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Extreme value data with a high clump-at-zero occur in many domains.
Moreover, it might happen that the observed data are either truncated below
a given threshold and/or might not be reliable enough below that threshold
because of the recording devices. These situations occur, in particular, with
radio audience data measured using personal meters that record environmen-
tal noise every minute, that is then matched to one of the several radio pro-
grams. There are therefore genuine zeros for respondents not listening to the
radio, but also zeros corresponding to real listeners for whom the match be-
tween the recorded noise and the radio program could not be achieved. Since
radio audiences are important for radio broadcasters in order, for example,
to determine advertisement price policies, possibly according to the type of
audience at different time points, it is essential to be able to explain not only
the probability of listening to a radio but also the average time spent listening
to the radio by means of the characteristics of the listeners. In this paper we
propose a generalized linear model for zero-inflated truncated Pareto distrib-
ution (ZITPo) that we use to fit audience radio data. Because it is based on
the generalized Pareto distribution, the ZITPo model has nice properties such
as model invariance to the choice of the threshold and from which a natural
residual measure can be derived to assess the model fit to the data. From a
general formulation of the most popular models for zero-inflated data, we
derive our model by considering successively the truncated case, the gener-
alized Pareto distribution and then the inclusion of covariates to explain the
nonzero proportion of listeners and their average listening time. By means of
simulations, we study the performance of the maximum likelihood estimator
(and derived inference) and use the model to fully analyze the audience data
of a radio station in a certain area of Switzerland.

1. Introduction. Audience indicators—Ilike rating,” time spent listening> and
market share—are essential for radio stations managers and advertisers. They give
important indications on public profiles and on radio stations benchmarking, al-
lowing proper radio programming and optimization of advertising strategies. The
weaknesses of traditional audience measurements methods based on individual
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recollection of the time spent listening to all radio stations led to the develop-
ment of individual, portable and passive electronic measurement systems pro-
viding more reliable and detailed measures [refer to Webster, Phalen and Lichty
(2006) for a complete overview of audience measurement methods]. Telecontrol*
thus developed a “wristwatch meter,” which records 4 seconds of ambient sound
at fix time delays and compares these sequences to the corresponding ones of all
available radios. The “people portable meter” of Arbitron® or the “Eurisko mul-
timedia monitor” of Gfk® consist in a pager-sized device which detects inaudible
codes that broadcasters embed in their programs.

Hence, the fundamental audience measure available through these portable and
passive measurement systems is a dichotomous variable Yjg,; indicating if the
participant i was listening to the radio station s at the measurement m of the day ¢.
Most used audience indicators for a given radio station are all functions of the sum
of those quantities over a day part, mostly 24 hours, that is, Yiss = > v,,, Yism:-

We have at our disposal radio audience data of the Swiss measurement system
“Radiocontrol” in 2007 [refer to Dahler (2006) for a complete presentation of this
measurement system in Switzerland]. As illustrated in Figure 1, the distribution of
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FIG. 1. Empirical distribution of the daily listening times to a national radio in an area of the
French part of Switzerland during the first semester of 2006. 1382 participants were measured by
means of the Radiocontrol system during one day of the period of interest. Zeros represent 65.7% of
the data. The distribution of the positive data is extremely skewed with a maximum daily listening
time of 1136 minutes. The lowest possible positive listening time is 3 minutes.

4http://www.telecontrol.ch.
5 http://www.arbitron.com.
6http://www. gfk.com.
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the daily number of listening minutes y;,; for a given radio is extremely skewed,
left-truncated and clumped-at-zero. In other words, first, the empirical distribution
of the data appears monotonically decreasing. The probability to listen to a radio
during a time interval decreases with the time interval length. Second, because of
contact validation rules of the Swiss measurement system, the listening times y;g;
are recorded as zeros if none of the contacts of the participant i to the radio sta-
tion s last 3—4 minutes or more on day ¢. This means that the smallest observed
(recorded as such) listening times are 3—4 minutes. This ensures that the probabil-
ity to observe false positive contact is negligible over a time interval of 4 or more
consecutive minutes. Third, the data contain a high clump-at-zero corresponding
to the percentage of people that had no recorded contact with that radio station.

Data with a clump-at-zero and an asymmetric heavy-tail distribution occur in
numerous disciplines. Examples are the daily levels of precipitation in an area
[Weglarczyk, Strupczewski and Singh (2005)], the yearly amount of car insurance
claims per client [Chapados et al. (2002); Christmann (2004)] or the length of
overnight stays at hospital per patient [Chen, Jiang and Mao (2007)]. However,
no model has been proposed so far for data with a clump-at-zero together with a
truncation of small values under a threshold, a model that is necessary to describe,
in particular, radio audience data like in our example, but also any other type of
data that might, for example for recording reasons, have unreliable measurements
at small values of the variable of interest. Hence, the purpose of this paper is to
develop a model able to fit truncated heavy-tailed data with excess zeros and to
explain, by means of covariates, both the probability associated with a nonzero
value and the expectation of positive outcomes. Such a model particularly makes
sense in the context of radio audience: The probability of a nonnull value and
the expectation of positive outcomes, respectively, correspond to the rating and
time spent listening audience indicators. Market shares are a function of these
expectations.

