
multivariate output from RCMs.

At the heart of this statistical model is an implementation of a multivariate
Markov random field (MRF) for lattice data that offers great flexibility in mod-
eling the spatial cross-dependencies between variables. We emphasize this capa-
bility in this setting, as the underlying physical behavior of the climate system
suggests the potential for significant spatial cross-dependencies, in particular, for
key variables like temperature and precipitation. While these two output fields are
the focus of this work, we note that the basic approach based on the multivariate
MREF presented here can be easily modified to consider other output fields as well.

MRF models are also excellent tools for analyzing data laid out on regular spa-
tial lattices, such as those associated with images, remote-sensing, climate models,
etc., or on irregular spatial lattices, such as U.S. census divisions (counties, tracts,
or block-groups) or other administrative units. In contrast to geostatistical methods
that model spatial dependence through the specification of a covariance function
(typically based on distances between spatial locations), Gaussian MRF models
represent the conditional expectation of an observation at a spatial location as a
linear combination of observations at neighboring locations. Spatial dependence is
induced through this conditional autoregression and the choice of neighborhoods.

In addition, using a MRF formulation will allow us to incorporate computa-
tional advantages due to the gridded nature of the climate-model output and the
sparseness that is characteristic of the spatial-precision matrices (inverse covari-
ance matrices) that are specified in such models. Furthermore, the multivariate
nature of the statistical model (more than one model output considered at each
grid box) will allow for more complex inferences that are of use to those studying
impacts of climate and climate change.

1.3. Outline. In Section 2 an overview of MRF models is presented, followed
by a description of the new formulation in Section 3. Section 4 contains the de-
tails of our hierarchical specification. An extensive study of an application using
a simple ensemble of RCM output, focusing on changes in seasonal temperature
and precipitation, will be presented in Section 5. Concluding remarks are given in
Section 6.

2. MRF and CAR models. Besag (1974) laid out the basic framework for
MRF models. For random variables yy, ..., ¥, observed at n locations on a spatial-
lattice structure, the collection of conditional distributions f (y;|y—;),i =1,...,n
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(where y_; refers to all random variables except the ith one), can be combined un-
der certain regularity conditions to form a joint distribution f(yy, ..., y,). Rue and
Held (2005) can be consulted for an excellent exposition of the theory of MRFs;
see also the reviews in the texts by Cressie (1993), Banerjee, Carlin and Gelfand
(2004), and Schabenberger and Gotway (2005). Conditional autoregressive (CAR)
models are special cases of MRF models where the conditional distributions are
assumed to be Gaussian.

2.1. Univariate CAR models. 1In the univariate setting and assuming Gaussian
conditional distributions for f(y;|y—;), the conditional mean and conditional vari-
ance associated with f(y;|y—;) are specified as

n
Elyily—il=m;i + Zbij(yj — ;) and Varly;|ly_;1=17 >0,
J#
where b;; =0;i =1, ..., n. Under regularity conditions, this collection of condi-
tional distributions gives rise to a joint Gaussian distribution,

(1) N(p, XI-B)~'T),

where . = (i1, ..., y)’, Iis an n x n identity matrix, B is the n x n matrix with
the (i, j)th element b;;,and T = diag(rlz, e t,%). The regularity conditions are on
the spatial-dependence parameters, {b;;}, and they ensure that the resulting matrix,
(I—-B)~'T, is a bona fide covariance matrix; that is, (I — B) !Tis symmetric and
positive-definite. The spatial dependence is induced by the autoregression, which
is determined by setting the coefficients b;; # 0 if j € N; (and O otherwise), where
N; is a collection of indices that define a neighborhood of the ith location in the
spatial lattice.

2.2. Multivariate CAR models. Mardia (1988) extended the MRF model of
Besag (1974) to the multivariate setting where there is more than one measurement
at each lattice point. In particular, let y; be a p-dimensional random vector. Then,
fori=1,...,n,let f(y;ly—i) be a Gaussian distribution of y;, given all random
vectors except the ith, with

E[YilY—i]ZMi+ZBij(Yj—ﬂj) and Varly;|ly_;]=T;,

j#i
where p; is a p-dimensional vector, B;; is a p x p matrix, and T; is a p x p
covariance matrix. Assume that B;;T; = T,-B’ji, foralli, j=1,...,n (to ensure
symmetry). Further, assume B;; = —I and B;; #0 for j e N; and i =1,...,n.