Models for data with excess zeros have received much attention in the literature.
The most popular ones include the two-part model of Duan et al. (1983) and the
zero-inflated count models initiated by Lambert (1992) for continuous data, or the
hurdle model of Mullahy (1986) for count data. In Section 2 we describe our model
as a natural extension of these models that take into account the left truncation of
the outcome variable. To model the positive part of the radio listening times, we
propose a zeromodal Pareto-like distribution. Choice has been made for the gen-
eralized Pareto distribution because of its ability to fit heavy tails, to be “model
invariant” to the choice of the threshold for the left truncation, and because it can
be used to only model the tail of the distribution. The resulting model we propose
is hence a zero-inflated truncated Pareto (ZITPo) model in which the probability
of nonzero outcomes and the mean of the positive outcomes are linked to a set of
covariates in a generalized linear model framework. The ZITPo has great fitting
flexibility and useful properties as argued in Section 2.5. In Section 3 we inves-
tigate by means of simulations the sample properties of the maximum likelihood
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estimator and inferential procedures. Since ZITPo models are new, it is also impor-
tant to be able to check the fit of the model and, therefore, we propose in Section 4 a
new data analysis tool based on Pareto residuals that is derived in a natural manner
from the properties of the ZITPo model. The data from a radio station in a certain
area of Switzerland are then fully analyzed in Section 5 by means of the ZITPo
which provides an excellent fit to the data and hence good explanatory power for
the probability of nonzero outcomes and the mean of the positive outcomes.

2. The ZITPo model. The generalized Pareto distribution, introduced by
Pickands (1975), is a limit distribution for the excess over a (large) threshold « for
data coming from generalized extreme value distributions, as well as a generaliza-
tion of the Pareto distribution. The three parameter generalized Pareto distribution
has the following cumulative distribution function:

1— (1 +s¥>_l/s, if &0,

(D Fy(yla,t,§) = °
1—exp<—y o‘), if £=0,
T
where «, T and £ are location, scale and shape parameters, o > 0 and t > 0. The
range of y is Jo, _gﬁ[ if £ <0, and ]Jo, oo[ otherwise. The exponential distri-

bution with mean t occurs for & = 0. Pareto-like distributions occur for & > 0.
The generalized Pareto distribution has been widely used to model rare events in
several fields. Applications for environmental extremes are especially numerous
(river flow, ozone levels, earthquakes).

For modeling audience radio data, it is also important to be able to link mo-
ments or parameters of the generalized Pareto distribution to a set of explanatory
variables. The generalized linear models (GLM) framework, introduced by Nelder
and Wedderburn (1972), provides a general setting to achieve this aim. GLM are a
generalization of the linear regression model in which the assumption of normal-
ity of the conditional distribution of the response vector y given a set of covariates
X, y|X, is relaxed. These models assume that the ith unit response, y;, follows
a distribution belonging to the exponential family, and the expectation of the ith
response, y;, is linked to a set of fixed covariates x; through an invertible linear
predictor function v(-), by means of E[Y;] = v~ (x; ), with B a set of regression
coefficients. The generalized Pareto distribution falls outside the exponential fam-
ily framework and, hence, the advantages associated with this framework—Iike
well-known iterative estimation procedures and mathematical properties—are not
available. However, extension of the GLM to distributions outside the exponential
family is pretty straightforward.

Actually, generalized linear modeling has existed for a long time with responses
following extreme value distributions, but not in the traditional scheme that di-
rectly relates the response expectation to the explanatory variables through a lin-
ear predictor. Indeed, in extreme value analyses, very often the parameters of the
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response distribution instead of the response expectation are linked to the covari-
ates. Davison and Smith [(1990), page 395] consider that this represents “a more
fruitful approach” than the usual one that links the distribution moments to the
regressors, as the moments of generalized extreme value distribution do not exist
for all values of their parameters. We refer to Coles [(2001), Section 6.4] for a re-
view. In survival analysis, depending on the choice of the hazard function A (¢), the
survival function f(¢) may follow an extreme value distribution. In this context,
the hazard function A(f) = ; _f ggt) is then related to the covariates through a linear
predictor instead of the response expectation. Such developments may be found in
Aitkin and Clayton (1980). As we will see in more details below, for the purpose
of modeling radio audience data, it is more sensible to link the expected value of
the response to a set of covariates.

Before adapting the generalized Pareto distribution to handle clump-at-zero and
left truncation of the positive part of the data, as well as incorporating in the result-
ing model covariates in order to explain the probability of a zero outcome and the
mean of the positive part, we briefly describe models proposed so far for data with
excess zeros. The aim is to propose a general formulation from which different
models for different situations can be deduced, and, in particular, from which we
build our zero-inflated truncated Pareto (ZITPo) model. We then also describe in
details the ZITPo model assumptions and discuss some possible extensions.

2.1. Models for nonnegative data with excess zeros. There is a rich literature
about adaptation of statistical models to the case of data with excess zeros. We re-
fer to Min and Agresti (2002, 2005) and Ridout, Demétrio and Hinde (1998) for a
review. Min and Agresti (2002) compare the advantages and disadvantages of ex-
isting approaches and note that the most appealing modeling for continuous data
with excess zeros is the two-part model of Duan et al. (1983), and the zero-inflated
count models initiated by Lambert (1992) or the hurdle model of Mullahy (1986)
in the case of count data with a clump-at-zero. These models are similar. Their
key idea is to mix two random variables: A first one, Y1, that handles the excess
of zeros, and a second one, Y», that models the other part of the data. Y; typically
follows a Bernoulli distribution where Py, (0) = 1 — 7 denotes the probability to
observe a zero outcome. In the hurdle and two-part models (also called condi-
tional models), the probability of the data being equal to zero only depends on Y}
and the positive data are all modeled by Y>, which may follow a zero-truncated
distribution in the case of count data (hurdle model) or a continuous distribution
(two-part model). In these cases, Py,(0) = 0. In zero-inflated models (also called
mixture models), Y> does not follow a zero-truncated distribution. The probability
associated to zero thus depends on both Y| and Y.