Under the assumption that the np x np matrix Block(—B;;) (i.e., a block matrix
with blocks given by —B;;) is positive-definite, Mardia (1988) establishes that
y=(y}.....y,) follows a N'(u, X) distribution where p = (u}, ..., p,) and
¥ = (Block(~T; 'B;;))~".
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As written, this formulation is overparameterized and there have been a num-
ber of efforts in the literature that focus on ways of specifying the parameters in
the basic model. See, for example, Billheimer et al. (1997), Kim, Sun and Tsu-
takawa (2001), Pettitt, Weir and Hart (2002), Carlin and Banerjee (2003), Gelfand
and Vounatsou (2003), Jin, Carlin and Banerjee (2005), Jin, Banerjee and Carlin
(2007), Daniels, Zhou and Zou (2006), Sain and Cressie (2007), among others.

3. An alternative formulation of a multivariate MRF. It is our experience
that the basic multivariate MRF model of Mardia (1988) is difficult to implement in
practice without dramatic simplification of the matrices representing the spatial de-
pendence parameters [e.g., Billheimer et al. (1997)] or the use of restrictive priors
on the elements of these same matrices [Sain and Cressie (2007)]. Here, we fully
develop a new way of representing multivariate lattice data that was suggested, but
not implemented, by Sain and Cressie (2007), for the purposes of analyzing an
RCM experiment.

The multivariate extension of the framework laid out by Besag (1974) and ex-
plored by Mardia (1988) is based on the assumption of a multivariate observation
at each point on a standard two-dimensional spatial lattice. Fundamental to our ap-
proach is thinking of multivariate lattice data as univariate data on a more complex
lattice structure.

In particular, this more complex lattice structure is conceptualized as a ““stack-
ing” of the lattices associated with each variable. Neighborhoods are defined by
connections between locations for each variable within a lattice and again for lo-
cations across each lattice structure. A two-dimensional example of these different
types of neighborhoods is shown in Figure 1. A within-variable dependence struc-
ture is induced by connecting locations within a lattice associated with a particular
variable (left frame). Cross-dependencies, both within a location (middle frame)
and across locations (right frame), are induced through connections between the
lattices for different variables.

The key feature of this approach is that it still falls within the original univariate
framework of Besag (1974) outlined in Section 2.1. Let y;; denote the jth variable

i
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FI1G. 1. Examples of different types of neighborhoods. The left frame shows a within-variable spa-
tial neighborhood, while the middle frame shows a within-location neighborhood. The right frame
demonstrates the neighborhood associated with cross-variable connections. See also equation (2).
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observed at the ith location on the lattice. Then, for each Gaussian conditional dis-
tribution, the mean and variance need to be specified. With sums on the right-hand
side corresponding to specific types of neighborhoods in Figure 1, the conditional
mean is given by

ELyijly—ijy] = mij + ) bijkj Okj — 1ij)
ki

+ D bijieQie — i) + Y bijre(ke — ire)
L] ki, j

2)

with the conditional variance given by Var[y;;|y_j;] = 11.2/-, for all lattice points
i=1,...,n,variables j =1,..., p, and with y_y;;; denoting all components of y
except for the (i, j)th.

In the conditional mean, the coefficients in the first summation, {b;jx;;i =
1,...,n,k e N;,j=1,..., p}, represent connections within a particular layer
and control conditional dependence between the ith lattice point and neighbor-
ing points for the jth variable (left frame in Figure 1). The coefficients in the
second summation, {b;j;¢;i =1,...,n,j#£=1,..., p}, represent connections
across layers at the same lattice point and control conditional dependence between
variables j and £ at the ith lattice point (middle frame in Figure 1). Finally, the co-
efficients in the third summation, {b;jre;i =1,...,n,k € N;, j#L=1,..., p},
represent connections between locations across layers for different variables and
control conditional cross-spatial dependence (right frame in Figure 1). Of course,
all of these conditional-dependence parameters and the variances {rizj} must satisfy
regularity conditions that yield a symmetric, positive-definite covariance matrix for
the joint distribution.

Some simplification of this basic structure is necessary to reduce the dimen-

sionality of the parameter space. Ordering the data as y = [y}, ...,y, ], where
yi = [yi1, ..., yipl’ represents variables at the ith lattice point, we see from (1)
that the joint distribution is Gaussian with mean given by pu = [p], ..., u;,]" and
i =i, -, ,u,-p]’, and with an np x np covariance matrix given by
A Bpdi - Bindin -
B2idor Ao :
3) : T,

An—l Bn—l,nan—l,n
Bn15n1 Bn,n—15n,n—1 An

where 6;x = 1 if k € N; and 0 otherwise. Each p x p block is given by
1 —bjjie —b;1k1 —bijke
Al = S, . or Blk - . . )
—bigij 1 —bjoj —bipip
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where —b; ;¢ and —b;y;; are arbitrary off-diagonal elements of A;, and —b; i, and
—bj;j are arbitrary off-diagonal elements of B;;. Finally, T = diag(rlzl, e f12p»
..,r,%l,...,r,fp).

In general, we shall assume that the neighborhood structure is symmetric; that
is, if the kth lattice point is a neighbor of the ith lattice point, then the ith lattice
point is a neighbor of the kth (§;x = &x;). We shall also assume that Tl%- = rjz for
all j, implying a separate variance for each variable that does not vary with loca-
tion. Hence, T =I,, ® diag(t), where T = [rlz, e Tl%]/. Further assumptions on
the spatial-dependence parameters are made to reduce the dimensionality of the
parameter space.

To address symmetry and variance homogeneity across location, it suffices to
examine the components of specific blocks in the inverse of the covariance matrix

given by (3). First, the diagonal blocks are given by

1/t} —bijie/7}
diag(r)_lAi = .
—biij/ T} 1/7;

By symmetry, the corresponding off-diagonal elements should be equal; that is,
b,‘jig/‘sz = b,‘z,‘j/‘fgz. Setting bij,'g = ,Ojg‘L’j/‘L’g, with PLj = Pje; is one way of achiev-
ing the desired result. Then, diag(t)_lAi = diag(t)_l/zA diag(t)_l/z, where
1 —pje
A= .
—pje 1
For the off-diagonal blocks, symmetry demands that
) diag(z) ™' Bix = [diag(v) ' Byi]".
Assuming i > k, the left-hand side of (4) is given by
—bjik1 /78 _bijki/sz
diag(t) ™' Bix = ,
—biekj/ T} —bipkp/ T,

Likewise, setting bjjx = ¢jtj/T¢ gives diag(r)_lBik = diag(r)_l/zB X
diag(r)_l/z, where

—o11 —Qje
B = T. .
— —Ppp
and, for i > k, set diag(r)_lBk,- = diag(r)_l/zB’ diag('t)_l/2 to satisfy (4).
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The covariance in (3) then simplifies to

0 B5,‘j -1
5) Lot/ | LA - [, ® /2],
B'S;; 0
where 712 =[1,.. ., 7,]" and where {§;;} are indicator functions for neighbor-

hood dependence.

The specifications above simply ensure symmetry and reduce the number of
parameters that must be estimated. Of course, the collection of spatial-dependence
parameters, {p;¢} and {¢;¢}, must be chosen to ensure that (5) is a positive-definite
covariance matrix. The final model has p(p — 1)/2 within-location dependence
parameters, {p;¢}, and p? between-location spatial-dependence parameters, {¢ je}s
in addition to the p variance parameters, {rjz}, and any parameters that are used to
define the means.

4. A hierarchical model for an RCM experiment. Let the n-dimensional
vector y,; denote the output of an RCM, in particular, the rth ensemble member
for the jth variable. In this work we focus solely on simple ensembles; that is,
each member of the ensemble represents a perturbation of initial conditions for a
single model. Potential extensions of this basic framework for perturbed physics
or multi-model ensembles is discussed in Section 6.

At the first level of the hierarchy, the data model assumes that the vectors
Yrj,r=1,...,m,j=1,..., p, are independent with

(6) Yrilej. By ey 0F ~ N(Xietj +XoB,; +hyj, o)1),

where m indicates the number of ensemble members. In the mean structure, we
allow for fixed effects common to all ensemble members within the jth variable
(Xje ;) and random effects specific to the rth ensemble member within the jth
variable (X8, ;). Spatial random effects are included through h,;, and o repre-
sents a variable-specific variance.

The process model has two parts. First, the vectors [ﬂ/,l,...,ﬂ/rp]/ Jr =
1,...,m, are assumed to be independent with
B B B
(7 : s =N 3]
Brp/ I\B, B,

where X is a pg X pg covariance matrix with g the number of columns of X,.
Second, the vectors [h,, ..., h’rp]/ ,r=1,...,m, are assumed to be independent
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with
hrl hl
) tor/I\R
h;
T e At ~ N || 1 | VAT pjed {d)eh)
h,
(Note that the vectors [B), ..., ﬂ/rp]/ and [h}, ..., h;]" are assumed to be in-

dependent as well.) The first part, (7), focuses on linking the random regression
coefficients specific to each ensemble member, while the second part, (8), imposes
a multivariate structure on the spatial random effects. The covariance matrix V
takes its form from the multivariate Markov random field in (5).