Let Y be a random variable with probability distribution Py for the clump-at-
zero and the positive part, when the latter is discrete, that is, Y> is discrete, then
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Py may be expressed in the following way:
Py (y) =[Py, (0) + (1 — Py, (0) Py,(») Je(y = 0)
+[(1 = Pr,(0) Pr,()]e(y > 0),

where y =0, 1, 2, ..., the indicator function ¢(-) equals one if the condition is true
and zero otherwise. Let us refer to a variable as semicontinuous when it has a point
mass in zero and a continuous distribution for the positive values [definition of Min
and Agresti (2002), page 7]. Then (2) may easily be generalized to continuous or
semicontinuous Y>:

fr(y) = [PY1 0) + (1 - PY1 (0))PY2(0)]8()’)
+[(1 = Py, (0)) fr, ] A0(»),

where §(y) is a Dirac delta function which equals zero for y # 0, Ag(y) is a step
function taking the value of one for y > 0 and zero otherwise, and y € [0, ool.
Note that when Py, (0) = 0, we have the hurdle or two parts models, while we
have zero-inflated models when this is not the case.

The use of the generalized Pareto distribution to model zero-inflated data is
not common, one exception being Weglarczyk, Strupczewski and Singh (2005).
The authors compare the fitting ability of some semicontinuous distributions to
fit hydrological data with excess zeros and consider a Dirac generalized Pareto
distribution with density function

(@)

3)

—1e—1
@) FrOlm T, &) = (1 —1)8() + %(1 +s%) Ao(y).

where T >0, £ #0, 0 < (1 — ) <1 corresponds to the probability of a zero
event. Note that compared to (1), « = 0. The Dirac generalized Pareto distribution
in (4) thus corresponds to a two-part model with Py, (0) = 0, in which fy,(y) is
the density function of the generalized Pareto distribution.

In the following sections we propose to extend (3) [and (4)] to take into account
the possible truncation of small values, as well as to incorporate covariates to ex-
plain (a function of) the probability of zero outcomes and the mean distribution of
positive outcomes.

2.2. The ZITPo distribution. Let Y* denote the effective (but unknown) daily
listening time for a given radio. Y* is to the sum over the day of the dichoto-
mous variables indicating a contact to that radio station minute by minute. The
probability and cumulative distribution functions of Y*, fy«(y*) and Fy«(y*), are
semicontinuous with a point mass in zero and a continuous distribution for the
positive values. Let Y denote the observed listening times with density function
fr(y). As listening times smaller than a given value y° (considered as known) are
recorded as zeros, observed zeros are then a mixture between the effective zero



1830 D.-L. COUTURIER AND M.-P. VICTORIA-FESER

listening times and the positive listening times reported as zeros because of the
measurement system. Accordingly, Fy (0) = Fy=(y°).

A semicontinuous version of the zero-inflated count model described in (3) is
indeed adequate to model the double origins of the zeros in the clump-at-zero and
the positive values of the observed listening times. Let us assume that the unknown
and true proportion of zero listening times is 1 — &, with 0 < & < 1, and that the
effective positive listening times follow a two parameter generalized Pareto distri-
bution (with o = 0), Y*|(Y* > 0) ~ GPD(t, £). Then, in (3), Py,(0) =1 — 7 cor-
responds to the effective proportion of nonlisteners, and Py, (0) = F(y+|y+>0)(y°)
corresponds to the part of the two parameter generalized Pareto distribution that
cannot be observed because of the measurement system limitations. The density
functions of the effective listening times Y* and of the observed listening times Y
are

g
T

&) S0t s =l -ms0M + | 2 (1 +syf—*)_l/s_l}Ao(y*),

frlm, 1,6) =[(1 — ) + 7 Fiyxy+=0)(y*) |8 (y)
+ [T fiyyes0) ()] Aye ()

ren(1e) Joo

—1/6-1
()" oo

T

(6)

where 0 <m <1, 7 >0, & #0and y° > 0. For y° =0, (6) reduces to the Dirac
generalized Pareto described in (4). Finally, note that if the observed listening
times distribution in (6) has the disadvantage of being a mixture distribution which
makes it more complex to fit, its underlying distribution in (5) takes the advantages
of the orthogonal parameterization of the hurdle and two-part models and is thus
easier to interpret [for a discussion on the orthogonal parameterization see, e.g.,
Welsh et al. (1996)]. Indeed, the zeros depend on 7, while the positive outcomes
rely on the generalized Pareto parameters, T and &.

Figure 2 shows the distribution of a data set simulated from a ZITPo distribu-
tion. The theoretical untruncated and truncated distribution functions, respectively
corresponding to (5) and (6), are respectively superimposed to the plot in black
and dashed gray lines. On the discrete part of the plot, the surfaces within the
dashed gray and black boxes correspond to the theoretical probabilities to observe
zeros when there is (dashed gray) and when there is no (black) left truncation
of the positive part of the data. Those probabilities respectively equal 1 — 7 and
l—n°=(10—-m)+ nF(}l|Y*>0) (¥°). On the continuous part of the plot, the ex-
pectations of the truncated (1£°) and untruncated (w) distributions are indicated. It
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FI1G. 2. Empirical distribution function of a data set simulated from a ZITPo model with parame-

terst =05, u=&=025and y° = F(_y}ﬂ‘y,%o) (0.25). The theoretical truncated and untruncated

density functions are superimposed to the plot with dashed gray and black lines. The value of the
expectations of the positive values of the truncated and untruncated distributions, u° and w, are in-
dicated on the x-axis. On the discrete part of the plot, the surfaces within the dashed gray and black
boxes correspond to the theoretical probabilities to observe zeros when there is (dashed gray) and
when there is no (black) left truncation of the positive part of the data. Those probabilities respec-
tively equal | —m and 1 —n°=(1 —7m) + nF(;£|Y*>O)(y°).

is then clear that the expected value for the true listening time Y™, u, is different
from the expected value of the truncated distribution, ©°. For the audience data,
one quantity of interest is u for the untruncated distribution.