The final level of the hierarchy assumes prior distributions on {0}, {a;}, {B j},
{h;}, X, and the parameters of the spatial covariance, namely, {rjz}, {pje}, and
{¢je}. Typically, these priors will be vague or noninformative as well as indepen-
dent. In addition, the prior distribution on {p;¢} and {¢;,} must ensure that the
resulting covariance matrix is positive-definite.

From Bayes’ theorem, the posterior distribution for the three-level hierarchical
model is given by

P(B,;). thyj) dees). o)) (B} B thy), (27, (pje), (956)1Y)
o P(Yl{ets}. 1B} (s}, o)
x P({B, )18}, £p) Pt} (), {27, {pjel. (e)
x P({a; NP0, DPUBDPED PN DPUATINP({pje). (je)).

It is clear that there is no closed-form solution for the posterior, and here Markov
chain Monte Carlo MCMC) [e.g., Gilks, Richardson and Spiegelhalter (1996)] is
used to simulate realizations from the posterior distribution. In particular, we im-
plement a Gibbs sampler [Geman and Geman (1984); Gelfand and Smith (1990);
Gelfand et al. (1990)], incorporating Metropolis—Hastings steps [Metropolis et al.
(1953); Hastings (1970)] where necessary.

One benefit of a MREF is that the specification involves the precision or inverse
covariance matrix, and this matrix is typically sparse; that is, many of the ele-
ments of the matrix are zero. Methods for storing and manipulating such matrices
have been widely established [e.g., Davis (2006)], and there is great potential for
computational efficiency associated with sparse-matrix methods. There are now
several sparse-matrix packages in the R statistical computing environment [R De-
velopment Core Team (2007)]. However, the spam package [Furrer (2008)] has
functionality that is well suited for implementing MCMC with a MRF model. For
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example, the sparse Cholesky decomposition is one of the most important com-
putational devices used when implementing the Gibbs sampler for MRF models
such as those developed in this work. A typical sparse Cholesky decomposition
involves three steps: (1) reorganizing the matrix by permuting the rows/columns
to achieve a pattern of sparsity that is more efficient for the sparse Cholesky algo-
rithm; (2) a symbolic step that identifies the pattern of sparsity in the matrix; and
(3) the numerical computation. The first two steps do not change when manipulat-
ing matrices repeatedly with the same patterns of sparsity (as is the case here). The
spam package allows one to achieve even greater computational efficiency by not
repeating these steps during the course of the MCMC. For more details on this and
other computational benefits gained from incorporating sparse-matrix methods in
such applications, see Furrer and Sain (2010).

5. The RCM experiment. Leung et al. (2004) describe an RCM experiment
using the NCAR/DOE Parallel Climate Model to drive the NCAR/Penn State
Mesoscale Model (MMS5) as an RCM. The experiment produced a control run
from 1995-2015 and three future runs (ensemble members) from 2040-2060. The
domain consisted of the western United States and part of western Canada, and
the model used a “business as usual” climate scenario incorporating a 1% annual
increase in the amount of greenhouse gases.

The n = 44 x 56 = 2464 grid boxes form a regular lattice. Since a long-run
average of weather is one way to quantify climate, typical summaries of climate
model runs include seasonal averages of temperature and precipitation with the
length of the integration often determined by computational considerations. Hence,
twenty-year winter (December, January, and February) average temperature and
average total precipitation were computed for each grid box and for each of the
control and the three future runs. Differences between the future and the control
were calculated, yielding change-in-temperature and change-in-total-precipitation
variables. Hence, there are p = 2 variables and m = 3 ensemble members, giving
six fields to be analyzed. These spatial fields for the winter season are shown in
Figure 2. A second, separate analysis with the same structure is also presented
for the twenty-year summer (June, July, and August) change in temperature and
change in total precipitation.

We note that the statistical models outlined in this work focus on using Gaussian
assumptions for average precipitation from an RCM. (An assumption that was
verified through exploratory analysis.) However, other models for precipitation,
in particular, for extreme precipitation, are possible; see, for example, Sansé and
Guenni (2004), Schliep et al. (2010), and Cooley and Sain (2010).

5.1. Model specification. We now outline some specifics about the statistical-
model specification. Consider the data model (6). After some exploratory analysis,
(scaled) latitude, longitude, and elevation were used as covariates in the common
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FIG. 2. Top row shows the three differences in winter midpoint temperature (°K), while the bottom
row shows the three differences in total precipitation (inches).

regression component (X ), to which a random intercept across ensemble mem-
bers was added (X2, ;). The prior covariance matrix for the random intercept in
(7) was also simplified to X = abzI p-

The prior distribution for the variance parameters, {2} and abz, were taken
to be noninformative; that is, they were assumed to follow the prior distribution
P(0?)  1/02, independently. The prior distributions for the regression parame-
ters, {ej} and {B j }, were taken to be mean-zero Gaussian distributions with covari-
ance matrices proportional to the identity and with large variances (i.e., ao% =10
and 0/% = 100). The prior distributions for {h;} were also taken to be mean-zero
Gaussian distributions with covariance matrices proportional to the identity and
with large variances (i.e., Gﬁj =10).