2.3. Covariates modeling in ZITPo distribution. Adaptation of the GLM to
models for data with excess zeros is very intuitive. The expectations of the distri-
butions of Y and Y» in (2) and (3) are linked to the covariates through adapted
link functions. The logit link is often chosen to relate the expectation of Y7, cor-
responding to the probability to observe positive values, to the covariates. The log
link makes sense to connect the expectation of Y», corresponding to the mean of
the positive data, to the covariates, as this last is necessarily positive. For the ith
observation, we then have

o T an M
(7) mi =PY;7 >0) =v; (x;181) = 1 +exp(x{|8))’
8) pi =LY 1Y > 01 = vy (X B2) = exp(x(B5),

where v~ ') and vy 1() are the inverse of the linear predictor functions linking
the expectations of Y1 and Y> in (2) and (3) to the covariates, X;1 and X;, are the
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covariates of the ith observation that may contain the same predictors, and 8, and
B, are the corresponding parameters. Because of the orthogonal parameterization
of the underlying model in (5), if we use in (7) and (8) two different and uncorre-
lated sets of covariates, X| and X5, we then assume that the processes that explain
the probability to observe a positive outcome and the expectation of a positive out-
come are independent. If part of the covariates of X; are present in (or correlated
to) Xp, ; and w; will possibly be linked. No assumption is done about the form
of the relationship between these quantities.

Inclusion of covariates in (4) requires that we express the distribution fy(y)
in terms of the expectation of the positive values of the data. Let (Y*|Y* > Q) ~
GPD(z, &). Then

w=E[Y*|Y* >0]=ﬁ for 1 —& > 0.
The first moment of the generalized Pareto distribution, u, thus exists for values
of & lower than one. Substituting T by (1 — &) in (6) gives

fr ol §) = 1= (14 (1%)%)_%}8@)

s+ ()0 o

with0<m <1,u>0,§#0and & < 1, y° > 0. The inclusion of the covariates as
described in (7) and (8) is now straightforward. For the ith observation, we have

fr; ilxi1. xi2, By, Bo, &)

exp(x/; B)) ( ( £ ) y° >‘1/f}
=|1—- —C (14 8
|: 1+ eXp(XiTI,BI) 1-¢& exp(xiTzﬂ2) o)
[ exp(x/; 1) 1
1+ exp(xiTl,Bl) exp(xigﬂz)(l &)

x <1 + <1 iS)exp(i()::TZﬁz))_I/S_I}Ay"()’)-

2.4. Assumptions of ZITPo models. The form of the ZITPo model implies a
number of assumptions on the distribution of the positive values:

First, the unobserved positive listening times belonging to the range ]0, y°[ cor-
respond to the nonobserved part of a left-truncated generalized Pareto distribution.
As the generalized Pareto density function is zero modal and monotonically de-
creasing, this assumption implies that, conditionally on the covariates, the proba-
bility of positive listening times in the interval ]0, y°[ is higher than in any other
interval of the same size. As zapping through radio is frequent, we believe that this
assumption is realistic.

(©))

(10)
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Second, the expectation y; always corresponds to the quantile 1 — (1 — &)!/¢ of
a GPD(u;, &). Indeed, conditionally on the covariates, as the real positive listening
times follow generalized Pareto distributions having different expectations u; but
sharing the same &-value, Y*|(Y* > 0) ~ GPD(u;, &), we can observe that

i -1 1/¢
() Fiyeo ) =1 (1+sm(1_§)) - (-
Figure 3 shows examples of two parameter generalized Pareto density functions
sharing the same & -value (within the same graph) but having different expectations.
For the same &-value, the density functions show a great variety of forms and thus
a high ability to model different data sets with more or less heavy tails.

Third, because of the reparametrization of the generalized Pareto density for-
mulated in (9), the shape parameter is restricted to values lower than one. This
does not seem problematic in regard to (11). Indeed, for & > 0.95, u corresponds
to quantiles of the distribution higher than 0.95. We do not expect cases in which
the theoretical mean belongs to the last 5% of the distribution at least with radio
listening data.

Fourth, because of the logit link used in (7), the probability to tune into a given
radio station conditional on covariates never equals zero or one as exp (Xl.T1 B > 0.
We do believe that it is reasonable to state that 0 < 7r; < 1 in radio audience data:

Z ~ GPD(,£ =0.1) Z ~ GPD(1,§ =0.5)
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Fi1G. 3. Examples of two parameter generalized Pareto distributions. In both plots, three dis-
tribution functions sharing the same &-value are proposed. Their respective expectations are

1 =25, up =50 and p3 = 100. The probability to observe data below the expectation is indicated
above.
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e As radio stations broadcast almost everywhere (airports, supermarkets, petrol
stations, .. .), it seems reasonable to state that the probability of contact of any-
body is greater than zero.

e As radio stations do not broadcast everywhere, it also seems reasonable to state
that even the biggest fan of a specific radio station can, for example, be outside
the broadcasting range at some specific times.

2.5. Properties and extensions of ZITPo models. Even if there are some re-
strictions in the use of ZITPo models, the two-part form of the density described
in (10) as well as properties of the generalized Pareto distribution offer to ZITPo
models additional abilities to fit and analyze a variety of data sets, in particular,
our radio audience data in Switzerland:

First, one interesting property of ZITPo models is that y° may be chosen such
that the observed data lower than y° integrate the most part of the false zero and
false positive observations if the data are not completely reliable in the neighbor-
hood of the truncation boundary. If all observed positive data inferior to y° are
coded as zeros in order to belong to the clump-at-zero in (6), the model will esti-
mate the parameters of fy«(y*|m, t, &) without being affected by the errors of the
measurement system occurring on [0, y°[.

Second, the stability with respect to excess over threshold operations of the
generalized Pareto distribution [see, e.g., Castillo and Hadi (1997), page 1610,
or Coles (2001), page 79] and the shifting property of distribution of the loca-
tion family allow to easily determine the distribution of the data over a thresh-
old y*. Let Y;"Jr = (YY" > 0) denote the positive values of the model, with
Yt ~ GPD(1;, €) with ; = p1; (1 — £). Then we have that

+ —1/8—1
y;k — y. ) /é
T —§y°

This is of particular interest for radio station managers and advertisers, as impor-
tant radio listeners represent the core of their audience. The distribution of the
listening time over a threshold thus follows a three parameter generalized Pareto
distribution of parameters «® = y°®, 7* = 1; — £y*® and £°* = £. The corresponding
expected listening time over a threshold of y® minutes, w7, is then given by

1
(12) et ([T 8) = (1+s
Jptiprsym O Im S——

L] [ ]
(13) ue =Yyt >yt = +y'=m+i+y',
1-§ 1-§

where ; = u in simple models without covariates and u; = exp(xiTzﬂz) in models
incorporating covariates. The expectation of the positive data over a threshold (i.e.,
the expectation of the data on ]y*®, co[) thus simply corresponds to a linear shift of
the expectation of the positive data on ]0, oo[. There is therefore no need to change
the ZITPo model when one is interested in ;] or, in other words, the effect of the
covariates on 7 is the same as on ;.
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Third, the ZITPo model can easily be extended to the three parameter general-
ized Pareto distribution by introducing a shift parameter y* < y° corresponding to
a in (1). In (9) and (10) we have that y* = 0. Adding the shift parameter makes
sense if information below y*® is not of direct interest, like if nonlisteners and lis-
teners that only zap through a given radio are considered alike for the radio broad-
caster. The resulting model which extends (9) [and consequently (10)] would allow
to model the probability to get an outcome lower than a given positive value y*® as
well as the expectation of the data over y®, with positive outcomes observed above
y°. In this case, all data lower than y® would be treated as “zeros” in order to be
part of the clump-at-zero. The density functions of the observed listening times Y
would then be (for an observation y;)

bt 6 = 1= (14 (5 fé)(i;:ﬁ:))_l/s]a@i)

(14) +[ i
(uj —y)(1—=§)

S ) R

The parameters 7* and p? can possibly be linked to a set of covariates as is done in
(10). If there is no y°-truncation and if the data on ]y®, y°[ are reliable, y° = y*® and
(14) is reduced to a two-part model since the first part of the right-hand side of (14)
reduces to (1 — 7*)8(y;). This extension is particularly useful when the interest
only lies on the tail distribution of the positive outcomes. Indeed, in that case 7 *
is a nuisance parameter and the generalized Pareto distributional assumption on
10, y*[ is no more necessary. For the model to fit the data (observed above y°),
one only needs the assumption that the generalized Pareto distribution holds above
y®, with a mean that possibly depends on a set of covariates and constant &. This
might be an interesting setting, for example, in finance when seeking to explain
the value-at-risk of financial instruments. In these cases, however, the choice of
y® might become an important issue and criteria based on mean squared errors
[see, e.g., Hill (1975); Hall and Welsh (1985); Beirlant, Vynckier and Teugels
(1996)] or prediction errors [Dupuis and Victoria-Feser (2006)] could, in principle,
be extended to the ZITPo. In what follows, we will, however, focus on models with
y*=0.

3. Estimation and inference. Fitting methods for the generalized Pareto dis-
tribution in (1) (i.e., without a clump-at-zero) has been of great interest in the
literature. Castillo and Hadi (1997) and Singh and Ahmad (2004) propose a com-
parative evaluation of the most used classical estimators for the two and three
parameter distributions. Robust estimators have also been developed [Dupuis and
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Tsao (1998); Peng and Welsh (2001); Judrez and Schucany (2004)]. We propose
here to use the maximum likelihood estimator (MLE).
The log-likelihood function of the ZITPo model described in (10) is

1(B1, B2, &y, ¥°, X1, X3)

i exp(xiTlﬂl)
= i =0)log|l — —————
{;L(y ) og[ 1 +exp(x/,8))

(15) x (” (1 ié)(exp(ﬁj@ﬂz)))l/s”

+ iéAyo(y)[Xﬁm —X)Bs - log( I )”

1 +exp(l +x/,8))

+ {éAyo(y)<—é - 1)10g<1 + (1 fé)(exp()}(}}zﬁz))”'

Maximization of this expression is achieved using the quasi-Newton method with
a numerically computed gradient matrix. Convergence is obtained rapidly for most
of the cases we have tried, even with models embedding many covariates. The use
of slightly different starting values did always provide a solution to the unusual
cases in which we met convergence problems. The program is implemented in R
functions available in Couturier and Victoria-Feser (2010).