Finally, the prior specification for the joint distribution of p, ¢11, ¢22, P12, and
¢21 was taken to be uniform over the range of values that yield a positive-definite
covariance matrix. This region was identified using rejection sampling based on a
sparse Cholesky decomposition. A simple simulation study of a univariate Markov
random field’s spatial dependence parameter (not reported here) suggested that
concentrating priors on a subregion of the parameter space leads to a biased es-
timate when the true parameter lies outside this region. While this may not seem
surprising, the lesson learned is that there has to be a good reason to choose nonuni-
form priors for these bounded spatial-dependence parameters.
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5.2. Results for the winter season. Posterior distributions were obtained us-
ing MCMC algorithms, and considerable care was taken to ensure the conver-
gence of the parameters in the MCMC. This is especially true with respect to the
conditional-dependence parameters, where our experience has shown that straight-
forward approaches can lead to disappointing performance (i.e., very slow mix-
ing and convergence). Ten chains were run, each with random starting values; the
starting values for the conditional-dependence parameters were chosen uniformly
across the space of values that yield a positive-definite covariance matrix.

A Gibbs sampler was implemented that involved three distinct regimes. In the
first regime (2500 iterations), each of the conditional-dependence parameters was
updated one at a time using a Metropolis—Hastings algorithm. Gaussian proposal
distributions were used, with periodic updates of the proposal variance to achieve
an approximate 20% acceptance rate. In the second regime (the next 10,000 itera-
tions), p, ¢12, and ¢ were updated simultaneously using a Metropolis—Hastings
algorithm with a multivariate Gaussian proposal distribution. Again, the proposal
covariance matrix was updated periodically to achieve an approximate 20% ac-
ceptance rate. Other conditional-dependence parameters were still updated using
a univariate Metropolis—Hastings algorithm. Finally, in the third regime (the last
10,000 iterations), p, ¢12, and ¢1 were again updated simultaneously, but no fur-
ther updates of the proposal distribution were made. Convergence of the posterior
distributions of the parameters in the MCMC was monitored using both graphical
and numerical methods [e.g., Gelman (1996)]. Posterior distributions were then
estimated by sampling from the third regime.

Of particular interest are the conditional-dependence parameters, since these
control the nature and degree of the spatial correlation in the model. Figure 3

0.25048
40000
1

022
0.25044
density
30000
1

20000
1

0.25040

10000
1

25036

4, . o -
T T T T T T T T T T T T T T
0.25036 0.25040 0.25044 0.25048 0.25036 0.25040 0.25044 0.25048

$11 i

0

FI1G. 3.  Left frame shows scatterplot of a random sample of 10,000 values of ¢11 and ¢y (1000
from each of the 10 chains). Contours represent approximate 25, 50, and 75% contours of a kernel
density estimate. Right frame shows kernel density estimates of the marginals for ¢11 (blue) and ¢o>
(red).
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shows scatterplots and kernel estimates of the distribution of ¢ (temperature)
and ¢y> (precipitation), the parameters that control the conditional dependence be-
tween lattice points within a layer (Figure 1, left panel). The distributions show
that there is considerable (conditional) spatial dependence within each variable,
as the distributions tend to be concentrated near the positive boundary of possible
values for ¢1; and ¢;. There is evidence of a slightly stronger dependence for
temperature (¢p1).

Trace plots and other diagnostics for p, ¢12, and ¢ suggest convergence af-
ter about 10,000 iterations, which corresponds to the end of the second sampling
regime. These three parameters control the dependence structure across variables;
p summarizes the within-location dependence (Figure 1, middle panel) and ¢12,
¢>1 summarize the cross-variable dependence (Figure 1, right panel). The esti-
mated posterior mean and posterior standard deviation for p is —0.12 and 0.014,
respectively. A negative value for p suggests that an increasing temperature is
(conditionally) associated with a decreasing total precipitation.