In order to check the finite sample properties of the MLE for the ZITPo model,
we perform a simulation study of models incorporating covariates as in (10). The
MLE is computed on samples with three different sample sizes of respectively 500,
1000 and 2000 observations, simulated with two different values for the shape pa-
rameter, § = 0.25 and £ = 0.5. The sampling distribution of the MLE are presented
by means of boxplots on 2500 simulated data sets. Horizontal gray lines indicate
the position of the true parameter values. The coverage levels of 95%-confidence
intervals of the form [0 — ®1(0.975)6;,0 + &~! (0.975)641, where @ is the prob-
ability function of the standard normal distribution and where 6 are obtained from
the inverse of the estimated Hessian matrix, are also indicated.

The data are simulated from a ZITPo distribution with parameters

T exp(x/; B1)
! 1+exp(xiT1ﬂ1)

and u; = exp(xiTzﬂz).

For the covariates, the same X matrix is used in both parts of the model.
The first column of X is a column vector of 1 corresponding to the constant.
The other columns of X were constructed with random values of respectively
a normal, a Poisson, two binomials and an exponential distribution, with cor-
responding regression parameters B, = [1, 1, —0.5,0.5,0.25,0.25]" and B, =
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~ 10

0.6
_ _exp(xiB1)
1+eXP(XTlﬂ1)

FI1G. 4. Distribution of the probabilities of positive outcomes, w;, and of the expectations of posi-
tives values, |j, used to simulate ZITPo realizations.

[2,1,0.5,0.5,0.25,0.25]7. The values of the B, and B, were chosen in order
to obtain asymmetrical distributions for the probabilities of positive outcomes, 7;,
and for the expectations of positives values, u;, as well as a positive relationship
between these quantities. Figure 4 shows their respective distributions as well as
the chosen relationship between m; and w;. With a median of 0.3, the probabilities
of positive outcomes, 7;, are rather low. The expectations of the positives values,
Wi, have a very asymmetrical distribution. The cutting value y° = 0.125 is a fixed
value independent of i and which approximately corresponds to the quantile 0.1
of the positive simulated data. The form of the dependance between 7; and w; is
nonlinear. The choice of the parameter values r;, t; and y° thus corresponds to an
extreme choice to test the performance of the MLE in nontrivial situations.

The bottom plot of Figure 5 shows the sampling distribution of the MLE of the
shape parameter £. The boxplots of the parameters estimates of £ show a small
underestimation of the parameter value even when the number of positive data is
around 650 observations which correspond to 30% of the maximum sample size of
this analysis. Estimation of the shape parameter is known to be problematic even
with large sample sizes and regardless of the estimating method [Hosking and Wal-
lis (1987)]. Our simulations tend to show that the bias of the shape parameter both
depends on the number of observations n and on the number of covariates p, a sit-
uation similar to the MLE of the parameter o in multiple regression analyses. This
also confirms the findings of Chavez-Demoulin and Davison [(2005), page 212]
for £ in their adaptation of generalized additive models to the generalized Pareto
distribution.
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(31—estimates

plot) computed over 2500 datasets simulated from a ZITPo distribution with parameters

Br=11.1,

—0.5,0.5,0.25,0.25]7, B, =[2,1,0.5,0.5,0.25,0.25)7 and &€ = 0.25. y° = 0.125 is

a fixed value which approximately corresponds to the quantile 0.1 of the positive simulated data.
Analyses were performed for samples of sizes 500, 1000 and 2000. The horizontal gray lines indi-
cate the position of the true parameter values. The coverage levels of confidence intervals of the form
[é —o! (0.975)&@, O+ 0! (0.975)%], where ® is the probability function of the standard normal
distribution, are also indicated.
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The upper and centered plots of Figure 5 present the sampling distributions
of the MLE of 8, and 8,. Regardless of the sample size, all boxplots are well
centered around the true value of the parameters and the coverage levels of the
corresponding confidence intervals are close to the 95% nominal value. As 8, and
the £ are essentially estimated over the positive part of the data which represent
the 30% of the 500, 1000 and 2000 observations of our study, our results appear
very satisfactory. Similar results were obtained in simulations with & = 0.5.

4. Model validation. Residual analyses in the context of models for data with
excess zeros as described in (2) and (3) may be split in two parts: A first one focus-
ing on the distribution that distinguishes the zeros from the positive outcomes, and
a second one considering the distribution of the positive values. In models with co-
variates, the residuals of the part distinguishing the zeros correspond to residuals
of logistic regressions. As this topic is already well covered in the literature [we
refer to Collett (2003) for a complete overview], the following subsections focus
on the residuals of the positive part of the model. We propose a residual type for
truncated and untruncated generalized Pareto models. Section 5 presents one use
of this new residual type.

Let Y;"Jr = (Y/*|Y]" > 0) denote the positive values of the model and let YiJr =
(Y:1Y; > y°) be the observed truncated positive values. As (Yi*Jr — y°|Yi*Jr > y°) =
(YiJr — y°) and follows a GPD(u; + % &), let us define the ith residual, &;, in
the following way:

+ o + o
(16) =h(y = Y N
E[Y;" —y°] pi+&y°/(1-§)

The residuals distribution, f;, (¢;), may then easily be derived and is given by

. 9
fei(€) = fry+_yoy (h 1(8"))‘3_8,." 'e)

= 1i§<1 + li§8i>—1/$—1'

Thus, f¢(¢;) ~ GPD(u = 1, ). The residuals theoretically (i.e., if the ZITPo
model holds) follow a generalized Pareto distribution of parameters u = 1 and
&. This result holds also when y° = 0. Note that this result is a finite sample result,
a pretty rare situation in GLM. A very powerful finite sample model validation
procedure thus consists in comparing the distribution of the estimated residuals to
their estimated theoretical distribution. The former are obtained by substituting in
(16) the parameters by their estimated values, that is,

amn

+ o
~ Y,' -y

fj=—""L _ ~GPD(u =1, €).
wi+&y°/(1—§)
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QQ-plots should approximately display a straight line when the model adequately
fits the data.