Figure 4 highlights the distribution of ¢12 and ¢»;. The strong correlation
between these two conditional cross-correlation parameters is clearly shown in
the left frame of Figure 4. However, there is another feature of note: There is
compelling evidence of asymmetry in the strength of these two parameters, with
roughly 85% of the sampled points being above the line y = x. This suggests that
there is higher conditional dependence between temperature values and neighbor-
ing total precipitation than there is conditional dependence between total precip-
itation values and neighboring temperature values. Almost all of the published
models of multivariate MRFs assume ¢12 = ¢>1, something we have argued previ-
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FIG. 4. Left frame shows scatterplot of a random sample of 10,000 values of ¢1p and ¢>1 (1000
from each of the 10 chains). Contours represent approximate 25, 50, and 75% contours of a kernel

density estimate. Right frame shows kernel density estimates of the marginals for ¢1, (red) and ¢oy
(blue).
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FIG. 5. Posterior means for the regression (left), the spatial effect (middle), and the sum (right) for
the winter season. The top row represents the change in midpoint temperature (°K), while the bottom
represents the change in total precipitation (inches).

ously as being overly restrictive [Sain and Cressie (2007)]. Our posterior inference
shows the inappropriateness of such an assumption in this case.

Figure 5 shows posterior means for the fixed regression components (left col-
umn), the spatial random effects (middle column), and their sum (right column),
for the change in winter average temperature (top row) and the change in total win-
ter precipitation (bottom row). The fixed effects show a clear latitudinal effect as
well as an east-to-west gradient. For precipitation, there is a more dominant east-
to-west gradient. The spatial random effects for the change in temperature seem
to follow the features of the topography, and are, in general, of smaller magnitude
than the fixed effects. The spatial effects for the change in total precipitation also
follow the features of the topography, but there are additional strong local features,
for example, in northern California. In contrast to temperature, the spatial effects
for total precipitation are larger relative to the fixed effects.

The sum of the fixed effects and the spatial random effects for temperature
shows a consistent pattern of winter warming on average throughout the west,
while the sum for total precipitation shows patterns that are much more localized.
The most dominant signal for total precipitation is indicated by the regions of sharp
decline in winter precipitation in northern California and the Pacific northwest.

To aid in the identification of areas that might be at most risk for change, as
projected by this regional-climate-model experiment, Figure 6 shows the result of
a hierarchical clustering based on the posterior distribution of the mean change
in temperature and total precipitation for each grid. One thousand samples were
drawn from the posterior distribution of the mean change in temperature and to-
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FI1G. 6. Results from clustering the posterior means of the change in temperature and the change
in total precipitation for the winter season. The left frame is a scatteplot with the clusters indicated
through different colors. The right frame shows the clusters spatially.

tal precipitation for each grid box. The distance metric used to join clusters was a
symmetrized version of the Kullback—Leibler distance, which was based on the as-
sumption of bivariate normality within each cluster. Hence, the clustering focuses
not only on the mean of the posterior distribution but also includes information
about the covariance structure of the changes for each grid box. The scatterplot in
the left frame of Figure 6 shows the posterior means for each grid box with each
cluster indicated by different colors. The scatterplot shows the considerable struc-
ture that the clustering is able to distinguish. The spatial pattern of the clusters is
also shown in Figure 6 (right frame). The dark red areas, for example, highlight
a region associated with a strong increase in temperature and a strong decrease in
total precipitation.

It is also useful to consider other measures of uncertainty. Fields of standard de-
viations are one approach, but when considering the multivariate nature of this
model output other possibilities arise. For example, Figure 7 shows estimated
pointwise probabilities of an increase in temperature (left frame), a decrease in
total precipitation (middle frame), and a simultaneous increase in temperature and
decrease in total precipitation (right frame) based on a sampling of the posterior
distribution of the joint spatial fields. In general, temperature is increasing on av-
erage across the entire domain; hence, these probabilities are based on increases
larger than the median computed from all the samples across all the grid boxes.
Likewise, the decrease in total precipitation was based on decreases larger than
the median across all the samples from all the grid boxes. Again, on the basis of
this model, we see evidence of widespread increase in temperature and decrease
in total precipitation across the western U.S., with dominant features along the far
western coast, the Pacific northwest, and isolated mountain regions.
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total precipitation (right).

Figure 8 shows an alternative representation of the joint distribution by consid-
ering conditional probabilities. The figure shows the probability of the decrease in
total precipitation being in the top quartile, conditional on the increase in temper-
ature being in the first quartile (top left), second quartile (top right), third quar-
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FI1G. 8. Probability of a large decrease in winter total precipitation, conditional on the increase in
temperature falling in the first quartile (top left), second quartile (top right), third quartile (bottom
left), and fourth quartile (bottom right).
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tile (bottom left) and fourth quartile (bottom right). As the temperature increase
becomes more extreme, the largest decreases in total precipitation move from be-
ing focused in the southwest (and the California coast) to the Pacific northwest
(and the California coast). Relative changes can also be considered and, although
not shown here, the normalization minimizes the impact on the Pacific northwest
(higher absolute changes in total precipitation, but also higher total precipitation
values in general).