Finally, the result in (17) offers a fast method to generate random realizations
from truncated or untruncated generalized Pareto models. Indeed, let u# be a ran-
dom realization of a Uniform(0, 1) and let u be the vector of expectations of the
generalized Pareto distribution. Then, inverting (16) and (17) allows to generate y,
a random variate of a y°-truncated GPD(u, &), in the following way:

y= [(u_é — l)lgﬂ(/ﬂr fi;) +y°.

5. Applications to radio audience data. The ZITPo model is applied to the
audience data of the local radio station “116” in its broadcasting area during the
weekdays of the second semester of 2007. The data set is available in Couturier
and Victoria-Feser (2010). The left upper plot of Figure 7 presents the distribution
of the daily listening times of 2155 participants measured during one day of this
period. The clump-at-zero represents 63% of the data.

The audience indicators of rating and time spent listening are explained by a set
of categorical variables including the age in 5 classes ([15, 25[, [25, 35], [35, 45,
[45, 60[, [60, 120[), the education level in 3 classes (low, mid, high), the gender,
the time in month and the different zones of the broadcast area. The contrasts used
to create the k — 1 dummy variables from a k-classes categorical variable are of
type “treatment” for the variables age, gender and education with base “15 to 25
years old men with low education level,” and of type “Sum” for the geographical
zones and the months. The model includes interaction between age and gender.
Other interactions—like between education and age—appeared nonsignificant and
did not improve the log-likelihood or the residual distribution.

To protect the parameter estimates of the possible influence of the false positive
and false zeros observations belonging to the interval [0, 5[, we choose y° = 4.95.
Consequently, we coded the 19 observations belonging to the interval [3, 5[ in
Figure 7 as zeros and let the ZITPo model adequately separate the true from the
false zeros as described in the first part of (10).

The B and B, estimated values as well as their standard deviations are reported
in Table 1. The p-values corresponding to the (asymptotic) significance tests for
B, and B,, that is, 2<I>_1(—|,3/6ﬁ|), are also indicated. According to the chosen
contrasts, the estimated intercepts B1o and By are related to the estimated rating
and time spent listening of 15 to 25-year-old men with a low education level in the
broadcast area of interest during the second semester of 2007 through, respectively,

exp(B10)
1+ exp(Bio)

15-25-year-old men living in the broadcast area of interest and having a low ed-
ucation level have thus a probability of contact to radio station “116” of 12% and

~0.12 and exp(Ba) = 59.
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TABLE 1
B and B, estimated parameters and corresponding standard deviations of the ZITPo model
applied to the listening times to radio station “116.” The p-values are for (asymptotic) significance
testing of B and B,. Low p-values are magnified in the columns “Sig.” by means of (¥*%), (¥%),
(%), (+) respectively corresponding to significant tests at the levels of 0.001, 0.01, 0.05 and 0.1

Rating Average listening time
/§ 1 SE p-value Sig. ﬁl SE p-value Sig.

(Intercept) —1.95 0.32 <0.001 ok 4.08 0.33 <0.001 ok
[25-35[ 040 0.39 0.309 —-0.16  0.39 0.680
[35-45[ 094 036 0.008 ok 020 035 0.568
[45-60[ 1.57 0.34 <0.001 ok 040 034 0.235
[60-120[ 222 035 <0.001 HoAE 0.76  0.34 0.026 *
Women —0.25 0.49 0.608 —-0.73 0.49 0.133

Educ. middle 0.18 0.16 0.255 0.01 0.13 0.933

Educ. high 0.36  0.12 0.002 *E —0.15 0.09 0.103

July —0.15 0.12 0.216 —-0.06  0.10 0.516
August —0.11 0.11 0.346 0.04  0.09 0.695
September 0.14 0.11 0.225 —0.07 0.09 0.393
October 0.18 0.11 0.085 . 0.01 0.08 0.948
November —0.00 0.11 0.973 0.04  0.09 0.654

Zone 2 —0.26  0.05 <0.001 ok —0.08 0.04 0.049 *
Women +([25-35[ —-0.02 0.58 0.970 126  0.57 0.028 *
Women +[35-45[ 0.18 0.54 0.737 0.71 0.53 0.180
Women +[45-60[ 0.03 0.52 0.961 090 051 0.079 .
Women +[60-120[ 0.39 052 0.455 1.11 0.50 0.027 *

an average contact length of about 59 minutes during the second semester of 2007.
The estimated distribution of the effective (untruncated) positive times of the indi-
viduals of this focus group is thus

Y| (Y} > 0) ~ GPD(59, £ = 0.082).

Thus, under the model, F(;,}le*>O)(3|59,§) = 0.05 and F(}1|Y*>0)(y°|59,§) =
0.09 respectively represent for this focus group the estimation of the part of ef-
fective positive data that is coded as zero by the Swiss measurement system and
the estimation of the part of the effective positive data that was supposed truncated
and coded as zero for the estimation. The average ratings and time spent listening
of other focus groups—Ilike women with a high education level—are then shifts of
12% and 59 minutes. Figure 6, for example, presents the estimated (untruncated)
listening times distributions of men with low eduction level conditional to 5 age
classes. The probability to tune into this radio station strongly depends on the age
class. The expected listening times are more or less the same for 15-45-year-old
men and increase then for the two oldest age classes.
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FI1G. 6. Estimated (untruncated) listening times distributions of men with low eduction level con-
ditional to 5 age classes. The probability to tune into this radio station strongly depends on the age
class. The expected listening times are more or less the same except for the oldest age class.