Finally, Figure 9 shows approximate 95% contours for the joint change in (aver-
age winter) temperature and total precipitation, but focuses on the grid boxes that
represent the five consolidated metropolitan statistical areas (as defined by the U.S.
Census) that are included in the domain. Figure 9 suggests that the projection for
the Denver area includes average increases in temperature of just under 1°K with
minimal average decreases in total precipitation. The contour for the Sacramento
area, on the other hand, suggests much larger average increases in temperature and
average decreases in total precipitation. We believe that such plots, summarizing
the joint distribution based on the statistical model, will have great interest and
application to scientists and decision-makers interested in the impacts of climate
change.

5.3. Results for the summer season. A slightly different scheme was used for
the Gibbs sampler for the analysis of the summer model output. The three-regime
sampling was still used, although with twice as many iterations (20,000) in the
second regime. In addition, all five conditional-dependence parameters (o, ¢11,
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FI1G. 10. Posterior means for the regression (left), the spatial effect (middle), and the sum (right)
for the summer season. The top row represents the change in midpoint temperature (°K), while the
bottom represents the change in total precipitation (inches).

¢22, P12, and ¢1) were updated simultaneously. Convergence of parameters for
the summer season was similar to that for the winter season, although somewhat
slower, and the specifics of those results are not discussed here. Distributions of
the posteriors for the parameters were similar, with the exception of the cross-
dependece parameters, and, in particular, p (posterior mean of —0.41 for summer
versus a posterior mean of —0.12 for winter), suggesting that the summer season
has a much stronger and more negative correlation between the change in temper-
ature and the change in total precipitation.

Figure 10 shows posterior means for the summer season with the same layout as
in Figure 5 for the winter season. Now there appears to be a west-to-east gradient
in the fixed effects for temperature, and, again, the spatial random effects pick up
more of the topography that is not accounted for in the fixed effects. Again, for
temperature, the spatial random effects are of smaller magnitude than the fixed
effects.

For total precipitation, there is also a west-to-east gradient in the fixed effects.
The spatial random effects for the change in total precipitation also follow the
features of the topography, but there are strong local features, now occurring in
the eastern part of the domain. In comparison to temperature, the spatial random
effects are larger relative to the fixed effects.

The sum of the fixed effects and the spatial random effects for temperature
shows a consistent pattern of summer warming on average throughout the west,
while the sum for total precipitation shows patterns that are much more localized,
just as in the winter season. However, the most dominant features for total precip-
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FIG. 11. Results from clustering the posterior means of the change in temperature and total pre-
cipitation for the summer season. The left frame is a scatterplot with the clusters indicated through
different colors. The right frame shows the clusters spatially.

itation are the regions of decrease in summer total precipitation in the eastern part
of the domain. Again, a hierarchical clustering was performed on samples from
the posterior distribution for each grid box, which is summarized in Figure 11.
There appears to be more widespread warming and decreasing total precipitation
during the summer months, but the clustering again highlights structure in the joint
distribution.

As in Figure 7, Figure 12 shows estimated pointwise probabilities of an increase
in temperature (left frame), a decrease in total precipitation (middle frame), and
a simultaneous increase in temperature and decrease in total precipitation (right
frame) based on a sampling of the posterior distribution of the joint spatial fields.
In general, summer warming and decreasing total precipitation is widespread, even
more so than in the winter season, and focused more on the eastern side of the
domain.
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FIG. 12. Estimated pointwise probabilities for the summer season: increasing temperature (left),
decreasing total precipitation (middle), and simultaneously increasing temperature and decreasing
total precipitation (right).
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FI1G. 13.  Probability of a large decrease in summer total precipitation, conditional on the increase
in temperature falling in the first quartile (top left), second quartile (top right), third quartile (bottom
left), and fourth quartile (bottom right).

Figure 13 is constructed similarly to Figure 8. However, the stronger negative
correlation in the summer season is more apparent in the figure. The large de-
creases in total precipitation are strongest in the eastern portion of the domain, but
decrease dramatically when we condition on larger increases in temperature.

Finally, Figure 14 shows approximate 95% contours for the joint change in
(average summer) temperature and total precipitation. In this case, the roles are
reversed from the winter season. The contours suggest larger increases in tempera-
ture and decreases in total precipitation (on average) for the Denver area, while the
contour for the Sacramento area suggests more modest changes on both variables.

6. Concluding remarks. Climate models have become an important tool in
the study of climate and climate change. Ensemble experiments of climate-model
output, be they comprised of perturbed initial conditions, perturbed physics, or
multiple models, have also become important in studying and quantifying the un-
certainty in climate-model output. However, there are typically only a limited num-
ber of runs that can be produced due to the time and expense of running these mod-
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domain.

els, even on modern supercomputers. Hence, statistical methods become necessary
to quantify the distribution and the breadth of variation in the model output.

With this idea in mind, we have introduced a hierarchical spatial statistical
model designed primarily for the analysis of regional-climate-model output on the
basis of a simple ensemble (perturbed initial conditions). This model is multivari-
ate and has the capacity to simultaneously characterize multiple model outputs, for
example, the average change in temperature and the average change in total pre-
cipitation. While analysis of the individual model outputs might yield estimates
of marginal distributions, the strong correlations across variables, such as those
uncovered here in the analysis of the average changes in summer temperature and
the average changes in total precipitation, make a multivariate analysis crucial for
joint inference.

The statistical model also captures the spatial variation in the model output
through a novel implementation of a multivariate MRF. In addition to the com-
putational benefits arising from using models based on an MREF, this formulation
of a multivariate MRF has a great deal of flexibility in modeling the conditional-
dependence structure and is easily extendable. For example, more complex neigh-
borhood structures can be considered [e.g., Sain, Furrer and Cressie (2007)], and
it is not difficult to conceptualize how one might even consider modeling the
joint distribution of multiple variables that are on different lattices. Connections to
graphical models [e.g., Whittaker (1990)] could lead to further insights into mod-
eling and parameter estimation. The computational impact and practical utility of
considering additional variables (increasing p) or additional ensemble members
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(increasing m) is also of interest, although, at least in climate model research,
these are highly dependent on the application and the computational demands as-
sociated with running climate models on high-performance computers. These are
issues that we are currently considering. We also note that this work adds to a grow-
ing collection of research involving the study and modeling of asymmetric cross-
dependence structures for multivariate spatial data, including, for example, Jin,
Carlin and Banerjee (2005) and Sain and Cressie (2007) in the case of MRFs and
Royle and Berliner (1999), Ver Hoef, Cressie and Barry (2004), and Apanasovich
and Genton (2010) for geostatistical data.

There is great interest in more complex ensembles, such as perturbed-physics
experiments and multi-model ensembles. We have not considered such ensem-
bles here, as we have focused on the multivariate aspect of the analysis of simple
ensembles of regional-climate-model output. However, the model presented here
could be extended to consider such ensembles by straightforward modifications to
the process model, in particular, equation (8) could be modified to allow for a spa-
tial meta-analysis component [e.g., Kang, Cressie and Sain (2010)] or through a
functional analysis of variance similar to that of Kaufman and Sain (2010). Aside
from the obvious computational challenges to simply fitting such models in the
multivariate setting, there is, of course, more work needed to quantify the varia-
tion associated with different model physics or different models.

It is important to note that any conclusions taken from an analysis such as the
one considered here are conditional on the assumptions implicit to the particular
climate model or models used to generate the output fields. Whether global or
regional in nature, climate models are typically constructed to reproduce certain
features in the current climate, and analyzing differences as we did should mini-
mize the impact of any biases in the climate models (although this approach might
be viewed with some healthy skepticism, as it is not clear that the biases in cur-
rent runs are going to be the same as biases in future runs). Observations may be
included to help constrain the statistical model, at least with respect to current cli-
mate. However, it is still an open question how to include observational data sets
for spatial analyses of RCMs of the sort done here. Station-level data does not have
the same spatial and temporal coverage, and there are also numerous additional is-
sues with using interpolated data products, including reanalysis data that represent
a data assimilation using both station-level data and climate-model output.

In addition to the longitude, latitude, and elevation used in this analysis, predic-
tors based on climatology (long-run means of temperature and precipitation) were
considered [e.g., Furrer et al. (2007a, 2007b)], but these were ultimately ruled out
as not being effective at predicting the changes in temperature and precipitation.
However, work done by Tebaldi et al. (2005) offers an approach for combining
model output and observations. We are currently considering how their approach
may be useful for spatial analyses of RCM output.

Finally, there is also much interest, for example, from people examining the im-
pacts of climate change, in combining model output in order to obtain improved
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projections of climate change or to span the variation across a climate-model ex-
periment. Of course, with the more complex climate-model experiments, there is
the issue of model-to-model correlations. We believe that the inherent multivariate
nature of this model provides an excellent starting place to consider such correla-
tions.
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