In order to test the significance of each factor (e.g., age), we use the likelihood
ratio test to compare nested models. Let 8 = [ (Tl), B (TZ)]T be the vector of the
regression parameters. The LRT statistic can be used to test hypotheses of the
form Hy: B (TQ) =0 against H :B(TZ) # 0 [with ,B(Tl) unspecified] and is given by

LRT =2[1(Bly. y°, X1, X2) — [(Bly, y°. X1, X)],

where ﬂA and /3 respectively denote the full and reduced regression parameters
MLE. The LRT statistic follows a X;_ » distribution under the null hypothesis,
where p and p are the number of parameters of the full and reduced model.

Table 2 presents the LRT evaluating which variables significantly influence the
rating and the average listening times. According to the corresponding p-values,
the variables significantly influencing the average rating of this radio station are the
age, the education level and the geographical zone in the broadcast area. A look
at the B estimates shows that the rating average increases with age and education
classes and decreases for people living in the countryside area named “Zone 2.”
The variables significantly influencing the average listening time to this radio sta-
tion are the age, the gender and area. The listening time average increases for peo-
ple belonging to high age classes and decreases for people living in “Zone 2.” The
evolution of listening time with age is not the same for men and women. The right
upper plot of Figure 7 shows the form of the link between the estimated average
ratings, 77;, and the average listening times, [i;: this relationship is approximately
linear, strong and positive (the correlation is of 0.78).

The estimated shape parameter is £ =0.082 with 65 = 0.039. The shape para-
meter is thus slightly but significantly higher than zero, meaning that a GLM with
an exponential error distribution, a special case of the ZITPo models when & — 0,
would not have been convenient in this case. The residuals are to be compared to a
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TABLE 2
LRT statistics (with corresponding degrees of freedom) and p-values for the marginal LRT applied
to the listening times to radio station “116.” Each variable (or variable plus interaction) of the left
column is tested in the binomial (Rating) and truncated GPD (Average listening time) part of the
model. Low p-values are magnified in the columns “Sig.” by means of (**%), (*%), (*), (-)
respectively corresponding to significant tests at the levels of 0.001, 0.01, 0.05 and 0.1

Rating Average listening time

T Df  p-value Sig. T Df  p-value Sig.
Age + age - gender 236.58 8 <0.001 wkE 78.54 8 <0.001 o
Gender + age - gender 3.26 5 0.659 16.08 5 0.007 ok
Education 9.61 2 0.008 ok 341 2 0.182
Month 591 5 0.315 1.53 5 0.909
Zone 24.67 1 <0.001 ok 3.92 1 0.048 *
Age - gender 2.56 4 0.634 8.14 4 0.087

GPD(1, 0.082). The analysis of the fit is presented in the two bottom plots of Fig-
ure 7. The QQ-plots of the residuals and of their log show a very good adequacy
of the model to the data.

Such conclusions represent a substantial improvement upon the available rat-
ings analyses in which point estimations of audience indicators are calculated for
the desired focus groups mostly without confidence intervals and without the pos-
sibility to test the importance of a variable compared to others. This information
thus allows radio stations to properly adapt their programming to better correspond
to their desired target audience, and advertisers to optimize targeted advertising
campaigns.

6. Conclusion. The ZITPo model is a very powerful model that can be used,
in particular, to analyze radio audience data. Using the truncated observations, this
model allows to adequately estimate the true proportions of nonzero observations
and the average of positive values—corresponding to the audience indicators of
rating and time spent listening—of the underlying untruncated listening times dis-
tribution. The model also allows to relate these expectations to covariates in a GLM
spirit, providing an explanatory model to audience data. The model validation pro-
cedure resulting from properties of the generalized Pareto distribution offers a very
helpful way to judge the adequacy of the model to the data.

Although the main motivation for the development of the ZITPo model was the
analysis of radio audience data, we believe that it can adequately fit a number of
data sets which have heavy tails distributions. For example, it provides an exten-
sion to model (4) for hydrological data, that can include covariates to explain the
mean level, with y° = 0.
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FIG. 7. Analyses of listening times to radio “116” in its broadcasting area during the second
semester of 2007. Left upper plot: Empirical distribution function. The number of observations is
2155. The clump-at-zero represents the 63% of the data. Right upper plot: Form of the link between
the estimated average ratings, 7;, and the average listening times, [1;. Two bottom plots: QQ-plots
of the residuals (left) and of the log of the residuals (right) of the ZITPo model applied to those data.
The ordered residuals are compared to the quantiles (left) and to the log of the quantiles (right) of a
GPD(1, £ = 0.082).
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SUPPLEMENTARY MATERIAL

Radio data set and R Code (DOI: 10.1214/10-AOAS358SUPP; .zip). The file
“data_ZITPo.csv” contains the data set analyzed in Section 5. The observations
are in rows and the variables in columns. The file “functions_ZITPo.r” contains R
functions that allow to fit and analyze ZITPo models. It produces objects of class
“zipto.” Usual generic functions are then available for objects of that class. The
file “script_ZITPo.r” contains the R Code used to produce the results of Tables 1
and 2 and the plots of Figure 7.
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